
Application Note
Software Examples to Showcase Unique Capabilities of 
TI’s C2000™ CLA

Himanshu Chaudhary and Aravindhan Karuppiah 

ABSTRACT

Enabling extremely high performance computation and efficient processing is critical for solving today’s complex 
real-time control problems. Real-time control systems are closed-loop control systems where one has a tight 
time window to gather data, process that data, and update the system in order to meet the performance 
objectives. TI’s Control Law Accelerator (CLA) is designed to execute real-time control algorithms in parallel with 
the C28x CPU, effectively doubling the computational performance of C2000 devices. This application report 
discusses some of the unique features of CLA and demonstrates them using simple software examples. These 
stand-alone examples are available as part of C2000Ware and can be quickly used to explore and evaluate the 
capabilities of CLA.

Table of Contents
1 Introduction.............................................................................................................................................................................2
2 Direct Access of CLA to Key Peripherals.............................................................................................................................3
3 Low interrupt Latency of CLA................................................................................................................................................4
4 Powerful Math Computation Capability of CLA................................................................................................................... 7
5 Offloading Fast Control Loop to CLA................................................................................................................................... 8

5.1 Handling Shared Resources Across C28x/CLA............................................................................................................... 11
6 Summary............................................................................................................................................................................... 13
7 References............................................................................................................................................................................ 14
8 Revision History................................................................................................................................................................... 15

List of Figures
Figure 2-1. Direct PWM Control Using CLA................................................................................................................................ 3
Figure 3-1. Interrupt vs Task Driven Machine.............................................................................................................................. 4
Figure 3-2. Early Interrupt From ADC to Trigger CLA Task......................................................................................................... 5
Figure 3-3. CLA Pipeline Activity for Early Interrupt Pulse.......................................................................................................... 5
Figure 3-4. “Just-in-time” ADC Read Example Showcase...........................................................................................................6
Figure 5-1. Dual Control Loop Example Showcase.....................................................................................................................8
Figure 5-2. Flow Diagram With Both Tasks Running on C28x.....................................................................................................9
Figure 5-3. Profiling Waveforms for Both Tasks Running on C28x..............................................................................................9
Figure 5-4. Flow Diagram With Loop 1 Task Offloaded to CLA................................................................................................. 10
Figure 5-5. Profiling Waveforms for Loop1 Task Offloaded to CLA........................................................................................... 10
Figure 5-6. Concurrent R-M-W by C28x/CLA............................................................................................................................ 11
Figure 5-7. Profiling and Output Waveforms With Phase-Shift Disabled................................................................................... 11
Figure 5-8. EPWM-Based Phase-Shifting Technique................................................................................................................ 12
Figure 5-9. Profiling and Output Waveforms With Phase-Shift Enabled....................................................................................12

List of Tables
Table 4-1. CLA Math and Control Library Routines..................................................................................................................... 7

Trademarks
C2000™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA 1

Copyright © 2022 Texas Instruments Incorporated

http://www.ti.com/tool/C2000WARE
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


1 Introduction
The CLA is a fully-programmable independent 32-bit floating-point CPU that is designed for optimal math 
intensive computations to offer a significant boost to the performance of control algorithms. Unlike the standard 
traditional processor which executes instructions and services interrupts, the CLA instead is a task-driven 
machine and can support up to 8 user-defined tasks. The CLA in addition to providing computational capability 
provides an unique combination of minimal latency and ease of access to the key control peripherals. This 
makes the CLA ideal for implementing fast control loops, thus freeing up bandwidth on C28x to run additional 
control loops and perform other diagnostic and communication related tasks. The subsequent sections of this 
application report discusses these unique capabilities of CLA in detail and also demonstrates them through 
simple software examples which are provided as part of C2000Ware package [2]. For more details on CLA 
architecture and instructions set, see [1], [3].

The examples discussed in this document can be found in C2000Ware v3.01.00.00 or latest, located within the 
following directories after installation:

• C:\ti\c2000\C2000Ware_<version_number>\driverlib\f28004x\examples\cla
• C:\ti\c2000\C2000Ware_<version_number>\libraries\math\CLAmath\c28\examples
• C:\ti\c2000\ C2000Ware_<version_number>\libraries\control\DCL\c28\examples

The discussed example projects are:

• cla_ex4_pwm_control
• cla_ex5_adc_just_in_time
• cla_ex6_cpu_offloading
• cla_ex7_shared_resource_handling

Introduction www.ti.com

2 Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


2 Direct Access of CLA to Key Peripherals
Most of the real-time control algorithms can be split into three main tasks: excite the system, sample the 
system and control the system. Exciting the system would involve updating the PWM registers, sampling the 
system involves accessing the ADC result registers while controlling the system involves control loop math 
computations. CLA being an independent math processor, also has the ability to access registers of all key 
peripherals used for control applications like EPWM, ADC, ECAP, EQEP, CMPSS, and so forth directly. This 
allows CLA to perform sampling and actuation along with computation of control logic and is capable of 
executing the entire control task independently without any C28x involvement.

The example “cla_ex4_pwm_control” showcases how to control the PWM signal output directly through CLA. 
The block diagram of this example is shown in Figure 2-1. In this example, EPWM1 is configured to generate 
complementary signals on both of its channels at a fixed frequency of 100 KHz while EPWM4 is configured 
to trigger a periodic CLA control task at a frequency of 10 KHz. The CLA Task 1 implements a very simple 
logic to vary the duty of the EPWM1 outputs by increasing it by 0.1 for every iteration while maintaining it 
in the range of 0.1-0.9. The code sequence below illustrates how the existing C28x driverlib APIs (available 
as part of C2000Ware) can be used as it is within the CLA task to update the EPWM registers avoiding any 
additional software development effort with respect to CLA. The CLA task can access key registers of other 
shared peripherals as well in a similar fashion. Note that the CLA global variables cannot be initialized at the 
start of .cla file thus this example also illustrates a systematic way of initializing all the CLA global variables 
inside a dedicated CLA task (CLA task 8), which is triggered by C28x software at the time of initialization.

TI Information ± Selective Disclosure 1

CLA
Task

EPWM4 @ 10 KHz

EPWM1
100 KHz PWM 
variable duty 
signal

Figure 2-1. Direct PWM Control Using CLA

__attribute__((interrupt)) void Cla1Task1 ( void )
{
    //
    // Uncomment this to debug the CLA while connected to the debugger
    //
    __mdebugstop();
    //
    // Write to the COMPA register to realize a particular duty value
    //
    EPWM_setCounterCompareValue(EPWM1_BASE, EPWM_COUNTER_COMPARE_A,
                                (uint16_t)(duty * EPWM1_PERIOD + 0.5f));
    
    //
    // Update duty value and use the limiter
    //
    duty += 0.1f;
    duty = (duty > 0.9f) ? 0.1f : duty;
    //
    // Clear EPWM4 interrupt flag so that next interrupt can come in
    //
    EPWM_clearEventTriggerInterruptFlag(EPWM4_BASE);
}

www.ti.com Direct Access of CLA to Key Peripherals

SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA 3

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


3 Low interrupt Latency of CLA
In any real-time control application, the sample to output delay, defined as the time that elapses between 
sensing, processing and actuation, is an important system consideration. The low-latency architecture of CLA 
reduces this sample to output time while increasing the overall system throughput. This is made possible 
because CLA is task oriented instead of interrupt driven machine and does not use interrupts to synchronize with 
hardware. Instead, it supports up to eight independent tasks, which are each mapped to hardware events such 
as a timer or data availability on an ADC, and so forth. A task initiated on the CLA runs to completion without any 
interruption or nesting involved, hence eliminating the need for any context-switching overhead typically involved 
in traditional interrupt-based processors. Thus, there is little to no delay involved in processing the data by CLA, 
which ultimately reduces the sample to output delay and enables faster system response. Figure 3-1 illustrates 
the differences between a task driven machine (TDM) and an interrupt driven machine (IDM).

Figure 3-1. Interrupt vs Task Driven Machine

Low interrupt Latency of CLA www.ti.com

4 Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


The low interrupt response of CLA can be leveraged in combination with the early-interrupt feature of TI’s 
internal ADC to further reduce the sample to output delay. The ADC can be configured to generate an early 
interrupt pulse at the end of sampling before the conversion completes. This early-interrupt pulse from the ADC 
can be used to trigger a CLA task that would allow the CLA to read the result as soon as the conversion result 
is available in the ADC result register. This combination of just-in-time sampling along with the low interrupt 
response of the CLA enable faster system response and higher frequency control loops. The available time 
before the conversion can be effectively utilized for any necessary pre-processing steps within the CLA task as 
illustrated in Figure 3-2. The exact instruction at which the read request should be placed to achieve just-in-time 
read can be calculated based on the CLA pipeline activity for N-cycle ADC conversion. As shown in Figure 3-3, 
The N-2 instruction will arrive in the R2 phase just in time to read the result register. For the standard 12-bit ADC 
configuration and clock divider as 4, N is 42. To find out the correct value of N based on the configuration of 
ADC, see the device-specific data sheet [4].

TI Information ± Selective Disclosure 2

Sampling Conversion

Pre-processing Read Processing + Update

Early 

Interrupt 

Pulse

³-XVW-In-7LPH´�

ADC Read

ADC 
Activity

CLA 
Activity

CLA Task 

Begins

CLA Task 

Completes

Figure 3-2. Early Interrupt From ADC to Trigger CLA Task

Figure 3-3. CLA Pipeline Activity for Early Interrupt Pulse

The example “cla_ex5_adc_just_in_time” utilizes the above concept to read the ADC data “just-in-time” even at 
very high sampling frequencies. As depicted in Figure 3-4, EPWM1 is configured to generate a PWM output 
signal of frequency 1 MHz, which is also used to trigger the ADC sampling at each cycle. The example also 
utilizes the newly added feature in TI’s Type 5 ADCs, which allows delaying the early interrupt pulse by few 
cycles as per the programmed OFFSET value. Thus ADCA is configured to sample the input on Channel 0 and 
to generate the early interrupt at the end of S/H + offset cycles. This interrupt is used to trigger the CLA control 
task. The CLA task implements the control logic to update the duty of the PWM output based on the read ADC 
value. The early interrupt feature and low interrupt latency of CLA allows the application to do any necessary 
pre-work so that the application can act on the ADC results immediately when they become available and 
still complete updating the PWM output before the next interrupts arrives. Thus, all the three steps (sampling, 

www.ti.com Low interrupt Latency of CLA

SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA 5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


processing and actuation) are completed within a 1 MHz cycle. As shown in the below code snippet of the CLA 
task, 3-point moving average filter is used to simulate the processing sequence for illustration purposes and few 
steps of the filtering sequence that are denoted as the pre-processing code are implemented before reading the 
ADC result to make use of the time available before conversion.

TI Information ± Selective Disclosure 3

CLA

EPWM1 @ 1 MHz

EPWM1
Linear 
Mapping 

CLA Task
(Just-in-time 

Read + 
Processing)

Early
Interrupt

Figure 3-4. “Just-in-time” ADC Read Example Showcase

    //
    // Pre-processing for implementing moving average filter, takes 13 cycles
    // This is just to illustrate how cycles can be utilized to do some pre-
    // processing before ADC result latches. Based on the cycles taken by
    // pre-processing code, ADC interrupt offset need to be programmed
    //
    data_read_total = data_read + data_read_prev;
    data_read_prev2 = data_read_prev;
    data_read_prev = data_read;
    //
    // Reading ADC just-in-time
    //
    data_read = HWREGH(ADCARESULT_BASE + ADC_RESULTx_OFFSET_BASE + ADC_SOC_NUMBER0);
    //
    // "data_read_total" stores the cumulative sum of current and last 2 data elements
    //
    data_read_total += data_read;
    //
    // Taking average of 3 elements, normalizing for 12-bit and mapping to output duty
    // linearly in the range  0.1-0.9
    // duty = 0.1 + (0.9-0.1) * ((data_read_total / 3) / 2^12 )
    //
    duty = 0.1f + (data_read_total / (15360.0f));
    //
    // Writing to the COMPA register for realizing computed duty value
    //
    HWREGH(EPWM1_BASE + EPWM_O_CMPA + 0x1U) = (uint16_t)(duty * EPWM1_PERIOD + 0.5f);

The early interrupt OFFSET value of ADC need to be adjusted based on the cycles consumed by the pre-
processing in order to read the ADC data “just-in-time”. In this example, the OFFSET value of 20 is used based 
on the calculation shown in example header. The programming sequence for this configuration of ADC is shown 
below. The actual use-case may involve different pre-processing steps, hence the interrupt OFFSET value need 
to programmed accordingly.

    //
    // Set pulse positions to early
    //
    ADC_setInterruptPulseMode(ADCA_BASE, ADC_PULSE_END_OF_ACQ_WIN);
    //
    // Set interrupt offset delay as 20 cycles based on the calculation
    // shown in example header
    //
    ADC_setInterruptCycleOffset(ADCA_BASE, 20);

Low interrupt Latency of CLA www.ti.com

6 Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


4 Powerful Math Computation Capability of CLA
CLA also offers powerful 32-bit floating point processing capability to C2000 devices and provides a significant 
boost to the performance of typical math functions that are commonly used in control algorithms. The powerful 
CLA instruction set supports floating point multiplication with parallel add or subtract operations in a single 
cycle and also supports computation of inverse square root in a single cycle too. For the ease of software 
development with CLA, a wide collection of commonly used floating-point math functions (a few of them are 
listed in Table 4-1) are packaged into a single library called as CLA Math, which is available as part of 
C2000Ware. This source code library includes several C callable assembly math functions optimally written 
for CLA architecture.

In addition to the basic math routines, TI also provides Digital Control library (DCL available as part of 
C2000Ware) that includes optimal implementation of standard control routines on CLA CPU, few of them are 
listed in Table 4-1. These C callable assembly control routines can be called within a CLA application task to 
realize digital controller on CLA CPU. Along with the library source code, examples are provided to show the 
user how to integrate the library into their projects and use any of the math or control routines. These examples 
can be found in the example directories indicated in the introduction section that can be used to explore and 
evaluate the compute capability of CLA.

Table 4-1. CLA Math and Control Library Routines
Library Routine Description Cycles
CLA Math CLAcos Calculates cosine on CLA 28

CLAsin Calculates sine on CLA 28

CLAacos Calculates arc-cos on CLA 24

CLAasin Calculates arc-sine on CLA 22

CLAatan Calculates arc-tan on CLA 41

CLAlog10 Calculates Log (base10) on CLA 29

CLAexp Calculates exponential on CLA 41

CLAdiv Calculates floating-point division on CLA 13

CLAisqrt Calculates inverse square root on CLA 14

CLAsqrt Calculates square root on CLA 16

DCL DCL_runPID_L1 Runs Ideal Form PID controller on CLA 53

DCL_runPID_L2 Runs Parallel Form PID controller on CLA 45

DCL_runPI_L1 Runs Ideal Form PI controller on CLA 34

DCL_runDF13_L1 Runs the DF13 Full Compensator on CLA 61

DCL_runDF13_L2 Runs the DF13 Immediate Compensator on CLA 20

DCL_runDF13_L3 Runs the DF13 Partial Compensator on CLA 58

www.ti.com Powerful Math Computation Capability of CLA

SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA 7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


5 Offloading Fast Control Loop to CLA
Various real-time control applications involve implementation of multiple control loops on a single device. 
However integration of multiple control systems on a single controller remains challenging from a processor 
bandwidth point of view while keeping system costs down. The CLA is a fully parallel processor to the main 
C28x core that brings concurrent control-loop execution to the C28x family. The CLA has its own program and 
data bus, and executes independently of the main core on the MCU. As described in Section 2 and Section 3, 
CLA provides unique combination of minimal latency and ease of access to the key control peripherals, which 
enables CLA to offload the fast control algorithm task entirely from C28x. Offloading the control task to CLA also 
offers additional benefits such as reduced jitter in execution and deterministic operation of control loops. This is 
made possible because the CLA is task oriented instead of an interrupt service driven machine and the tasks 
on CLA cannot be interrupted guaranteeing the deterministic nature of control loops. In a pipelined CPU, the 
ISRs can be delayed by an “n” number of cycles if the CPU is executing branch type statements when the ISR 
is received. However this is not a problem with CLA CPU as it waits in an idle state till the periodic task triggers 
to begin any execution due to its task-driven nature. Therefore, offloading fast control task to CLA and running 
remaining tasks on C28x helps to improve the overall system performance with reduced jitter in execution.

The example “cla_ex6_cpu_offloading” illustrates how to optimally offload a control loop from C28x to CLA when 
multiple control tasks and background tasks are involved which require more than single CPU (C28x) bandwidth. 
Figure 5-1 shows that two control loops are simulated in this example. The faster one (loop1) runs at 200 KHz 
while the slower one (loop2) runs at 20 KHz. Both the loops make use of PI controller to control the duty of single 
PWM output with different weightage, the faster one contribution being 80% while the slower one contributes 
20% to the PWM output. The inputs for both the loops are sampled using ADCA and ADCB with multiple SOCs 
for each to filter out any noise in the inputs. There is also a background task continuously running in the main 
loop that disables or enables the entire system including the PWM output and the control loops based on the 
user configured switch "system_OFF". Note that the CCS debugger clock cannot be used for profiling CLA 
routines, hence GPIO based profiling technique is employed in this example to profile the both tasks. GPIO2 and 
GPIO 3 have been used for this purpose.

Figure 5-2 depicts the flow diagram of both the control tasks when everything runs on C28x without the use of 
CLA. In this case, the total CPU (C28x) utilization exceeds the schedulable Utilization bound (UB) and, hence 
the system is schedulable in this scenario. This can also be further substantiated by observing the profiling 
waveforms shown in Figure 5-3. Note that there is no toggling observed on GPIO3, which clearly suggests that 
the lower priority Loop 2 task never gets chance to complete and neither the background task.

TI Information ± Selective Disclosure
4

EPWM5 @ 20 KHz

ADCB

SOC0

SOC1

SOC2

SOC3

V2

CLA

SOC0

SOC1

SOC2

SOC3

EPWM4 @ 200 KHz

V1
Loop1 
DCL_PI 

Controller

Loop2 
DCL_PI 

Controller

EPWM1
V1_ref

V2 _ref

0.8

0.2

PWM
+

Figure 5-1. Dual Control Loop Example Showcase

Offloading Fast Control Loop to CLA www.ti.com

8 Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


TI Information ± Selective Disclosure 5

C ISR

Save Context and 

clear interrupt flags

Read Channel 0 ADC 

oversampled data 

Run PI Controller

Duty Computation 

with 80% weightage

EPWM1A Register 

Update

EXIT

Loop1 @ 200 KHz Loop2 @ 20 KHz

Context Restore

C ISR

Save Context and 

clear interrupt flags

Read Channel 1 ADC 

oversampled data 

Run PI Controller

Duty Computation 

with 20% weightage

EPWM1A Register 

Update

EXIT

Context Restore

Turn ON GPIO2

Turn OFF GPIO2

Turn ON GPIO3

Turn OFF GPIO3

CPU 
Utilization 

: ~77%

CPU 
Utilization 
: ~7.7%

Figure 5-2. Flow Diagram With Both Tasks Running on C28x

Figure 5-3. Profiling Waveforms for Both Tasks Running on C28x

www.ti.com Offloading Fast Control Loop to CLA

SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA 9

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


Since the system is non-schedulable with C28x, one of the control tasks can be offloaded to CLA in order to 
meet the system requirements. As CLA offers very low interrupt latency, it is better to offload the fast control task 
to CLA, and this will also free up maximum bandwidth on C28x, which can be utilized for executing background 
and other system tasks. Figure 5-4 depicts the flow diagrams of both the tasks when the higher frequency Loop 
1 task is offloaded to CLA. With the use of CLA for concurrent loop execution, the C28x utilization for control 
tasks has come down to approximately 7.7% allowing the other background task to execute correctly. Offloading 
the task to CLA makes the system perfectly schedulable in this case, which is also evident from the profiling 
waveforms shown in Figure 5-5. The example allows the user to offload the loop1 task quickly & conveniently 
from C28x to CLA by just updating the pre-defined symbol "run_loop1_cla" to 1 in the project build options.

TI Information ± Selective Disclosure 7

CLA 

Task

Read Channel 0 ADC 

oversampled data 

Run PI Controller

Duty Computation 

with 80% weightage

EPWM1A Register 

Update

EXIT

Loop1 @ 200 KHz

Loop2 @ 20 KHz

C ISR

Save Context and 

clear interrupt flags

Read Channel 1 ADC 

oversampled data 

Run PI Controller

Duty Computation 

with 20% weightage

EPWM1A Register 

Update

EXIT

Context Restore

Turn ON GPIO2

Turn OFF GPIO2

Turn ON GPIO3

Turn OFF GPIO3

CLA 
Utilization 
: ~72.4%

CPU 
Utilization 
: ~7.7%

Figure 5-4. Flow Diagram With Loop 1 Task Offloaded to CLA

Figure 5-5. Profiling Waveforms for Loop1 Task Offloaded to CLA

Offloading Fast Control Loop to CLA www.ti.com

10 Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


5.1 Handling Shared Resources Across C28x/CLA
CLA allows offloading of control tasks efficiently from C28x and enables concurrent control loop execution 
on C2000 devices with many other additional benefits as discussed in earlier sections. But it is important 
to note that the peripherals are still shared between them and concurrent read-modify-write to the shared 
registers can lead to data race conditions ultimately leading to data violation or incorrect functionality. 
Ideally it’s best to avoid any concurrent updates to the same peripheral by both CLA and C28x during run 
time but in case it is unavoidable, conflicts for shared resources must be handled carefully. The example 
“cla_ex7_shared_resource_handling” illustrates one such instance where both C28x and CLA do concurrent 
read-modify-write to same (AQCSFRC) register independently at different frequencies, which leads to a race 
condition between C28x and CLA and creates a possibility where updates due to one of them can get lost 
or overwritten. This is a standard critical section problem and can be handled using software handshaking 
mechanism like mutual exclusion but most of the real-time control applications are time-sensitive and cannot 
afford additional software cycles overhead. This example suggests an alternative hardware based technique 
to schedule the CLA and C28x tasks smartly in order to avoid overlapping access of shared resources. The 
hardware-based scheduling technique makes use of the programmable phase shifting mechanism of the EPWM 
modules.

As depicted in Figure 5-6, C28x ISR and CLA task runs independently at 10 KHz and 100 KHz respectively. 
C28x ISR gets periodically triggered by EPWM4, and toggles the EPWM1B output via software by controlling 
CSFB bits of AQCSFRC. CLA task gets triggered by EPWM5 and toggles the EPWM1A output via software 
by controlling CSFA bits of AQCSFRC (refer to device TRM [1] for further details about this register). Thus in 
this process both C28x and CLA do overlapping read-modify-write to AQCSFRC register as can be observed 
form the profiling waveforms shown in Figure 5-7. As a result, the updates to the AQCSFRC due to CLA gets 
overwritten, which is very evident from the spikes observed in EPWM1A output waveform shown in Figure 5-7.

TI Information ± Selective Disclosure 9

CPU 
ISR

CLA 
Task

EPWM4 

@10Khz

EPWM5 

@100Khz

EPWM1B Toggle

via SW Force

EPWM1A Toggle
via SW Force

Figure 5-6. Concurrent R-M-W by C28x/CLA

Figure 5-7. Profiling and Output Waveforms With Phase-Shift Disabled

www.ti.com Offloading Fast Control Loop to CLA

SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA 11

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


The phase shifting mechanism of the EPWM modules, as shown in Figure 5-8, is utilized to schedule the CLA 
task and C28x ISR efficiently in order to resolve the above issue. EPWM4 generates a synchronous pulse every 
ZERO event and provides a phase shift of 20 cycles to EPWM5. This way both CLA task and C28x ISR runs 
at the original frequencies (100 KHz and 10 KHz), but CLA task leads with a phase offset of 20 cycles w.r.t 
C28x ISR as can be observed from the profiling waveform shown in Figure 5-9. Concurrent read-modify-writes 
to AQCSFRC never happens and the EPWM1A and EPWM1B outputs behave as desired without any distortion 
as shown in Figure 5-9. Thus the proposed hardware based scheduling technique helps to avoid data race 
conditions between C28x and CLA, and also helps to realize the true parallel execution of both processing 
engines by avoiding any simultaneous accesses and, hence maximizes the overall device performance.

TI Information ± Selective Disclosure

CLA 

Trigger
CLA 

Trigger

CLA 
Trigger

CLA 

Trigger

CLA 

Trigger

CLA 

Trigger
CLA 
Trigger

CLA 

Trigger
CLA 

Trigger

CLA 
Trigger

C28x 

Trigger

Trigger 
Delay

EPWM5 

Time 

Base

EPWM4 

Time 

Base

Figure 5-8. EPWM-Based Phase-Shifting Technique

Figure 5-9. Profiling and Output Waveforms With Phase-Shift Enabled

Offloading Fast Control Loop to CLA www.ti.com

12 Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


6 Summary
The differentiation provided by TI’s Control Law Accelerator (CLA) enables efficient execution of concurrent 
control loops on C2000 devices. CLA has been specially designed to boost the performance of control intensive 
math routines on real-time MCUs. The low-latency task-driven architecture of CLA is quite unique and reduces 
the sample-to-output delay, which is very critical for control applications. The direct access to key control 
peripherals and powerful floating-point processing capability allows CLA to offload the control tasks completely 
from the main CPU (C28x) thus freeing up its bandwidth to perform other system tasks. The CLA offers 
additional processing capabilities to C2000 devices and increases the overall device performance. The phase-
shifting mechanism for scheduling CLA tasks as discussed in this report can be used to extract the maximum 
processing bandwidth out of the device. Another key benefit of the CLA over hardware-based control law 
implementations is flexibility. The CLA is fully programmable where developers can freely modify their control 
system without the time and high cost required to redesign a hardware-based solution. The C2000 C compiler [5] 
allows CLA to be programmed in C language similar to the C28x, which makes it very convenient to port existing 
algorithms or develop newer ones on CLA. The various software examples discussed in this application report 
demonstrates the key capabilities of CLA and can be used as a reference to adopt these unique features of CLA 
in their applications. These examples are very easy to use and do not require any special hardware platform 
other than the standard TI ControlCard to explore and evaluate the performance of CLA. Along with these 
examples, various Digital Power SDK [6] solutions also showcase the usage of CLA to reduce the overall C28x 
burden in various digital power solutions [7]. For further details on the software development and debugging with 
CLA, see [8].

www.ti.com Summary

SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA 13

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


7 References
1. Texas Instruments: TMS320F28004x Microcontrollers Technical Reference Manual
2. C2000Ware for C2000 MCUs
3. CLA Hands-On Workshop
4. Texas Instruments: TMS320F2838x Microcontrollers With Connectivity Manager Data Sheet
5. CLA C Compiler
6. Digital Power SDK for C2000 MCUs
7. CLA Usage in Valley Switching Boost Power Factor Correction (PFC) Reference Design
8. C2000™ CLA Software Development Guide

References www.ti.com

14 Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRUI33
http://www.ti.com/tool/C2000WARE
https://training.ti.com/control-law-accelerator-cla-hands-workshop
https://www.ti.com/lit/pdf/SPRSP14
https://training.ti.com/c2000-cla-c-compiler-part-1-technical-overview
http://www.ti.com/tool/C2000WARE-DIGITALPOWER-SDK
https://training.ti.com/cla-usage-valley-switching-boost-power-factor-correction-pfc-reference-design
https://software-dl.ti.com/C2000/docs/cla_software_dev_guide/getting_started.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


8 Revision History

Changes from Revision * (May 2020) to Revision A (November 2022) Page
• Updated the numbering format for tables, figures, and cross-references throughout the document..................1

www.ti.com Revision History

SPRACS0A – MAY 2020 – REVISED NOVEMBER 2022
Submit Document Feedback

Software Examples to Showcase Unique Capabilities of TI’s C2000™ CLA 15

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACS0
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACS0A&partnum=


IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 Direct Access of CLA to Key Peripherals
	3 Low interrupt Latency of CLA
	4 Powerful Math Computation Capability of CLA
	5 Offloading Fast Control Loop to CLA
	5.1 Handling Shared Resources Across C28x/CLA

	6 Summary
	7 References
	8 Revision History

