I3 TEXAS
INSTRUMENTS

C2000™ Software Controlled Firmware Update Process

Application Report
SPRACN1-May 2019

Baskaran Chidambaram and David Foley

ABSTRACT

This application report describes a software controlled firmware update process on C2000 devices using
existing boot modes without the need to manually select boot mode. The method described in this
application note directly applies to TMS320F28004x device and can be applied to legacy devices with
necessary modifications.

Contents
1 10T [T 1T o 2
2 Configuring CUSLOM BOOt MOOE ...uueiietirate ittt s s s s s s s s s s n e e s s n s n e rneaas 2
3 [F= 100 1Y0V2= V=38 1Y, Lo Yo L1 To7= 11 o 4
4 Y0111V V(=AY (0 Lo 1 07= L1 o] 5
5 [0111V 3 = T o P 10
6 E T 001102 10
7 LS = (=] 1 10
List of Figures
1 [=100 1Y1V2= T =T O 0T 1 1= 0% 110 1 1 4
MeENU ON the COMMANG LINE uuiiititetttitiseieeeeeseeeeetnnssaaassseseeenennnsssnssesseeeeennnsssssessssreeeeennnnnnns 9
3 L1122 L= o T F= L= {0 10
List of Tables
1 [1Y =T UL = o Yo LA 0= 1101 £ o T 2
2 (@RS o] 3 0 = Lo o) AN 1= 1] 1= 3
3 [@R TT=3 (0] 3 0 =00 A 1= o][S 3
Trademarks

C2000, Code Composer Studio are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

SPRACN1-May 2019 C2000™ Software Controlled Firmware Update Process 1

Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1

13 TEXAS
INSTRUMENTS

Introduction www.ti.com

1

21

2.2

Introduction

C2000 devices support multiple boot modes say Serial Communications Interface (SCI), Universal Serial
Bus (USB), Flash, Inter-Integrated Circuit (12C), Serial Peripheral Interface (SPI), and so forth. In most of
the applications the firmware code is stored in flash memory and executes from there. But when it comes
to firmware update (where JTAG support is not available) it is typically transferred through one of the
peripheral boot modes — SCI, USB, 12C, SPI and then updated on to flash. This process is done with the
help of flash loaders (Serial, USB) provided with C2000Ware. But this involves manual intervention (or
external chip) to change the boot mode from flash to SCI/USB and once the update is completed the boot
mode has to be changed back to flash. This app note suggests a method to do firmware update without
changing the boot mode pins via an external source. This is achieved by configuring custom boot modes
in user OTP region and connecting resistor and capacitor components to the boot mode select GPIO.

The method described here is validated using SCI peripheral boot on TMS320F28004x device. There are
three key aspects detailed in this report are:

e Custom boot pin selection and boot mode definition in user OTP
e Hardware considerations
» Software considerations

Configuring Custom Boot Mode

This section details the method to select custom boot pin, define a custom boot table, and write these
values to OTP.

NOTE: Itis assumed that you are familiar with concepts described in the ROM Code and Peripheral
Booting chapter of the TMS320F28004x Piccolo Microcontrollers Technical Reference
Manual. Many of the keywords used in the following sections are detailed in the TRM.

Custom Boot Pin Selection

The default boot modes in TMS320F28004x need 2 GPIOs (GP1032, GPI024) to select one of the
supported boot modes. For the purpose of firmware update we need to select between SCI or Flash boot
modes which can be achieved with just one GPIO. This can be customized by configuring the boot
configuration word in OTP to OX5AFFFFOF. This selects GPIO 15 (0xO0F) as the boot select pin.

BOOTPIN_CONFIG.BMSPO to 0xOF (this selects 15 as boot select pin)
BOOTPIN_CONFIG.BMSP1 to OxFF

BOOTPIN_CONFIG.BMSP2 to OxFF

BOOTPIN_CONFIG.KEY to 0x5A

Custom Boot Mode Definition

The default boot definition fixes the value (boot mode number) to be driven (on boot select pins) for
particular boot mode as given in Table 1.

Table 1. Default Boot Definition

Boot Modes Boot Mode Number
PARALLEL 10
SCI BOOT
CAN Boot
Flash Boot

W|N |~ | O

2

C2000™ Software Controlled Firmware Update Process SPRACN1-May 2019

Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1
http://www.ti.com/lit/pdf/SPRUI33
http://www.ti.com/lit/pdf/SPRUI33

13 TEXAS
INSTRUMENTS

www.ti.com Configuring Custom Boot Mode

Table 2 shows a custom boot table.

Table 2. Custom Boot Table

Boot Modes Boot Mode Number
Flash Boot 0
SCI BOOT 1

This is achieved by configuring BOOT_DEF _LOW (0xFFFF0103) and BOOT_DEF_HIGH (OxFFFFFFFF)
user OTP locations as shown in Table 3.

Table 3. Custom Boot Table

Boot Mode Number BOOTDEF Name Value
0 BOOT_DEFO 03 (Flash boot, refer Table 1)
1 BOOT_DEF1 01 (SCI boot, refer Table 1)
2 BOOT_DEF2 OxFF
3 BOOT_DEF3 OxFF
4 BOOT_DEF4 OxFF
5 BOOT_DEF5 OxFF
6 BOOT_DEF6 OxFF
7 BOOT_DEF7 OxFF

The configurations derived above can be summarized as:
« BOOTPIN_CONFIG - OX5AFFFFOF

+ BOOT_DEF_LOW - OxFFFF0103

e« BOOT_DEF_HIGH - OXFFFFFFFF

These values have to be written to user OTP locations as described in the next section.

NOTE: Care should be taken while defining the above configurations as the OTP locations can be
written only once.

For detailed information on the above configurations, see the Device Boot Modes chapter in the
TMS320F28004x Piccolo Microcontrollers Technical Reference Manual.

2.3 Writing the Values to User OTP

The custom boot configurations (derived in above sections) can be updated in user OTP by following
these steps:

1. Download and install C2000Ware.

2. Pick any of the C2000Ware examples and add the following code snippet above the main function (it
can be anywhere in the file just outside the functions).

#pragma RETAIN(otp_zl1_data_1)
#pragma DATA_SECTION(otp_zl data_1,"dcsm_zsel_z1");
const long otp_zl1l data_1 = Ox5AFFFFOF;

#pragma RETAIN(otp_zl_data_2)
#pragma DATA_SECTION(otp_z1_data_2,"dcsm_zsel_z1_2");
const long otp_zl1l data_2 = OxFFFF0103;

SPRACN1-May 2019 C2000™ Software Controlled Firmware Update Process 3

Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1
http://www.ti.com/lit/pdf/SPRUI33
http://www.ti.com/tool/C2000WARE

13 TEXAS
INSTRUMENTS

Hardware Modifications www.ti.com

3. In the linker command file (28004x_generic_ram_Ink.cmd), add the following lines.

MEMORY
{
PAGE O:
DCSM_ZSEL_Z1_PO: origin = 0x07800C, length = 0x000002
DCSM_ZSEL_Z1 P1: origin = 0x07801C, length = 0x000002
}
SECTIONS
{
desm_zsel_z1 1 : > DCSM_ZSEL_Zz1_ PO, PAGE = 0
dcsm_zsel_z1 2 : > DCSM_ZSEL_Z1 P1, PAGE = 0
b

4. Re-compile the example and load to the target via JTAG using Code Composer Studio™ (CCS). The
loader and flash API plugin in CCS will take care of writing these values to OTP location.

NOTE: These values have to be selected and written carefully as the OTP locations cannot be re-
written.

3 Hardware Modifications

Once the above settings are programmed into the OTP, GPIO15 is selected as the boot select pin with a
low value (0) on the pin selecting Flash boot mode and a high value (1) on the pin selecting SCI boot
mode. A resistor and a capacitor need to be connected between GPIO15 and ground to enable software
control of the boot mode, as and when needed by the application. The resistor rating needed is derived to
be 1KQ and the capacitor rating is derived to be 10 nF. These values are derived considering the worst
case leakage current of 2 pA and other device characteristics defined in the TMS320F28004x Piccolo™

Microcontrollers Data Manual.
GPIO15 W

R 1K Ohms

——10nF

Figure 1. Hardware Connections

4 C2000™ Software Controlled Firmware Update Process SPRACN1-May 2019

Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1
http://www.ti.com/lit/pdf/SPRS945
http://www.ti.com/lit/pdf/SPRS945

13 TEXAS
INSTRUMENTS

www.ti.com Software Modifications

4 Software Modifications

4.1 Application Software Modifications

The following care-about has to be considered in the application software.

« Upon powering up, the application will boot to flash as GPIO15 will be low. In the beginning of the
application drive GPIO as an output low to take care of any noise in the pin. This is just a
precautionary measure to ensure we get into flash boot mode by default if reset happens at any time.

» When the application decides to update the firmware, the GPIO15 pin is driven high by the application
software in order to charge the capacitor up. A sufficient time (50 ps) is allowed to ensure the capacitor
is charged enough so that, once a reset occurs and the pin turns back into an input, it can drive high
long enough for the boot code to read it as high.

* Then, trigger a software reset. Now when the boot code decodes the boot mode, it will read the
GPIO15 pin as high and select the SCI boot mode.

The updated code has to be rebuilt and the hex files have to be generated by following the steps
mentioned in readme.txt at
\ti\c2000\C2000Ware_1 00_06_0O0\utilities\flash_programmers\serial_flash_programmer\.

The following is a code snippet from the led blink example highlighting the changes in red.

//

// Included Files

//

#include "driverlib._h"

#include "device.h"

/*

#pragma RETAIN(otp_z1_data)

#pragma DATA_SECTION(otp_z1_data,"dcsm_zsel_z1'™);
const long otp_zl data = OxX5AFFFFOF;

#pragma RETAIN(otp_zl_data_2)
#pragma DATA_SECTION(otp_z1_data_2,"dcsm_zsel_z1_2");
const long otp_zl data_2 = OxFFFF0103;
*/
//
// Main
//
void main(void)
{
uint32_t index = 0;

//

// Initialize device clock and peripherals
//

Device_init();

//

// Initialize GPIO and configure the GPIO pin as a push-pull output
//

Device_initGP10();

GP10_setPadConfig(DEVICE_GPIO_PIN_LED1, GPIO_PIN_TYPE_STD);
GP10_setDirectionMode(DEVICE_GPIO_PIN_LED1, GPIO_DIR_MODE_OUT);

//

// Drive GPIO pin low to take care of noises
//

GP10_setPadConfig(15, GPIO_PIN_TYPE_STD);
GP10_setDirectionMode(15, GPIO_DIR_MODE_OUT);
GPI0_writePin(15, 0);

DEVICE_DELAY_US(50);

//

SPRACN1-May 2019 C2000™ Software Controlled Firmware Update Process 5

Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1

Software Modifications

13 TEXAS
INSTRUMENTS

www.ti.com

// Initialize PIE and clear PIE registers. Disables CPU interrupts.
//
Interrupt_initModule();

//

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).

//

Interrupt_initVectorTable();

//

// Enable Global Interrupt (INTM) and realtime interrupt (DBGM)
//

EINT;

ERTM;

//
// Loop Forever
//
for(index = 0; index < 5; index++)
{
//
// Turn on LED
//
GPIO_writePin(DEVICE_GPIO_PIN_LED1, 0);

//
// Delay for a bit.
//
DEVICE_DELAY_US(500000) ;
//
// Turn off LED
//
GP10_writePin(DEVICE_GPIO_PIN_LED1, 1);
//
// Delay for a bit.
//
DEVICE_DELAY_US(500000) ;
3
//
// Drive GPIO pin high to select flash boot mode
//

GPI10_writePin(15, 1);
DEVICE_DELAY_US(50);

SysCtl_resetDevice();

6

C2000™ Software Controlled Firmware Update Process

SPRACN1-May 2019

Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1

13 TEXAS
INSTRUMENTS

www.ti.com Software Modifications

4.2 Flash Kernel Modifications

The following modifications have to be made in the flash kernel software (SCI/USB). In this example, the
SCl kernel is used as a reference. To begin with, the GP10O15 pin has to be driven high. Once the
firmware update is complete, the GPIO15 pin has to be driven low and then, after 50 us, the device reset
has to be triggered.

The updated code has to be rebuilt and the hex files generated by following the steps mentioned in
readme.txt at <c2000Ware Installation Dir>\utilities\flash_programmers\serial_flash_programmer\.

» Drive the GPIO15 pin high to ensure the boot comes back to the firmware update mode (SCI boot) if
any interruption occurs during the firmware update process.

uint32_t main(void)
{
//
// flush SCIA TX port by waiting while it is busy, driverlib.
//
sciaFlush(Q);

//

// initialize device and GPIO, driverlib.
//

Device_init();

Device_initGP10();

//

// init interrupt and vectorTable, drivelib.
//

Interrupt_initModule();
Interrupt_initVectorTable();

//

// Drive GPIO pin to high

//

GPI10_setPadConfig(15, GPIO_PIN_TYPE_STD);
GP10_setDirectionMode(15, GPIO_DIR_MODE_OUT);

GPIO_writePin(15, 1);
DEVICE_DELAY_US(50);

//

// Enable Global Interrupt (INTM) and realtime interrupt (DBGM)
//

EINT;

ERTM;

//

// initialize flash_sectors, fapi + driverlib
//

initFlashSectors();

uint32_t EntryAddr;

//

// parameter SCI_BOOT for GP1028 (RX),29 (TX) is default.
//

EntryAddr = sciGetFunction(SCI_BOOT);

return(EntryAddr);

SPRACN1-May 2019 C2000™ Software Controlled Firmware Update Process 7

Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1

13 TEXAS
INSTRUMENTS

Software Modifications www.ti.com

» Once the firmware is updated, drive the GPIO15 pin low for 50 us so as to drain the capacitor. This
ensures that when reset occurs, the flash boot mode will be detected.

uint32_t sciGetFunction(uint32_t BootMode)
{

volatile uint32_t EntryAddr;

uintl6é_t command;

uintl6_t data[10]; // 16*10 = 128 + 32
uintl6_t length;

< Removed rest of code to keep it short >

while(command '= RESET_CPU1)
{

< Removed rest of code to keep it short >

GP10_setPadConfig(15, GPIO_PIN_TYPE_STD);
GP10_setDirectionMode(15, GPI10O_DIR_MODE_OUT);
GPI10_writePin(15, 0);

DEVICE_DELAY_US(50);

//
// Get next Packet
//
//command = sciGetPacket(&length, data); //get next packet
command = RESET_CPU1;
b

//

// Reset with WatchDog Timeout

//

EALLOW;
SysCtl_setWatchdogMode(SYSCTL_WD_MODE_RESET);
SysCtl_enableWatchdog();

EDIS;

while(1){}

8 C2000™ Software Controlled Firmware Update Process SPRACN1-May 2019

Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1

13 TEXAS
INSTRUMENTS

www.ti.com

Software Modifications

4.3 Firmware Update Process

The updated kernel can be utilized to program the application image into flash by using the serial flash
utility. When the application enters the firmware update mode, as shown in Figure 3, execute the following

from the command prompt.

serial_flash_programmer.exe —d £28004x —k
28004x_fw_upgrade_example\flashapi_ex2_sci_kernel.txt -
a F28004x_fw_upgrade_example\led_ex1l_blinky.txt -b 9600 -p COM8

Once the kernel is downloaded, the serial flash utility presents a menu on the command line:

Bit rate /s of transfer was: 489.037109
What operation do you want to perform?

1-DFU

2-Erase
3-Uerify
4-Unlock Z2one 1

S-Unlock Zone 2
B=Run

T-Reset

8-Live DFU
B-DONE

Figure 2. Menu on the Command Line

Select option “1-DFU". Now the application image will get downloaded and updated into Flash.

SPRACN1-May 2019
Submit Documentation Feedback

C2000™ Software Controlled Firmware Update Process

Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1

Flowchart

13 TEXAS
INSTRUMENTS

www.ti.com

5

Flowchart

Figure 3 shows the main flow for the application as well as the flow to update the firmware in flash through
the SCI boot mode (after implementing the changes mentioned in previous section).

Device reset

Read boot mode

——SCl Boot (1) (GP1015)

A\ 4
SCI Flash kernel download to RAM
(using serial_flash_programmer

utility) Flash boot (0)

\ 4

SCI Flash kernel executes from RAM
(Drives GPIO15 to high)

Application Runs

Trigger SW reset

\ 4

Download new application image to
RAM

Request firmware update

Drive GPIO15 high for

\ 4 50us

Kernel erases flash and writes new
application image to flash

\ 4

Drive GPIO15 to low for 50us

l

Trigger SW Reset:

Figure 3. Firmware Update Flow

6 Summary
The method mentioned above can be used to update the firmware in flash using the SCI boot option in
end product, without the user manually toggling the boot switch. This also implies that there is no need to
have an on board toggle switch to select the boot mode, thereby simplifying the board design. Thus, the
whole process of a firmware update can be handled in software with minor modifications to hardware
(adding a resistor and a capacitor).

7 References
» Texas Instruments: TMS320F28004x Piccolo Microcontrollers Technical Reference Manual
» Texas Instruments: TMS320F28004x Boot Features and Configurations
» Texas Instruments: TMS320F28004x Piccolo™ Microcontrollers Data Manual
e Texas Instruments: Serial Flash Programming of C2000 Microcontrollers
» C2000Ware Installer

10 C2000™ Software Controlled Firmware Update Process SPRACN1-May 2019

Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRACN1
http://www.ti.com/lit/pdf/SPRUI33
http://www.ti.com/lit/pdf/SPRACA2
http://www.ti.com/lit/pdf/SPRS945
http://www.ti.com/lit/pdf/SPRABV4
http://www.ti.com/tool/C2000WARE

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	C2000 Software Controlled Firmware Update Process
	1 Introduction
	2 Configuring Custom Boot Mode
	2.1 Custom Boot Pin Selection
	2.2 Custom Boot Mode Definition
	2.3 Writing the Values to User OTP

	3 Hardware Modifications
	4 Software Modifications
	4.1 Application Software Modifications
	4.2 Flash Kernel Modifications
	4.3 Firmware Update Process

	5 Flowchart
	6 Summary
	7 References

	Important Notice

