
1SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

Application Report
SPRAC82–March 2017

Linux Boot Time Optimizations on DRA7xx Devices

Venkateswara Rao Mandela

ABSTRACT
This application report provides information on benchmarking and optimizing u-boot and Linux kernel on
DRA7xx platform. It also demonstrates how to reach the userspace in less than 3 seconds from reset
using generic boot time optimizations.

Contents
1 Introduction ... 2
2 Testing the Boot Time Optimizations.. 2
3 Interpreting the Results ... 6
4 Optimization Steps... 9
5 Benchmarking the Boot Time ... 11
6 Summary .. 14

List of Figures

1 Linux Boot Flow .. 2
2 Linux Boot Flow .. 6

List of Tables

1 Results .. 2
2 Kernel/U-Boot Base Commits .. 2
3 U-Boot Patches .. 3
4 Kernel Patches ... 3
5 Optimized Boot Time Results .. 7
6 Operating Parameters... 8
7 Unoptimized Boot Time Results ... 8
8 Operating Parameters... 9
9 Node Name Prefixes... 11
10 Node Name Suffix.. 12
11 Boot Benchmark Descriptions .. 12
12 Boot Benchmark Descriptions .. 12
13 Results... 14

Trademarks
All trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

Introduction www.ti.com

2 SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

1 Introduction
Boot time optimization is an area of interest for all automotive customers. This document provides a
reference for boot time benchmarking on TI Linux SDK and provides an initial set of boot time optimization
patches. This document focuses on bootloader and kernel optimizations only, t2 and t3 in Figure 1. A
future application report focuses on user space boot time optimizations with specific usecases.

Figure 1. Linux Boot Flow

Table 1. Results

Unoptimized Optimized
Time spent in boot loader (t2) 413 ms 355 ms
Time spent in kernel (t3) 6241 ms 2473 ms
Time to reach userspace from PORz 6676 ms 2849 ms

In Section 2 and Section 3, the steps to replicate the results are shown in Table 1. Section 4 explains the
optimizations done. Section 5 describes the benchmarking mechanism and ways to add additional
benchmarking.

2 Testing the Boot Time Optimizations

2.1 Software Requirements
This document is based on Processor SDK Linux Automotive 3.02. Make sure that you do the following:
• Have a working Processor SDK Linux Automotive 3.02 installation
• Are able to build the U-boot and kernel
• Are able to bring up the EVM with the U-Boot and Kernel images you have built

The Kernel and U-Boot commits corresponding to the 3.02 SDK are shown in Table 2.

Table 2. Kernel/U-Boot Base Commits

Repository Commit id Headline
Kernel 89944627d53a Late Attach: Fix for accessing second level page table
U-Boot 850ffc07ba defconfigs: dra7xx_hs_evm: Move OPTEE load address to avoid overlaps

The release downloads links and software developers guide can be found at the following link:

Processor SDK Linux Automotive Landing wiki page

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82
http://processors.wiki.ti.com/index.php/Category:Processor_SDK_Linux_Automotive

www.ti.com Testing the Boot Time Optimizations

3SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

2.2 Hardware Requirements
These boot time optimizations were tested on the following:
• Rev H J6 EVM
• 1280 x 800 LG LCD

The patches should work on J6 Eco and J6 Entry as well. However, they have not been benchmarked on
J6 Eco and J6 Entry at this point.

2.3 Source Code Changes
Apply the patches shown in Table 3 in the order described below on the U-boot commit shown in Table 2.

Table 3. U-Boot Patches

S. No Headline URL Category
1 fastboot: update linux partition table http://review.omapzoom.org/38255 Flashing
2 fastboot: flash: add buffer overflow check for cmd http://review.omapzoom.org/38256 Flashing
3 fastboot: erase QSPI boot areas only when necessary http://review.omapzoom.org/38257 Flashing
4 fastboot: add more partitions to QSPI http://review.omapzoom.org/38258 Flashing
5 dra7xx: add functions for timestamping http://review.omapzoom.org/38259 Benchmarking
6 spl: dra7xx: timestamp various points in execution http://review.omapzoom.org/38260 Benchmarking
7 spl: dra7xx: add boot time measurements to dtb http://review.omapzoom.org/38261 Benchmarking
8 dra7xx_evm: minor change to config option http://review.omapzoom.org/38262 Optimization
9 dra7xx_evm: spl: disable env support http://review.omapzoom.org/38263 Optimization

Apply the patches shown in Table 4 in the order described below on the kernel commit shown in Table 2.

Table 4. Kernel Patches

S. No Headline URL Category
1 dra7xx: add functions for timestamping execution http://review.omapzoom.org/38264 Benchmarking
2 config_fragments: choose lzo as the compression format http://review.omapzoom.org/38266 Benchmarking
3 dra7xx: timestamp various points in execution http://review.omapzoom.org/38265 Benchmarking
4 arch: arm: omap2: optimize hwmod lookup during init http://review.omapzoom.org/38268 Optimization
5 ti_fragments: add configuration options to reduce boot time. http://review.omapzoom.org/38267 Optimization
6 dra7: dts: disable mmc4 to save on boot time http://review.omapzoom.org/38269 Optimization

2.4 Build Instructions
1. Build U-Boot after applying the patches shown in Section 2.3. Copy MLO and the u-boot.img into the

FAT partition of the SD card.
2. Reconfigure the kernel after applying the patches shown in Section 2.3. Ensure that the config

fragment, ti_config_fragments/boot_opt.cfg added by the patches provided in Table 4, is
included in the kernel configuration.

3. Build the kernel. Update the file system with the newly built kernel image, kernel modules and device
tree files.

4. Build a uImage from the zImage built by the kernel. Using the uImage format is necessary for single
stage boot.

host $ mkimage -A arm -O linux -C none -T kernel -a 0x80008000 \
-e 0x80008000 -n 'Linux uImage' -d zImage uImage

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82
http://review.omapzoom.org/38255
http://review.omapzoom.org/38256
http://review.omapzoom.org/38257
http://review.omapzoom.org/38258
http://review.omapzoom.org/38259
http://review.omapzoom.org/38260
http://review.omapzoom.org/38261
http://review.omapzoom.org/38262
http://review.omapzoom.org/38263
http://review.omapzoom.org/38264
http://review.omapzoom.org/38266
http://review.omapzoom.org/38265
http://review.omapzoom.org/38268
http://review.omapzoom.org/38267
http://review.omapzoom.org/38269

Testing the Boot Time Optimizations www.ti.com

4 SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

5. Update the chosen node in the device tree with boot arguments.
The boot arguments are

elevator=noop console=ttyS0,115200n8 cma=64M omapdrm.num_crtc=1 consoleblank=0
snd.slots_reserved=1,1 fixrtc loglevel=0 root=/dev/mmcblk0p4 rootfstype=ext4 rw

rootwait

The following is a bash script to set the boot arguments.

BOOTARGS="elevator=noop console=ttyO0,115200n8 cma=64M "
BOOTARGS+="omapdrm.num_crtc=1 consoleblank=0 snd.slots_reserved=1,1 "
BOOTARGS+="fixrtc "
BOOTARGS+="loglevel=0 "
BOOTARGS+="root=/dev/mmcblk0p4 rootfstype=ext4 rw rootwait "
fdtput -v -t s "dra7-evm-lcd-lg.dtb" "/chosen" bootargs "$BOOTARGS"

This step is mandatory in single stage boot as there is no other way to pass the boot arguments to the
kernel. Two items to note in the bootargs are:
• loglevel is set to 0. This reduces the boot time by eliminating UART print bottle neck.
• root is set to /dev/mmcblk0p4, which is the eMMC rootfs partition.
Choose the right device tree file for your setup by using the documentation at:
http://processors.wiki.ti.com/index.php?title=Processor_SDK_Linux_Automotive_Software_Developers_
Guide#Choosing_the_correct_device_tree wiki page.

2.5 Hardware Setup Instructions
1. Modify switch settings on EVM to:

SW2[7:0] 0000 0111
SW3[7:0] 0000 0001

SW5[9:0] 00 0001 0100

SW8[1:0] 11

2. Connect a USB cable from P2/USB1 to the host PC. This is used for flashing the EVM that is using
fastboot or USB mass storage (ums).

3. Connect a USB cable from the USB-UART adapter on the EVM to the host PC.
4. Ensure that the 10" 1280x800 LG LCD is connected to the EVM. If you are using a different LCD,

choose the corresponding device tree file instead of dra7-evm-lcd-lg.dtb.

2.6 Flashing Instructions
1. Insert the SD card with MLO and U-Boot into EVM. Place EVM in SD boot mode.

SW2[7:0] 0000 0111
SW3[7:0] 1000 0001

Reboot and stop at the U-Boot prompt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82
http://processors.wiki.ti.com/index.php?title=Processor_SDK_Linux_Automotive_Software_Developers_Guide#Choosing_the_correct_device_tree
http://processors.wiki.ti.com/index.php?title=Processor_SDK_Linux_Automotive_Software_Developers_Guide#Choosing_the_correct_device_tree

www.ti.com Testing the Boot Time Optimizations

5SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

2. Run the following commands to clear any old env settings and reboot.

=> env default -f -a
=> env save

Stop again at the U-Boot prompt and enter fastboot state using the following command:

=> fastboot 0

3. Run the following commands. These commands flash the QSPI with MLO, u-boot.img, kernel and
device tree. These commands also create the required partition table in eMMC.

host $ fastboot oem spi
host $ fastboot flash xloader MLO
host $ fastboot flash bootloader u-boot.img
host $ fastboot flash kernel uImage
host $ fastboot flash environment dra7-evm-lcd-lg.dtb
host $ fastboot oem mmc
host $ fastboot oem format

4. Reboot the target and stop at U-boot prompt. Enter USB Mass storage mode to transfer the file system
from host to target.

=> ums 0 mmc 1

Mount the partitions on the host PC and copy the target file system to the eMMC on the EVM. Here, it
is assumed that the EVM is detected as /dev/sde.

host $ cd /tmp
host $ mkdir -p emmc
host $ sudo mount /dev/sde4 emmc
host $ sudo rsync -av --delete /home/user/targetfs/3_02_00_03/ emmc/
host $ sudo umount emmc

Due to the size of the file system, the initial file copy might take 10-15 minutes. rsync is being used so
that the same command can be used for copying the initial file system as well as the modified files
after a file system update.

5. Once the above commands are complete, change SW2 setting to the following:

SW2[7:0] 0011 0111

Reboot the EVM.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

Testing the Boot Time Optimizations www.ti.com

6 SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

2.7 Measurement Instructions
Once the command prompt is reached, run the following commands to read the boot time.

target # readproc; sh /etc/visualization-scripts/list-boot-time.sh
m-boardinit-time,98
m-entry-time,21
m-image-load-dur,157
m-kernelstart-time,376

k-cust-machine-dur,43
k-hwmod-dur,102
k-init-call-dur,636
k-mm-init-dur,794
k-rest-init-time,1429
k-root-wait-dur,219
k-start-time,425
k-user-space-entry-time,2849

u-prompt-time,14451

Kernel Decompression time,49
Kernel Exec time,2473

Section 3 describes how to interpret these results in brief. For a more detailed description, see Section 5.

3 Interpreting the Results

3.1 Optimized Boot Results

Figure 2. Linux Boot Flow

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

www.ti.com Interpreting the Results

7SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

Below are the raw boot time measurements from the optimized kernel boot on Rev H DRA75x EVM.
Figure 2 shows how to map the measurements to the t2, t3 shown in Figure 2.

m-boardinit-time,98
m-entry-time,21
m-image-load-dur,157
m-kernelstart-time,376

k-cust-machine-dur,43
k-hwmod-dur,102
k-init-call-dur,636
k-mm-init-dur,794
k-rest-init-time,1429
k-root-wait-dur,219
k-start-time,425
k-user-space-entry-time,2849

u-prompt-time,14451

Kernel Decompression time,49
Kernel Exec time,2473

m-entry-time corresponds to the time spent in the boot ROM, such as t1 shown in Figure 2. m-
kernelstart-time corresponds to the time at which MLO hands off execution to the kernel. The time
spent in bootloader is 355 ms.

t2 = m-kernel-start-time - m-entry-time
= 376 - 21
= 355 ms

m-kernelstart-time corresponds to the time at which MLO hands off execution to kernel. k-user-
space-entry-time corresponds to the time at which Kernel starts user space execution. The time spent
in the kernel is 2473 ms.

t3 = k-user-space-entry-time - m-kernel-start-time
= 2849 - 376
= 2473 ms

The time spent in kernel decompression can be obtained from m-kernelstart-time, which is the instant
when MLO handed off execution to the kernel and k-start-time when execution reached the
init/main.c:start_kernel() function.

decompress_time = k-start-time - m-kernelstart-time
= 425 - 376
= 49 ms

Table 5. Optimized Boot Time Results

Optimized
Time spent in boot loader (t2) 355 ms
Time spent in kernel (t3) 2473 ms
Kernel Decompression time 49 ms

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

Interpreting the Results www.ti.com

8 SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

The complete operating parameters for these measurements are shown in Table 6.

Table 6. Operating Parameters

Remarks
Hardware DRA7xx Rev. H EVM with LG 1280x800

10 inch LCD
A15 frequency 1 GHz
Kernel size 3508 KB Stored in QSPI
Device tree size 112 KB Stored in QSPI
First stage bootloader(MLO) size 104 KB Stored in QSPI
Second stage bootloader(u-boot.img) size 736 KB Stored in QSPI
File system Stored in eMMC

3.2 Unoptimized Boot
The raw results for the unoptimized boot are shown below. To obtain the results for the unoptimized boot,
revert the following:
• patches 4,5,6 on the kernel in the table "Kernel Patches"
• patch 9 on u-boot in the table "U-Boot Patches"

Rebuild kernel and U-boot and update the EVM as per the instructions in Section 2.6. The flashing should
be faster (approximately 1 min) as only a few folders are updating in the root file system. Reboot and take
the boot time measurements.

m-boardinit-time,98
m-entry-time,22
m-image-load-dur,158
m-kernelstart-time,435

k-cust-machine-dur,44
k-hwmod-dur,206
k-init-call-dur,2981
k-mm-init-dur,810
k-rest-init-time,3105
k-start-time,2086
k-user-space-entry-time,6676

u-prompt-time,19271

Kernel Decompression time,1651
Kernel Exec time,6241

Use the same steps described in Section 3.1 to get results show in Table 7.

Table 7. Unoptimized Boot Time Results

Unoptimized
Time spent in boot loader (t2) 413 ms
Time spent in kernel (t3) 6241 ms
Kernel Decompression time 1651 ms

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

www.ti.com Optimization Steps

9SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

The complete operating parameters for these measurements are shown in Table 8.

Table 8. Operating Parameters

Remarks
Hardware DRA7xx Rev. H EVM with LG 1280x800 10 inch LCD
A15 frequency 1 GHz
Kernel size 5228 KB Stored in QSPI
Device tree size 128 KB Stored in QSPI
First stage bootloader(MLO) size 108 KB Stored in QSPI
Second stage bootloader (u-boot.img)
size

736 KB Stored in QSPI

File system Stored in eMMC

Section 4 discusses the optimization steps used to achieve these results.

4 Optimization Steps

4.1 Boot Media Selection
The DRA7xx SoC supports booting from various boot media. However, from a fast boot perspective, only
QSPI NOR and eMMC are relevant. One of the decisions involved in optimizing the boot time is the
location of the bootloader, kernel and device tree. Based on the initialization time and the binary sizes, it
was decided to boot from QSPI. eMMC has a higher initialization time, which makes it unsuitable for small
image sizes.

4.2 Single Stage Boot Mode
When optimizing for boot time, the system integrator has already decided on the boot media and the
locations where various binaries are stored. In this case, the flexibility offered by U-Boot is not needed and
can boot from MLO to kernel directly in a single stage. This provides a saving of at least a second in boot
process.

4.3 U-Boot Optimizations
The optimizations in MLO are limited to env support in MLO/SPL as it unnecessarily increases the time
spent in the kernel.

U-Boot does not have any boot time optimizations as the single stage boot mode is used. However,
customizations for easy flashing of QSPI and eMMC using fastboot are included. The partitions to flash
the files required for usecases are defined, such as early splash (logo partition), early video (data
partition), remotecore partitions (for loading remotecores early).

4.4 Kernel optimizations

4.4.1 Kernel Compression
Kernel compression is a tradeoff between the following:
• The size of the binary that increases the time read the kernel binary into DDR
• The binary decompression time on target

Based on our experiments, we determined that lzo compression offers the best tradeoff among the various
supported formats.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

Optimization Steps www.ti.com

10 SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

4.4.2 Kernel Configuration
The default kernel configuration includes built-in functionality for a wide range of usecases. This increases
the size of the kernel as well as the initialization time. To reduce the kernel initialization time, we remove
unused functionality and convert some of the functionality not required for the early use features into
modules.

The following lists some of the major kernel configuration options that can be customized to reduce the
boot time. The kernel configuration modifications for boot time, ti_config_fragments/boot_opt.cfg,
can be found in the kernel source tree.
1. Convert all file systems except the one used for the root file system into a module.

CONFIG_EXT2_FS=m
CONFIG_EXT3_FS=m
CONFIG_JBD=m
CONFIG_FAT_FS=m
CONFIG_MSDOS_FS=m
CONFIG_VFAT_FS=m
CONFIG_CRAMFS=n

2. Convert the Memory Technology Device (MTD) support into modules. Memory Technology Devices
are flash, RAM and similar chips, often used for solid state file systems on embedded devices. Also,
convert the associated file systems into modules.

CONFIG_MTD=m
CONFIG_MTD_NAND=m
CONFIG_SPI_TI_QSPI=m
CONFIG_JFFS2_FS=m
CONFIG_UBIFS_FS=m

3. Convert SCSI, ATA and Controller Area Network (CAN) into modules. Disable PCI, if not required.

CONFIG_SCSI=m
CONFIG_ATA=m
CONFIG_SATA_AHCI_PLATFORM=m
CONFIG_CAN=m
CONFIG_CAN_RAW=m
CONFIG_PCI=n
CONFIG_PCI_DRA7XX=n

4. Set the default frequency governor to performance. This ensures that the A15 is running at the
maximum supported frequency.
CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE=y

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

www.ti.com Benchmarking the Boot Time

11SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

5. Remove options used for debugging.

Disable debug fs
CONFIG_DEBUG_FS=n

Disable Kprobes debug infrastructure. This is a requirement for
removing all debug symbols.
CONFIG_KPROBES=n

Remove debug info from kernel to reduce size
CONFIG_DEBUG_INFO=n

Disable all debug symbols
CONFIG_KALLSYMS=n
CONFIG_KALLSYMS_ALL=n

Beyond the generic customizations shown above, other customizations can be performed on the target
hardware with the knowledge of the use case and by profiling the kernel initcalls. In Section 5 describes
the benchmarking mechanism used in this document and how additional instrumentation can be added
using this benchmarking mechanism.

5 Benchmarking the Boot Time
To benchmark the boot time across kernel and u-boot, patch the kernel and u-boot. The boot time
measurements done in the u-boot are passed to the kernel via the device tree.

5.1 Internals of the Boot Time Benchmarking
Boot time benchmarking is performed using the 32 KHz timer part of the DRA7XX SoC. This 32 KHz timer
starts within a few ms of the cold reset of the SoC. The 32 KHz timer is 32-bit wide and can be read from
the all the cores on the SoC. This timer can be used to benchmark across software transitions, for
example, switching from Boot ROM to bootloader or switching from bootloader to kernel or benchmarking
interactions across cores.

All the measurements made in the U-boot are passed to the kernel by modifying properties on the chosen
node in the device tree. All the measurements made in the kernel are also reported in the same manner.
This provides a uniform reporting mechanism across U-boot and Kernel for boot time.
After the boot is complete, the following nodes are visible in the /proc/device-tree/chosen directory on
the target.

root@dra7xx-evm:/proc/device-tree/chosen# ls
bootargs k-user-space-entry-time m-ipu1start-time
k-cust-machine-dur m-boardinit-time m-ipu2start-time
k-hwmod-dur m-display-time m-kernelstart-time
k-init-call-dur m-dsp1start-time m-mmc-init-dur
k-mm-init-dur m-dsp2start-time m-spi-init-dur
k-rest-init-time m-entry-time name
k-root-wait-dur m-heap-init-dur
k-start-time m-image-load-dur

The prefix of the node names indicate which stage of execution the measurement was made (see
Table 9).

Table 9. Node Name Prefixes

Prefix Interpretation Example
m- measurement in MLO m-entry-time
k- measurement in kernel k-start-time

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

Benchmarking the Boot Time www.ti.com

12 SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

The suffix indicates whether the measurement is a time stamp or a duration measurement (see Table 10).

Table 10. Node Name Suffix

Suffix Interpretation Example Description
-time Indicates time from PORZ m-entry-time Indicates the time at which MLO execution started
-dur Indicates duration for an operation m-spi-init-dur Indicates the amount of taken to initialize the QSPI

peripheral

All the measurements are reported in ticks of the 32 KHz timer. One tick is equal to 30.5 µs. The value
assigned to the device tree node can be read as a 32-bit big endian integer. To convert the
measurements to milliseconds, run the readproc utility included in the file system. This reads each
measurement in the device tree nodes, converts it into milliseconds and stores the output in a text file of
the same name under /tmp.

The script list-boot-times.sh included in the target file system can be used to print these times to
console.

5.1.1 Measurement Descriptions
Table 11 provides a brief description of the measurements produced by this benchmark mechanism.

Table 11. Boot Benchmark Descriptions

Binary Device Tree entry Description
MLO m-entry Time at which MLO started execution
MLO m-boardinit Time of entry into common/spl/spl.c:board_init_r()

MLO m-heap-init-dur Duration to initialize heap used in MLO
MLO m-mmc-init-dur Time taken by mmc initialization function call.
MLO m-spi-init-dur Time taken by QSPI initialization function call.
MLO m-image-load-dur Time taken to load kernel and device tree
MLO m-kernelstart Time at which MLO jumps to the kernel entry point

Kernel k-start-time Time at which execution reached init/main.c:start_kernel()

Kernel k-mm-init-dur Time taken to initialize memory map
Kernel k-cust-machine-dur Time taken in the customize_machine() call.

Kernel k-hwmod-dur Time taken in powering on the various peripherals specified in device tree

arch/arm/mach-
omap2/omap_hwmod.c:omap_hwmod_setup_all()

Kernel k-rest-init-time Time at which the rest_init() function is called.

This function spawns the kernel_init thread which calls the init
process.

Table 12. Boot Benchmark Descriptions

Binary Device Tree Entry Description
MLO m-display Time at which splash screen is enabled in MLO.Currently unused
MLO m-dsp1start Time at which DSP1 is started from MLO
MLO m-dsp2start Time at which DSP2 is started from MLO
MLO m-ipu1start Time at which IPU1 is started from MLO
MLO m-ipu2start Time at which IPU2 is started from MLO

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

www.ti.com Benchmarking the Boot Time

13SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

5.2 Profiling Userspace Execution
The target file system also includes a binary to read the 32 K timer from user space for benchmarking.
The output displayed is in milliseconds.

target # read32k_driver
7128
target # read32k_driver
7249

5.3 Additional Profiling in Kernel
The following steps profile new locations in the kernel using the 32K timer:
1. Add code to measure the timestamp using read_fast_counter(). For example, in arch/arm/mach-

omap2/omap_hwmod.c.

extern u32 read_fast_counter(void);
u32 new_measure_time;
...
static int __init omap_hwmod_setup_all(void)
{

new_measure_time = read_fast_counter();

2. Declare the variable to hold the measurement in arch/arm/mach-omap2/board-dra7xx.h.

extern u32 new_measure_time;

3. Define a new attribute on the "chosen" node to hold the measurement in
arch/arm/boot/dts/dra7.dtsi in the kernel repository.

/ {
chosen {

k-new-measure-time = <0x0000000>;
};

};

4. Modify the kernel_update_dt_with_boottimes() function in arch/arm/mach-omap2/board-
dra7xx.c to update the device tree with the measurement.

void kernel_update_dt_with_boottimes(void)
{
...

kernel_set_boottime_vals(bus, "k-new-measure-time", new_measure_time);

Modify the code appropriately to measure duration instead of a timestamp. All the measurements are in 32
K timer ticks and are converted to milliseconds by using the readproc userspace utility.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

Benchmarking the Boot Time www.ti.com

14 SPRAC82–March 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Linux Boot Time Optimizations on DRA7xx Devices

5.4 Additional Profiling in MLO
All the source code modifications below are in the u-boot repository except for the one required device
tree modification in step 3.
1. Declare the variable to store the measurement in include/spl.h.

extern u32 new_measure_time;

2. Define the variable and make the measurement using the read_fast_counter() function, for
example, in common/spl/spl.c.

u32 new_measure_time;

static int spl_load_image(u32 boot_device)
{

new_measure_time = read_fast_counter();

3. Define a new attribute on the "chosen" node to hold the measurement in
arch/arm/boot/dts/dra7.dtsi in the kernel repository.

/ {
chosen {

m-new-measure-time = <0x0000000>;
};

};

Note that this is necessary to avoid resizing the device tree in MLO. Also, note that the convention of
using prefix m- for measurements from MLO.
Rebuild and use the updated device tree to obtain the measurements.

4. In the arch/arm/cpu/armv7/omap-common/boot-common.c file, modify
spl_fdt_fixup_rom_bench_nums() to update the device tree with the new measurement.

void spl_fdt_fixup_rom_bench_nums(void *fdt)
{
...

fdt_setprop_inplace_u32(fdt, node, "m-new-measure-time",
new_measure_time);

All the measurements are in 32 K timer ticks and are converted to milliseconds by using the readproc
userspace utility.

6 Summary
This document describes a method to benchmark the Linux kernel and U-boot, and provides Kernel and
U-Boot patches to enter user space within 2.9 s.

Table 13. Results

Unoptimized Optimized
Time spent in boot loader (t2) 413 ms 355 ms
Time spent in kernel (t3) 6241 ms 2473 ms
Time to reach userspace from PORz 6676 ms 2849 ms

These methods and patches will be built on in future application reports on boot time optimizations
focused on specific usecases.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC82

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Linux Boot Time Optimizations on DRA7xx Devices
	1 Introduction
	2 Testing the Boot Time Optimizations
	2.1 Software Requirements
	2.2 Hardware Requirements
	2.3 Source Code Changes
	2.4 Build Instructions
	2.5 Hardware Setup Instructions
	2.6 Flashing Instructions
	2.7 Measurement Instructions

	3 Interpreting the Results
	3.1 Optimized Boot Results
	3.2 Unoptimized Boot

	4 Optimization Steps
	4.1 Boot Media Selection
	4.2 Single Stage Boot Mode
	4.3 U-Boot Optimizations
	4.4 Kernel optimizations
	4.4.1 Kernel Compression
	4.4.2 Kernel Configuration

	5 Benchmarking the Boot Time
	5.1 Internals of the Boot Time Benchmarking
	5.1.1 Measurement Descriptions

	5.2 Profiling Userspace Execution
	5.3 Additional Profiling in Kernel
	5.4 Additional Profiling in MLO

	6 Summary

	Important Notice

