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1 Introduction 
The buck and the boost circuits are the most commonly used topology in nonisolated DC-DC 
application. The buck circuit is used as step-down converter, while the boost is used as step-up 
converter. While the buck and boost circuits are critical for the simple DC-DC conversion field, 
they are also highly important to other power electronics topologies. The reason is that most 
power converter topologies can be considered as the equivalent circuit consisting of buck and 
boost converters. Therefore, the analysis and the controller design for these two circuits are very 
typical. By improving the efficiency of conversion, the synchronized buck and boost have 
become increasingly popular. 

This document discusses the closed-loop controller design for synchronized buck and boost 
circuit, both in voltage mode and the average current mode. A Piccolo MCU named 
TMS320F28027 in the C2000 family is used as the digital controller. To realize a high PWM 
frequency (300 kHz), the application of HRPWM in TMS320F28027 is also shown. 

2 The Mathematical Model 
The first step in designing the closed-loop controller for the synchronization buck or boost 
topology is to build up the mathematical model. The synchronization buck or boost topologies 
are derived from the traditional buck and boost circuit by replacing the diode with a MOSFET. 
This replacement reduces the conduction loss of the switches.  

As shown in Figure 1 and Figure 2, the control for the synchronization circuits requires a pair of 
complementary PWMs. To avoid the short circuit of the two switches, the dead time between the 
two switches is necessary. 
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Figure 3. Block Diagram of the System 

In this paper, we use one microcontroller unit (MCU) to control four converters, which is two 
bucks and two boosts (see Figure 3). One buck is controlled in voltage mode, and the other in 
current control mode. The boost control mode is the same as that of the buck. 

Before building up the model, the following parameters should be assumed: 

1. The input voltage is inV , and the output voltage is ou . 

2. The inductor current is Li , and the resistor load is R . 

3. The inductance is L , and the output capacitance is C . 

4. The duty cycle is d . 

2.1 The Small Signal Model for Buck 

When the Q1 is on, we can get equation (1). 
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When the Q1 is off, we can get equation (2) 
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In each switching cycle, by combining equations (1) and (2) with the average space principle, 
equation (3) is derived. 
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So, equation (4) shows the average duty cycle of the buck circuit in stable status. 
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In a very short time range, considering the d , Li  and the ou  as the fixed value, by adding the 

small signal d̂ , Lî  and oû  to equation (3), we can get equation (5), which is the small signal 
function of the buck. 
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Assume oû  = 0 and d̂  = 0, respectively. 
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So, equation (7) shows the small signal model transfer function from duty cycle d  to the inductor 
current Li . 
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Equation (8) shows the transfer function from the duty cycle d  to output voltage ou . 
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Equation (7) can be used in current loop design in current mode, and equation (8) can be used 
in voltage mode controller design. 

2.2 The Small Signal Model for Boost 

From the same method that used in Section 2.1, we can get the small signal model of the boost. 
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3 The Voltage Mode Controller Design 
Voltage mode control controls the output voltage by a single output voltage loop, and the 
controller simply regulates the duty cycle in different running conditions. For example, consider 
the buck topology (see Figure 4 for the voltage mode closed-loop block diagram): 

 

drefV

fbkV
_

vfk

)(sGdu
ou)(sGc

 
Figure 4. The Voltage Mode Control Block Diagram 

Equation (11) shows the open-loop transfer function: 

vfducopen ksGsGG )()(=          (11) 

The )(sGc  is the closed-loop controller, and the vfk  is the voltage sampling ratio. 

From equation (8) we can see that )(sGdu has a low-frequency pole that greatly affects the 
frequency response of the system by slowing down the bandwidth and reducing the phase 
margin. To reduce the effect of this pole, it must be a zero to offset it. 

So it is better to choose a controller as follows: 
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RC
a 1
=  is an offset zero to the pole of the )(sGdu . 

b  is a high-frequency zero to compensate the phase, and c  is a high-frequency pole to reduce 
the high-frequency noise. Besides, we need an integral element to reduce the static difference of 
the controller. 

In practice, the buck circuit parameter follows: 

uHL 32= , uFC 460= , VVin 24= , Vuo 14= , Ω= 7R , kHzfsw 300= , 0532.0=vfk  

If equation (13) shows the closed-loop controller:  
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Figure 5 shows the frequency response of the open-loop system. 

 
Figure 5. Voltage Mode Open-Loop Response for Buck 

In Figure 5, the blue line is the )(sGdu  frequency response, and the red line is the open loop 
frequency response after it is controlled. The system is stable because the phase margin is 
approximately 50 degrees. Besides, the bandwidth is about 12300 rad/s, so the dynamic 
response can be ensured. 

Equation (14) is the continuous function of the voltage loop controller. For the digital controller, 
we need to make it discrete to the z-domain with a sampling time of 20 µs.  
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By using the same method, we can also design the voltage mode controller for boost. In practice, 
the boost circuit parameter follows: 

uHL 32= , uFC 140= , VVin 24= , Vuo 50= , Ω= 25R , kHzfsw 300= , 0144.0=vfk  

If equation (15) and equation (16) show the closed-loop controller: 
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Figure 6 shows the frequency response of the open-loop system. 

 

 
Figure 6. Voltage Mode Open-Loop Response for Boost 

4 The Current Mode Controller Design 
Current mode control means to regulate the output voltage by internal current loop and an 
external voltage loop controller. The inductor current and the output voltage are controllable in 
an external voltage loop controller. Figure 7 shows the current mode control block diagram. 
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Figure 7. Current Mode Control Block Diagram 

When designing the multiloop system, the most important factor is the design of the current loop 
controller for the system. Also, the internal loop must be designed first. From Figure 7, we can 
get the internal open-loop transfer function is: 

ifdiciiopen ksGsGG )()(_ =         (17) 

The internal loop object is the transfer function from the duty cycle to the inductor current )(sGdi . 
From the preceding analysis, this object is integral. To regulate this kind of object, the PI 
controller can be used. 
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Equation (18) reflects a PI controller that adds a high-frequency pole, which can reduce the high-
frequency noise of the system. 

If the designed internal loop is fast enough, the internal loop of the system can be considered as 
a gain, so the external loop object is similar to the integral, and the PI controller can be used for 
the external loop. 

  
)(
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To ensure the stability of the system, the internal loop must be much faster than the external 
loop. Therefore, it is necessary to choose the proper bandwidth for both current loop and voltage 
loop. In the 300-kHz switching frequency application, a 60-MHz MCU cannot execute a 1-cycle 
controller algorithm because the CPU speed is not fast enough to finish the calculation for the 
controller in 3.3 µs. In addition, the sampling delay in the closed loop, which greatly reduces the 
phase margin of the system, cannot be neglected. So, we must reduce the sampling rate and 
the controller execution rate to reduce the CPU load and the effect of the sampling delay. 

In practice, we use a 100-kHz sampling frequency to execute the controller algorithm to update 
the duty cycle every 10 µs for the internal loop. Considering the delay by the CPU calculation 
and sampling delay, a bandwidth less than 10 kHz is proper and safe for the internal loop, and a 
bandwidth less than 2 kHz is proper and safe for the external loop. 

Given the same parameters for buck mentioned in the previous section, if we choose the 
following current loop and voltage loop, the internal open-loop frequency response and the 
external open-loop frequency can be gained (see Figure 8 and Figure 9, respectively). 
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The discretion for equations (20) and (21) with the sampling time of 10 µs is: 
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Figure 8. Internal Open-Loop Frequency Response 
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Figure 9. External Open-Loop Frequency Response 

Using the same method, the similar result can be attained for current control mode for the boost 
circuit. In this paper, the current mode controller design is not shown, and the controller for boost 
is shown below: 
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5 The HRPWM Application Notes 
In this paper, the 300-kHz switching frequency is applied for both buck and boost circuit. For a 
60-MHz CPU, the PWM duty step for a CPU clock is 0.5%. If the input voltage is 24 V, the 
voltage regulation step of the controller will be 0.12 V, which is too rough to get fine control for 
the output voltage. So the HRPWM is needed in a high-switching frequency field. 
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5.1 The Principle of the HRPWM Module 

 
Figure 10. The Block Diagram of HRPWM 

The HRPWM uses the TBPHSHR, CMPAHR, and TBPRDHR to fine-tune PWM edge in a single 
CPU clock cycle. The single CPU clock time can then be divided into several MEP steps. For a 
60-MHz MCU, the typical MEP step is 150 ps. In this paper, the CMPAHR is used to generate 
the high-resolution duty cycle. However, from Figure 10, we cannot realize the high-resolution 
dead-time.  

In the EPWM module, CMPA contains traditional PWM, 16-bit CMPA, and an 8-bit high-
resolution CMPAHR.  

5.2 CMPAHR Calculation 

For a given duty cycle d, two methods can be used to calculate the value of CMPAHR. 

1. Calculate the CMPAHR by the following equations: 

CMPA = d × TBPRD; 

CMPAHR = (frac(d × TBPRD) × MEP_ScaleFactor + 0.5) << 8; 

The MEP_ScaleFactor must be updated in the background by calling the SFO() function. All the 
steps are performed by software. 

2. Set the HRPWM running in auto-conversion mode: then software calculates the fraction of the 
duty cycle, and hardware finishes the other process automatically. MEP_ScaleFactor must 
update in the background by calling the SFO function. In this mode: 

CMPA = d × TBPRD; 

CMPAHR = frac(d × TBPRD<<8); 

In this paper, the auto-conversion mode is used. 
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6 Test Result and Conclusion 

6.1 The Voltage Mode Test 

 
Figure 11. Buck Voltage Mode Soft Start Test 

 
Figure 12. Buck Voltage Mode Load Step Test 

 
Figure 13. Boost Voltage Mode Soft Start Test 
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Figure 14. Boost Voltage Mode Load Step Test 

6.2 The Current Mode Test 

 
Figure 15. Buck Current Mode Soft Start Test 

 
Figure 16. Buck Current Mode Load Step Test 
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Figure 17. Boost Current Mode Soft Start Test 

 
Figure 18. Boost Current Mode Load Step Test 

6.3 Conclusion 

In this paper, four channels of buck and boost circuit are controlled by only one Piccolo A MCU. 
The Piccolo A MCU shows very good performance in the 300-kHz switching frequency 
application field. 

From the preceding test results, all the buck and boost converters show good performance both 
in a soft start process and the dynamic response. All of the load step voltage pulldowns and 
pullups can be controlled to less than 5% of the rated output voltage. But when comparing the 
voltage mode to the current mode, the current mode has the better load disturbance recovery 
performance.  
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