
1SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

Application Report
SPRACN3–September 2019

Using ARM ROM Bootloader on Keystone II Devices

.. Catalog Processors

ABSTRACT
The application report is a comprehensive technical manual to leverage the ROM bootloader to boot
applications or secondary bootloaders on Keystone II devices like 66AK2H14 and 66AK2E05. This
document provides boot examples along with description of boot utilities and setting up TI supported
evaluation platforms to test the sample software.

Additionally, some of the frequently asked questions are addressed around this topic along with additional
references to Processor SDK in the SDK documentation on ti.com to design your system boot.

The document is meant to be used as an addendum document to ARM Bootloader User Guide for
KeyStone II Devices. The Processor SDK also provides secondary bootloaders that enable developers to
enable two stage application booting, which allows for customization of the system boot beyond the
capabilities of the ARM® ROM bootloader

Contents
1 Keystone2 Boot loader Overview.. 2
2 Boot Examples Package Download ... 2
3 Software Dependencies... 2
4 Supported Hardware .. 2
5 Software Features ... 2
6 Directory Structure... 3
7 Building the Examples .. 4
8 Description of the Examples.. 5
9 Boot Utilities... 15
10 Frequently Asked Questions (FAQ).. 16
11 References .. 18

List of Figures

1 Boot Example Directory Structure ... 3
2 CCS Load Memory Option in Memory Browser ... 8
3 CCS Load Memory With I2C Boot Binary .. 8
4 Teraterm Serial Terminal Usage for XMODEM Transfer of UART Boot Image 11
5 Static IP Configuration on Host PC ... 13
6 TFTP Transfer Configuration for Ethernet Boot .. 14

List of Tables

1 ROM Function Table .. 16

Trademarks
Code Composer Studio is a trademark of Texas Instruments.
ARM is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Linux is a registered trademark of Linus Torvalds in the U.S. and other countries.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://www.ti.com
http://www.ti.com/lit/pdf/spruhj3
http://www.ti.com/lit/pdf/spruhj3

Keystone2 Boot loader Overview www.ti.com

2 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

1 Keystone2 Boot loader Overview
Keystone II bootloader overview and details are covered in the collateral and training slides mentioned
below:
• KeyStone II Architecture ARM Bootloader User's Guide
• Keystone Boot loader Training slides

It is recommended that you review the material provided above before getting started with building the
boot examples.

2 Boot Examples Package Download
GIT Repo for Boot Examples

In order to download the software, execute the following in the git bash environment:
git clone git@git.ti.com:keystone2_boot_examples/keystone2_boot_examples.git boot_examples

3 Software Dependencies
Processor SDK RTOS or MCSDK 3.x (Legacy SDK)

MinGW for Windows with msys and make tools installed. OR Linux® machine with Ubuntu 12.04 LTS with
wine utility.

TI Arm compiler (typically packaged with Code composer Studio).

4 Supported Hardware
• K2H EVM rev 1.1 and later
• K2E EVMs rev 1.0.2.0 and later

NOTE: Ensure that the EVM has the latest UCD and BMC updates as described in the Setup
Hardware section.

5 Software Features
• Boot Utilities to create and format boot images
• Examples that demonstrate booting K2H and K2E devices from Serial Peripheral Interface (SPI), Inter-

Integrated Circuit (I2C), Universal Asynchronous Receiver/Transmitter (UART), Ethernet and NAND.
Examples also demonstrate the following features of the BootROM
– Single and Multi-Stage booting
– Using Boot Parameter tables to speed up booting from a boot media
– Using Boot Configuration tables to initialize DDR

• Examples to demonstrate formatting uboot for above mentioned boot modes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://www.ti.com/lit/pdf/SPRUHJ3
https://git.ti.com/keystone2_boot_examples
http://www.ti.com/tool/processor-sdk-k2h
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/mcsdk/latest/index_FDS.html
https://sourceforge.net/projects/mingw/files/
http://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html
https://www2.advantech.com/Support/TI-EVM/EVMK2HX.aspx
https://www.einfochips.com/index.php/partnerships/texas-instruments/k2e-evm.html
http://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_how_to_guides.html#evm-hardware-setup
http://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_how_to_guides.html#evm-hardware-setup

www.ti.com Directory Structure

3SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

6 Directory Structure
Figure 1 shows the directory structure for the software package. The examples directory is organized to
follow the convention.

Figure 1. Boot Example Directory Structure

Device Name (k2h, k2e) ---> Boot Mode (eth, i2c,nand,spi, uart) ---
> Example Type (singleStage, multiStage).

Detailed description of the directory structure is given below:
• docs - directory contains ReadMe documents and the software manifest for the package.
• common - directory contains source and header files for helper functions that are used by the

examples to configure MMU, CACHE, PLLs, UART and to set user defined entry point for their
applications.

• include - directory contains all boot header files that applies to all the devices in the Keystone family.
• examples - directory contains source for single stage and multi stage boot examples for different boot

modes.
– k2e - directory contains boot examples for K2E devices.

• build - directory contains linker command files that specify the memory configuration for each
examples

• cfg - directory contains header files that contain ddr configuration tables, boot parameter tables
for different boot modes and tiboot.h file defined in the BootROM.

• [peripheral] - directory contains boot example code for each peripheral (eth, i2c,nand,spi, uart)
• [example type] - directory contains single stage/mulitstage example binaries.

• uboot - directory contains build files required to create uboot binaries for different boot media.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

Building the Examples www.ti.com

4 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

– k2h - directory contains boot examples for K2H devices.
• build - directory contains linker command files that specify the memory configuration for each

examples
• cfg - directory contains header files that contain ddr configuration tables, boot parameter tables

for different boot modes and tiboot.h file defined in the BootROM.
• [peripheral] - directory contains boot example code for each peripheral (eth, i2c,nand,spi, uart)

• [example type] - directory contains single stage/multi-stage example binaries.
• uboot - directory contains build files required to create uboot binaries for different boot media.

– src - directory contains source for sample applications that demonstrate single stage and multistage
booting.
• singleStage: directory contains source files for Single stage boot example
• mulitStage: directory contains source files for two stage boot example

• utils - directory contains the utilities for building boot images
– byteswap : directory contains the source and binaries for byteswapccs utility.
– btoccs : directory contains source and binaries for b2ccs,catccs, ccs2bin utilities
– ccsutil: directory contains source and binaries for ccsAddGphdr,ccsAddGptlr,ccspad utilities

Source files:
• Stage1.c
• Stage2.c

Configuration files:
• paramTables.h Boot Parameter table used for multi Stage boot examples are provided in this file.
• ddrConfigTable.h: DDR configuration table used in examples initialize are provided in this file.
• tiboot.h: BootROM header file that contains details of boot parameter structures, configuration tables

and BOOTROM call table.

7 Building the Examples
1. Setting up host environment.

For Windows Environment: The top level directory in the software package contains a file
setupMsysEnv that is used to set the path to the environment variables required to build the examples.
Set the path to MinGW installation (TOOL_MINGW_DST), TI Arm compiler
(ARM_COMPILER_FOLDER) and the platform development package (PDK_PACKAGES) and
optionally to the uboot source directory.

NOTE: PDK_packages must point to path to the packages folder in the PDK directory.

For Linux Environment: The top level directory in the software package contains a file setupLinuxEnv
that is used to set the path to the environment variables required to build the examples. Set the path to
TI Arm compiler (ARM_COMPILER_FOLDER) and the platform development package
(PDK_PACKAGES) and optionally to the uboot source directory.

NOTE: For Linux environment, using the boot utilities requires wine utility. If you do not have this
installed, install the utility by executing following instruction on your Ubuntu machine.

sudo apt-get install wine

PDK_packages must point to path to the packages folder in the PDK directory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

www.ti.com Description of the Examples

5SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

2. In order to build the examples for all the supported keystone platforms, you can execute "make all". In
order to build uboot binaries in addition to boot examples, you can execute "make k2h_uboot" or
"make k2e_uboot".
Top level make file supports the following targets:
k2h_examples : Builds examples for K2H devices
k2e_examples : Builds examples for K2E devices
utils : Builds boot utlities
k2h_uboot : Builds uboot binaries for K2H devices
k2e_uboot : Builds uboot binaries for K2E devices

NOTE: In Linux environment, if you see errors related to environment variables, check your path to
the tools. If that is accurate, ensure that you have saved the file in unix format.

:set fileformat=unix
:wq

8 Description of the Examples
The software packages contains two types of examples single stage boot examples and multistage boot
examples.

8.1 Single Stage Boot Examples
Single stage boot examples demonstrate booting the K2 devices directly from the boot media specified by
the boot mode pins using the default settings specified by the boot parameter loaded by the BootROM.
For default boot parameter settings used by the bootROM, see the device-specific data manual. The
sample application is designed to wake up the secondary Arm core upon boot and then initializes the
UART to print message when each core wakes up. Each Arm core will send a message over UART: "Core
n standing by..." where n is the Arm core number.

8.2 Multi-Stage Boot Example
The multistage boot example demonstrates two stage booting the K2 devices using functions in BootROM
call table. The first stage is loaded from the boot media specified by the boot switches using default
bootROM parameter tables. The first stage code replaces the default fields in the boot parameter table
and re-enters boot to load the second stage. This process is used in-order to modify the default boot
process in cases where you need to speed up the boot speeds, boot from a different offset in the flash
memory, load code into DDR memory or to perform time critical application specific initialization that may
be required without waiting for the entire application to load. The second stage initializes wakes up
secondary Arm core and initializes the UARTs and prints messages when each Arm core wakes up.

For details regarding the organization of the boot image for specific boot mode, see the makefile in the
path examples/<device>/<peripheral>/multiStage.

8.3 Boot Media-Specific Details

8.3.1 SPI Boot Example
SPI boot is a general-purpose boot mode in which the Boot ROM configures the PLL in bypass mode. The
Boot ROM loads the image from the base of the SPI NOR flash. In the multi-stage boot example, the first
stage loads the boot parameter table that forces the Boot ROM to configure the PLL and load the seconds
stage at 100 Khz. The second stage is loaded at an offset of 0x1000 in the SPI NOR Flash.

8.3.2 I2C Boot Examples
I2C boot is a general-purpose boot mode in which the Boot ROM configures the PLL in bypass mode. The
Boot ROM loads the image from the base of the I2C EEPROM. In the multi-stage boot example, the first
stage loads the boot parameter table that forces the Boot ROM to configure the PLL and load the seconds
stage at 100 Khz. The second stage is loaded at an offset of 0x2000 in the I2C EEPROM connected on
bus addr 50 on the EVM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

Description of the Examples www.ti.com

6 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

8.3.3 NAND Examples
NAND boot is a general-purpose boot mode in which the Boot ROM configures the PLL based on the
reference clock setting provided from the boot switches. The Boot ROM loads the image from the first
page of block 1. The example uses a DDR configuration table to initialize the DDR memory. The current
package does not provide a multi-stage example as the boot mode does not require initialization of PLLs
or DDR configuration.

8.3.4 UART Boot Examples
UART boot is a blob boot in which the Boot ROM configures the PLL based on the reference clock setting
provided from the boot switches. The boot ROM configures the UART to the baud rate of 115200 bps and
sends a ping character to indicate the device is ready to accept the image. The device loads the blob boot
image at the base of the MSMC. On K2E devices, you have the option to change the load address for the
boot images but on K2H the second stage will also need to be loaded at the base of MSMC. It was also
observed that the you need to enable MMU table on the Arm on blob boot modes.

NOTE: On K2H devices, the boot ROM does not invalidate the Instruction cache so the example on
K2H loads the two stages in non-overlapping memory. However, the first instruction that
redirects the device to the entry point of the application needs to execute from the base of
MSMC, so the instruction cache in the first stage needs to also be invalidated. To create
non-overlapping 2 stages, use a 1K random memory segment in the first stage.

8.3.5 Ethernet boot examples
Ethernet boot is a blob boot in which the Boot ROM configures the PLL based on the reference clock
setting provided from the boot switches. The boot ROM configures the PHY and booot switch and sends a
bootp packet to indicate it is ready to receive the boot image. You need to run a dhcp server on the host
to load the boot image on the target K2 device. The device loads the blob boot image is loaded at the
base of MSMC. On K2E devices, you have the option to change the load address for the boot images but,
on K2H the second stage will also need to be loaded at base of MSMC. It was also observed that the
users need to enable MMU table on the Arm on blob boot modes.

NOTE: On K2H devices, the boot ROM does not invalidate the Instruction cache so the example on
K2H loads the 2 stages in non-overlapping memory. However, the first instruction that
redirects the device to the entry point of the application needs to execute from the base of
MSMC, so the instruction cache in the first stage needs to also be invalidated. To create
non-overlapping 2 stages, use a 1K random memory segment in the first stage.

8.3.6 K2E Ethernet Boot Errata Workaround
On K2E devices, there is an errata associated with ethernet boot that prevents the device to directly boot
the ethernet. For more information, see the KeyStoneII.BTS_errata_advisory.25 in the K2E device errata
here. The example included in the path examples/k2e/eth/multistage shows how to apply the fix to the
Ethernet ROM code and PHY on the K2E EVM. The first stage is built by default for UART and I2C , but
the makefile can be modified to rebuild the image into one that can be loaded onto NAND or NOR. The
first stage is designed to apply the fix. After this image is loaded and finished executing, the device
transmits the BOOTP packets at a regular intervals, which uses the MAC ID of the device to load an
image over ethernet.

The PHY workaround code in ethWard.c can be safely removed if this example is not running on the
K2E/K2L EVM. This code starts with the comment "EVM PHY Workaround" and ends at "End of EVM
PHY Workaround." The function call 'setup_Marvell_Phy(1);' in main() can also be removed, if desired.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://www.ti.com/product/66AK2E05/technicaldocuments

www.ti.com Description of the Examples

7SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

8.4 Flashing and Running Boot Examples

8.4.1 Dip Switch Settings
• No Boot: SW1 (pin1, pin2, pin3, pin4): off, off, off, on
• UART: SW1 (pin1, pin2, pin3, pin4): off, on, off, off
• NAND: SW1 (pin1, pin2, pin3, pin4): off, off, off, off
• SPI: SW1 (pin1, pin2, pin3, pin4): off, off, on, off
• I2C: SW1 (pin1, pin2, pin3, pin4): off, off, on, on
• Ethernet: SW1 (pin1, pin2, pin3, pin4): off, on, off, on

8.4.2 Running I2C EEPROM example
• Location of boot image binaries:

– examples/<k2 device>/i2c/singleStage/bin/i2cImage.dat
– examples/<k2 device>/i2c/multiStage/bin/i2cImage.dat

• I2C Flash Writer software:
The I2C EEPROM flash writer can be located in MCSDK under the path
\mcsdk_bios_3_01_00_01\tools\writer\eeprom\evmk2X. In order to refer to the detailed documentation
of the flash writer, see the ReadMe document included in
mcsdk_bios_3_01_00_01\tools\writer\eeprom\docs.

• Flashing the I2C boot examples:
1. Copy the boot binary (i2cImage.dat) to the

\mcsdk_bios_3_01_00_01\tools\writer\eeprom\evmk2X\bin folder and rename the file to app.dat.
2. Open the file eepromwriter_input and modify the parameters as shown below:

file_name = app.dat
bus_addr = 0x50
start_addr = 0
swap_data = 1

3. Configure the EVM to "No Boot mode" as shown in Section 8.4.1 and connect to the EVM using
and emulator and Code Composer studio.

NOTE: Details to connect to the EVM using Code Composer Studio™ (CCS) are discussed in
the Hardware Setup Guide.

4. Connect to and initialize the Arm core using the Device GEL file found in the emualation pack found
here.

5. Connect to the C66x core and load the eepromwriter_evmk2e.out on the device.
6. Go to the "View" Menu and open a memory browser and select "Load Memory" in the memory

browser. Browse to the boot image and select "Use the file header to set the start address and size
of the memory block to be loaded.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_how_to_guides.html#evm-hardware-setup
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/mcsdk/latest/index_FDS.html

Description of the Examples www.ti.com

8 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

Figure 2. CCS Load Memory Option in Memory Browser

7. Ensure the start address to base of MSMC (0xc000000) and click finish.

Figure 3. CCS Load Memory With I2C Boot Binary

8. Run the eepromwriter_evmk2e.out on the C66x core to flash the binary to the EEPROM on the
EVM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

www.ti.com Description of the Examples

9SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

• Running and verifying the I2C boot:
1. Set the EVM switches to I2C boot as shown in Section 8.4.1 and connect the serial terminal to host

and configure the UART Connect to 115200 baud rate.
2. Power on the EVM. When the boot completes successfully, the device puts out UART message

indicating the cores have woken up and are standing by.
The following messages will be displayed on the terminal window:

Core 0 standing by....
Core 1 standing by....
Core 2 standing by....
Core 3 standing by....

8.4.3 Running SPI NOR Example
• Location of Boot image binaries:

– examples/<k2 device>/spi/singleStage/bin/spiImage.dat
– examples/<k2 device>/spi/multiStage/bin/spiImage.dat

• SPI NOR Flash Writer software:
SPI NOR flash writer can be located in MCSDK under the path
\mcsdk_bios_3_01_00_01\tools\writer\nor\evmk2X. In order to refer to detailed documentation of the
flash writer, see the ReadMe document included in mcsdk_bios_3_01_00_01\tools\writer\nor\docs.

• Flashing the SPI NOR boot examples:
1. Copy the boot binary (spiImage.dat) to the \mcsdk_bios_3_01_00_01\tools\writer\nor\evmk2X\bin

folder and rename the file to app.dat.
2. Open the file nor_writer_input.txt and modify the parameters as shown below:

file_name = app.dat
start_addr = 0

3. Configure the EVM to "No Boot mode" as shown in Section 8.4.1 and connect to the EVM using
and emulator and Code Composer studio.

NOTE: Details to connect to the EVM using CCS are discussed in the Hardware Setup Guide.

4. Connect to and initialize the Arm core using the Device GEL file found in the emulation pack found
here. Configure the 1 Ghz and DDR configuration to 1333 Mhz.

5. Connect to C66x core and load the norwriter_evmk2X.out on the device.
6. Go to the "View" menu; open and select "Load Memory" in the memory browser. Browse to the

boot image and select "Use the file header to set the start address and size of the memory block to
be loaded. For reference on loading memory, see Figure 2 and Figure 3.

7. Ensure the start address to base of DDR (0x80000000) and click finish.
8. Run the norwriter_evmk2X.out on the C66x core to flash the binary to the SPI NOR on the EVM.

• Running and verifying the SPI boot:
1. Set the EVM switches to SPI boot as shown in Section 8.4.1 and connect the serial terminal to host

and configure the UART Connect to 115200 baud rate.
2. Power on the EVM. When the boot completes successfully, the device puts out the UART message

indicating the cores have woken up and are standing by.
The following messages will be displayed on the terminal window:
Core 0 standing by....
Core 1 standing by....
Core 2 standing by....
Core 3 standing by....

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_how_to_guides.html#evm-hardware-setup
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/mcsdk/latest/index_FDS.html

Description of the Examples www.ti.com

10 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

8.4.4 Running NAND Example
• Location of boot image binaries:

– examples/<k2 device>/nand/singleStage/bin/nandImage.dat
– examples/<k2 device>/nand/multiStage/bin/nandImage.dat

• NAND Flash Writer software:
The NAND flash writer can be located in MCSDK under the path
\mcsdk_bios_3_01_00_01\tools\writer\nand\evmk2X. In order to refer to detailed documentation of the
flash writer, see the ReadMe.txt document included in
mcsdk_bios_3_01_00_01\tools\writer\nand\docs.

• Flashing the NAND boot examples:
1. Copy the boot binary (spiImage.dat) to the \mcsdk_bios_3_01_00_01\tools\writer\nand\evmk2X\bin

folder and rename the file to app.dat.
2. Open the nand_writer_input.txt file and modify the parameters as shown below:

file_name = app.dat
start_addr = 0
rbl_ecc = 1
skip_bad = 1

3. Configure the EVM to "No Boot mode" as shown in Section 8.4.1 and connect to the EVM using
and emulator and Code Composer studio.

NOTE: Details to connect to the EVM using CCS are discussed in the Hardware Setup Guide.

4. Connect to and initialize the Arm core using the Device GEL file found in the emulation pack found
here. Configure the 1 Ghz and DDR configuration to 1333 Mhz.

5. Connect to the C66x core and load the nandwriter_evmk2X.out on the device.
6. Go to "View" menu and select "Load Memory" in the memory browser. Browse to the boot image

and select "Use the file header to set the start address and size of the memory block to be loaded.
For reference in loading memory, see Figure 2 and Figure 3.

7. Ensure the start address to base of DDR (0x80000000) and click finish.
8. Run the nandwriter_evmk2X.out on the C66x core to flash the binary to the NAND on the EVM.

• Running and verifying the NAND boot:
1. Set the EVM switches to NAND boot as shown in Section 8.4.1 and connect the serial terminal to

host and configure the UART Connect to 115200 baud rate.
2. Power on the EVM. When the boot completes successfully, the device puts out a UART message

indicating the cores have woken up and are standing by.
The following messages will be displayed on the terminal window:
Core 0 standing by....
Core 1 standing by....
Core 2 standing by....
Core 3 standing by....

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_how_to_guides.html#evm-hardware-setup
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/mcsdk/latest/index_FDS.html

www.ti.com Description of the Examples

11SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

8.4.5 Running UART Example
• Location of boot image binaries:

– examples/<k2 device>/uart/singleStage/bin/uartImage.dat
– examples/<k2 device>/uart/multiStage/bin/uartStage1.dat
– examples/<k2 device>/uart/multiStage/bin/uartStage2.dat

• Running and verifying the UART boot:
1. UART is a slave boot mode that requires the host to pass the blob boot image. Connect the serial

terminal to the host. You can use hyperterminal or TeraTerm on the Windows to transfer the image
from the host to the target. Configure the UART port to 115200 baud rate. After you power on, you
will see the ping character "C" on the host terminal. On the hyperterminal or TeraTerm select "File"
menu, select Transfer->Xmodem-Send and browse to the UART boot binaries.

Figure 4. Teraterm Serial Terminal Usage for XMODEM Transfer of UART Boot Image

2. Set the EVM switches to UART boot as shown in Section 8.4.1.
3. Power on the EVM. If you are running the single stage example when the boot image transfer

completes successfully, the device puts out a UART message indicating the cores have woken up
and are standing by. If you are running the multi-stage after the first stage boot, you will see the
ping character "C" on the host serial terminal.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

Description of the Examples www.ti.com

12 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

4. Select the "File" menu and select Transfer->Xmodem-Send, then browse to the second stage
UART boot binary. After the second stage boot completes, you should see the UART messages
from the application to indicate boot is complete.
The following messages will be displayed on the terminal window:
Core 0 standing by....
Core 1 standing by....
Core 2 standing by....
Core 3 standing by....

8.4.6 Running Ethernet Examples
Ethernet boot is a slave boot mode that requires the host to pass the blob boot image to the target running
a DHCP server. Connect the ethernet cable to the host and your switch, and connect another cable from
you switch to the EVM. Make sure you do not run this in a high network traffic environment. In order to run
the DHCP server on the host Windows machine, use an open source TFTP32 utility in admin mode and
configure our host to a static IP expected by the target.
• Location of Boot image binaries:

– examples/<k2 device>/eth/singleStage/bin/ethImage.dat
– examples/<k2 device>/eth/multiStage/bin/uartStage1.dat
– examples/<k2 device>/eth/multiStage/bin/ethernetStage2.dat

• TFTP host utility download:
– TFTP32 Download

• Setting up the host for ethernet boot:
1. Setup Static IP on the host machine by setting the IPv4 setting of the Wired LAN settings. Set the

Static IP to 192.168.5.10 as shown in Figure 5.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://tftpd32.jounin.net/

www.ti.com Description of the Examples

13SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

Figure 5. Static IP Configuration on Host PC

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

Description of the Examples www.ti.com

14 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

2. Configure the DHCP Server settings in the TFTP32 utility as shown in Figure 6.

Figure 6. TFTP Transfer Configuration for Ethernet Boot

Fixing the issue with BMC firmware and boot switches to boot Arm over ethernet on K2H EVM.

Some earlier revisions of the EVM have an issue with the settings required for setting up the EVM for
ethernet boot.

In order to fix the issue, follow the steps below:
1. Connect your host to the serial port and connect to both the BMC console port and the Serial port.

Using the settings described in the serial port setup section of the wiki.
2. Setup the boot switches to Ethernet boot(p[1:4]=0101) using the settings described in Section 8.4.1.
3. Power on the EVM. You should see the Arm ENET boot mode on the LCD screen in the logs displayed

along with BOOT COMPLETE.
4. On the BMC port, type the following:

>bootmode #8 0 115EEB
>bootmode #8
>reboot

Or
> setboot 115EEB
>fullrst

• Running and verifying the Ethernet single stage boot on the K2H devices:
1. Copy the Ethernet single stage boot image to the TFTP32 folder and rename the file to

eth_data.bin.
2. Power on the EVM, set the ethernet boot in BMC firmware; when the device reboots, make sure the

tftpd32 utitlity is running and configured as described in the previous section. When EVM boots in
ethernet boot mode, it will send a bootp. If you do not see uboot come up on the Serial port, check
if you are able to see bootp packet by using Wireshark utility.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/How_to_Guides_Hardware_Setup_with_CCS.html#attach-the-serial-port-cable-to-the-soc-uart-port

www.ti.com Boot Utilities

15SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

3. After the BOOTP is received, you will see the transfer of the ethernet boot image and the UART
messages when the boot completes:
Core 0 standing by....
Core 1 standing by....
Core 2 standing by....
Core 3 standing by....

• Running and verifying the Ethernet mutli stage boot: on K2H/K2E devices:
The Ethernet multi-stage example runs the first stage over UART or I2C and then re-enters the boot to
load the second stage over ethernet.

• Load the first stage over UART:
1. Set the boot switches of the EVM to UART boot.
2. Connect the serial cable from the EVM to the host and launch hyperterminal or Tera term and

configure the serial terminal connection to 115200 bps.
3. Run the TFTP32 utility and power on the EVM.
4. After the UART first stage boots, the device switches to ethernet boot and loads the second stage

over Ethernet.
The Ethernet multi-stage example runs the first stage over UART or I2C and then re-enters boot to
load the second stage over ethernet.

NOTE: On K2E EVM, connect the ethernet cable to the top port of the ethernet switch. On K2H the
device can boot first stage from either port 1 or port 2.

• Load the first stage over I2C:
1. Set the boot switches of the EVM to No boot.
2. Copy the second stage image to the TFTP32 utility folder and rename it to eth_data. Run the

TFTP32 utility using admin privileges as described in the single stage boot section.
3. Use the I2C EEPROM writer from MCSDK 3.x as described in the I2C boot example to flash the

first stage to the EEPROM.
4. After you have flashed the image, switch the boot switches to I2C boot. Before you power on the

EVM, ensure the TFTP32 utility is running with the second stage copied over.

NOTE: On K2E EVM, connect the ethernet cable to the top port of the ethernet switch. On K2H the
device can boot first stage from either port 1 or port 2.

9 Boot Utilities
Boot Utilities are host side utilities included in the package that are used to format the boot image based
on the boot mode requirements. The utilities can be located in the package under the path "utils" directory.
The following utilities are include in the package.
• byteswapccs - byteswaps files in ccs format
Usage: byteswapccs <infile> <outfile>
Both <infile> and <outfile> are .ccs files.

• byteswapbin - Creates a byte swapped copy of a binary file
Usage: byteswapbin lt;infile> lt;outfile>
Both lt;infile> and lt;outfile> are .bin files.

• catccs - concatenates ccs format files
Usage: catccs <infile1> <infile2> [<infile3> [<infile4> [..]]] [-out <outfile>] [-addr <address>]

<infile1>, <infile2>, <infile3>, <infile4> and <outfile> are .ccs files.
address - load address for the concatenated ccs file.

• ccs2bin - converts ccs format to binary
Usage: ccs2bin [-swap] <ccsfile> <binfile>
<ccsfile> - input .ccs files.
<binfile> - output .bin files.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

Frequently Asked Questions (FAQ) www.ti.com

16 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

• b2ccs - converts a hex b file into a ccs data file
Usage: b2ccs [-noorg] <hexfile> <ccsfile>
<hexfile> - Hexadecimal blob file.
<ccsfile> - Output .ccs file.
if -noorg is used there is only one header line

• ccsAddGphdr - adds a general-purpose header to a ccs format file
Usage: ccsAddGphdr [baseAddress] [-infile <infile>] [-outfile <outfile>] -headerEndian BE
<infile> Input CCS file with no GP header
<outfile> Output CCS file with GP header
headerEndian - Should always be forced to BE (big endian) for LE boot.

• ccsAddGptlr - Adds the 8 byte General Purpose Trailer
Usage ccsAddGptlr [-h] [-infile <infile>] [-outfile <outfile>]
<infile> Input CCS file with no GP trailer
<outfile> Output CCS file with GP trailer

• ccspad - Pad a ccs data file to a certain length. The length is in number of lines.
Usage ccspad <infile> <outfile> <pattern> <length>
<infile> Input CCS file of length
<outfile> Output CCS file padded with the <pattern>to size <length>

NOTE: Under Linux environment, these utilities can be used using a utility called wine, which allows
you to run windows utilities in the Linux environment.

10 Frequently Asked Questions (FAQ)
Question: Where can I find the details for ROM call tables that define the ROM re-entry and other calls to
ROM functions?

Answer: The details of the ROM call tables are covered in Table 1.

Table 1. ROM Function Table

Memory Address Function Name Details
00001000 _romtMonitorFunction Install Monitor code
00001004 _romtBootReentry BootROM re-entry function
00001008 _romtEnableModule Power up a module
0000100C _romtDisableModule Power down a module
00001010 _romtEnterHibernation Enter hibernation
00001014 _romtCleanupHibernation Cleanup hibernation
00001018 _romtConfigPll Configure PLL
0000101C _romtDelay Delay
00001020 _romtDeviceFreqMhz Set device frequency specificed by device

variant
00001024 _romtArmNum Return the ARM number (will only execute as

supervisor
00001028 _romtTetrisPsc Transition the Tetris psc
0000102c _romtCacheClean Perform a cache clean
00001030 _romtPscSetState System PSC set state
00001034 _romtMainEmif4Cfg (1) Emif 4 configuration based in the DDR

configuration table

(1) This function is available only on K2E devices. K2H devices do not provide this ROM call function.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

www.ti.com Frequently Asked Questions (FAQ)

17SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

Question: How to obtain the DDR configuration table for my device?

Answer: Create a GEL file for your platform that can initialize the DDR based on the clocks on you
platform and the timings required by the DDR3 memory you have used on the platform. If you have the
GEL file created with the stable configuration, the GEL DDR init function will contain the configuration of
DDR controller settings that can be translated to DDR configuration table. For example, check, how the
DDR configuration table has been created for K2E devices by comparing it with the DDR settings in the
K2E EVM GEL file provided in the emulation package.

Question: How can I run the Boot utilities in Linux environment?

Answer: You can use the pre-built windows based boot utilities in Linux using a utility called "wine". There
are no known issues with this usage but the package is not designed to build in the Linux environment in
its current form.

Question: How to debug Booting from different boot modes?

Answer: There are multiple ways to debug booting on K2 devices. Some of these techniques are
discussed below:
• Check the DEVSTAT settings and the boot parameter table loaded in by the Boot ROM:

First, and the simplest way to check if your device is setup to boot correctly, is to connect to the device
using an emulator using CCS and connect to Arm Core 0. Ensure that you remove the GEL files that
are typically used to initialize the DDR as they will override the settings done by the Boot ROM. In the
memory browser, check the value in DEVSTAT register. For the location of DEVSTAT register, see the
device-specific data manual. The interpretation of the value in the DEVTAT register will be provided in
the DEVSTAT Boot Mode Pins ROM Mapping section. If this value is accurately based on you boot
switch settings, look at the memory location that contains the boot parameter table for the device. The
location of the boot parameter table can be found in the ARM Boot RAM Memory Map section in the
device-specific data manual. The definition for the boot parameter structure varies based on the boot
mode. You can refer to the boot media specific parameter table in the data manual or in the tiboot.h file
for the device. Ensure that you are specifying the correct REF clock settings for your platform and are
not over clocking the device at the time of boot.

• Check for CS/CE on flash media and ping messages on slave boot modes.
If the DEVSTAT and boot specific parameter table are loaded as expected, you can check the hook up
of the boot media by ensuring that there is activity on the Chipselect or Enable of the flash media or for
slave boot media check for ping messages that typically are outputted from the device. For UART boot,
the device transmits a ping character "C" on the device. For ethernet, the device sends a BOOTP
(ready packet) from the port, and so forth. This should indicate that the device and the boot media are
configured correctly.

• Check the boot image format.
Typically for blob boot, the K2 devices load the image at the base of MSMC and for GP boot formats
the device loads the image specified by the GP header. Therefore, connect to the device at the
memory location where you expect you boot image to load and confirm that the image is loaded by the
ROM. To simplify this process, you can also choose to load the symbols from your application binary
and see if the code in that location correlates with the data in the memory location. You can also
compare your boot image with images built in this boot examples package to ensure that it is in the
correct format.

• Debugging multistage boot:
In order to debug the multi-stage boot, you can add a large delay or a while loop in each of the stages
so that you can single step through the code after each stage has booted. The delay or the while loop
allows you to connect to the device and then step through the code loaded by the boot ROM. To view
symbols, you can add symbols in CCS using Run->Load Program->Load Symbols. This does not add
the actual code over the emulators but just the symbols from the application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3

References www.ti.com

18 SPRACN3–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Using ARM ROM Bootloader on Keystone II Devices

11 References
• Texas Instruments: KeyStone II Architecture ARM Bootloader User's Guide
• GIT Repo for Boot Examples
• Processor SDK for 66AK2HX Processors - Linux and TI-RTOS support
• MCSDK 3_01_04_07 software
• https://sourceforge.net/projects/mingw/files/
• Code Composer Studio Downloads
• EVMK2HX Evaluation Modules
• https://www.einfochips.com/
• EVM Hardware Setup
• Texas Instruments: 66AK2E05/02 KeyStone SoC Silicon Errata (Silicon Rev 1.0)
• TFTPD32 utility

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN3
http://www.ti.com/lit/pdf/SPRUHJ3
https://git.ti.com/keystone2_boot_examples
http://www.ti.com/tool/processor-sdk-k2h
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/mcsdk/latest/index_FDS.html
https://sourceforge.net/projects/mingw/files/
http://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html
https://www2.advantech.com/Support/TI-EVM/EVMK2HX.aspx
https://www.einfochips.com/partnerships-and-alliances/device-partnerships/texas-instruments/tms320c6657-evm/
http://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_how_to_guides.html#evm-hardware-setup
http://www.ti.com/lit/pdf/SPRZ417
http://tftpd32.jounin.net/

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Using ARM ROM Bootloader on Keystone II Devices
	1 Keystone2 Boot loader Overview
	2 Boot Examples Package Download
	3 Software Dependencies
	4 Supported Hardware
	5 Software Features
	6 Directory Structure
	7 Building the Examples
	8 Description of the Examples
	8.1 Single Stage Boot Examples
	8.2 Multi-Stage Boot Example
	8.3 Boot Media-Specific Details
	8.3.1 SPI Boot Example
	8.3.2 I2C Boot Examples
	8.3.3 NAND Examples
	8.3.4 UART Boot Examples
	8.3.5 Ethernet boot examples
	8.3.6 K2E Ethernet Boot Errata Workaround

	8.4 Flashing and Running Boot Examples
	8.4.1 Dip Switch Settings
	8.4.2 Running I2C EEPROM example
	8.4.3 Running SPI NOR Example
	8.4.4 Running NAND Example
	8.4.5 Running UART Example
	8.4.6 Running Ethernet Examples

	9 Boot Utilities
	10 Frequently Asked Questions (FAQ)
	11 References

	Important Notice

