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ABSTRACT

The phase shifted full bridge (PSFB) converter is used for DC-DC conversion in various applications, for
example, in telecom systems to convert a high voltage bus to an intermediate distribution voltage, typically
closer to 48 V. PSFB stage provides voltage translation as well as isolation from the line voltage, since
this topology includes a transformer.

This application report presents the implementation details of a digitally controlled PSFB system
implemented on the high voltage phase shifted full bridge (HVPSFB) kit from Texas Instruments. This kit
converts a 400 V DC input to a regulated 12 V DC output and is rated for operations up to 600W. Both
peak current mode control (PCMC) and voltage mode control (VMC) implementations are described.
These highly integrated microcontroller-based realizations feature adaptive zero voltage switching (ZVS)
and various synchronous rectification schemes, which are discussed here. Details for generating complex
gate drive waveforms, required by these control schemes, and intelligent timing control, to optimize
system performance under changing operating conditions, are provided. A step-by-step guide to run the
HVPSFB project is also included. A constant high system efficiency above 10% rated load, novel PCMC
waveform generation based on on-chip hardware mechanisms, and simple system implementation are the
highlights of this solution.

NOTE: If you would like to quickly evaluate this kit without going through the implementation details,
see the accompanying quick start guide (QSG-HVPSB-Rev1.1.pdf located at
www.ti.com/controlsuite) instead of this document.
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1 Introduction

Phase shifted full bridge (PSFB) DC-DC converters are used frequently to step down high DC bus
voltages or provide isolation in medium to high power applications like server power supplies, telecom
rectifiers, battery charging systems, and renewable energy systems. Traditionally, microcontrollers have
been restricted to only performing supervisory or communications tasks in these systems. With the
availability of high performing microcontroller devices, it is now possible to use microcontrollers for closing
control loops in these systems, in addition to handling the traditional microcontroller functions. The
transition to digital power control means that functions that were previously implemented in hardware are
now implemented in software. In addition to flexibility, this simplifies the system considerably. These
systems can implement advanced control strategies to optimally control the power stage under different
conditions and also provide system level intelligence.

A PSFB converter consists of four power electronic switches (like MOSFETs or IGBTs) that form a full-
bridge on the primary side of the isolation transformer and diode rectifiers or MOSFET switches for
synchronous rectification (SR) on the secondary side. This topology allows all the switching devices to
switch with ZVS resulting in lower switching losses and an efficient converter. In this work, ZVS for
switches in the one leg of the full bridge and zero or low voltage or valley switching for switches in the
other leg is achieved across the complete load range, by changing dead-times for primary side switches
based on load conditions.

For such an isolated topology, signal rectification is required on the secondary side. For systems with low
output voltage or high output current ratings, implementing synchronous rectification instead of diode
rectification achieves the best possible performance by avoiding diode rectification losses. In this work,
current double synchronous rectification is implemented on the secondary side with different switching
schemes to achieve optimum performance under varying load conditions.

A DC-DC converter system can be controlled in various modes like VMC, average current mode control
(ACMC) or PCMC. Implementing these different control modes for controlling the same power stage
typically requires redesigning the control circuit along with some changes to the power stage sensing
circuit. With a microcontroller based system, all these modes can be experimented with on the same
design with minimal or no additional changes. Such a system is implemented here using VMC and PCMC
control schemes.

PCMC is a highly desired control scheme for power converters because of its inherent voltage feed
forward, automatic cycle by cycle current limiting, flux balancing and other advantages. Implementing
PCMC for a PSFB system requires complex pulse width modulation (PWM) waveform generation with
precise timing control. A new approach to this waveform generation is presented using Texas Instruments
Piccolo™ series TMS320F2802x and TMS320F2803x microcontrollers without requiring any additional
support circuitry. Unique programmable on-chip slope compensation hardware is used to provide
appropriate slope compensation that assures open loop stability and eliminates and limits sub-harmonic
oscillations at the output. For PCMC implementation with a microcontroller, the regulated output voltage is
dependent on the amount of output voltage ripple, which in turn is dependent on the load. This relation is
explained in detail and different solutions are suggested.

Peak efficiency greater than 95% and efficiency greater than 90% down to 10% load is achieved with the
600W PSFB system is used here.

1.1 Basic Operation

Figure 1 shows a simplified circuit of a phase shifted full bridge. MOSFET switches QA, QB, QC and QD

form the full-bridge on the primary side of the transformer T1. QA and QB are switched at 50% duty and
180° out of phase with each other. Similarly, QC and QD are switched at 50% duty and 180° out of phase
with each other. The PWM switching signals for leg QC – QD of the full bridge are phase shifted with
respect to those for leg QA - QB. The amount of this phase shift decides the amount of overlap between
diagonal switches, which in turn decides the amount of energy transferred. D1, D2 provide the diode
current double rectification on the secondary, while Lo and Co form the output filter. The inductor LR

provides assistance to the transformer leakage inductance for the resonance operation with MOSFET
capacitance and facilitates ZVS. Note the two different grounds G1 and G2 on the two sides of transformer
T1.
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Figure 2 provides the switching waveforms for the system in Figure 1.

Figure 1. A Phase Shifted Full Bridge Circuit

Figure 2. PSFB PWM Waveforms
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1.2 PSFB Implementation on HVPSFB Board

Figure 3 shows a simplified block diagram of the PSFB circuit implemented on the HVPSFB board.
Switches QA, QB, QC and QD in Figure 2 correspond to switches Q1, Q4, Q2 and Q3, respectively.
Switches Q5 and Q6 are used for synchronous rectification on the secondary.

Figure 3. PSFB System Block Diagram

The control algorithm is implemented on a C2000™ microcontroller (MCU). The MCU interacts with the
PSFB power stage by way of feedback signals and PWM outputs. The controller is placed on the
secondary side on this design. Deciding on the placement of the controller with respect to the isolation
boundary is a crucial step when designing an isolated DC-DC system. For systems that have multiple
output rails or handle many signals and control loops on the secondary side or communicate with other
systems in the application (on the secondary), placing the controller on the secondary side is more
advantageous.

Phase shift between PWM signals driving the two legs of the full bridge determines the amount of energy
transferred to the load. This phase shift is the controlled parameter.

MCU achieves DC – DC conversion by controlling this phase shift so as to regulate and maintain the
output voltage at the commanded level.

Controlling such a system in different operation modes requires generating complex PWM drive
waveforms along with fast and efficient control loop calculations. This is made possible on C2000
microcontrollers by advanced on-chip control peripherals like PWM modules, analog comparators with
digital analog converter (DAC) and slope compensation hardware and 12-bit high speed ADCs coupled
with an efficient 32-bit CPU. A detailed description of the software algorithm is provided in the following
sections
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1.3 HVPSFB Kit Highlights

The following is a list of key features of the HVPSFB kit:

• 400 V DC input (370 Vdc to 410 Vdc operation), 12 V DC output

• Peak efficiency greater than 95%. Above 90% efficiency down to 10% load.

• 50 Amp (600 Watt) rated output

• Phase shifted full-bridge (PSFB) circuit topology

• 100 KHz switching frequency

• PCMC with no external support circuitry for PCMC function

• Multiple synchronous rectification (SR) switching schemes

• Adaptive zero voltage switching (ZVS) and LVS across the complete load range

• Efficient graphic user interface (GUI) that allows fast and easy system tuning for optimal performance

• Fault protection: input UV and OV, over-current, output UV (CC and CP mode)

• Constant current (CC) and constant power (CP) functions

• Optional voltage mode control (VMC)

Figure 4 through Figure 6 provides some results obtained using this kit.

Figure 4. Efficiency versus Load (PCMC and VMC Implementations)

Figure 5. ZVS and LVS Switching at 12A Load (a) Active to Passive Leg Transitions (ZVS), (b) Passive to
Active Leg Transitions (LVS)
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Figure 6. PCMC Transient Response (a) 0% to 80% Load Step, (b) 80% to 0% Load Step

ZVS and LVS switching are achieved across the complete operating range. System efficiency of more
than 90% is obtained for all loads greater than 10% rated load, while the peak efficiency is greater than
95%. Output peak deviations of less than 3% of rated output and settling times less than 250 µs are
achieved for 80% step change in load. PCMC step response looks like a damped first order system. This
C2000 MCU-based (TMS320F2802x) implementation provides an ability to generate, and control, complex
gate drive waveforms required for PCMC and VMC control schemes while still providing a level of
intelligence unique to digitally controlled solutions.

Figure 7 provides a snapshot of the PCMC GUI included in the software package accompanying this kit. A
separate GUI for VMC implementation is also included.

Figure 7. PCMC GUI
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1.4 Identifying Key Components on the Board

Some of the key components on the actual hardware are shown in Figure 8.

Figure 8. HVPSFB Board and Controller Card

Figure 9 and Figure 10 provide the schematic diagram for the Piccolo-A controller card and the HVPSFB
baseboard.

Figure 9. TMS320F28027(Piccolo-A) Controller Card Schematic
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Figure 10. HVPSFB Baseboard Schematic
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2 Functional Description

2.1 Peak Current Mode Control (PCMC)

Implementing PCMC for a PSFB system requires complex PWM waveform generation with precise timing
control. The Piccolo family of devices from Texas Instruments feature advanced on-chip control
peripherals that make this implementation possible without any external support circuitry for this purpose.
These peripherals include on-chip analog comparators, DAC, advanced PWM resources and unique
programmable on-chip slope compensation hardware.

Figure 11 provides a block diagram representation of the PCMC implementation. The transformer primary
current is compared with the peak current reference calculated by the voltage loop using the on-chip
comparator 1. As shown in Figure 12, in every half of the switching cycle when the transformer primary
current reaches the commanded peak reference value, one of the PWM waveforms driving the switches
(Q2 and Q3) is ‘Reset’ immediately ending the power transfer phase. The PWM waveform driving the
other switch in the same leg is ‘Set’ after a programmable dead-time (dead-band) window. The
appropriate slope compensation is also applied that adds a ramp with a programmable negative slope to
the peak reference current signal. The ‘Resetting’ and ‘Setting’ action of the PWMs in one leg results in a
phase shift between PWM signals driving the two legs. The amount of this phase shift and, thereby, the
overlap between diagonal switches is dependent on the amount of peak reference current. The higher the
peak reference current, the longer the overlap between diagonal switches and, thereby, the more energy
transferred to the secondary. The controller regulates the output by controlling this energy transfer by way
of controlling the peak reference current value. Therefore, this peak reference current is the controlled
parameter.

An important feature of this implementation is that the same peak reference current command is used for
both halves of the switching cycle under all operating conditions. This provides optimal flux balance for the
transformer primary reducing any chances of saturation.

Figure 11. PCMC Block Diagram
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Figure 12. PCMC PWM Waveforms

2.2 Voltage Mode Control (VMC)

In the VMC implementation, switches in each leg are driven with complementary PWM signals of fixed
(50%) duty cycle and frequency. As shown in Figure 13, the controller directly drives and controls the
phase shift of PWM signals driving switches in one leg of the bridge with respect to the ones driving
switches in the other leg. This phase shift dictates the amount of overlap between diagonally opposite
switches, which is clear in Figure 14. The longer the overlap between diagonal switches, the longer the
amount of time the input voltage is imposed across the transformer primary winding and, thereby, the
larger the amount of energy transferred to the secondary. The controller regulates the output by controlling
this energy transfer by way of directly controlling the phase shift between the PWM signals driving the two
legs. Therefore, this phase shift is the controlled parameter. It should be noted that with VMC
implementation, there is a need to include a DC blocking capacitor in the transformer primary to avoid
possible transformer saturation from flux imbalance over time. Therefore, jumper J6 in Figure 8 should be
removed for the VMC implementation.
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Figure 13. VMC Block Diagram

Figure 14. VMC Waveforms
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2.3 Zero Voltage Switching (ZVS) or Low Voltage Switching (LVS)

PSFB DC-DC converters make use of parasitic elements in the circuit to ensure zero voltage across the
MOSFET switches before turning them ON, providing soft switching. This considerably reduces the
amount of switching losses associated with hard switching.

For the system discussed here, switching transitions for switches in the Q2- Q3 leg end the power transfer
interval. Therefore, this leg is called the ‘Active to Passive’ leg. When transitions occur for switches in this
leg, current in the primary winding is close to its maximum magnitude for that half PWM switching cycle.
The reflected load current aids the circulating energy in the primary circuit during this time, which makes it
possible for voltage across switches in this leg to approach zero volts. It is possible to achieve ZVS for
switches in this Q2-Q3 leg across the complete load range. It should be noted that as the load decreases
the amount of dead-time needs to be increased to achieve or approach ZVS.

Switching transitions for switches in the Q1- Q4 leg start the power transfer interval. Therefore, this leg is
called the ‘Passive to Active’ leg. During these switching transitions, primary current decreases. It crosses
zero current value and changes direction. This results in lower available energy for ZVS. In fact, for
operations under low load conditions, voltage across these switches may not go to zero before turning
them on. Switching losses can be kept to a minimum by turning these switches ON at a time when the
voltage across them is at a minimum. This is called valley switching or low voltage switching (LVS). As the
load changes, the time at which the switch should be turned on to achieve LVS changes, requiring dead-
time adjustment similar to the Q2-Q3 leg switches.

2.4 Synchronous Rectification

Synchronous rectifiers can work in one of the following three modes at any given time:

• Mode 0: This is the classical diode current doubler mode achieved by keeping synchronous rectifiers
turned OFF. It is useful for very low load operations where synchronous rectifier switching losses are
greater than the power savings obtained by synchronous rectification.

• Mode 1: In this mode, the synchronous rectifier switches behave like ideal diodes. This mode is useful
when operating at very low to low loads, typically when burst mode is being used. In this mode,
synchronous rectifier MOSFETs are ON only when the corresponding diagonal bridge drive signals
overlap.

• Mode 2: Useful for all other load conditions. In this mode, synchronous rectifier MOSFETs are OFF
only when the corresponding opposite diagonal bridge drive signals overlap.

Figure 12 and Figure 14 depict waveforms generated for driving the synchronous rectifier switches in
these modes. It is important to implement mode transitions seamlessly without any glitches or anomalies
on the PWM outputs even during large load transients or sudden phase shift change commands to ensure
safe operation of the system.

2.5 Output Voltage Regulation With Changing Load

The regulated output voltage is affected by changing load conditions. This problem exists because of
ripple on the output voltage that appears at two times the switching frequency. At low loads, peak-to-peak
voltage ripple is relatively small, while at higher loads it increases considerably. If the ADC conversions
are triggered at a fixed point within a switching cycle, as shown in Figure 15, the sensed analog-to-digital
converter (ADC) voltage result is smaller at high loads (for the same average voltage).

Figure 15. Effect of Fixed-Point ADC Conversion Triggering for Output Voltage Sensing
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Therefore, for the same average output voltage, a smaller output voltage is seen by the controller under
high load operation. The controller compensates for this ΔVadc, which results in an increase in the actual
output voltage value as the load increases. A few possible solutions to minimize this effect are suggested
here.

• Start of ADC conversion can be triggered at an appropriate time in every half PWM switching cycle so
as to directly sense the average output voltage. With PCMC implementation, duty cycle is not pre-
determined and this trigger point is unknown. This method works very well with VMC.

• Average output voltage can be calculated at a slow rate and an outer slower loop can be used to
adjust voltage reference or feedback. However, this may affect the dynamic performance.

• The average output voltage can be calculated on a cycle-by-cycle basis by over-sampling it over one
or two ripple cycles. Since the average output voltage is calculated over a full ripple cycle, any effects
from higher or lower peak-to-peak ripple are avoided. Also, since the average is calculated in one or
two ripple cycles and used for the next PWM switching cycle, the dynamic behavior and control loop
performance do not suffer much. With this method multiple ADC conversions are required within a
single PWM half cycle. This is the method recommended here for PCMC implementation. In this
implementation the output voltage is oversampled eight times within a PWM switching cycle.

• Increased filtering at the ADC input can attenuate the ripple and reduce ΔVadc. However, this affects
system dynamic performance and achievable loop bandwidth, while the output voltage behavior still
remains the same.
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3 Software Overview - PCMC

3.1 Software Control Flow

The HVPSFB_PCMC project makes use of the “C-background/ASM-ISR” framework. It uses C-code as
the main supporting program for the application, and is responsible for all system management tasks,
decision making, intelligence, and host interaction. The assembly code is strictly limited to the interrupt
service routine (ISR), which runs all the critical control code and typically this includes ADC reading,
control calculations, and PWM and DAC updates. Figure 16 depicts the general software flow for this
project.

Figure 16. PCMC Software Flow
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The key framework C files used in this project are:

• HVPSFB-Main.c – This file is used to initialize, run, and manage the application. This is the “brains”
behind the application.

• HVPSFB-DevInit.c – This file is responsible for a one time initialization and configuration of the
microcontroller, and includes functions such as setting up the clocks, phase-locked loop (PLL),
general-purpose input/output (GPIO), and so forth.

The ISR consists of a single file:

• HVPSFB-DPL-ISR.asm – This file contains all time critical “control type” code. This file has an
initialization section (one time execute) and a run-time section, which executes at twice the PWM
switching frequency.

The Power Library functions (modules) are “called” from this framework.

Library modules may have both a C and an assembly component. In this project, the following library
modules are used. The C and corresponding assembly module names are listed in Table 1.

Table 1. Library Modules

C Configure Function ASM Initialization Macro ASM Run-Time Macro

DAC_Cnf.c DACDRV_RAMP_INIT n DACDRV_RAMP n

ADC_SOC_Cnf.c ADCDRV_4CH_INIT m,n,p,q ADCDRV_4CH m,n,p,q

ADC_SOC_Cnf.c ADCDRV_1CH_INIT n ADCDRV_1CH n

CNTL_2P2Z_INIT n CNTL_2P2Z n

The control blocks are also represented graphically as shown in Figure 17.

Figure 17. PCMC Software Blocks
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Notice the color coding for modules in Figure 17. Blocks in ‘dark blue’ represent hardware modules on the
C2000 microcontroller. Blocks in ‘blue’ are the software drivers for these modules. Blocks in ‘yellow’ are
the controller blocks for the control loop. Although a 2-pole 2-zero controller is used here, the controller
could very well be a PI and PID, a 3-pole 3-zero or any other controller that can be suitably implemented
for this application. Such a modular library structure makes it convenient to visualize and understand the
complete system software flow as shown in Figure 18. It also allows for easy use and additions and
deletions of various functionalities. This fact is amply demonstrated in this project by implementing an
incremental build approach. This is discussed in more detail in the next section.

Figure 18. PCMC Control Flow

The system is controlled by two feedback loops: an outer voltage loop (implemented using the software
control block) and an inner peak current loop (implemented using the on-chip analog comparator) DAC
and PWM hardware resources. Figure 18 also gives the rate at which control blocks are executed. For
example, the voltage loop controller is executed at a rate of 100 kHz (same as the PWM frequency). Note
that the interrupt service routine (ISR) is executed at twice the PWM frequency. The following explains the
control implemented above.

Output voltage is sampled at four points, equally separated from each other in time, in each half of the
PWM switching cycle. The average (Avg_Vout) of these output voltage samples is calculated over one
PWM cycle. Avg_Vout is compared with slewed version (VfbSetSlewed) of the voltage reference
command (Vref) in the voltage controller. The voltage controller output is then translated to an appropriate
DAC command. This is the peak current reference command that eventually dictates the amount of phase
overlap between the two legs of the full bridge to regulate the output voltage. Slope value for the slope
compensation mechanism can be programmed from outside the control flow in slower system level tasks.
A default slope of at least 0.04 V/µs is provided. For more details, see the calculations provided in [1], [2]
and [5]. The on-chip analog comparator compares the transformer primary current with the slope
compensated peak current reference. The comparator output directly drives the PWM hardware on the
device. Some time critical configuration code is executed inside the ISR, which is triggered twice in one
PWM cycle. The dbAtoP and dbPtoA parameters provide dead band values for the ‘Active to Passive’ and
‘Passive to Active’ legs of the full bridge, respectively. These are used to achieve ZVS and LVS across the
load range.
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3.2 Incremental Builds

This project is divided into two incremental builds. This makes it easier to learn and get familiar with the
board and the software. This approach is also good for debugging and testing boards.

The build options are shown in the following sections. To select a particular build option:

1. Set the macro INCR_BUILD, found in the HVPSFB-Settings.h file, to the corresponding build selection
as shown in Table 2.

2. Compile the complete project by selecting → rebuild-all compiler option, once the build option is
selected.

The next section provides more details to run each of the build options.

Table 2. Incremental Build Options for PCMC

Incremental Build Options

Peak current loop check with constant I command and open voltage loop (check PWM drive circuitINCR_BUILD = 1 and sensing circuit)

INCR_BUILD = 2 Closed current and voltage loop (full PSFB)
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4 Procedure for Running the Incremental Builds - PCMC

The main source files, ISR assembly file and the project file for C framework to bring up the PSFB system,
are located in the following directory (please use the latest version of the software package). Version 1.1
is the latest software version as of March 2012, which is located at
www.ti.com/controlsuite ...\controlSUITE\development_kits\HVPSFB_v1.1\HVPSFB_PCMC. The projects
included with this software are targeted for Code Composer Studio™ v4.

WARNING
There are high voltages present on the board. It should only be
handled by experienced power supply professionals in a lab
environment. To safely evaluate this board, an appropriate isolated
high voltage DC source should be used. Before DC power is
applied to the board, a voltmeter and an appropriate resistive or
electronic load must be attached to the output. The unit should
never be handled when the power is applied to it.

Follow the steps below to build and run the example included in the HVPSFB_PCMC software.

4.1 Build 1: Peak Current Loop Check With Open Voltage Loop

4.1.1 Objective

The objective of this build is to evaluate the peak current mode operation of the system, verify the DAC
and ADC driver modules, verify the MOSFET driver circuit and sensing circuit on the board and become
familiar with the operation of Code Composer Studio. Since this system is running open-loop, the ADC
measured values are only used for instrumentation purposes in this build. Steps required to build and run
a project are explored.

4.1.2 Overview

The software in Build1 has been configured so that you can quickly evaluate the DAC driver module by
viewing various waveforms on an oscilloscope and observing the effect of change in peak current
reference command on the output voltage by interactively adjusting this command from Code Composer
Studio. Additionally, you can evaluate the ADC driver module by viewing the ADC sampled data in the
watch view.

The DAC and ADC driver macro instantiations are executed inside the _DPL_ISR as mentioned in the
previous section. Figure 19 shows the blocks used in this build. The peak current reference command is
written to the DACDRV_RAMP module. This module derives an appropriate 16-bit value Ramp Maximum
Reference Register (RAMPMAXREF), which is the starting value of the RAMP used for slope
compensation. This module also drives an appropriate 10-bit value to the DAC Value Register (DACVAL),
which can be used if slope compensation is not needed or provided externally.

The on-chip analog comparator compares the transformer primary current with the slope compensated
peak current reference. Comparator output is connected to the trip zone logic of the PWM modules.
ePWM1 module acts as the master time-base for the system. It operates in up-down count mode, while
other PWM modules operate in up-count mode. ePWM1A and ePWM1B drive Q1 and Q4 full-bridge
switches, while ePWM2A and ePWM2B drive Q2 and Q3 full-bridge switches. ePWM4A and ePWM4B
drive Q5 and Q6 synchronous rectifier switches. Whenever the comparator output goes high in a PWM
half cycle, the ePWM2 module output (ePWM2A or ePWM2B), which was high at that instant, is
immediately pulled low while the other PWM2 module output is pulled high after an appropriate dead-band
window (dbAtoP). ePWM4A and ePWM4B outputs are driven in a similar way. These waveforms are
shown in Figure 12.
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It should be noted that this slope compensation ramp generation, comparator action and PWM waveform
generation are all hardware generated without any software involvement as denoted by the dark blue
blocks in Figure 19. Some register reconfigurations are done inside the ISR in preparation for the next half
of the PWM cycle. This time critical code executes at the start of the ISR and should not be re-ordered or
changed. The assembly ISR _DPL_ISR routine is triggered by ePWM1. Note that the ISR trigger
frequency is twice that of the PWM switching frequency.

Figure 19. Build 1 Software Blocks

The RAMPMAXREF and DACVAL values are derived from the input Iref (Q24 variable) command. Table 3
gives example RAMPMAXREF and DACVAL values calculated from Iref’.

Table 3. Example RAMPMAXREF and DACVAL Values

RAMPMAXREF = DACVAL = Peak Current Reference
Iref (Q24) (Iref/2^8) (Iref /2^14) (Max = 6.776A)

2097152d 8192 128 0.845A

8388608d 32768 512 3.39A

16776704d 65534 1023 6.77A

The ADC driver modules are used to read 12-bit ADC results and convert them to Q24 values. In every
half PWM cycle PWM1 start of conversion A (SOCA), PWM3 SOCA and PWM3 start of conversion B
(SOCB) are used to trigger four ADC conversions for the output voltage. These conversion trigger points
are equally separated from each other in time. These four results are read in every ISR, therefore,
providing a total of eight ADC conversion results of the output voltage within every PWM cycle. A few lines
of code in the ISR are used to calculate the average output voltage over one PWM cycle based on these
eight results.

The output voltage sensing circuit is made up of simple voltage dividers. A current transformer, with a
turns-ratio of 1:100, and a sense resistor (48.7 Ω) are used to sense the full-bridge transformer primary
current. The input voltage sensing is provided by auxiliary power module (J7). For details on these
calculations, see the HVPSFB-Calculations.xls file located at www.ti.com/controlsuite.

20 PSFB Control Using C2000 Microcontrollers SPRABR1–May 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/controlsuite
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABR1


www.ti.com Procedure for Running the Incremental Builds - PCMC

4.1.3 Protection

At this stage, it is appropriate to introduce the shutdown mechanism used on this board. Here overcurrent
protection is implemented for the transformer primary current using on-chip analog comparator 2. The
reference trip level is set using the internal 10-bit DAC and fed to the inverting terminal of this comparator.
The comparator outputs are configured to generate a one-shot trip action on ePWM1 whenever the
sensed current is greater than the set limit. The flexibility of the trip mechanism on C2000 devices
provides the possibilities for taking different actions on different trip events. In this project, ePWM1A and
ePWM1B outputs are driven low immediately to protect the power stage. ePWM2A, ePWM2B, ePWM4A
and ePWm4B outputs are then forced low from software. All outputs are held in this state until a device
reset is executed. For details on these calculations, see the HVPSFB-Calculations.xls file located at
www.ti.com/controlsuite.

An output under voltage shut down mechanism is also implemented from the software when operating
under constant current or constant power modes.

Input under and over voltage lockout is also implemented in the software.

4.1.4 Resource Mapping

The key signal connections between the C2000 MCU and the HVPSFB stage are summarized in Table 4.
Note that PWM mapping is different between VMC and PCMC projects. Jumper (J2, J3 – PCMC and VMC
PWM drive jumper enables) on the controller card need to be correctly configured for VMC mode (default
jumper positions are set for PCMC operation). Here are the jumper configurations for the two modes:

• PCMC: J2(1) → J3(1), J2(2) → J3(2), J2(3) → J3(3), J2(4 → J3(4), J2(7) → J3(7), J2(8) → J3(8)

• VMC: J2(1) → J3(3), J2(2) → J3(4), J2(3) → J3(1), J2(4) → J3(2), J2(7) → J3(8), J2(8) → J3(7)

Table 4. HVPSFB Signal Interface Reference - PCMC

Connection to
Signal Name Description C2000 Controller

ePWM-1A PWM drive for full-bridge switch Q1 GPIO-00

ePWM-1B PWM drive for full-bridge switch Q4 GPIO-01

ePWM-2A PWM drive for full-bridge switch Q2 GPIO-02

ePWM-2B PWM drive for full-bridge switch Q3 GPIO-03

ePWM-4A PWM drive for synchronous rectifier switch Q5 GPIO-06

ePWM-4B PWM drive for synchronous rectifier switch Q6 GPIO-07

Vout PSFB output voltage ADC-A0

Ifb Transformer primary current ADC-A2 and COMP1A

Ifb Transformer primary current ADC-A4 and COMP2A (1)

Vfbin PSFB input voltage ADC-B1

Iout1 PSFB output current ADC-B3

Iout2 PSFB output current (heavily filtered) ADC-B4
(1) Default jumper J4 configuration on controller card. Input is configurable by jumper J4 selection.

NOTE: The HVPSFB_PCMC and HVPSFB_VMC projects use DSP2802x_Comp.h and
DSP2802x_EPWM.h header files that are located in their own project directories instead of
the ones located in the device_support directory. The two files in the device_support
directory will be updated at a later date of ControlSuite, at which time these updated files can
be used with the two projects.
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4.2 Procedure

4.2.1 Start Code Composer Studio and Open a Project

Use the following steps to quickly execute this build:

1. Make sure that jumpers J8 and J6 on the baseboard are populated.

2. By default, resistor R6 on the Piccolo macro of the controller card and jumper J1 are removed to
enable boot from FLASH. Re-populate these two to run and program RAM or program FLASH.

3. Connect the USB connector to the Piccolo controller card for emulation. Use of an appropriate isolated
DC power supply set to output around 400 V DC is recommended. The DC power supply should
remain off when it is connected to J1 and J2 on the main board.

4. Use a 20AWG 600 V wire to connect the power source to J1 and J2. Make sure that polarity of this
connection is correct. Apply an appropriate resistive or DC electronic load to the phase shifted full
bridge system at the DC output at J3 and J4.

5. Do not turn on 400 V DC power at this time.

6. Power up the bias supply between TP1 and TP2 with around 11 V DC (this voltage must be less than
12 V).

7. Double click on the Code Composer Studio icon on the desktop.

8. Maximize Code Composer Studio to fill your screen.

9. Close the Welcome screen if it opens up. The project contains all the files and build options needed to
develop an executable output file (.out), which can be run on the MCU hardware.

10. Click → Select Project → Import Existing Code Composer Studio and CCE Eclipse Project, on the
menu bar. Under Select root directory → navigate to and select
the ..\controlSUITE\development_kits\HVPSFB_v1.1\HVPSFB_PCMC directory. Make sure that
HVPSFB_PCMC is checked under the Projects tab.

11. Click Finish. This project invokes all the necessary tools (compiler, assembler, linker) to build the
project.

12. Click the plus sign (+) to the left of Project (in the project window on the left). Your project window will
look like the following graphic.

Figure 20. C and C++ Projects
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4.2.2 Device Initialization, Main, and ISR Files

NOTE: DO NOT make any changes to the source files – ONLY INSPECT.

1. Open and inspect HVPSFB-DevInit_F2802x.c by double clicking on the filename in the project window.
Notice that the system clock, peripheral clock prescale, and peripheral clock enables have been setup.
Note that the shared GPIO pins have been configured.

2. Open and inspect HVPSFB-Main.c. Note the call made to the DeviceInit() function and other variable
initialization. Also, notice the code for different incremental build options (specifically the build you are
going to compile now), the ISR initialization and the background for (;;) loop.

3. Locate and inspect the following code in the main file under the initialization code specific for build 1.
This is where the DACDRV_RAMP block is connected and initialized in the control flow.
DacDrvCnf (1, 1280, 1, 2, Slope); // Comp1, DACval = 1280 (Initial), Slope compensation
is used,

// Ramp is PWM3 Synced, Initial Slope
// DAC connections

DACDRV_RAMP_In1 = &Iref; // Controls the DAC reference voltage

4. Locate and inspect the following code in the main file under initialization code specific for build 1. This
is where the ADCDRV_4CH and multiple instantiations of ADCDRV_1CH blocks are configured,
initialized, and connected in the control flow.
#define Vfb_outR AdcResult.ADC RESULT1 //
#define IfbR AdcResult.ADC RESULT2 //
#define Vfb_inR AdcResult.ADC RESULT3 //

#define IoutR AdcResult.ADC RESULT9 //

// Channel Selection for Cascaded Sequencer
ChSel [0] = 0; // A0 - O/P Voltage - Dummy
ChSel [1] = 0; //B // A0 - O/P Voltage
ChSel [2] = 2; // A2 - Transformer Primary Current
ChSel [3] = 9; // B1 - I/P Voltage
ChSel [4] = 0; //C // A0 - O/P Voltage

ChSel [5] = 0; // A0 - O/P Voltage - Dummy
ChSel [6] = 0; //A // A0 - O/P Voltage
ChSel [7] = 0; // A0 - O/P Voltage - Dummy
ChSel [8] = 0; //D // A0 - O/P Voltage
ChSel [9] = 11; // B3 - Iout1
ChSel [9] = 12; // B4 - Iout2

TrigSel[0] = ADCTRIG_EPWM3_SOCA; // O/P Voltage sampling triggered by EPWM3 SOCA -
Dummy

TrigSel[1] = ADCTRIG_EPWM3_SOCA; //B // O/P Voltage sampling triggered by EPWM3 SOCA
TrigSel[2] = ADCTRIG_EPWM3_SOCA; // Transformer Primary Current sampling triggered

by EPWM3 SOCA
TrigSel[3] = ADCTRIG_EPWM3_SOCA; // I/P Voltage sampling triggered by EPWM3 SOCA
TrigSel[4] = ADCTRIG_EPWM3_SOCA; //C // O/P Voltage sampling triggered by EPWM3 SOCA
TrigSel[5] = ADCTRIG_EPWM1_SOCA; // O/P Voltage sampling triggered by EPWM1 SOCA at

CTR = ZRO or PRD - Dummy
TrigSel[6] = ADCTRIG_EPWM1_SOCA; //A // O/P Voltage sampling triggered by EPWM1 SOCA at

CTR = ZRO or PRD
TrigSel[7] = ADCTRIG_EPWM3_SOCB; // O/P Voltage sampling triggered by EPWM3 SOCB at

CMPB3 - Dummy
TrigSel[8] = ADCTRIG_EPWM3_SOCB; //D // O/P Voltage sampling triggered by EPWM3 SOCB at

CMPB3
TrigSel[9] = ADCTRIG_EPWM2_SOCA; // Iout triggered by EPWM2 SOCA
EALLOW;
AdcRegs.SOCPRICTL.bit.SOCPRIORITY = 9; // SOC0-8 are high priority
EDIS;
ADC_SOC_CNF(ChSel,TrigSel,ACQPS, 16, 0);// ACQPS=8, No ADC channel triggers an interrupt

IntChSel > 15,
// Mode= Start/Stop (0)
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// ADC feedback connections
ADCDRV_4ch_RltPtrA = &Adc_VavgBus[1];
ADCDRV_4ch_RltPtrB = &Adc_VavgBus[2];
ADCDRV_4ch_RltPtrC = &Adc_VavgBus[3];
ADCDRV_4ch_RltPtrD = &Adc_VavgBus[4];
ADCDRV_1ch_Rlt2 = &Adc_Ifb;
ADCDRV_1ch_Rlt3 = &Adc_Vfbin;
ADCDRV_1ch_Rlt9 = &Adc_Iout;

5. Open and inspect HVPSFB-DPL-ISR.asm. Notice the _DPL_Init and _DPL_ISR sections. This is where
the DAC and ADC driver macro instantiation is done for initialization and runtime, respectively.
Optionally, you can close the inspected files.

4.2.3 Build and Load the Project
1. Select the Incremental build option as 1 in the HVPSFB-Settings.h file located at

www.ti.com/controlsuite.

NOTE: Whenever you change the incremental build option in HVPSFB-Settings.h, always do a
“Rebuild All”.

2. Click the Project → “Rebuild All” button and watch the tools run in the build window.

3. Click Target → ”Debug Active Project”. Code Composer Studio will ask you to open a new Target
configuration file if one has not already been selected. If a valid target configuration file has been
created for this connection, you can go to Step 5. Type in the name of the .ccxml file for the target you
will be working with (example: xds100-F28027.ccxml), in the New target Configuration Window. Check
“Use shared location” and click Finish.

4. In the .ccxml file that opens up, select the Connection as “Texas Instruments XDS100v2 USB
Emulator” and scroll down under the device and select “TMS320F28027”.

5. Click Save.

6. Click Target → ”Debug Active Project”. The program will be loaded into the FLASH or RAM memory
depending on the project configuration selected. This project comes in only F2802x_FLASH
configuration. You should now be at the start of Main().

4.2.4 Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There are various
methods for doing this in Code Composer Studio, such as memory views and watch views. Additionally,
Code Composer Studio has the ability to make time (and frequency) domain plots. This allows you to view
waveforms using graph windows.

If a watch view did not open when the debug environment was launched, open a new watch view and add
various parameters to it by following the procedure given below.

1. Click View → Watch on the menu bar.

2. Click the “Watch (1)" tab. You may add any variables to the watch view.

3. Type the symbol name of the variable you want to watch in the empty box in the "Name" column and
press enter on keyboard. Be sure to modify the “Format” as needed. The watch view should look
something like the following. Please note that some of the variables have not been initialized at this
point in the main code and may contain some garbage values.

FaultFlg, if set, indicates an over current condition (discussed above), which shuts down the PWM
outputs. PWM outputs are held in this state until a device reset (follow the proper procedure in Step 11).
The Ipri_trip variable sets the internal 10-bit DAC reference level for the on-chip comparator 2. Please
note that this is a Q15 number.
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4.2.5 Using Real-Time Emulation

Real-time emulation is a special emulation feature that allows the windows within Code Composer Studio
to be updated at up to a 10 Hz rate while the MCU is running. This not only allows graphs and watch
views to update, but also allows you to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law parameters on-the-fly, for
example.

1. Enable real-time mode by hovering your mouse on the buttons on the horizontal toolbar and clicking

the Enable Silicon Real-Time Mode (service critical interrupts when halted, allow debugger
accesses while running) button.

2. Select YES to enable debug events, if a message box appears. This will set bit 1 (DGBM bit) of status
register 1 (ST1) to a “0”. The DGBM is the debug enable mask bit. When the DGBM bit is set to “0”,
memory and register values can be passed to the host processor for updating the debugger windows.

3. Now click the Enable Polite Real-Time Mode button on the same horizontal toolbar.

4. When a large number of windows are open, as bandwidth over the emulation link is limited, updating
too many windows and variables in continuous refresh can cause the refresh frequency to bog down.

Right click on the button in the watch view and select “Customize Continuous Refresh Interval..”.
You can slow down the refresh rate for the watch view variables by changing the Continuous refresh
interval (milliseconds) value. A rate of 4000 ms is usually enough for these exercises.

5. Click on the Continuous Refresh button for the watch view.

4.2.6 Run the Code
1. Run the code by using the <F8> key, or using the Run button on the toolbar, or using Target → Run

on the menu bar.

2. In the watch view, the variable Gui_IfbSet should be set to 0.15 (Q12). This variable denotes the peak
current reference command in Amperes and drives Iref to the DACDRV_RAMP module. Do not use a
value of less than 0.15 for Gui_IfbSet.

3. Apply an appropriate resistive load to the PSFB system at the DC output. A load that draws around
3A – 6A current at 12 V output is a good starting point.
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NOTE: For safety reasons, it is recommended to use an isolated DC source to supply 400 V DC
input to the board.

4. Power the input at J1, J2 with 400 V DC.

5. Increase the peak current reference command by setting Gui_IfbSet to a higher value 0.25 (say) in the
watch view. The output voltage should increase. Observe the output voltage carefully, this should not
be allowed to exceed the capabilities of the board. Keep in mind that when operating with a certain
Gui_IfbSet value, if the load is suddenly reduced, the output voltage will go up. Therefore, do not make
any sudden changes of load or big increases in Gui_IfbSet command when operating in build 1.

6. Observe the different ADC results in the watch view for different Gui_IfbSet values. Here is the watch
view that corresponds to the operation of the system with a Gui_IfbSet command of 1.17A with an
input voltage of around 400 V and a load of around 6A at 12 V output.

7. The following oscilloscope capture shows transformer primary voltage, primary sensed current and
PWM waveforms driving two diagonally opposite switches (Q1 and Q3) seen under conditions
described above.
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8. By default, the synchronous rectifiers are operated in mode 2. You can change their mode of
operation by changing SR_mode variable to 0, 1 or 2 from the watch view. Observe the change in
amount of input current being drawn and change in output voltage with different SR modes. You can
also probe the PWM waveforms driving the synchronous rectifier switches. Do not change between
different SR modes when operating at very low loads or when the output voltage is very low (less than
6V). In these cases use the default SR mode 2.

9. Try different Gui_IfbSet values and observe the corresponding ADC results. Increase Gui_IfbSet in
small steps. Always observe the output voltage carefully, this should not be allowed to exceed the
capabilities of the board. Different waveforms, like the PWM gate drive signals, input voltage and
current and output voltage may also be probed using an oscilloscope. Appropriate safety precautions
should be taken and appropriate grounding requirements should be considered while probing these
high voltages and high currents for this isolated DC-DC converter.

10. Fully halting the MCU when in real-time mode is a two-step process. With the 400 V DC input turned
off, wait a few seconds. First, halt the processor by using the Halt button on the toolbar, or by using

Target → Halt. Then click the button again to take the MCU out of real-time mode and then reset
the MCU.

11. You can choose to leave Code Composer Studio running for the next exercise or optionally close it.

4.3 Build 2: Full HVPSFB

4.3.1 Objective

The objective of this build is to verify the operation of the complete PCMC-based HVPSFB project from
the Code Composer Studio environment.

4.3.2 Overview

Figure 21 shows the software blocks used in this build. A 2-pole 2-zero controller is used for the voltage
loop. Depending on the application’s control loop requirements some other controller block like a PI, a 3-
pole 3-zero, and so forth may also be used. As seen in Figure 21, the voltage loop block is executed at
100 KHz. CNTL2P2Z is a second order compensator realized from an IIR filter structure. This function is
independent of any peripherals and, therefore, does not require a CNF function call.

Figure 21. Build 2 Software Blocks
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The five coefficients to be modified are stored as elements of the structure CNTL_2P2Z_CoefStruct1
whose other elements are used for clamping the controller output. The CNTL_2P2Z block can be
instantiated multiple times if the system needs multiple loops. Each instance can have a separate set of
coefficients. Directly manipulating the five coefficients independently by trial and error is almost
impossible, and requires mathematical analysis or assistance from tools such as matlab, mathcad, and so
forth. These tools offer bode plot, root-locus and other features for determining phase margin, gain
margin, and so forth.

To keep loop tuning simple and without the need for complex mathematics or analysis tools, the
coefficient selection problem has been reduced from five degrees of freedom to three, by conveniently
mapping the more intuitive coefficient gains of P, I and D to B0, B1, B2, A1, and A2. This allows P, I and
D to be adjusted independently and gradually. These mapping equations are given below.

The compensator block (CNTL_2P2Z) has two poles and two zeros and is based on the general IIR filter
structure. It has a reference input and a feedback input. For the voltage loop the feedback is the average
output voltage calculated over one PWM cycle (Avg_Vout), while the reference input to the controller is a
slewed version (VfbSetSlewed) of the output voltage reference command (Vref). The transfer function is
given by:

The recursive form of the PID controller is given by the difference equation:

where:

And the z-domain transfer function form of this is:

Comparing this with the general form, you can see that PID is nothing but a special case of CNTL_2P2Z
control where:

For the voltage loop, these P, I and D coefficients are: Pgain, Igain and Dgain. These P, I and D
coefficients are used in Q26 format. To simplify tuning from the GUI environment (or from Code Composer
Studio watch views) these three coefficients are further scaled to values from 0 to 999 (Pgain_Gui,
Igain_Gui and Dgain_Gui).

From the GUI environment the voltage loop can also be tuned using two poles (fp1, fp2), two zeroes (fz1,
fz2) and gain (Kdc). These parameters provide b2_Gui, b1_Gui, b0_Gui, a2_Gui and a1_Gui coefficients
in I5Q10 form that are then converted to the five Q26 coefficients for the 2P2Z controller. Although not
recommended, b2_Gui, b1_Gui, b0_Gui, a2_Gui and a1_Gui values may also be directly changed from
the Code Composer Studio environment using watch views. For details on these calculations, see the
HVPSFB-Calculations.xls file located at www.ti.com/controlsuite. The equations for deriving coefficient
values based on poles, zeroes, gain and switching frequency are also clear from the GUI source file.
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This project allows easy evaluation of both methods of loop tuning by providing the ability to easily switch
between coefficients during execution. This can be done by simply clicking on the 2P2Z(On)/PID(Off)
button on the GUI or changing the pid2p2z_GUI variable to 0 or 1 on the watch view from Code Composer
Studio. PID-based loop tuning (pid2p2z_GUI = 0) from the GUI environment was used as a starting point.
Poles, zeroes and gain corresponding to these PID tuned coefficients were then used as a starting point
for further loop tuning based on the second method (pid2p2z_GUI = 1). Much better results were then
achieved by changing poles, zeroes and gain from the GUI environment to tune for optimum dynamic
performance. By default coefficients based on these tuned poles, zeroes and gain values (pid2p2z_GUI =
1 – default) are used.

NOTE: When tuning the system using the 2-pole 2-zero controller coefficient adjustments, if a
choice of poles, zeroes and Kdc values is made in the GUI such that it results in the
magnitude of any of the coefficients (b2, b1, b0, a2, a1) to be greater than or equal to 32,
then these coefficient values are not sent to the controller by the GUI.

4.4 Constant Current (CC) and Constant Power (CP)

Simple implementation for experimenting with constant current and constant power functionality has been
included in this project. By default this functionality is disabled. Constant current function is implemented
by changing the clamping value of the voltage loop controller. Constant power function is implemented by
adjusting the voltage loop reference command based on load to maintain constant power at the output.
Figure 22 provides the complete software flowchart for these functions.
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Figure 22. Constant Current and Constant Power Software Flowchart
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4.5 Procedure

Build and Load Project

Use the following steps to quickly execute this build using the pre-configured work environment:

1. Follow Steps 1 to 2 exactly as in build 1. If you were working on build 1 the last time Code Composer
Studio was used, the same workspace should open up with the project.

2. If this is not the case, you can open the workspace used for build1 by clicking File → Switch
Workspace and then navigating to the correct workspace. If a workspace was not saved or got deleted,
please follow Steps 3 and 4 exactly as in build 1.

3. Locate and inspect the initialization code specific to build 2 in the main file. This is where all the control
blocks are configured, initialized and connected in the control flow.

4. Select the Incremental build option as 2 in the HVPSFB-Settings.h.

NOTE: Whenever you change the incremental build option in HVPSFB-Settings.h always do a
“Rebuild All”.

5. Click Project → “Rebuild All” button and watch the tools run in the build window.

6. Click Target → ”Debug Active Project”. The program will be loaded into the FLASH or RAM memory
depending on the project configuration. This project only comes in F2802x_FLASH configuration. You
should now be at the start of Main()..

4.5.1 Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There are various
methods for doing this in Code Composer Studio, such as memory views and watch views. Additionally,
Code Composer Studio has the ability to make time (and frequency) domain plots. This allows you to view
waveforms using graph windows.

If a watch view did not open when the debug environment was launched, open a new watch view and add
various parameters to it by following the procedure given below.

1. Click: View → Watch on the menu bar.

2. Click the “Watch (1)" tab.

3. Click on the New Watch View button if a watch view is already open from the debug environment
saved for build 1. A “Watch (2)” tab will open and you can then drag it to be viewed in a window of
your choice. You can add any variables to this watch view tab.

4. Type the symbol name of the variable you want to watch in the empty box in the "Name" column and
press enter on keyboard. Be sure to modify the “Format” as needed. The watch view should look
something like the following. Please note that some of the variables have not been initialized at this
point in the main code and may contain some garbage values.
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Note that there are additional variables in the watch view.

5. Gui_VfbSet is used to set the output voltage command.

4.5.2 Run the Code
1. Follow Steps 1 to 2 of the build 1 procedure to enable real-time mode and continuous refresh for the

watch views and also for changing the continuous refresh interval for the watch view if needed.

2. Run the code by using the <F8> key, or using the Run button on the toolbar, or using Target → Run
on the menu bar.

3. Apply an appropriate resistive load to the PSFB system at the DC output. A load that draws around
3A – 6A current at 12 V output is a good starting point.

NOTE: For safety reasons, it is recommended to use an isolated DC source to supply 400 V DC
input to the board.

4. Power the input at J1, J2 with 400 V DC.

5. By default, Auto_Run is set to 1. If it is not, make it 1 from the watch view. The output voltage should
now start ramping up to 12 V. This output voltage ramp up rate can be changed by changing the
variable VfbSlewRate.

The following graphic shows a watch view that corresponds to the operation of the system with 12.2 V
at the output with an input voltage of around 400 V and a load of around 6A output.
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6. Figure 23 shows the transformer primary voltage, the primary sensed current, and PWM waveforms
driving two diagonally opposite switches (Q1 and Q3) seen under conditions described above. ZVS
switching of switch Q3 and LVS switching of switch Q4 are also shown under these conditions.

Figure 23. Transformer Primary Voltage, Primary Sensed Current and PWM Waveforms Driving Two
Diagonally Opposite Switches (Q1 and Q3)

7. By default, the synchronous rectifiers are operated in mode 2. You can change their mode of operation
by changing the SR_mode variable to 0, 1 or 2 from the watch view. Observe the change in the
amount of input current being drawn and the change in the output voltage with the different SR modes.
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You can also probe the PWM waveforms driving the synchronous rectifier switches. Do not change
between different SR modes when operating at very low loads (below 3A). In these cases, use the
default SR mode 2.

8. Observe the effect of varying the load on the output voltage and input current. There should be virtually
no effect on the output voltage. Similarly, observe the effect of varying the input voltage. Again, there
should be virtually no effect on the output voltage.

NOTE: Make sure that these changes are made within the abilities of the board as listed in the
specifications section of this document.

9. Different waveforms, like the PWM gate drive signals, input voltage and current and output voltage can
also be probed using an oscilloscope. Appropriate safety precautions should be taken and appropriate
grounding requirements should be considered while probing these high voltages and high currents for
this isolated DC-DC converter.

10. Simple ‘Constant Current (CC)’ and ‘Constant Power (CP)’ functions are also implemented in this
project and can be experimented with by enabling and disabling their corresponding flags (CC_Enable
and CP_Enable).

11. Fully halting the MCU, when in real-time mode, is a two-step process. Wait a few seconds with the
400 V DC input turned off. First, halt the processor by using the Halt button on the toolbar, or by using

Target → Halt. Then click the button again to take the MCU out of real-time mode and then reset
the MCU.

12. Close Code Composer Studio.
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5 Software overview - VMC

5.1 Software Control Flow

The HVPSFB_VMC project makes use of the “C-background/ASM-ISR” framework. It uses C-code as the
main supporting program for the application, and is responsible for all system management tasks, decision
making, intelligence, and host interaction. The assembly code is strictly limited to the ISR, which runs all
the critical control code and typically includes ADC reading, control calculations, and PWM and DAC
updates.

Figure 24 depicts the general software flow for this project.

Figure 24. VMC Software Flow

The key framework C files used in this project are:

• HVPSFB-Main.c – this file is used to initialize, run, and manage the application. This is the “brains”
behind the application.

• HVPSFB-DevInit.c – this file is responsible for a one time initialization and configuration of the F280x
device, and includes functions such as setting up the clocks, PLL, GPIO, and so forth.

The ISR consists of a single file:

• HVPSFB-DPL-ISR.asm – this file contains all time critical “control type” code. This file has an
initialization section (one time execute) and a run-time section, which executes (typically) at the same
rate as the PWM timebase used to trigger it.

The Power Library functions (modules) are “called” from this framework.

Library modules may have both a C and an assembly component. In this project, the following library
modules are used. The C and corresponding assembly module names are:

Table 5. Library Modules

C configure function ASM initialization macro ASM run-time macro

PWMDRV_PSFB_VMC_SR_CNF PWMDRV_PSFB_VMC_SR_INIT n,m,p PWMDRV_PSFB_VMC_SR n,m,p

ADC_SOC_Cnf.c ADCDRV_4CH_INIT m,n,p,q ADCDRV_4CH m,n,p,q

CNTL_2P2Z_INIT n CNTL_2P2Z n
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The control blocks can also be represented graphically as shown in Figure 25.

Figure 25. VMC Software Blocks

Notice the color coding for the modules in Figure 25. Blocks in ‘dark blue’ represent hardware modules on
the C2000 micro-controller. Blocks in ‘blue’ are the software drivers for these modules. Blocks in ‘yellow’
are the controller blocks for the control loop. Although a 2-pole 2-zero controller is used here, the
controller could very well be a PI and PID, a 3-pole 3-zero or any other controller that can be suitably
implemented for this application. Such a modular library structure makes it convenient to visualize and
understand the complete system software flow as shown in Figure 26. It also allows for easy use and
additions and deletions of various functionalities.

This fact is amply demonstrated in this project by implementing an incremental build approach. This is
discussed in more detail in the next section.
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Figure 26. VMC Control Flow

The system is controlled by one voltage feedback loop. Figure 26 also gives the rate at which control
blocks are executed. For example, the voltage controller is executed at a rate of 100 kHz (same as the
PWM switching frequency). The following explains the control implemented above.

The sensed output voltage (Adc_Vfbout) is compared with slewed version (VfbSetSlewed) of the voltage
reference command (Vref) in the voltage controller. The voltage controller output directly controls phase
shift between PWM signals driving the two legs of the full bridge. This dictates the amount of phase
overlap between the two legs of the full bridge to regulate the output voltage. The dbAtoP_leg and
dbPtoA_leg values provide dead band values for the ‘Active to Passive’ and ‘Passive to Active’ legs of the
full bridge, respectively. These are used to achieve ZVS and LVS across the load range.

5.2 Incremental Builds

This project is divided into two incremental builds. This makes it easier to learn and get familiar with the
board and the software. This approach is also good for debugging and testing the boards. The build
options are shown below. To select a particular build option,

1. Set the macro INCR_BUILD, found in the HVPSFB-Settings.h file, to the corresponding build selection
as shown below.

2. Compile the complete project by selecting the rebuild-all compiler option, once the build option is
selected.

Section 6 provides more details to run each of the build options.
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Table 6. Incremental Build Options for VMC

Incremental Build Options

INCR_BUILD = 1 Open loop PSFB drive with ADC feedback (check PWM drive circuit and sensing circuit)

INCR_BUILD = 2 Closed voltage loop (full PSFB in VMC mode)

6 Procedure for Running the Incremental Builds - VMC

The main source files, ISR assembly file and the project file for C framework to bring up the PSFB system
are located in the following directory (please use the latest version of the software package. Version 1.1 is
the latest software version as of March
2012) ..\controlSUITE\development_kits\HVPSFB_v1.1\HVPSFB_VMC. The projects included with this
software are targeted for Code Composer Studio v4.

WARNING
There are high voltages present on the board. It should only be
handled by experienced power supply professionals in a lab
environment. To safely evaluate this board, an appropriate isolated
high voltage DC source should be used. Before DC power is
applied to the board, a voltmeter and an appropriate resistive or
electronic load must be attached to the output. The unit should
never be handled when the power is applied to it.

Follow the steps below to build and run the example included in the HVPSFB_VMC software.

6.1 Build 1: Open Loop Check With ADC Feedback

6.1.1 Objective

The objective of this build is to evaluate the open loop operation of the system, verify the PWM and ADC
driver modules, verify the MOSFET driver circuit and sensing circuit on the board and become familiar
with the operation of Code Composer Studio. Since this system is running open-loop, the ADC measured
values are only used for instrumentation purposes in this build. Steps required to build and run a project
will be explored.

6.1.2 Overview

The software in Build1 has been configured so that you can quickly evaluate the phase shifted full bridge
PWM driver module by viewing the output waveforms on an oscilloscope and observing the effect of
change in phase on the output voltage by interactively adjusting the phase on Code Composer Studio.
Additionally, you can evaluate the ADC driver module by viewing the ADC sampled data in the watch
view.

The PWM and ADC driver macro instantiations are executed inside the _DPL_ISR as mentioned in
Section 5. Figure 27 shows the blocks used in this build. ePWM1A and ePWM1B drive Q2 and Q3 full-
bridge switches, while ePWM2A and ePWM2B drive Q1 and Q4 full-bridge switches. ePWM4A and
ePWM4B drive Q6 and Q5 synchronous rectifier switches.
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Figure 27. Build 1 Software Blocks

These PWM signals need to be generated at a frequency of 100 kHz (a period of 10 µs). With the MCU
operating at 60 MHz, one count of the time base counter of ePWM1, ePWM2 or ePWM4 corresponds to
16.667 ns. This implies that a PWM period of 10 µs will be equivalent to 600 counts of the time base
counter (TBCNT1, TBCNT2 and TBCNT4). The ePWM1 and ePWM2 modules are configured to operate
in up-count mode, while ePWM4 operates in up-down count mode. ePWM1A and ePWM1B outputs
operate at 50% duty cycle and are complementary to each other. Similarly ePWM2A and ePWM2B
operate at 50% duty cycles and are complementary to each other. Phase for ePWM2 time base may be
changed dynamically with respect to ePWM1 phase. These PWM waveforms are shown in Figure 14.

The phase input to the PWM driver module decides the amount of phase shift between PWM1 and PWM2
time bases. This phase value controls the amount of overlap between PWM signals driving diagonally
opposite switch pairs of the full bridge. As phase increases, amount of overlap increases, which increases
the amount of energy transferred to the secondary. The TBPHS2 value is derived from the input phase
command.

Table 7 gives example TBPHS2 values derived for a TBPRD value of 599.

Table 7. Phase Values for Reference

Phase (Q24) TBPHS2 = (phase*TBPRD/2^25) Phase Shift in Degrees

2097152d 37 22.5

8388608d 149 90

16776704d 299 180

Note that each pair of diagonal switches of the full bridge overlaps once in one PWM period. This means
the most overlap will occur when the phase shift is close to 180°.

The assembly ISR is triggered on a ZRO (TBCNT1 = 0) event of ePWM1. This is where the control driver
macros are executed and the Time Base Phase Registers (TBPHS2 and TBPHS4) are updated.

There is an important consideration regarding where the ADC input is sampled. The integrity of the ADC
input signals is of high importance since this is where signals from the analog and digital domains
interface. Turning a switch ON or OFF in the power stage can result in some noise or disturbance on the
signals that are to be sensed around this point in time. Even with all the filtering provided on these signals
to avoid this noise from showing up at the ADC inputs, it is prudent to sample the ADC inputs at a time
such that this disturbance is avoided.
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Moreover, as discussed in Section 2.5, sensed output voltage should preferably be sampled at an
appropriate point in the switching cycle where the output voltage value is close to its average value. To
achieve this, the ADC input signals are sampled at a time so as to get as noise free a sample as possible
and to also sample the average output voltage. For the full bridge this is achieved by sampling at the
midpoint of the overlap between two diagonal switches (here overlap refers to the period when both
switches are ON at the same time - as far away from the MOSFET switching as possible). This avoids any
switching noise to be reflected on the ADC result. The flexibility of ADC and PWM modules on C2000
devices allow such precise and flexible triggering of ADC conversions. The ADC driver modules are used
to read 12-bit ADC results and convert them to Q24 values. In every PWM cycle PWM2 SOCA (start of
conversion A) is used to trigger five ADC conversions.

6.1.3 Protection

At this stage, it is appropriate to introduce the shutdown mechanism used with this project. Here
overcurrent protection is implemented for the transformer primary current using on-chip analog comparator
1. The reference trip level is set using the internal 10-bit DAC and fed to the inverting terminal of this
comparator. The comparator outputs are configured to generate a one-shot trip action on ePWM1 and
ePWM2 whenever the sensed current is greater than the set limit. The flexibility of the trip mechanism on
C2000 devices provides the possibilities for taking different actions on different trip events. In this project
ePWM1A, ePWM1B, ePWM2A, and ePWM2B outputs are driven low immediately to protect the power
stage. These outputs are held in this state until a device reset is executed. For details on these
calculations, see the HVPSFB-Calculations.xls file located at www.ti.com/controlsuite.

Input under voltage and over voltage lockout is also implemented in the software.

6.1.4 Resource Mapping

The key signal connections between the C2000 micro-controller and the HVPSFB stage are summarized
in Table 8. Note that PWM mapping is different between VMC and PCMC projects. Jumper (J2, J3 –
PCMC and VMC PWM drive jumper enables) on the controller card need to be correctly configured for
VMC mode (default jumper positions are set for PCMC operation). Here are the jumper configurations for
the two modes:

• PCMC: J2(1) → J3(1), J2(2) → J3(2), J2(3) → J3(3), J2(4) → J3(4), J2(7) → J3(7), J2(8) → J3(8),

• VMC: J2(1) → J3(3), J2(2) → J3(4), J2(3) → J3(1), J2(4) → J3(2), J2(7) → J3(8), J2(8) → J3(7)

Table 8. HVPSFB Signal Interface Reference - VMC

Connection to
Signal Name Description C2000 Controller

ePWM-1A PWM drive for full-bridge switch Q2 GPIO-00

ePWM-1B PWM drive for full-bridge switch Q3 GPIO-01

ePWM-2A PWM drive for full-bridge switch Q1 GPIO-02

ePWM-2B PWM drive for full-bridge switch Q4 GPIO-03

ePWM-4A PWM drive for synchronous rectifier switch Q6 GPIO-06

ePWM-4B PWM drive for synchronous rectifier switch Q5 GPIO-07

Vout PSFB output voltage ADC-A0

Ifb Transformer primary current ADC-A2 and COMP1A

Ifb Transformer primary current ADC-A4 and COMP2A (1)

Vfbin PSFB input voltage ADC-B1

Iout1 PSFB output current ADC-B3

Iout2 PSFB output current (heavily filtered) ADC-B4
(1) Default jumper J4 configuration on controller card. Input is configurable by jumper J4 selection.
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NOTE: The HVPSFB_PCMC and HVPSFB_VMC projects use DSP2802x_Comp.h and
DSP2802x_EPWM.h header files that are located in their own project directories instead of
the ones located in the device_support directory. The two files in device_support directory
will be updated at a later update of ControlSuite, at which time these updated files can be
used with the two projects.

6.2 Procedure

6.2.1 Start Code Composer Studio and Open a Project

Use the following steps to quickly execute this build:

1. Make sure that jumper J6 on the baseboard is not populated, while jumper J8 is populated.

2. By default, resistor R6 on Piccolo Macro of the controller card and jumper J1 are removed to enable –
boot from FLASH. Re-populate these two to run and program RAM or program FLASH.

3. Connect USB connector to the Piccolo controller card for emulation. Use of an appropriate isolated DC
power supply set to output around 400 V DC is recommended. The DC power supply needs to remain
off before it is connected to J1 and J2 on the main board.

4. Use a 20AWG 600 V wire to connect the Power Source to J1 and J2. Make sure that the polarity of
this connection is correct. Apply an appropriate resistive or DC electronic load to the phase shifted full
bridge system at the DC output at J3 and J4.

5. Do not turn on 400 V DC power at this time.

6. Power up the bias supply between TP1 and TP2 with around 11V DC (this voltage must be less than
12 V).

7. Double click on the Code Composer Studio icon on the desktop.

8. Maximize Code Composer Studio to fill your screen.

9. Close the welcome screen if it opens up.

10. A project contains all the files and build options needed to develop an executable output file (.out) that
can run on the MCU hardware. On the menu bar, click → Project Import Existing CCS/CCE Eclipse
Project and under Select root directory navigate to and select
the ..\controlSUITE\development_kits\HVPSFB_v1.1\HVPSFB_VMC directory. Make sure that the
Projects tab HVPSFB_VMC is checked.

11. Click Finish. This project will invoke all the necessary tools (compiler, assembler, linker) to build the
project.

12. Click the plus sign (+) to the left of Project (in the project window on the left). Your project window will
look like the following graphic.
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6.2.2 Device Initialization, Main, and ISR Files

NOTE: DO NOT make any changes to the source files – ONLY INSPECT.

1. Open and inspect HVPSFB-DevInit_F2802x.c by double clicking on the filename in the project window.
Notice that system clock, peripheral clock prescale, and peripheral clock enables have been setup.
Next, notice that the shared GPIO pins have been configured.

2. Open and inspect HVPSFB-Main.c. Notice the call made to DeviceInit() function and other variable
initialization. Also notice code for different incremental build options (specifically the build you are going
to compile now), the ISR intialization and the background for(;;) loop.

3. Locate and inspect the following code in the main file under initialization code specific for build 1. This
is where the PWMDRV_PSFB_VMC_SR block is connected and initialized in the control flow.

PWMDRV_PSFB_VMC_SR_CNF(1, PWM_PRD, 1, 1); // ePWM1 and ePWM2, Period=PWM_PRD,
// SR_Enable=1 (ePWM4), Comp1_Prot=1
// Connect the PWMDRV_PSFB_VMC_SR driver block

PWMDRV_PSFB_Phase1 = &phase // Point to the phase net
PWMDRV_PSFB_DbAtoP1 = &dbAtop_leg; // Point to the left leg dead band adjust
PWMDRV_PSFB_DbPtoA1 = &dbPtoA_leg: // Point to the right leg dead band adjust

4. Locate and inspect the following code in the main file under initialization code specific for build 1. This
is where the ADCDRV_4CH block is configured, initialized and connected in the control flow.

#define Vfb_outR AdcResult.ADCRESULT1 //
#define IfbR AdcResult.ADCRESULT2 //
#define Vfb_inR AdcResult.ADCRESULT //

#define IoutR AdcResult.ADCRESULT4 //

// Channel Selection for Cascaded Sequencer
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ChSel[0] = 0; // A0 - O/P Voltage - Dummy
ChSel[1] = 0; // A0 - O/P Voltage
ChSel[2] = 2; // A2 - Transformer Primary Current
ChSel[3] = 9; // B1 - I/P Voltage

ChSel[4] = 12; // B4 - Iout2

TrigSel[0] = 7; // O/P Voltage sampling triggered by EPWM2 SOCA - Dummy
TrigSel[1] = 7; // O/P Voltage sampling triggered by EPWM2 SOCA
TrigSel[2] = 7; // Transformer Primary Current sampling triggered by EPWM2 SOCA
TrigSel[3] = 7; // I/P Voltage sampling triggered by EPWM2 SOCA

TrigSel[4] = 7; // Iout sampling triggered by EPWM2 SOCA

EALLOW;
AdcRegs.SOCPRICTL.bit.SOCPRIORITY = 4; // SOC0-3 are high priority
EDIS;

ADC_SOC_CNF(ChSel,TrigSel,ACQPS, 16, 0); // ACQPS=8, No ADC channel triggers an interrupt
IntChSel > 15,

// Mode= Start/Stop (0)
// ADC feedback connections

ADCDRV_4ch_RltPtrA = &Adc_Vfbout;

5. Open and inspect HVPSFB-DPL-ISR.asm. Notice the _DPL_Init and _DPL_ISR sections. This is where
the PWM and ADC driver macro instantiation is done for initialization and runtime, respectively.
Optionally, you can close the inspected files.

6.2.3 Build and Load the Project
1. Select the Incremental build option as 1 in the HVPSFB-Settings.h file.

NOTE: Whenever you change the incremental build option in HVPSFB-Settings.h always do a
“Rebuild All”.

2. Click Project → “Rebuild All” button and watch the tools run in the build window.

3. Click Target → ”Debug Active Project”. Code Composer Studio will ask you to open a new Target
configuration file if one hasn’t already been selected. If a valid target configuration file has been
created for this connection you may go to . In the New target Configuration Window type in the name
of the .ccxml file for the target you will be working with (Example: xds100-F28027.ccxml). Check “Use
shared location” and click Finish.

4. In the .ccxml file that opens up select Connection as “Texas Instruments XDS100v2 USB Emulator”
and under the device, scroll down and select “TMS320F28027”. Click Save.

5. Click Target → ”Debug Active Project”. The program will be loaded into the FLASH or RAM memory
depending on the project configuration selected. This project comes in only F2802x_FLASH
configuration. You should now be at the start of Main().

6.2.4 Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There are various
methods for doing this in Code Composer Studio, such as memory views and watch views. Additionally,
Code Composer Studio has the ability to make time (and frequency) domain plots. This allows you to view
waveforms using graph windows.

If a watch view did not open when the debug environment was launched, open a new watch view and add
various parameters to it by following the procedure given below.

1. Click View → Watch on the menu bar.

2. Click the “Watch (1)" tab. You can add any variables to the watch view.
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3. Type the symbol name of the variable you want to watch in the empty box in the "Name" column and
press enter on keyboard. Be sure to modify the “Format” as needed. The watch view should look
something like the following. Please note that some of the variables have not been initialized at this
point in the main code and may contain some garbage values.

FaultFlg, if set, indicates an over current condition (discussed above), which shuts down the PWM
outputs. PWM outputs are held in this state until a device reset (follow proper procedure in ). The
Ipri_trip variable sets the internal 10-bit DAC reference level for the on-chip comparator 1. Please note
that this is a Q15 number.

6.2.5 Using Real-Time Emulation

Real-time emulation is a special emulation feature that allows the windows within Code Composer Studio
to be updated at up to a 10Hz rate while the MCU is running. This not only allows graphs and watch views
to update, but also allows you to change values in watch or memory windows, and have those changes
affect the MCU behavior. This is very useful when tuning control law parameters on-the-fly, for example.

1. Enable real-time mode by hovering your mouse on the buttons on the horizontal toolbar and clicking on

the Enable Silicon Real-Time Mode (service critical interrupts when halted, allow debugger
accesses when running) button.

2. Select YES to enable debug events, if a message box appears. This will set bit 1 (DGBM bit) of status
register 1 (ST1) to a “0”. The DGBM is the debug enable mask bit. When the DGBM bit is set to “0”,
memory and register values can be passed to the host processor for updating the debugger windows.

3. Click the Enable Polite Real-Time Mode button on the same horizontal toolbar.

4. When a large number of windows are open, as bandwidth over the emulation link is limited, updating
too many windows and variables in continuous refresh can cause the refresh frequency to bog down.

Right click on the button in the watch view and select “Customize Continuous Refresh Interval..”.
You can slow down the refresh rate for the watch view variables by changing the Continuous refresh
interval (milliseconds) value. A rate of 4000 ms is usually enough for these exercises.

5. Click on the Continuous Refresh button for the watch view.
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6.2.6 Run the Code
1. Run the code by using the <F8> key, or using the Run button on the toolbar, or using Target → Run

on the menu bar.

2. Set the variable phase to 0.015625 (Q24), in the watch view. This variable denotes the phase shift
command to the PWMDRV_PSFB_VMC_SR module. Do not use a value of less than 0.005 for phase.

3. Apply an appropriate resistive load to the PSFB system at the DC output. A load that draws around
3A – 6A current at 12 V output is a good starting point.

NOTE: For safety reasons, it is recommended to use an isolated DC source to supply 400 V DC
input to the board.

4. Power the input at J1, J2 with 400 V DC.

5. Increase the phase command by setting phase to a higher value 0.1(say) in the watch view. The output
voltage should increase. Observe the output voltage carefully, this should not be allowed to exceed the
capabilities of the board. Keep in mind that when operating with a certain phase value if the load is
suddenly reduced, the output voltage will go up. Therefore, do not make any sudden changes of load
or big increases in phase command when operating in build 1.

6. Observe the different ADC results in the watch view for different phase values.

7. Here is the watch view that corresponds to the operation of the system with a phase command of
0.705 (Q24) with an input voltage of around 400 V and a load of around 6A at 12 V output.
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8. The following oscilloscope capture shows the transformer primary voltage and the sensed primary
current seen under conditions described above.

9. By default, the synchronous rectifiers are operated in mode 2. You can change their mode of operation
by changing SR_mode variable to 0, 1 or 2 from the watch view. Observe the change in amount of
input current being drawn and change in output voltage with different SR modes. You can also probe
the PWM waveforms driving the synchronous rectifier switches. Do not change between different SR
modes when operating at very low loads or when the output voltage is very low (less than 6V). In these
cases use the default SR mode 2.

10. Try different phase values and observe the corresponding ADC results. Increase the phase in small
steps. Always observe the output voltage carefully, this should not be allowed to exceed the
capabilities of the board. Different waveforms, like the PWM gate drive signals, input voltage and
current and output voltage can also be probed using an oscilloscope. The appropriate safety
precautions should be taken and appropriate grounding requirements should be considered while
probing these high voltages and high currents for this isolated DC-DC converter.

11. Fully halting the MCU when in real-time mode is a two-step process. Wait a few seconds, with the 400
V DC input turned off. First, halt the processor by using the Halt button on the toolbar, or by using

Target → Halt. Then click the button again to take the MCU out of real-time mode and then reset
the MCU.

12. Leave Code Composer Studio running for the next exercise or optionally close it.

6.3 Build 2: Closed Voltage Loop (Full HVPSFB in VMC mode)

6.3.1 Objective

The objective of this build is to verify the operation of the complete VMC based HVPSFB project from the
Code Composer Studio environment.

6.3.2 Overview

Figure 28 shows the software blocks used in this build. The PWM and ADC driver blocks are used in the
same way as in the previous build. A 2-pole 2-zero controller is used for the voltage loop. Depending on
the application’s control loop requirements some other controller block like a PI, a 3-pole 3-zero, and so
forth can also be used. As seen in Figure 28, the voltage loop block is executed at 100 KHz. CNTL2P2Z is
a second order compensator realized from an IIR filter structure. This function is independent of any
peripherals and, therefore, does not require a CNF function call.
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Figure 28. Build 2 Software Blocks

The five coefficients to be modified are stored as elements of the structure CNTL_2P2Z_CoefStruct1
whose other elements are used for clamping the controller output. The CNTL_2P2Z block can be
instantiated multiple times if the system needs multiple loops. Each instance can have separate set of
coefficients. Directly manipulating the five coefficients independently by trial and error is almost
impossible, and requires mathematical analysis or assistance from tools such as matlab, mathcad, and so
forth. These tools offer bode plot, root-locus and other features for determining phase margin, gain
margin, and so forth.

To keep loop tuning simple and without the need for complex mathematics or analysis tools, the
coefficient selection problem has been reduced from five degrees of freedom to three, by conveniently
mapping the more intuitive coefficient gains of P, I and D to B0, B1, B2, A1, and A2. This allows P, I and
D to be adjusted independently and gradually. These mapping equations are given below.

The compensator block (CNTL_2P2Z) has 2 poles and 2 zeros and is based on the general IIR filter
structure. It has a reference input and a feedback input. For the voltage loop, the feedback is the sensed
output voltage (Adc_Vfbout), while the reference input to the controller is a slewed version (VfbSetSlewed)
of the output voltage reference command (Vref). The transfer function is given by:

The recursive form of the PID controller is given by the difference equation:
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where:

And the z-domain transfer function form of this is:

Comparing this with the general form, you can see that PID is nothing but a special case of CNTL_2P2Z
control where:

For the voltage loop, these P, I and D coefficients are: Pgain, Igain and Dgain. These P, I and D
coefficients are used in Q26 format. To simplify tuning from the GUI environment (or from Code Composer
Studio watch views) these three coefficients are further scaled to values from 0 to 999 (Pgain_Gui,
Igain_Gui and Dgain_Gui).

From the GUI environment, the voltage loop can also be tuned using two poles (fp1, fp2), two zeroes (fz1,
fz2) and gain (Kdc). These parameters provide b2_Gui, b1_Gui, b0_Gui, a2_Gui and a1_Gui coefficients
in I5Q10 form that are then converted to the five Q26 coefficients for the 2P2Z controller. Although not
recommended, b2_Gui, b1_Gui, b0_Gui, a2_Gui and a1_Gui values can also be directly changed from the
Code Composer Studio environment using watch views. For details on these calculations, see the
HVPSFB-Calculations.xls file located at www.ti.com/controlsuite. The equations for deriving coefficient
values based on poles, zeroes, gain and switching frequency are also clear from the GUI source file.

This project allows easy evaluation of both methods of loop tuning by providing the ability to easily switch
between coefficients during execution. This can be done by simply clicking on the 2P2Z(On) and PID(Off)
button on the GUI or changing the pid2p2z_GUI variable to 0 or 1 on the watch view from Code Composer
Studio. PID-based loop tuning (pid2p2z_GUI = 0) from the GUI environment was used as a starting point.
Poles, zeroes and gain corresponding to these PID tuned coefficients were then used as a starting point
for further loop tuning based on the second method (pid2p2z_GUI = 1). Much better results were then
achieved by changing poles, zeroes and gain from the GUI environment to tune for optimum dynamic
performance. By default, coefficients based on these tuned poles, zeroes and gain values (pid2p2z_GUI =
1 – default) are used.

NOTE: When tuning the system using the 2-pole 2-zero controller coefficient adjustments, if a
choice of poles, zeroes and Kdc values is made in the GUI such that it result in the
magnitude of any of the coefficients (b2, b1, b0, a2, a1) to be greater than or equal to 32,
then these coefficient values are not sent to the controller by the GUI.

6.4 Procedure

6.4.1 Build and Load Project

Use the following steps to quickly execute this build using the pre-configured work environment:

1. Follow Steps 1 to 2 exactly as in build 1. If you were working on build 1 the last time Code Composer
Studio was used, the same workspace should open up with the project.

2. If this is not the case, you can open the workspace used for build1 by clicking File → Switch
Workspace and then navigating to the correct workspace. If a workspace was not saved or got deleted,
follow Steps 3 and 4 exactly as in build1.

3. Locate and inspect the initialization code specific to build 2 in the main file. This is where all the control
blocks are configured, initialized and connected in the control flow.

4. Select the Incremental build option as 2 in the HVPSFB-Settings.h.
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NOTE: Whenever you change the incremental build option in HVPSFB-Settings.h always do a
“Rebuild All”.

5. Click Project → “Rebuild All” button and watch the tools run in the build window.

6. Click Target → ”Debug Active Project”. The program will be loaded into the FLASH or RAM memory
depending on the project configuration. This project comes in only F2802x_FLASH configuration. You
should now be at the start of Main().

6.4.2 Debug Environment Windows

It is standard debug practice to watch local and global variables while debugging code. There are various
methods for doing this in Code Composer Studio, such as memory views and watch views. Additionally,
Code Composer Studio has the ability to make time (and frequency) domain plots. This allows you to view
waveforms using graph windows.

If a watch view did not open when the debug environment was launched, open a new watch view and add
various parameters to it by following the procedure given below.

1. Click View → Watch on the menu bar.

2. Click the “Watch (1)" tab.

3. Click on the button if a watch view is already open from the debug environment saved for build 1.
A “Watch (2)” tab will open and you can then drag it to be viewed in a window of your choice. You can
add any variables to this watch view tab.

4. Type the symbol name of the variable you want to watch in the empty box of the "Name" column and
press enter on keyboard. Be sure to modify the “Format” as needed. The watch view should look
something like the following graphic.

Please note that some of the variables have not been initialized at this point in the main code and may
contain some garbage values.

Note that there are additional variables in the watch view.

5. Gui_VfbSet is used to set the output voltage command.

6.4.3 Run the Code
1. Follow steps 1 to 2 of build 1 procedure to enable real-time mode and continuous refresh for the watch

views and also for changing the continuous refresh interval for the watch view if needed.

2. Run the code by using the <F8> key, or using the Run button on the toolbar, or using Target → Run
on the menu bar.
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3. Apply an appropriate resistive load to the PSFB system at the DC output. A load that draws around
3A – 6A current at 12 V output is a good starting point.

NOTE: For safety reasons, it is recommended to use an isolated DC source to supply 400 V DC
input to the board.

4. Power the input at J1, J2 with 400 V DC.

5. By default, Auto_Run is set to 1. If it is not, make it 1 from the watch view. The output voltage should
now start ramping up to 12 V. This output voltage ramp up rate can be changed by changing the
variable VfbSlewRate.

6. Here is the watch view that corresponds to the operation of the system with 12 V at the output with an
input voltage of around 400 V and a load of around 6A output.

7. The following graphic shows waveforms captured under this condition.

8. By default, the synchronous rectifiers are operated in mode 2. You can change their mode of operation
by changing the SR_mode variable to 0, 1 or 2 from the watch view. Observe the change in the
amount of input current being drawn and the change in output voltage with the different SR modes.
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You can also probe the PWM waveforms driving the synchronous rectifier switches. Do not change
between different SR modes when operating at very low loads (below 3A). In these cases, use the
default SR mode 2.

9. Observe the effect of varying load on the output voltage and input current. There should be virtually no
effect on the output voltage. Similarly, observe the effect of varying the input voltage. Again, there
should be virtually no effect on the output voltage.

NOTE: Make sure that these changes are made within the abilities of the board as listed in the
specifications section of this document.

10. Different waveforms, like the PWM gate drive signals, input voltage and current and output voltage
may also be probed using an oscilloscope. Appropriate safety precautions should be taken and
appropriate grounding requirements should be considered while probing these high voltages and high
currents for this isolated DC-DC converter.

11. Fully halting the MCU when in real-time mode is a two-step process. Wait a few seconds with the 400
V DC input turned off. First, halt the processor by using the Halt button on the toolbar, or by using

Target → Halt. Then, click the button again to take the MCU out of real-time mode and then
reset the MCU.

12. Close Code Composer Studio.
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