Application Report
Dynamic Backup Lines

Wi} TEXAS INSTRUMENTS

Jonathan Key, Shashank Dabral, Lucas Weaver
ABSTRACT

This application report describes an algorithm to generate dynamic, animated, rearview lines based on steering
wheel input, using the cost-optimized, GPU-less, TDA3x platform, leveraging one of its C66x DSP cores.

Table of Contents

1 Ackermann Steering Curve Generation and Drawing Algorithm....................ccco i 2
2 DSP Link Generation and Integration With Vision_SDK...................ccoi i e 5
B o T T |13 TR PP PP SOPRPPRRRN 7
A FUNCHION INPULES ..ottt ettt e e e sttt e e e e e taeaeeeeaassteeeeee s st seeeee e e sssaeaeeeaansteeeeeesanssaeeaeseannsaeeaenanns 7
B REFEIENCES....... ..ottt e ket oh et oot et oo s E e e 1R bt e oAb et e e h et e e 1R b e e e e b et e e aRe e e e e b e e e e bt e e nan e e e abeeeean 8

Figure 1-1. ACKermMann STEEMHNG CUIVES.uuii ittt e et et s b bt e e sab et e et bt e e eane e e sab e e e ent e e e nnnes 2
Figure 1-2. Rearview Curve for 0° StEeriNg ANGIE..... ..o ittt ettt et e e e e e bb e e eane e e sbeee s 3
Figure 1-3. 45° Left StEENNG ANGIE.......oo itttk ettt e et e e b bt e e et et e s bt e e ek bt e e aabe e e sneeeeanbeeenaes 3
Figure 1-4. Projected Rearview Lines From Figure 1-3 ...ttt 4
Figure 1-5. Display Output of Algorithm RUNNING 0N TDASX.....cccuuiiiiiiii ittt bbbt e et e e sanee s 4
Figure 2-1. Dynamic Rearview Lines + 3D Surround View Use-Case Links and Chains Flow Chart.............c.ccccoiiiiinieiinienn. 6
Trademarks

All trademarks are the property of their respective owners.

SPRACC6 — NOVEMBER 2020 Dynamic Backup Lines 1
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACC6&partnum=

13 TEXAS
INSTRUMENTS

Ackermann Steering Curve Generation and Drawing Algorithm www.ti.com

1 Ackermann Steering Curve Generation and Drawing Algorithm

The Ackermann steering model is commonly used throughout the automobile industry, to mathematically model
the path that the tires of a car follow during a turn. As Figure 1-1 shows, the four tires follow a set of four
concentric circles.

&i

I

I w I

Figure 1-1. Ackermann Steering Curves

Given the wheelbase (L), tread (W), and inner tire steering angle (;), the Ackermann steering model and the
Pythagorean Theorem are used to determine the radius of the path of the front inner tire and the radii of the
paths of the rear tires, as shown in Equation 1, Equation 2, and Equation 3. To generate the paths that the tires
follow, in such a way that they can be mapped to a display, a conversion factor from inches to pixels must be
applied before calculating the radii of the paths. The sample code in the Vision-SDK uses a conversion factor of
9 pixels to 1 inch.

L
I’1 =
tan (§;) (1)
f[3 =0y + w (3)

After finding the radii of the paths, the standard form equation of a circle can be used to generate the paths the
tires follow. In the current implementation, for a given x value in the set xPathMin < x < xPathMax, the
corresponding y value is calculated using Equation 4.

Y=y =X 4)

SPRACC6 — NOVEMBER 2020

2 Dynamic Backup Lines
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACC6&partnum=

I} TEXAS
INSTRUMENTS
www.ti.com Ackermann Steering Curve Generation and Drawing Algorithm

Figure 1-2 and Figure 1-3 show the MATLAB outputs of a script which takes the inner tire steering angle (&;) and
turning direction input, and then generates rearview curves using the previous equations. Figure 1-2 shows the
rearview curve for a 0° steering angle, and Figure 1-3 shows the back up curve for a 45° steering angle left
turning direction input.

2000 2000
1500 1500
1000 1000
500 500
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Figure 1-2. Rearview Curve for 0° Steering Angle Figure 1-3. 45° Left Steering Angle

While the previous figures model the top-down view of the paths the tire follow, the rearview camera angle
requires the rearview lines to appear to be converging to a finite vanishing point on the z-axis. The single-point
projection transform manipulates the image such that points at infinity are mapped to a finite value in 3D space.
In this case, the curves must be projected with respect to the y-axis, therefore Equation 5 was derived and used
in the algorithm.

[xvz]{ x Y o}

qy +1qy +1

®)

SPRACC6 — NOVEMBER 2020 Dynamic Backup Lines 3
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACC6&partnum=

13 TEXAS
INSTRUMENTS

Ackermann Steering Curve Generation and Drawing Algorithm www.ti.com

Before the transform can be properly applied, the center point of the rear axle is mapped to the origin.
Specifically, the curves must be translated so that the path of the driver-side tires is in the second quadrant, and
the path of the passenger-side tires is still the tread length away from the driver side tire. Figure 1-4 shows the
MATLAB output of the previous transform applied to the curve generated in Figure 1-3.

700
600 |
500
400 }
300 |
200 |

100 |

400 GO0

=1
=]

=400 -200 0 2

& ©
=1
=]

Figure 1-4. Projected Rearview Lines From Figure 1-3

Lastly, the curves are translated so that they are in the rearview camera viewing window. Figure 1-5 shows the
display output of the TDA3X RVP running the surround view + rearview use case, with the dynamic rearview
lines being drawn using the draw2D API included in the Vision-SDK.

Q'; Texas
INSTRUMENTS

RESOLUTION: 752x1 008
~ s

Figure 1-5. Display Output of Algorithm Running on TDA3x

4 Dynamic Backup Lines SPRACC6 — NOVEMBER 2020
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACC6&partnum=

I} TEXAS
INSTRUMENTS
www.ti.com DSP Link Generation and Integration With Vision_SDK

2 DSP Link Generation and Integration With Vision_SDK

The Vision-SDK, from TI, contains a use-case generation tool which simplifies development by letting the
developer quickly specify which algorithms run on which core, and in what order. Using the use-case generation
tool, a new link was added to an existing use-case that displays 3D surround view and the rearview camera. The
algorithm described in the previous section was implemented on the C66x DSP in the Alg_drawRearview link.
Figure 2-1 shows the use-case flow chart generated from the output of the use-case generation tool. Additional
documentation on the link and chain structures and use-case generation tool is in vision_sdk/docs.

The AlgorithmLink_drawRearviewCreate function is called when the use-case is instantiated. The necessary link
parameters for the links and chains framework are generated with this function. This includes allocating the
memory and initializing the input and output queues, setting up the output color format, the required buffer
information for the draw2D API, and the data structures used within the algorithm link.

Next, the link architecture invokes the AlgorithmLink drawRearviewProcess function using a notification
generated by the previous link, indicating that the input queue is ready to be processed. The use-case
architecture requires the rearview lines to be drawn at the same frame rate that is output to the display. However,
the current implementation of the Alg_drawRearview link calculates the discrete points on the rearview curves at
a rate of 15 frames per second (FPS) and stores them in a buffer that is drawn at a rate of 30 FPS.

SPRACC6 — NOVEMBER 2020 Dynamic Backup Lines 5
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACC6&partnum=

13 TEXAS

INSTRUMENTS
DSP Link Generation and Integration With Vision_SDK www.ti.com
IPUI_O
DSP1 IssCapture
DSP2 l

IssM2mlsp

b
'\

Se Sync_dewarp
/ \
IssM2mSimcop Alg DeWarp NullSource
/ l l
IssM2mResizer IPCOut_IPUI_0_DSPI_0 IPCOu_IPUI_0_DSP1_1
l \ l
IPCOu_IPU1_0_DSP2_2 IPCIn_DSPI_IPU1_0_0 IPCIn_DSPI_IPU1_0_1

l

IPCIn_DSP2_IPUI_0_0

l @ fol

Alg _drawRearview Alg_Synthesis

Qo
' 0

IPCOw_DSP2_IPU1_0_0

l

~

IPCIn_[PU1_0_DSP2_1 IPCOut_DSP1_IPU1_0_0 Alg PhotoAlign
Display_VideoRszB IPCIn_IPU1_0_DSP1_0
Display_Video

Figure 2-1. Dynamic Rearview Lines + 3D Surround View Use-Case Links and Chains Flow Chart

The Alg_drawRearview function leverages the draw2D API to draw the rearview lines on the video frame. This
occurs within the AlgorithmLink_drawAckermannSteering function, where the discrete points of the rearview
lines are calculated and drawn, based on the steering direction and inner wheel steering angle. The function
stores the coordinate pairs of each discrete point in a set of buffers, and then calls the Draw2D_drawLine
function to draw a line segment between two adjacent points. Draw2D_drawLine has a line parameter struct
input that lets the developer set the color format, color, and thickness (in pixels) of the lines drawn.

6 Dynamic Backup Lines SPRACC6 — NOVEMBER 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACC6&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com Loading

Currently, the dynamic rearview lines demo in the Vision-SDK is a proof of concept that uses a switch statement
to update the steering angle and steering direction each time the AlgorithmLink_drawRearviewProcess function
is invoked. In an application where a steering wheel is available, the developer could implement a CAN BUS
monitor link and a data sync link that could aggregate the steering wheel input data with the video frame that has
the same timestamp into the input queue of the Alg_drawRearview link. The data could then be parsed in the
AlgorithmLink_drawRearviewProcess function and the AlgorithmLink_drawAckermannSteering function could be
called to generate and draw the rearview lines.

3 Loading

This application is the only algorithm running on DSP2 and is 9% to 12% load at 500-MHz clock speed.
Surround view is running on DSP1, approximately 35% at 500-MHz clock speed. As previously mentioned, the
discrete points are calculated at a rate of 15 FPS, while the lines are drawn at the full 30 FPS to reduce the DSP
loading of the algorithm. Further decreasing the rate at which the points are calculated should continue to
decrease the DSP load. Another approach to reduce the load is to decrease the thickness of the lines drawn in
by the Draw2D_drawLine function by modifying the LinePrm.lineSize. The final recommended step that can be
taken to reduce load is to modify the DISCRETE_RES parameter in drawRearviewLink_priv.h, decreasing this
value decreases the number of points generated for each curve, and improves loading performance while
sacrificing visual quality.

4 Function Inputs

/*** Include
Files**/#anludc

"drawRearviewLink priv.h"#include <include/link api/system common.h>#include <src/rtos/utils common/
include/utils mem.h>#define L (110.2*9)//Wheelbase: 110.2"#define W (61.0*9) //Rear wheel tread:
61.0"#define W2 (W/2.0)

In the drawRearviewLink_DynamicLines.c file, the L macro corresponds to the wheelbase of the car in inches,
and W corresponds to the rear wheel tread. As mentioned previously, a conversion factor of 9 pixels to 1 inch is
used in this demo.

void AlgorithmLink drawAckermannSteering(AlgorithmLink drawRearviewObj *pObj)
{

AlgorithmLink RearviewOverlayDrawObj *pRearViewOverlayDrawObj;
pRearViewOverlayDrawObj = &pObj->rearViewOverlayDrawObij;

// Compile Time Inputs

Int32 x0Driver 200;

Int32 x0Pass = x0ODriver + W;

Int32 y0 = YO;

float g = 0.003378;

In the AlgorithmLink_drawAckermannSteering function in the same file, the variable q controls the point at which
the perspective transform converges.

/*** Data
Structures**/typedef struct {

Bool isFirstTime; /* Are we invoking the draw API for this first time */
Bool displayTopView;

UInt32 state;

UInt32 prevState;

UInt32 delay;

Int32 along; // Variable for ellipse steering model
Int32 steeringAngle;
Bool turningDir; // TRUE = Right Turn; FALSE = Left Turn

Bool drawBuf;

/* If TRUE will draw from Buffer arrays below, else generate points, fill buffer, then draw*/
short iDriver;

short iPass;

Int32 xDriverBuf [DISCRETE RES];

Int32 yDriverBuf [DISCRETE RES];

Int32 xPassBuf [DISCRETE RES];

Int32 yPassBuf [DISCRETE RES];
} AlgorithmLink RearviewOverlayDrawObj;

SPRACC6 — NOVEMBER 2020 Dynamic Backup Lines 7
Submit Document Feedback

Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACC6&partnum=

13 TEXAS
INSTRUMENTS

References www.ti.com

In the drawRearview_priv.h file, the structs AlgorithmLink_drawRearviewObj and its member
AlgorithmLink_RearviewOverlayDrawObj (shown previously) are declared. The steeringAngle and turningDir
members of AlgorithmLink RearviewOverlayDrawObj should be updated by input from the CAN bus.

5 References

+ vision_sdk/docs

» Zhao, Jing-Shan and Feng Xiang Liu, Zhi-Jing and Dai, Jian. (2013). Design of an Ackermann Type Steering
Mechanism. Journal of Mechanical Engineering Science.

» Paul Heckbert, Fundamentals of Texture Mapping and Image Warping (pages 17-21), Master’s thesis,
UCB/CSD 89/516, CS Division, U.C. Berkeley, June 1989

8

Dynamic Backup Lines SPRACC6 — NOVEMBER 2020
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACC6&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
TI products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Ackermann Steering Curve Generation and Drawing Algorithm
	2 DSP Link Generation and Integration With Vision_SDK
	3 Loading
	4 Function Inputs
	5 References

