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ABSTRACT
Debugging audio issues can be a challenging task due to the dynamic nature of the audio systems, in
terms of runtime routing flexibility, gain control, and so forth. Investigating the root cause of system level
issues is a difficult task without the appropriate tools and techniques.

This document discusses some of the available tools for debugging audio issues. These tools span from
TI-specific to generic Linux® or Android™ ones. The scope of this document is ALSA sound cards,
although some tools are not directly tied to ALSA or could be adapted for non-ALSA sound cards.
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1 Introduction
This document provides different tools and techniques useful for debugging audio issues encountered in
Linux-based systems. The document is mostly focused on the Android operating system, but some of the
techniques are also applicable to Linux systems.

The focus of the techniques presented in this document is the multichannel audio serial port (McASP),
which is the audio peripheral in the DRA7xxx Infotainment Application Processor family. Most tools and
techniques assume that McASP is accessed through the Linux ALSA framework.

2 ALSA procfs
procfs is a filesystem in Linux that provides information about the internal state of the kernel. It is mounted
in /proc.

The ALSA procfs entries can be found at /proc/asound/. The most relevant entries for the DRA7xx
audio are:
• /proc/asound/cards. Lists all cards registered in the system. This entry can be useful for:

– Verifying if a sound card has been properly registered and is present in the system.
– Finding the index of a given card. Card indexes are dynamically assigned as cards get registered in

the system. Often times, user-space software assumes cards have certain indexes which could be
different depending on runtime dynamics, such as when card dependencies are not met. For
example, the index 0 could be assigned to card B instead of card A, if card A’s registration is
deferred due to a missing dependency (such as with a i2c codec that has not been probed yet).

• /proc/asound/pcm. Lists all PCM devices of all sound cards present in the system. This entry is
useful to see the indexes and names of all PCM devices.

• /proc/asound/cardX/pcmY[p,c]/*. Each PCM device in all cards in the system has a procfs
directory like this, where X is the card index number (such as from /proc/asound/cards) and Y in
the PCM device index (such as from /proc/asound/pcm).
This directory contains PCM device-related information and status:
– info: General information about the PCM device, such as the card index, device index, stream

direction, and so forth.
– hw_params: When the PCM device is open, this procfs entry shows the channel count, sample

rate, format, period size, and buffer size.
The requested period and buffer sizes may differ from the ones finally granted. The hw_params
entry can be used to query the actual parameters taken by the hardware:

shell@jacinto6evm:/ # tinyplay /data/media/0/Music/audio.wav -p1023 &
Playing sample: 2 ch, 44100 hz, 16 bit

shell@jacinto6evm:/ # cat /proc/asound/card0/pcm0p/sub0/hw_params
access: RW_INTERLEAVED
format: S16_LE
subformat: STD
channels: 2
rate: 44100 (44100/1)
period_size: 1024 <- Mismatch between requested (1023) and granted (1024)
buffer_size: 4096 period sizes due to ALSA hw_rules

– sw_params: When the PCM device is open, this entry shows the start and stop thresholds, silence
threshold, and so forth.

http://www.ti.com
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– status: When the PCM device is open, this entry shows the substream state (such as running, xrun,
and so forth), number of available frames, hardware, and application pointers. The hw_ptr and
app_ptr can identify cases where the underlying hardware is not able to transmit or receive any
audio data. For example, if McASP is configured in slave mode and the master does not provide
the BCLK/FSYNC clocks properly, the McASP transfers will stall. In that case, the hw_ptr and
appl_ptr will have the same values when reading the status entry multiple times:

shell@jacinto6evm:/ # cat /proc/asound/card2/pcm0p/sub0/status
state: RUNNING
owner_pid : 3587
trigger_time: 946693842.816186923
tstamp : 946693842.816626936
delay : 4128
avail : 0
avail_max : 0
-----
hw_ptr : 64 <- hw_ptr reached AFIFO size, but didn’t increase further
appl_ptr : 4192 <- appl_ptr reached the ALSA buffer size, but didn’t

increase further

3 McASP Register Settings
The McASP registers can be dumped or described with the omapconf tool. The omapconf tool is a Linux
user-space stand-alone application designed to provide a quick and easy way to diagnose TI processors,
including OMAP and DRA7xx. The source code and more information about omapconf can be found at
https://github.com/omapconf.

The omapconf tool has support for McASP, which includes dumping all McASP registers of a given
instance and high-level analysis of the McASP state.

shell@jacinto6evm:/ # audio-tool tone sine 1000 -r44100 &

shell@jacinto6evm:/ # omapconf show mcasp3

shell@jacinto6evm:/ # omapconf dump mcasp3

The high-level analysis and description of the McASP state given by omapconf is based on the McASP
register values, and is grouped in sections similar to those in the McASP peripheral.

http://www.ti.com
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3.1 Data Ports and Buffers
This section groups the McASP register information about the port used to transfer data to and from
McASP. When the DATA port is used, the AFIFOs can be used to store up to 64 audio words.

Figure 1. Data Ports and Buffers Figure 2. McASP Data Ports in omapconf

http://www.ti.com
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3.2 Control
This section groups the McASP register information about the enabled state machines and the enabled
and active slots. For instance, Figure 3 shows that McASP was used for stereo (two enabled slots) audio
playback (only TX FSM is enabled).

Figure 3. Control Dump

3.3 Clocks (BCLK)
This section describes the bit clock generation including the clock source selection, dividers, and polarity.
Figure 4 shows that the bit clock is generated from AHCLK and that this clock is divided by 8.

Figure 4. Clocks

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC10


DSP_B

FSYNC

BCLK

DATA Sample-1 Sample-1

0

1 1

0
XCLK
(Internal func. Tx clock)

CLKXM
(internal /external)

(MCASP_ACLKXCTL[5])

CLKXP
(polarity)

(MCASP_ACLKXCTL[7])

external ACLKX

internal ACLKX

XCLK to Rx logic
(MCASP_ACLKXCTL[6] ASYNC)

1

0 Divider
/1.../32

CLKXDIV
(MCASP_ACLKXCTL[4:0])

HCLKXP
(MCASP_AHCLKXCTL[14])

1

0

HCLKXM
(MCASP_AHCLKXCTL[15])

external AHCLKX

internal AHCLKX

Divider
/1.../4096

HCLKXDIV
(MCASP_AHCLKXCTL[11:0])

AUXCLK

MCASP

McASP Register Settings www.ti.com

6 SPRAC10–February 2016
Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

Tools and Techniques for Audio Debugging

Figure 5. McASP Clocks in omapconf

3.4 Frame Sync Generator (FSYNC)
Information about the frame sync duration, polarity, delay, and clock source can be found in this section.

Figure 7 shows that the McASP frame sync generator is configured for two slots, no delay with respect to
the start of the frame, 1-bit duration, and that the frame starts on the rising edge. This configuration is
consistent with the DSP_B mode set by the driver.

Figure 6. The DSP_B Format
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Figure 7. Frame Sync Generator

Figure 8. McASP Frame Sync Generator in omapconf
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3.5 Format Units
The McASP format unit provides a flexible mechanism to remap and reformat the bits in the audio words.
Figure 9 shows the settings applicable for a 16-bits/sample audio configuration.

Figure 9. Format Units Figure 10. McASP Format Units in omapconf

3.6 Serializer
This section shows the mode (TX, RX, or inactive) and the inactive state (logic level in inactive slots) of
each serializer. The McASP instance in Figure 11 uses two serializers: AXR0 for transmit and AXR1 for
receive.

Figure 11. Serializers

http://www.ti.com
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3.7 Pin Control
The McASP pins can be configured as McASP pins or GPIO pins. This pin control is internal to McASP
and is not the same as the device level pin control.

Not all McASP instances have the same number of pins. McASP1 and 2 have 16 serializers, while the rest
have 4 serializers.

Figure 12. Pin Control
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Figure 13. McASP Pin Control in omapconf

4 Overruns and Underruns (XRUNs)
XRUNs can occur due to different reasons; the most common ones are covered in this section.

4.1 Media Storage I/O Latency
Media storage I/O latency is probably the most common cause of xruns in single-threaded, non-optimized
audio applications. Typically, the single thread in that kind of application sequentially accesses the media
storage (to retrieve new samples for playback or store recorded audio) and the ALSA PCM device (to
render samples for playback and get new samples in capture). Due to the sequential nature of that
process, the ALSA buffer is more likely to underflow (playback) or overflow (capture) when the buffer is
small or when the media I/O latency is high. Most test applications, including aplay, arecord, tinyplay,
tinycap, and so forth, are single-threaded.

There are different ways to root cause this problem, from optimizing the audio application for media I/O
latency to storing the audio sample files in a RAM disk.

http://www.ti.com
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4.1.1 Optimize the Audio Application
Having separate threads for accessing the media storage and reading and writing to the ALSA PCM
device can help prevent xruns. An additional circular buffer in a faster memory (such as RAM) is required
for this approach.

One thread could access the audio hardware:
• Playback: Read data from the circular buffer and write it to the ALSA.
• Capture: Read new samples from ALSA and write it to the circular buffer.

The other thread could operate in larger chunks of data (which is typically better in terms of media storage
throughput):
• Playback: Read more audio samples from the media storage and write them to the circular buffer.
• Capture: Read new audio samples from the circular buffer and write them to the media storage.

4.1.2 Store Samples in a RAM Disk
Placing the audio samples in a RAM disk is a quick way to identify xruns caused by media storage I/O
latency. While this is not a solution for the xruns, it helps to narrow down the root cause.

shell@jacinto6evm:/ # mkdir /data/audio_test

shell@jacinto6evm:/ # mount -t tmpfs -o size=20m tmpfs /data/audio_test

shell@jacinto6evm:/ # df
Filesystem Size Used Free Blksize
/dev 498.5M 24.0K 498.5M 4096
/sys/fs/cgroup 498.5M 12.0K 498.5M 4096
/mnt/asec 498.5M 0.0K 498.5M 4096
/mnt/obb 498.5M 0.0K 498.5M 4096
/system 743.9M 321.4M 422.5M 4096
/factory 11.7M 40.0K 11.7M 4096
/cache 248.0M 148.0K 247.8M 4096
/data 6.0G 254.8M 5.8G 4096
/mnt/shell/emulated 6.0G 254.8M 5.8G 4096
/data/audio_test 20.0M 0.0K 20.0M 4096

shell@jacinto6evm:/ # cp /data/media/0/Music/audio.wav /data/audio_test

shell@jacinto6evm:/ # tinyplay /data/audio_test/audio.wav
Playing sample: 2 ch, 44100 hz, 16 bit

shell@jacinto6evm:/ # tinycap /data/audio_test/record.wav -r44100 -b16 -c2
Capturing sample: 2 ch, 44100 hz, 16 bit

4.1.3 Using Special Device Files
Similarly, xruns caused by the media storage latency could be identified or discarded by playing or
capturing from special devices files, such as playing from /dev/zero (or /dev/urandom), recording to
/dev/null.

# aplay /dev/urandom -f cd -d 60

# arecord /dev/null -f cd -d 60

These special device files do not introduce the latency that media storage does, such as recording
/dev/null just discards all data written to it. This approach is best when the content of the recorded or
played data is not the problem being debugged.

http://www.ti.com
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Android’s tinyplay can not render from /dev/urandom or /dev/zero, because the utility only supports
RIFF/WAVE files. This is not a limitation when recording to /dev/null using tinycap.

4.1.4 Rendering Patterns
Rendering predefined patterns is not precisely meant to debug xrun issues, but due to the fact that the
application audio buffer is prefilled in advance with the pattern or filling the buffer is relatively fast, they
typically do not introduce high latency.

Speaker-test and audio-tool are examples of this kind of applications.

shell@jacinto6evm:/ # audio-tool tone sine 1000 0 -r44100 -b16 -c2 -t60

root@dra7xx-evm:~# speaker-test -r 44100 -c 2 -t pink

speaker-test 1.0.27.2

Playback device is default
Stream parameters are 44100Hz, S16_LE, 2 channels
Using 16 octaves of pink noise
Rate set to 44100Hz (requested 44100Hz)

More information about the audio-tool can be found at https://github.com/audio-tool/audio-tool.

4.2 Interconnect Latency
The latency involved in transferring data to and from an audio peripheral (such as McASP) to the ALSA
buffer can also cause overflows and underflows, which may or may not be reported as ALSA xruns.

McASP has one transmit buffer (TXBUF) and one receive buffer (RXBUF) for each serializer, and these
buffers are one audio word deep. The service time for these buffers is very small, as the buffer must be
written or read before one word is shifted in or out by the McASP serializer. Thus, the higher the sample
rate or the number of channels or slots, the more stringent the latency requirement is. For more details on
the McASP event service time, see the DRA75x, DRA74x Technical Reference Manual (SPRUHI2).

McASP also has an internal AFIFO that can be used to store up to 64 audio words. This additional FIFO
can help relax the latency requirements. The McASP AFIFO must be accessed through eDMA for
McASP1-3, and either sDMA or eDMA for McASP4-8. TI recommends enabling the McASP AFIFO,
regardless of the sample rate or channel count, to prevent overflows and underflows that may occur when
the system is highly loaded.

4.2.1 Measuring L3 Throughput
The throughput on the DRA7xx L3 interconnect can be measured with the omapconf tool. This
measurement is useful to verify if the L3 bandwidth utilized by audio (such as sDMA) is within the
expected limits, and to compare it against overall bandwidth utilization at the system level.

The L3 bandwidth measurement is done with respect to the EMIFs (external memory interfaces) in the
DRA7xx processor. The relevant initiator for audio playback is sdma_rd, as the transfers are reads from
the EMIF standpoint. sdma_wr is the initiator required to be monitored for audio capture.

The example below shows the L3 throughput measured in the Jacinto6 EVM with 10” display, during a
use-case with 6-channels audio playback at 44.1 kHz, 16-bits. The expected audio throughput is (0.5292
MB/s).

The total throughput for the audio use-case is the one combined from the two EMIFs in the system. Thus,
for the playback example, counter0 + counter1 = 0.53 MB/s is the measured L3 throughput.

http://www.ti.com
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This example also shows the L3 traffic by all other initiators (alldmm). In this case, most of the L3 traffic
comes from the display panel 1280×800, 60 Hz (245.76 MB/s).

shell@jacinto6evm:/ # audio-tool tone sine 1000 -D3 -r44100 -b16 -c6 &
shell@jacinto6evm:/ # omapconf trace bw \
> --tr0 r+w --m0 sdma_rd \
> --tr1 r+w --m1 sdma_rd \
> --tr2 r+w --m2 sdma_wr \
> --tr3 r+w --m3 sdma_wr \
> --tr4 r+w --m4 alldmm \
> --tr5 r+w --m5 alldmm
...
Counter: 0 Master: sdma_rd Transaction: r+w Probe: emif1
Counter: 1 Master: sdma_rd Transaction: r+w Probe: emif2
Counter: 2 Master: sdma_wr Transaction: r+w Probe: emif1
Counter: 3 Master: sdma_wr Transaction: r+w Probe: emif2
Counter: 4 Master: alldmm Transaction: r+w Probe: emif1
Counter: 5 Master: alldmm Transaction: r+w Probe: emif2
delay in us: 1000000
overflow delay in us: 1000000 (iterations=1)
accumulation type: 2
iterations (0=infinite): 0
Overflow counter index: DISABLED (overflow delay used)
Overflow threshold: DISABLED (overflow delay used)

Time Stamp(32KHz ticks) -> Throughput(MB/s)
time: End Start Delta -> Counter0 Counter1 Counter2 Counter3 Counter4 Counter5
time: 87347347 87314554 32793 -> 0.27 0.26 0.00 0.00 55.91 194.90
time: 87380140 87347347 32793 -> 0.27 0.26 0.00 0.00 55.90 194.90
time: 87412932 87380140 32792 -> 0.27 0.26 0.00 0.00 55.91 194.90
time: 87445725 87412932 32793 -> 0.27 0.26 0.00 0.00 55.90 194.89

When only one EMIF is present, it is not required to have two counters per initiator. A simplified omapconf
command can be used instead:

shell@jacinto6evm:/ # audio-tool tone sine 1000 -D3 -r44100 -b16 -c6 &
shell@jacinto6evm:/ # omapconf trace bw \
> --tr0 r+w --m0 sdma_rd \
> --tr1 r+w --m1 sdma_wr \
> --tr2 r+w --m2 alldmm
...
Counter: 0 Master: sdma_rd Transaction: r+w Probe: emif1
Counter: 1 Master: sdma_wr Transaction: r+w Probe: emif1
Counter: 2 Master: alldmm Transaction: r+w Probe: emif1
delay in us: 1000000
overflow delay in us: 1000000 (iterations=1)
accumulation type: 2
iterations (0=infinite): 0
Overflow counter index: DISABLED (overflow delay used)
Overflow threshold: DISABLED (overflow delay used)

Time Stamp(32KHz ticks) -> Throughput(MB/s)
time: End Start Delta -> Counter0 Counter1 Counter2
time: 1355848 1323055 32793 -> 0.53 0.00 250.80
time: 1388641 1355848 32793 -> 0.58 0.00 250.86
time: 1421434 1388641 32793 -> 0.53 0.00 250.79
time: 1454226 1421434 32792 -> 0.53 0.00 250.81
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When eDMA is used instead of sDMA, the targets to monitor are different. The corresponding omapconf
command is:

shell@jacinto6evm:/ # omapconf trace bw \
--tr0 r+w --m0 edma_tc1_wr \
--tr1 r+w --m1 edma_tc1_wr \
--tr2 r+w --m2 edma_tc1_rd \
--tr3 r+w --m3 edma_tc1_rd \
--tr4 r+w --m4 alldmm \
--tr5 r+w --m5 alldmm

5 Systrace
Android’s Systrace is a helpful tool to capture and display the execution times of application and system
processes, as well as Linux and Android kernel data such as the CPU scheduler, disk activity, threads,
and so forth. The tool generates an HTML report that shows an overall picture of the system processes of
the Android device for a given period of time. More details about the systrace tool can be found at
Android’s website: http://developer.android.com/tools/help/systrace.html.

The systrace tool has support for audio events, but the existing audio events are more useful for
debugging at user-space level (such as Audio Flinger). The events can be extended to include ALSA
events that could help monitor the amount of audio frames available in the ALSA buffer. This information
is useful when investigating causes for ALSA xruns in a system level perspective.

Typically, the ALSA buffer stays near full level to prevent underruns in audio playback. Similarly, the ALSA
buffers stays near empty level to prevent overruns in audio record.

5.1 Requirements

5.1.1 Host Tools
The Systrace scripts are part of the Android SDK tools, which can be downloaded from the Android
Developers Website (https://developer.android.com/sdk/index.html#Other).

Depending on the host OS, uncompress the zip/tarball file or run the installer. For example, in a Linux
host:

# tar zxf android-sdk_r24.3.3-linux.tgz
# cd android-sdk-linux

The Android SDK platform-tools do not come by default in the tarball, so they must be downloaded using
the Android SDK manager, which can be found in the SDK tools.

# ./tools/android

http://www.ti.com
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Figure 14. Install the Android SDK Platform-Tools

5.1.2 Kernel Requirements
Systrace requires kernel tracing support and default tracers to be enabled. Enabling the
CONFIG_ENABLE_DEFAULT_TRACERS config option is required. This config option is listed in Android
kernel recommended configs.

The amount of available frames in the ALSA buffer can be displayed using counter events in Systrace.
These events require a specific trace event format.

The available frames can be probed at different places in the ALSA framework. These trace events do not
exist in the kernel, so they must be explicitly added. The following patch should be applied on the kernel:

# cd $KERNEL_DIR
# git fetch http://review.omapzoom.org/kernel/omap refs/changes/96/36696/1 && git cherry-
pick FETCH_HEAD

Recompile the kernel and flash it to the target device.

5.1.3 Android Source Requirements
Systrace uses the atrace under the hood, which is an Android native utility. The new “alsa” tag must be
added to the list of valid tags in atrace.

# cd frameworks/native
# git fetch http://review.omapzoom.org/platform/frameworks/native
refs/changes/94/36694/1 && git cherry-pick FETCH_HEAD
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If using the asynchronous mode in atrace described in Capturing Events Asynchronously, an additional
patch must be applied:

# git fetch http://review.omapzoom.org/platform/frameworks/native
refs/changes/94/36694/1 && git cherry-pick FETCH_HEAD

The atrace utility must be recompiled and pushed to the device.

# cd -
# make –j4
# adb push out/target/product/jacinto6evm/system/bin/atrace /system/bin/

5.2 Capturing Events Through ADB
The following is required to be run on the target device:
• Systrace can capture traces from kernel events but not from Android user-space unless

/sys/kernel/debug permissions are changed on the target device:

# chmod –R 777 /sys/kernel/debug
# stop
# start

On the host machine, the following steps are required:
1. Restart the ADB daemon with root permissions.
2. Run systrace script with the relevant events for the use-case. Specify the capture duration accordingly:

# platform-tools/systrace/systrace.py -o/tmp/alsa_events.html -t5 input am
hal sched freq idle disk load worq audio alsa

3. The events are captured on the target and downloaded to the host through ADB.
4. The HTML trace report is created in the location specified in the argument -o, or in the current

directory if the output file is not specified.

5.3 Capturing Events Asynchronously
There are cases where ADB is not available in the system, thus the traces must be captured on the target,
stored on a removable media device, and copied to the host machine to generate the systrace output.

The following steps are required to be run on the target device:
1. Change the /sys/kernel/debug permissions.

# chmod –R 777 /sys/kernel/debug
# stop
# start
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2. Capture the traces using the atrace utility. This is the same utility used by the systrace.py script over
ADB.

# atrace -b 5000 --async_start input am hal sched freq idle disk load workq audio alsa

3. Run the use-case (such as playing music or recording voice).
4. Stop the capture and save the traces. The traces are saved in a compressed format.

# atrace -z --async_stop > /data/trace.dat

5. Copy the trace file to a removable and transfer it to the host machine.

On the host machine:
• Run the systrace script specifying the trace file captured on the target device.

# platform-tools/systrace/systrace.py --from-file=/media/sdcard/trace.dat -
o /tmp/alsa_events.html

NOTE: At the time of this writing, the Systrace script is not able to parse all events in TI Android
Lollipop release, which is based on kernel-3.14. It works on the previous TI Android releases
that are based on kernel-3.8.

The following examples show the systrace report for playback and capture cases where ALSA underrun
and overrun events occurred. The ALSA buffer level can be monitored as it gets depleted (playback) or full
(capture), until it eventually hits the xrun condition. This event can be correlated with other tasks in the
system running simultaneously that might have contributed to hit this condition.
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Figure 15. Systrace Report With an ALSA Overrun During Music Playback
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Figure 16. Systrace Report With an ALSA Underrun During Sound Recording

6 Most Common Audio Issues
This section describes the suggested steps required to debug the most commonly encountered audio
issues.

6.1 McASP Underflows During Audio Playback
• Check if the McASP WFIFO is enabled. Use the omapconf tool to read the status of the McASP

WFIFO (see Data Ports and Buffers).
TI recommends using the McASP AFIFOs to prevent hardware underflows and overflows.

• Ensure the FIFO threshold is optimal. Use the omapconf tool to read the threshold level of the McASP
WFIFO (see Data Ports and Buffers).
The FIFO threshold is configured through a devicetree property in the Linux kernel, but can be
overwritten by the McASP driver to satisfy hardware constraints.

• Measure the L3 bandwidth to identify the interconnect traffic conditions that may be affecting meeting
McASP timing constraints. For the omapconf instructions to measure the L3 bandwidth, see Measuring
L3 Throughput.
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6.2 ALSA Underruns When Playing a Wave Sample With aplay and tinyplay
• Look for McASP underflows errors in the kernel logs. If they are present, see McASP Underflows

During Audio Playback.
• Discard media storage I/O latency by trying to render from a RAM disk (see Store Samples in a RAM

Disk), rendering from special device files (see Using Special Device Files) or rendering pre-generated
patterns (see Rendering Patterns)
If the ALSA underflow errors disappear, then the problem is the bottleneck in the sequential order of
reading data from media storage and then writing it to the ALSA PCM device, as aplay and tinyplay are
test applications.

• Use the ALSA XRUN debug infrastructure for further debugging. More information can be found at
http://www.alsa-project.org/main/index.php/XRUN_Debug.

6.3 Input/Output Error During Audio Playback
• The input and output error typically happens when the ALSA PCM device is not consuming any data.

ALSA times out after 10 secs of inactivity.
• Read the ALSA application (app_ptr) and hardware pointers (hw_ptr) and check if the values are

changing. This information is found in the status file of the corresponding PCM device’s procfs entry.
For more information about ALSA procfs, see ALSA procfs.
When the hw_ptr is not moving, the audio hardware did not consume the audio data.

• If McASP is a slave, make sure the BCLK and FSYNC are provided by the companion analog codec.
Use the omapconf tool to determine the McASP BCLK/FSYNC settings (see Clocks (BCLK) and Frame
Sync Generator (FSYNC)).

• Check if the pin mux settings (such as direction, mux mode, and so forth) are set according to the
McASP master/slave configuration. for more information about the McASP pin mux settings, see the
DRA75x/74x SoC for Automotive Infotainment Technical Reference Manual (SPRUHI2) or the
DRA75x, DRA74x Infotainment Applications Processor Data Manual (SPRS857).

6.4 Audio Playback is Muted
• Run the audio playback application for at least 10 seconds to discard input and output errors.

If an input or output error occurred, follow the steps in Input and Output Error During Audio Playback.
• Check if the pin mux settings for the transmit serializers are set accordingly to the McASP serializer

allocation. For more information about the McASP pin mux settings, see the DRA75x/74x SoC for
Automotive Infotainment Technical Reference Manual (SPRUHI2) or the DRA75x, DRA74x
Infotainment Applications Processor Data Manual (SPRS857).

• Check if the audio routing and volume settings are correct on the codec side. The codec mixer controls
can be checked using amixer or tinymix tools.

6.5 McASP Overflows During Audio Record
When looking for McASP RFIFO status, use the steps listed in McASP Underflows During Audio
Playback.

6.6 ALSA Overruns When Capturing Audio With arecord and tinycap
When applicable for audio playback or audio record, see the steps listed in ALSA Underruns When
Playing a Wave Sample With aplay and tinyplay.

6.7 Input and Output Error During Audio Record
For more information, see the steps in Input and Output Error During Audio Playback.

7 References
• DRA75x/74x SoC for Automotive Infotainment Technical Reference Manual (SPRUHI2)
• DRA75x, DRA74x Infotainment Applications Processor Data Manual (SPRS857)
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