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ABSTRACT
This application report describes the features of the on-chip ROM for the TMS320C5517 device. Included
is a description of the bootloader and how to interface with it for each of the possible boot devices, as well
as instructions for generating a boot image to store on an external device.
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1 Introduction

1.1 On-Chip ROM
The on-chip ROM contains several factory-programmed sections.
• Algorithm tables to be referenced by drivers to reduce application data size
• Application programming interface (API) tables for referencing ROM API functions in applications
• Bootloader program

Table 1. C5517 ROM Memory Map

Starting Byte Address Contents
FE_0000h LCD Table
FE_0860h WMA Encode Table
FE_9FA0h WMA Decode Table
FE_D4C4h MP3 Table
FE_F978h Equalization Table
FE_FB14h WM Voice Table
FF_64B4h API Table
FF_683Ch Bootloader Code (and other built-in API functions)

1.2 Bootloader Features
The major feature of the C5517 bootloader is booting unencrypted images from supported devices.

NOTE: SARAM31 (byte address 0x4E000 – 0x4FFFF) is reserved for the bootloader.

The bootloader also has the following features:
• Port-addressed register configuration during boot
• Programmable delay during register configuration

The bootloader is always invoked after reset. The function of the bootloader is to transfer user code from
an external source to RAM. Once the transfer is completed, the bootloader transfers control to this user
code.

http://www.ti.com
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2 Bootloader Operation

2.1 Bootloader Initialization
When the bootloader begins execution, it performs some initialization prior to attempting to load code.
• All peripherals are idled; the bootloader un-idles peripherals as it uses them.
• The bootloader programs the system clock generator based on the input clock selected via the

CLK_SEL pin.
– If CLK_SEL = 0, the bootloader bypass the system clock generator and assumes the input clock to

be 12 MHz (via the on-chip USB oscillator).
– If CLK_SEL = 1, the bootloader bypasses the system clock generator altogether and the system

clock is driven by the CLKIN pin. In this case, the CLKIN frequency is expected to be 11.2896,
12.0, 12.288, 16.8, or 19.2 MHz. While the bootloader tries to boot from SPI, McSPI, UHPI, USB,
and UART, the clock generator is programmed to multiply the input clock by 3 and adjust the
TIMER0 setting to 200 ms.

• The low-voltage detection circuit is disabled to prevent trim setup (next step) from causing an
unnecessary reset.

• The bootloader reads the trim values from the e-fuse farm and writes them into the analog trim
registers.

• The bootloader idles all peripherals and disables CLKOUT before transferring control to user code.

2.2 Booting from External Devices
At reset, the values of EM_A[20:15]/GP[26:21] are latched into the BootMode[5:0] bits in the BootMode
register ([1C34h]). After the reset, the C5517 bootloader determines which peripheral or method to boot
from based on the value of BootMode[5:0] bits and queries the peripheral to determine if it can boot from
that peripheral.

At that time, the individual peripheral clock will be enabled for the query and then disabled again when the
bootloader is finished with the peripheral. By the time the bootloader releases control to the user code, all
peripheral clocks will be off and all domains in the ICR, except the CPU domain, will be idled.

If the boot signature is not valid, toggle XF when the retry count reaches 100. If the boot is successful, set
XF port low to indicate that boot-up is complete. Ensure a minimum of 200 ms has elapsed since TIMER0
began before proceeding to execute the bootloaded code.

For proper BootMode bits setting, see the TMS320C5517 Fixed-Point Digital Signal Processor (literature
number SPRS727).

For a description of the valid boot image formats, see Section 3.

The following subsections describe details for each supported boot device.
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2.2.1 NOR Flash
The bootloader supports booting from a NOR Flash attached to any of the four external memory interface
(EMIF) chip-selects. The NOR Flash must use a 16-bit data bus.

Any 16-bit NOR Flash device should work for read-only use. To support bootloader reauthoring, which
requires writing to the device, CFI-compliant bottom-boot-block and uniform-boot-block devices should
work. Top-boot-block devices may or may not work (vendor dependent due to non-standard CFI
implementations).

NOTE: The bootloader requires NOR Flash that supports a reset command (0xF0 on data).

The following is a list of NOR Flash devices that are explicitly supported for reauthoring (writing). Other
devices may be supported.
• Spansion S29GL016A
• Spansion S29AL016M
• MXIC MX29LV160T
• Spansion S29GL032A
• SST SST39LF/VF200A
• SST SST39LF/VF400A
• SST SST39LF/VF800A

http://www.ti.com
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2.2.2 NAND Flash
The bootloader supports booting from 8- or 16-bit NAND Flash attached to any of the four EMIF chip-
selects. The NAND Flash chip-enable and ready/busy signal must be connected to the C5517. The
bootloader supports both small-block and large-block NAND Flash devices.

The NAND Flash must use the SSFDC format. The bootloader reads the Boot Image Page Pointer (BIPP)
from each of the first 256 physical pages until a non-0 value is found. If the BIPP on page-0 is 0, all other
pages must start with the 3-byte signature 0xE9 0x00 0x00 in order to use the BIPP from that page. The
BIPP is located in bytes 0xC4 through 0xC6 of the page.

Once a valid BIPP is found, this value is used by the bootloader to determine which page contains the
boot image to load. Note that the boot image cannot reside on the same page as the BIPP.

The bootloader also checks for the device ID to set the column and row byte address size. For devices not
listed in Table 2, the bootloader will use the default setting.

See Table 2 for a list of supported NAND Device Ids.

Table 2. Supported NAND Device IDs

Device ID Columns Rows
01h 2 2
33h 1 2
35h 1 2
36h 1 3
39h 1 2
43h 1 2
45h 1 2
46h 1 3
53h 1 2
55h 1 2
56h 1 3
6Bh 1 2
72h 1 3
73h 1 2
74h 1 3
75h 1 2
76h 1 3
78h 1 3
79h 1 3
A1h 2 2
B1h 2 2
C1h 2 2
E3h 1 2
E5h 1 2
E6h 1 2
F1h 2 2

Default 2 3

http://www.ti.com
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2.2.3 16-bit SPI EEPROM
The bootloader supports booting with the following requirements for the external device:
• The device must support at least a 1- or 10-MHz SPI clock, depending on the boot mode.
• The device must be connected to SPI CS0 and act as an SPI slave.
• The device uses 2 bytes (16 bits) for internal addressing (up to 64kB).
• The device must have the capability to auto-increment its internal address counter to allow sequential

reads from the device.
• The device can be connected to either valid pin-mapping for SPI; there are two distinct pin-mappings

available. The bootloader attempts to communicate on each SPI pin-mapping, one at a time.
• For SPI_CLK ≤ 1 MHz or ≤ 10 MHz, the system clock generator output = input clock x 3.

2.2.4 24-Bit SPI Serial Flash
The bootloader supports booting from an SPI Flash with the following requirements for the external
device.
• The device must support at least a 1- or 10-MHz SPI clock, depending on the boot mode.
• The device must be connected to SPI CS0 and act as an SPI slave.
• The device uses 3 bytes (24 bits) for internal addressing (up to 16MB).
• The device must have the capability to auto-increment its internal address counter to allow sequential

reads from the device.
• The device can be connected to either valid pin-mapping for SPI (there are two distinct pin-mappings

available). The bootloader attempts to communicate on each SPI pin-mapping, one at a time.

2.2.5 I2C EEPROM
The bootloader supports booting from an I2C EEPROM with the following requirements for the external
device:
• The device must support the fast I2C specification (400 kHz).
• The device must respond to slave address 0x50 (7-bit address).
• The device uses 2 bytes for internal addressing (up to 64kB).
• The device must have the capability to auto-increment its internal address counter to allow sequential

reads from the device.

2.2.6 MMC/eMMC
The bootloader supports booting from an MMC/eMMC device with the following requirements for the
external device:
• The device must be connected to either the MMC/SD0 or the MMC/SD1 interface.
• The MMC/eMMC device must comply with MMC Specification v3.31, eMMC Specification v4.3, or

later.
• Must be formatted in FAT16/32.
• The boot images can be in either the boot partition (with boot-from-partition enabled) or in the user

data area formatted in FAT16/32.
– The unencrypted boot image must be in the first data partition with filename “bootimg.bin”.

• The bootloader will check for user data partition first. If there is no valid boot image, then it will check
for the boot from partition option.

http://www.ti.com
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2.2.7 SD
The bootloader supports booting from an SD device with the following requirements for the external
device:
• The device must be connected to either the MMC/SD0 or the MMC/SD1 interface.
• The SD device must comply with SD Specifications Part 1 Physical Layer Simplified Specification v1.1

or v2.0.
• Must be formatted in FAT16/32.
• The SD device must use the SD insecure mode (see SD specification). Note that this does not refer to

the boot image security; boot images must be an unencrypted image for use with SD.
• The boot image must be in the first partition with the file name of bootimg.bin.

2.2.8 UHPI
Figure 1, Boot Timing, illustrates the UHPI boot sequence.

(1) Enter the boot sequence.
(2) The maximum wait time from reset between (1) and (2) until the reset is released is 20 ms.
(3) The bootloaded code starts. The best-case time is 200 ms from the start of the boot sequence (see note 2).

The worst-case time is the loading time for the bootloaded code when it exceeds 200 ms.

Figure 1. Boot Timing

http://www.ti.com
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The bootloader supports booting from a UHPI device with the following procedures:
• The external host has to communicate in 16-bit multiplexed mode.
• The external host powers up the device and must wait for the settling time of BG_CAP (200 ms) to

elapse before executing the next step.
• The bootloader waits for the external host to finish transferring the data.
• External Host writes to device on-chip memory. The code or data sections are directly loaded to the

desired locations on device by the external host.
• External Host interrupts the device through the DSP_INT in the UHPIC register after code transfer

complete.
• Bootloader branches to the entry point. The entry point is located in the last block of SARAM, word

addresses 0x27FFA and 0x27FFB. To ensure data integrity, the external host writes two 16-bit
signatures in 0x27FFC and 0x27FFD with respective values of 0x1234 and 0xABCD.

2.2.9 McSPI
The bootloader tests for 24-bit McSPI flash boot on SPI_CS[0] using a clock-rate close to, but not over, 10
MHz, or a clock-rate of 40 MHz based on the boot mode. Booting from McSPI is supported with the
following requirements:
• The device supports at least a 10- or 40-MHz SPI clock, depending on the boot mode.
• The device is connected to McSPI CS0 and acts as a McSPI slave.
• The device uses 3 bytes (24 bits) for internal addressing (up to 16MB).
• The device has the capability to auto-increment its internal address counter to allow sequential reads

from the device.
• The device is connected to valid pin-mapping for McSPI.

2.2.10 UART
The bootloader supports booting from a UART by setting the PLL to multiply the input clock by 3 and
adjust TIMER0 setting for 200 ms. Then, UART is programmed with 9600-, 57600-, or 115200-baud
based on boot mode, 8-bit data, odd parity, one stop-bit, and auto flow control using CTS/RTS.

2.2.11 USB
The bootloader supports booting from the USB. The bootloader uses bulk-endpoint 1, vendor-id 0x0451,
and product-id 0x9010 only with USB high-speed mode.

2.3 Register Configuration
Once the bootloader detects a valid boot-image signature (see Section 3), the first data that is used from
the boot image is the optional register configuration data. This data allows you to setup peripheral port-
addressed registers during the boot process, and before the code sections are copied. This feature
provides the capability to change peripheral registers for specific purposes, such as configuring the EMIF
external memory spaces.

NOTE: Using the register configuration feature to reprogram register settings may cause the
bootloader to fail.

Since some register configurations may have an associated latency that must be observed before
continuing, a delay feature is also available (as part of the register configuration data).

For a description of how to insert register configuration data, including delays, into a boot image, see
Section 3.1.1.

http://www.ti.com
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2.4 Code Sections
After the optional register configuration is complete, the bootloader copies all of the code sections from the
boot image to RAM. Each of these code sections may be actual code or just data; these sections are
typically defined by the linker command file.

2.5 Bootloader Completion
After all code sections have been copied, the bootloader:
1. sets the XF port low to indicate that boot-up is complete,
2. waits to ensure that the bandgap settling time (at least 200 ms) has elapsed since the trim setup,
3. re-enables the low-voltage detection circuit, and
4. branches to the entry-point address specified in the boot image.

At this point, the bootloader’s task is complete, and the user application is executing.

http://www.ti.com
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3 Boot Images
The bootloader’s primary function is to transfer user code into RAM and then transfer control to this user
code. The user code must be formatted into the boot image format supported by the bootloader. The
format supported by the C5517 bootloader is an unencrypted boot image format.

The following sections describe the boot image format and how to create it.

3.1 Unencrypted Boot Image Format
The unencrypted boot image format contains the following information:
• All user code and data sections to be loaded to RAM.
• Register configuration data for setting up peripheral registers prior to loading code.
• The entry-point of the user’s application.

The unencrypted boot image format is shown in Table 3.

Table 3. C5517 Unencrypted Boot Image Format

Word Content Valid Data Entries
1 Boot Signature (16-bits) 0x09AA
2

Entry Point (32 bits)
Byte address to begin execution (MSW)

3 Byte address to begin execution (LSW)
4 Register Configuration Count (16 bits, N = count) 1 to 216 - 1
5 Register Config #1 Address in I/O space Repeated according to register

configuration count. Register configuration
address is any valid register in C5517 I/O
space. Address 0xFFFF is reserved as a
delay indicator to create delay in between
register writes or at end of register writes.

6 Register Config #1 Value or delay count
7 Register Config #2 Address in I/O space
8 Register Config #2 Value or delay count

. . .
Register Config #N Address in I/O space

4+2N Register Config #N Value or delay count 0 to 216 - 1
5+2N Section 1 word count (16 bits)

Size is the number of valid (non-pad) data words in block
M = (size + 2) rounded up to nearest multiple of 64-bit boundary

1 to 216-1

6+2N Destination MSW address to load Section 1 (32 bits) 16-bit word address MSW
7+2N Destination LSW address to load Section 1 (32 bits) 16-bit word address LSW
8+2N First word of Section 1 (16 bits)

. . .
5+2N+M Last word of Section 1, often pad data (padded to 64-bit boundary)

. . .
X Section X word count (16 bits)

Size is the number of valid (non-pad) data words in block
N' = (size + 2) rounded up to nearest multiple of 64-bit boundary

1 to 216-1

X+1 Destination MSW address to load Section X (32 bits) 16-bit word address MSW
X+2 Destination LSW address to load Section X (32 bits) 16-bit word address LSW
X+3 First word of Section X (16 bits)

. . .
X+N' Last word of Section X, often pad data (padded to 64-bit boundary)

X+N'+1 Zero word. Note that if more than one source block was read, word
X+N' shown above would be the last word of the last source block.
Each block would have the format shown in the shaded entries.

0x0000

http://www.ti.com
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3.1.1 Creating an Unencrypted Boot Image
A boot image can be created using the hex conversion utility (hex55) utility. The hex55 utility is intended
for creating a unencrypted boot image.

For detailed information on the available hex conversion utility output formats, see the TMS320C55x DSP
Assembly Language Tools User’s Guide (SPRU280).

Use the hex conversion utility (hex55.exe) revision 4.3.5 or later. Earlier versions may not support the boot
table features correctly.

3.1.1.1 Creating an Unencrypted Boot Image Using hex55
To create a boot table for the application (my_app.out) with the following conditions:
• Desired boot mode is 8-bit standard serial boot
• No registers are configured during the boot
• No programmed delays will occur during the boot
• Desired output is binary format in a file called my_app.bin

Use the following options on the hex conversion utility command line or command file:
hex55 -boot -v5505 -serial8 -b -o my_app.bin my_app.out

-boot ;option to create a boot table
-v5505 ;use C55x boot table format for TMS320C5517
-serial8 ;boot mode is 8-bit standard serial boot
-b ;desired output format is binary format
-o my_app.bin ;specify the output filename
my_app.out ;specify the input file

3.1.1.2 Creating an Unencrypted Boot Image with I/O Register Configuration
To create a boot table for the application my_app.out with the following conditions:
• Desired boot mode is from 8-bit standard serial boot
• Configure the register address 0x1C8C with the value 0x0001
• After the register is configured, wait 256 cycles before continuing the boot
• Desired output is binary format in file a called my_app.bin

Use the following options on the hex conversion utility command line or command file.

Note: If using the reg_config option, ensure there is no space between the address and value.
hex55 -boot -v5505 -serial8 -reg_config 0x1c8c,0x0001 -delay 0x100 -b -o my_app.bin my_app.out

-boot ;option to create a boot table
-v5505 ;use C55x boot table format for TMS320C5517
-serial8 ;boot mode is 8-bit standard serial boot
-reg_config 0x1c8c,0x0001 ;write 0x0001 to peripheral register at address 0x1C8C.

;This can be repeated to program multiple registers.
-delay 0x100 ;delay for 256 CPU clock cycles
-b ;desired output format is binary format
-o my_app.bin ;specify the output filename
my_app.out ;specify the input file

NOTE: Using the register configuration feature to reprogram register settings may cause the
bootloader to fail.

http://www.ti.com
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3.1.1.3 Section Alignment Restrictions When Using Hex55 Utility
All code sections must be aligned on a word boundary. Sections that are not properly aligned will be
flagged by the hex55 utility.

To align a code section, use the align command in the linker command file as shown below. Note that if
any function included in a code output section has an alignment associated with it (in C via CODE_ALIGN
pragma) the whole section will inherit that alignment.

.text > ROM PAGE 0 align 2

3.1.1.4 DOS Command Line for Generating Boot Image Using Hex55
hex55 -boot -v5505 -b -serial8 -o USBKey_LED.bin USBKey_LED.out

3.2 Burning a Boot Image
Once a boot image (*.bin) is generated, you can burn the boot image into the supported peripherals using
a utility called programmer, which is part of the TMS320C55x Chip Support Libraries (CSL) (see
http://www.ti.com/tool/sprc133). The utility runs on each device using an emulator with Code Composer
Studio.

NOTE: This device supports four four chip-select spaces: 2, 3, 4, and 5. See the Memory Map
Summary in the data manual for details.
TMS320C5517 Fixed-Point Digital Signal Processor (literature number SPRS727)

CS selection for NAND and NOR flash is based on hardware hookup.
For C5517 EVM, 2 = NOR flash and 4 = NAND flash.

3.3 Booting from SD/SDHC/MMC/eMMC Card
To boot from SD/SDHC/MMC/eMMC card, first ensure the boot mode is set to either SD0 or SD1. Format
the SD/SDHC/MMC/eMMC to FAT16/32, then copy the boot image into the root directory and rename it to
“bootimg.bin”. Insert the SD/SDHC/MMC/eMMC in the SD slot. Power cycle the C5517 EVM. The
bootloader will boot from the SD/SDHC/MMC/eMMC card.

http://www.ti.com
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3.4 Booting from UART
To boot from UART, first ensure one of the UART boot modes is set. Connect the UART connector on the
EVM to the PC serial port with a null modem cable.

Run the UartBoot.exe and select the correct baud rate (9600, 57600, or 115200) in “Baud Rate”. Put 1 in
“PC COM Port” and check the “Serial Port”. Finally, click “Send File >>”.

Figure 2. Running UartBoot.exe

In the file selection dialog box, select the file—demo.bin, in this case—to upload. Click “Open” to start
uploading.

Figure 3. Select the Boot Image File

http://www.ti.com
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After the uploading is complete, the following message box will appear:

Figure 4. UART Boot is Completed

The demo.bin should be now running on the EVM or eZdsp.

3.5 Booting from USB
To boot from USB, first ensure there is no boot image in any other peripheral if the boot configuration is
set to use polling mode. The J13 of the EVM should be connected to a PC USB port via a USB cable.
Execute usb_boot.exe and enter option 3 for BootImage Test. Then input the boot image path name:
demo.bin, in this case.

Figure 5. Running usb_boot.exe

http://www.ti.com
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After <enter> the following dialog box should show:

Figure 6. USB Boot is Completed

The demo.bin should now run on the EVM.

4 References
• TMS320C55x DSP Assembly Language Tools User’s Guide (SPRU280)
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http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SPRABP1A


IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Using the TMS320C5517 Bootloader
	1 Introduction
	1.1 On-Chip ROM
	1.2 Bootloader Features

	2 Bootloader Operation
	2.1 Bootloader Initialization
	2.2 Booting from External Devices
	2.2.1 NOR Flash
	2.2.2 NAND Flash
	2.2.3 16-bit SPI EEPROM
	2.2.4 24-Bit SPI Serial Flash
	2.2.5 I2C EEPROM
	2.2.6 MMC/eMMC
	2.2.7 SD
	2.2.8 UHPI
	2.2.9 McSPI
	2.2.10 UART
	2.2.11 USB

	2.3 Register Configuration
	2.4 Code Sections
	2.5 Bootloader Completion

	3 Boot Images
	3.1 Unencrypted Boot Image Format
	3.1.1 Creating an Unencrypted Boot Image
	3.1.1.1 Creating an Unencrypted Boot Image Using hex55
	3.1.1.2 Creating an Unencrypted Boot Image with I/O Register Configuration
	3.1.1.3 Section Alignment Restrictions When Using Hex55 Utility
	3.1.1.4 DOS Command Line for Generating Boot Image Using Hex55


	3.2 Burning a Boot Image
	3.3 Booting from SD/SDHC/MMC/eMMC Card
	3.4 Booting from UART
	3.5 Booting from USB

	4 References

	Revision History
	Important Notice

