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ABSTRACT 

The Fast Fourier Transform (FFT) is an efficient means for computing the Discrete Fourier Transform 
(DFT). It is one of the most widely used computational elements in Digital Signal Processing (DSP) 
applications. This DSP is ideally suited for such applications. They include an FFT hardware accelerator 
(HWAFFT) that is tightly coupled with the CPU, allowing high FFT processing performance at very low 
power. This application report describes FFT computation on the DSP and covers the following topics: 
• Basics of DFT and FFT 
• DSP Overview Including the FFT Accelerator 
• HWAFFT Description 
• HWAFFT Software Interface 
• Simple Example to Illustrate the Use of the FFT Accelerator 
• FFT Benchmarks 
• Description of Open Source FFT Example Software 
• Computation of Large (Greater Than 1024-point) FFTs 
Project collateral and source code discussed in this application report can be downloaded from the 
following URL: http://www.ti.com/lit/zip/SPRABB6. 
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1 Basics of DFT and FFT 
The DFT takes an N-point vector of complex data sampled in time and transforms it to an N-point vector of 
complex data that represents the input signal in the frequency domain. A discussion on the DFT and FFT  
is provided as background material before discussing the HWAFFT implementation. 
The DFT of the input sequence x(n), n = 0, 1, …, N-1 is defined as 
X (k ) =  1 N -1  

x n W nk  k to N (  ) , = 0 - 1 Ι 
N n = 0 N (1) 

Where WN, the twiddle factor, is defined as 
- j 2ν / N 

W  = e 
N 

, k = 0 to N - 1 
(2) 

The FFT is a class of efficient DFT implementations that produce results identical to the DFT in far fewer 
cycles. The Cooley-Tukey algorithm is a widely used FFT algorithm that exploits a divide-and-conquer 
approach to recursively decompose the DFT computation into smaller and smaller DFT computations until 
the simplest computation remains. One subset of this algorithm called Radix-2 Decimation-in-Time (DIT) 
breaks each DFT computation into the combination of two DFTs, one for even-indexed inputs and another 
for odd-indexed inputs. The decomposition continues until a DFT of just two inputs remains. The 2-point 
DFT is called a butterfly, and it is the simplest computational kernel of Radix-2 FFT algorithms. 

 
1.1 Radix-2 Decimation in Time Equations 

The Radix-2 DIT decomposition can be seen by manipulating the DFT equation (Equation 1): 
Split x(n) into even and odd indices: 

N / 2 -1 (2n + 1)k 
X (k ) = 1 N / 2 -1 

x(2n)W 2nk  1 x   n W k to N (2   + 1) ,    = 0 - 1 Ι N n = 0 
+ Ι 

N N  n = 0 N (3) 
 

Factor 
W k 

N from the odd indexed summation: 
 N / 2 -1 W k 

N / 2 -1 
X (k ) =  1 

N 
Ι, 

n = 0 
x(2n)W 2nk + 

N 
N Ι, 

N n = 0 
x(2n + 1)W 2nk , k = 0 to N - 1 

N 
 

(4) 

Only twiddle factors from 0 to N/2 are needed: 
W 2nk = (e- j 2ΙΤ / N ) 2nk = (e- j 2ΙΤ /(N / 2)) nk = W nk 

N N / 2 

This results in: 

and W k + N / 2 
= - W k , k = 0 to N / 2 - 1 

N N 
 

(5) 

 N / 2 -1 W k 
N / 2 -1 

X (k ) = 1 
Ι, 

 

x(2n)W nk  +    N Ι, 
 

x(2n + 1)W nk , k = 0 to N - 1 
N n = 0 N / 2 N n = 0 N / 2 (6) 
X (k ) X (k ) 

Define   even and   odd such that: 
X (k ) = 1 N / 2 -1 

x(2n)W nk 
 
, k = 0 to N - 1 

even 
 

and 

(N / 2) n = 0 N / 2 (7) 

X (k ) = 1 N / 2 -1 
x(2n + 1)W nk 

 
, k = 0 to N - 1 

odd (N / 2) n = 0 N / 2 (8) 
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Finally, Equation 6 is rewritten as: 
X (k ) = 1 ( X 

2 
(k ) + W k X 

even N odd 
(k )), k = 0 to N / 2 - 1  

(9) 

and 
X (k + N / 2) = 1 ( X 

2 

 
(k ) - W k X 

even N odd 

 
 
(k )), k = 0 to N / 2 - 1 

 
 
 

(10) 

Equation 9 and Equation 10 show that the N-point DFT can be divided into two smaller N/2-point DFTs. 
Each smaller DFT is then further divided into smaller DFTs until N = 2. The pair of equations that makeup 
the 2-point DFT is called the Radix2 DIT Butterfly (see Section 1.2). The DIT Butterfly is the core 
calculation of the FFT and consists of just one complex multiplication and two complex additions. 

 
1.2 Radix-2 DIT Butterfly 

The Radix-2 Butterfly is illustrated in Figure 1. In each butterfly structure, two complex inputs P and Q are 
operated upon and become complex outputs P’ and Q’. Complex multiplication is performed on Q and the 
twiddle factor, then the product is added to and subtracted from input P to form outputs P’ and Q’. The 

W k 
exponent of the twiddle factor N is dependent on the stage and group of its butterfly. The butterfly is 
usually represented by its flow graph (Figure 1), which looks like a butterfly. 

 

Figure 1. DIT Radix 2 Butterfly 
 

The mathematical meaning of this butterfly is shown below with separate equations for real and imaginary 
parts: 

 
Complex Real Part Imaginary Part 
P’ = P + Q * W Pr’ = Pr + (Qr * Wr - Qi * Wi) Pi’ = Pi + (Qr * Wi + Qi * Wr) 
Q’ = P - Q * W Qr’ = Pr - (Qr * Wr - Qi * Wi) Qi’ = Pi - (Qr * Wi + Qi * Wr) 

 
The flow graph in Figure 2 shows the interconnected butterflies of an 8-point Radix-2 DIT FFT. Notice that 
the inputs to the FFT are indexed in bit-reversed order (0, 4, 2, 6, 1, 5, 3, 7) and the outputs are indexed 
in sequential order (0, 1, 2, 3, 4, 5, 6, 7). Computation of a Radix-2 DIT FFT requires the input vector to be 
in bit-reversed order, and generates an output vector in sequential order. This bit-reversal is further 
explained in Section 4.3, Bit-Reverse Function. 
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Figure 2. DIT Radix 2 8-point FFT 
 

1.3 Computational Complexity 
The Radix-2 DIT FFT requires log2(N) stages, N/2 * log2(N) complex multiplications, and N * log2(N) 
complex additions. In contrast, the direct computation of X(k) from the DFT equation (Equation 1) requires 
N2 complex multiplications and (N2 – N) complex additions. Table 1 compares the computational 
complexity for direct DFT versus Radix-2 FFT computations for typical FFT lengths. 

 
Table 1. Computational Complexity of Direct DFT Computation versus Radix-2 FFT 

FFT Length Direct DFT Computation Radix-2 FFT 
 Complex 

Multiplications 
Complex Additions Complex 

Multiplications 
Complex Additions 

128 16,384 16,256 448 896 
256 65,536 65,280 1,024 2,048 
512 262,144 264,632 2,304 4,608 
1024 1,048,576 1,047,552 5,120 10,240 

 
Table 1 clearly shows significant reduction in computational complexity with the Radix-2 FFT, especially 
for large N. This substantial decrease in computational complexity of the FFT has allowed DSPs to 
efficiently compute the DFT in reasonable time. For its substantial efficiency improvement over direct 
computation, the HWAFFT coprocessor in the DSP implements the Radix-2 FFT algorithm. 
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1.4 FFT Graphs 
Figure 3 is a graphical example of the FFT computation. These results were obtained by using the 
HWAFFT coprocessor on the DSP. On the left half is the complex time domain signal (real part on top, 
imaginary part on bottom). On the right half is the complex frequency domain signal produced by the FFT 
computation (real part on top, imaginary part on bottom). In this example, two sinusoidal tones are present 
in the time domain. The time domain signal is 1024 points and contains only real data (the imaginary part 
is all zeros). The two sinusoids are represented in the frequency domain as impulses located at the 
frequency bins that correspond to the two sinusoidal frequencies. The frequency domain signal is also 
1024 points and contains both real parts (top right) and imaginary parts (bottom right). 

 

Figure 3. Graphical FFT Computation 
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2 DSP Overview Including the FFT Accelerator 
This DSP is a member of TI's TMS320C5000™ fixed-point DSP product family and is designed for low- 
power applications. With an active mode power consumption of less than 0.15 mW/MHz and a standby 
mode power consumption of less than 0.15 mW, these DSPs are optimized for applications characterized 
by sophisticated processing and portable form factors that require low power and longer battery life. 
Examples of such applications include portable voice/audio devices, noise cancellation headphones, 
software-defined radio, musical instruments, medical monitoring devices, wireless microphones, 
biometrics, industrial instruments, telephony, and audio cards. 
Figure 4 shows an overview of the DSP consisting of the following primary components: 
• Dual MAC, C55x CPU 

1.05 V @ 60 MHz (VC5505, C5505, C5515) and 75 MHz (C5505 and C5515) 
1.3 V @ 100 MHz (VC5505, C5505, C5515) and 120 MHz (C5505 and C5515) 
1.4 V @ 150 MHz (C5505) 

• On-Chip memory: 320 KB RAM (64 KB DARAM, 256 KB SARAM), 128 KB ROM 
• HWAFFT that supports 8- to 1024-point (powers of 2) real and complex-valued FFTs 
• Four DMA controllers and external memory interface 
• Power management module 
• A set of I/O peripherals that includes I2C, I2S, SPI, UART, Timers, EMIF, MMC/SD, GPIO, 10-bit SAR, 

LCD Controller, USB 2.0 
• Three on-chip LDO Regulators (C5515), 1 on-chip LDO Regulator (VC5505, C5505) 
• SDRAM/mSDRAM support (C5505 and C5515) 
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Figure 4. Block Diagram 
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The C55x CPU includes a tightly coupled FFT accelerator that communicates with the C55x CPU through 
the use of the coprocessor instructions. The main features of this hardware accelerator are: 
• Supports 8- to 1024-point (powers of 2) complex-valued FFTs. 
• Internal twiddle factor generation for optimal use of memory bandwidth and more efficient 

programming. 
• Basic and software-driven auto-scaling feature provides good precision versus cycle count trade-off. 
• Single-stage and double-stage modes enable computation of one or two stages in one pass, and thus 

better handle the odd power of two FFT widths. 
• Is 4 to 6 times more energy efficient and 2.2 to 3.8 times faster than the FFT computations on the 

CPU. 
 
3 FFT Hardware Accelerator Description 

The HWAFFT in the DSP is a tightly-coupled, software-controlled coprocessor designed to perform FFT 
and inverse FFT (IFFT) computations on complex data vectors ranging in length from 8 to 1024 points 
(powers of 2). It implements a Radix-2 DIT structure that returns the FFT or IFFT result in bit-reversed 
order. 

 
3.1 Tightly-Coupled Hardware Accelerator 

The HWAFFT is tightly-coupled with the DSP core which means that it is physically located outside of the 
DSP core but has access to the core’s full memory read bandwidth (busses B, C, and D), access to the 
core’s internal registers and accumulators, and access to its address generation units. The HWAFFT 
cannot access the data write busses or memory mapped registers (MMRs). Because the HWAFFT is seen 
as part of the execution unit of the CPU, it must also comply to the core’s pipeline exceptions, and in 
particular those caused by stalls and conditional execution. 

 
3.2 Hardware Butterfly, Double-Stage and Single-Stage Mode 

The core of the HWAFFT consists of a single Radix-2 DIT Butterfly implemented in hardware. This 
hardware supports a double-stage mode where two FFT stages are computed a single pass. In this mode 
the HWAFFT feeds the results from the first stage back into the hardware butterfly to compute the second 
stage results in a single pass. This double-stage mode offers significant speed-up especially for large FFT 
lengths. However, when the number of required stages is odd (FFT lengths = 8, 32, 128, or 512 points)  
the final stage needs to be computed alone and, consequently, at a lower acceleration rate. For this 
reason a single-stage mode is also provided. 
The HWAFFT supports two stage modes: 
• Double-Stage Mode – two FFT stages performed in each pass 
• Single-Stage Mode – one FFT stage performed in each pass 

 
3.3 Pipeline and Latency 

The logic of the HWAFFT is pipelined to deliver maximum throughput. Complex multiplication with the 
twiddle factors is performed in the first pipeline stage, and complex addition and subtraction is performed 
in the second pipeline stage. Valid results appear some cycles of latency after the first data is read from 
memory: 
• 5 cycles of latency in single-stage mode 
• 9 cycles of latency in double-stage mode 
There are three states to consider during computation of a single or double stage: 
• Prologue: The hardware accelerator is fed with one complex input at a time but does not output any 

valid data. 
• Kernel: Valid outputs appear while new inputs are received and computed upon. 
• Epilogue: A few more cycles are needed to flush the pipeline and output the last butterfly results. 
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Consecutive stages can be overlapped such that the first data points for the next pass are read while the 
final output values of the current pass are returned. For odd-power-of-two FFT lengths, the last double- 
stage pass needs to be completed before starting a final single-stage pass. Thus, the double-stage 
latency is only experienced once for even-powers-of-2 FFT computations and twice for odd-powers-of-2 
FFT computations. Latency has little impact on the total computation performance, and less and less so 
as the FFT size increases. 

 
3.4 Software Control 

Software is required to communicate between the CPU and the HWAFFT. The CPU instruction set 
architecture (ISA) includes a class of coprocessor (copr) instructions that allows the CPU to initialize, pass 
data to, and execute butterfly computations on the HWAFFT. Computation of an FFT/IFFT is performed by 
executing a sequence of these copr instructions. 
C-callable HWAFFT functions are provided with optimized sequences of copr instructions for each 
available FFT length. To conserve program memory, these functions are located in the DSP’s ROM. A 
detailed explanation of the HWAFFT software interface and its application is provided in Section 4, 
HWAFFT Software Interface. 

 

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy 
memory allocation restrictions for the data and scratch buffers. See the device-specific errata 
for an explanation of the restrictions and workarounds: 
• TMS320VC5505/VC5504 Fixed-Point DSP Silicon Errata (Silicon Revision 1.4) 

[literature number SPRZ281] 
• TMS320C5505/C5504 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ310] 
• TMS320C5515/C5514 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ308] 
 

3.5 Twiddle Factors 
To conserve memory bus bandwidth, twiddle factors are stored in a look-up-table within the HWAFFT 
coprocessor. The 512 complex twiddle factors (16-bit real, 16-bit imaginary) are available for computing up 
to 1024-point FFTs. Smaller FFT lengths use a decimated subset of these twiddle factors. Indexing the 
twiddle table is pipelined and optimized based on the current FFT stage and group being computed. When 
the IFFT computation is performed, the complex conjugates of the twiddle factors are used. 
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3.6 Scaling 
FFT computation with fixed-point numbers is vulnerable to overflow, underflow, and saturation effects. 
Depending on the dynamic range of the input data, some scaling may be required to avoid these effects 
during the FFT computation. This scaling can be done before the FFT computation, by computing the 
dynamic range of the input points and scaling them down accordingly. If the magnitude of each complex 
input element is less than 1/N, where N = FFT Length, then the N-point FFT computation will not overflow. 
Uniformly dividing the input vector elements by N (Pre-scaling) is equivalent to shifting each binary 
number right by log2(N) bits, which introduces significant error (especially for large FFT lengths). When 
this error propagates through the FFT flow graph, the output noise-to-signal ratio increases by 1 bit per 
stage or log2(N) bits in total. Overflow will not occur if each input’s magnitude is less than 1/N. 
Alternatively, a simple divide-by-2 and round scaling after each butterfly offers a good trade-off between 
precision and overflow protection, while minimizing computation cycles. Because the error introduced by 
early FFT stages is also scaled after each butterfly, the output noise-to-signal ratio increases by just ½ bit 
per stage or ½ * log2(N) bits in total. Overflow is avoided if each input’s magnitude is less than 1. 
The HWAFFT supports two scale modes: 
• NOSCALE 

– Scaling logic disabled 
– Vulnerable to overflow 
– Output dynamic range grows with each stage 
– No overflow if input magnitudes < 1/N 

• SCALE 
– Scales each butterfly output by 1/2 
– No overflow if input magnitudes < 1 
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4 HWAFFT Software Interface 
The software interface to the HWAFFT is handled through a set of coprocessor instructions that, when 
decoded by the coprocessor, perform initialization, load/store, and execution operations on the HWAFFT 
coprocessor. C-callable functions are provided that contain the necessary sequences of coprocessor 
instructions for performing FFT/ IFFT computations in the range of 8 to 1024 points (by powers of 2). 
Additionally, an optimized out-of-place bit-reversal function is provided to perform the complex vector bit- 
reversal required by Radix-2 FFT computations. These functions are defined in the hwafft.asm source 
code file. Additionally, to conserve on-chip RAM these functions have been placed in the on-chip ROM of 
the DSP. See Section 4.5, Project Configuration for Calling Function s from ROM, for steps to configure 
your project to call the HWAFFT functions from ROM. 

 
4.1 Data Types 

The input and output vectors of the HWAFFT contain complex numbers. Each real and imaginary part is 
represented by a two’s complement, 16-bit fixed-point number. The most significant bit holds the number’s 
sign value, and the remaining 15 are fraction bits (S16Q15 format). The range of each number is [-1, 1 – 
(1/2)15]. Real and imaginary parts appear in an interleaved order within each vector: 

Int16 CMPLX_Vec16[2*N] = …(N = FFT Length) 

Real[0] Imag[0] Real[1] Imag[1] Real[2] Imag[2] 

Bit15,. ................ ,Bit0 Bit15,. ................ ,Bit0 Bit15,. ................ ,Bit0 Bit15,. ................ ,Bit0 Bit15,. ................ ,Bit0 Bit15,. ................ ,Bit0 
 

The HWAFFT functions use an Int32 pointer to reference these complex vectors. Therefore, each 32-bit 
element contains the 16-bit real part in the most significant 16 bits, and the 16-bit imaginary part in the 
least significant 16 bits. 

Int32 CMPLX_Vec32[N] = …(N = FFT Length) 

Real[0] Imag[0] Real[1] Imag[1] Real[2] Imag[2] 

Bit31,.................., Bit16, Bit15,. ................. , Bit0 Bit31,.................., Bit16, Bit15,. ................ , Bit0 Bit31,.................., Bit16, Bit15,. ................. , Bit0 
 

To extract the real and imaginary parts from the complex vector, it is necessary to mask and shift each 32- 
bit element into its 16-bit real and imaginary parts: 

Uint16 Real_Part = CMPLX_Vec32[i] >> 16; 
Uint16 Imaginary_Part = CMPLX_Vec32[i] & 0x0000FFFF; 

 
4.2 HWAFFT Functions 

C-Callable HWAFFT Functions are provided for computing FFT/IFFT transforms on the HWAFFT 
coprocessor. These functions contain optimized sequences of coprocessor instructions for computing 
scaled or unscaled 8-, 16-, 32-, 64-, 128-, 256-, 512-, and 1024-point FFT/IFFTs. Additionally, an 
optimized out-of-place bit-reversal function is provided to bit-reverse the input vector before supplying it to 
the HWAFFT. Computation of a Radix-2 DIT FFT requires the input vector to be in bit-reversed order, and 
generates an output vector in sequential order. 

 
4.2.1 HWAFFT Naming and Format 

 

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy 
memory allocation restrictions for the data and scratch buffers. See the device-specific errata 
for an explanation of the restrictions and workarounds: 
• TMS320VC5505/VC5504 Fixed-Point DSP Silicon Errata (Silicon Revision 1.4) 

[literature number SPRZ281] 
• TMS320C5505/C5504 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ310] 
• TMS320C5515/C5514 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ308] 
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The HWAFFT functions are named hwafft_Npts, where N is the FFT length. For example, hwafft_32pts is 
the name of the function for performing 32-point FFT and IFFT operations. The structure of the HWAFFT 
functions is: 
Uint16 hwafft_Npts( Performs N-point complex FFT/IFFT, where N = {8, 16, 32, 64, 128, 256, 512, 

1024} 
Int32 *data, Input/output – complex vector 
Int32 *scratch, Intermediate/output – complex vector 
Uint16 Flag determines whether FFT or IFFT performed, (0 = FFT, 1 = IFFT) 

fft_flag, 

Uint16 Flag determines whether butterfly output divided by 2 (0 = Scale, 1 = No Scale) 
scale_flag 

); Return value Flag determines whether output in data or scratch vector (0 = data, 1 = scratch) 
 
 
4.2.2 HWAFFT Parameters 

The following describe the parameters for the HWAFFT functions. 
Int32 *data 
This is the input vector to the HWAFFT. It contains complex data elements (real part in most significant 16 
bits, imaginary part in least significant 16 bits). After the HWAFFT function completes, the result will either 
be stored in this data vector or in the scratch vector, depending on the status of the return value. The 
return value is Boolean where 0 indicates that the result is stored in this data vector, and 1 indicates the 
scratch vector. The data and scratch vectors must reside in separate blocks of RAM (DARAM or SARAM) 
to maximize memory bandwidth. 
#pragma DATA_SECTION(data_buf, "data_buf"); 

//Static Allocation to Section: "data_buf : > DARAM" in Linker CMD File 
Int32 data_buf[N = FFT Length]; 
Int32 *data = data_buf; 
Int32 *data: 

The *data parameter is a complex input vector to HWAFFT. It contains the output vector if Return Value = 
0 = OUT_SEL_DATA. There is a strict address alignment requirement if *data is shared with a bit-reverse 
destination vector (recommended). See Section 4.3.1, Bit Reverse Destination Vector Alignment 
Requirement. 
Int32 *scratch 
This is the scratch vector used by the HWAFFT to store intermediate results between FFT stages. It 
contains complex data elements (real part in most significant 16 bits, imaginary part in least significant 16 
bits). After the HWAFFT function completes the result will either be stored in the data vector or in this 
scratch vector, depending on the status of the return value. The return value is Boolean, where 0 indicates 
that the result is stored in the data vector, and 1 indicates this scratch vector. The data and scratch  
vectors must reside in separate blocks of RAM (DARAM or SARAM) to maximize memory bandwidth. 
#pragma DATA_SECTION(scratch_buf, "scratch_buf"); 

//Static Allocation to Section: "scratch_buf : > DARAM" in Linker CMD File 
Int32 scratch_buf[N = FFT Length]; 
Int32 *scratch = scratch_buf; 
Int32 *scratch: 

The *scratch parameter is a complex scratchpad vector to HWAFFT. It contains the output vector if Return 
Value = 1 = OUT_SEL_SCRATCH. 
Uint16 fft_flag 
The FFT/IFFT selection is controlled by setting the fft_flag to 0 for FFT and 1 for Inverse FFT. 

 

#define FFT_FLAG ( 0 ) /* HWAFFT to perform FFT */ 
#define IFFT_FLAG ( 1 ) /* HWAFFT to perform IFFT */ 
Uint16 fft_flag:   
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fft_flag = FFT_FLAG: FFT Performed 
fft_flag = IFFT_FLAG: Inverse FFT Performed 

 
Uint16 scale_flag 
The automatic scaling (divide each butterfly output by 2) feature is controlled by setting the scale_flag to 0 
to enable scaling and 1 to disable scaling. 

 

#define SCALE_FLAG ( 0 ) /* HWAFFT to scale butterfly output */ 
#define NOSCALE_FLAG ( 1 ) /* HWAFFT not to scale butterfly output */ 
Uint16 scale_flag:   

scale_flag = SCALE_FLAG: Divide by 2 scaling is performed at the output of each FFT Butterfly. 
scale_flag = NOSCALE_FLAG: No scaling is performed, overflow may occur if the input dynamic is 

too high. 
 

Uint16 <Return Value>: 
This is the Uint16 return value of the HWAFFT functions. After the HWAFFT function completes, the result 
will either be stored in the data vector or in the scratch vector, depending on the status of this return  
value. The return value is Boolean where 0 indicates that the result is stored in the data vector, and 1 
indicates this scratch vector. The program must check the status of the Return Value to determine the 
location of the FFT/IFFT result. 
#define OUT_SEL_DATA ( 0 ) /* indicates HWAFFT output located in input data vector */ 
#define OUT_SEL_SCRATCH ( 1 ) /* indicates HWAFFT output located in scratch vector */ 
Uint16 <Return Value>: 

 
Return Value = OUT_SEL_DATA: FFT/IFFT result located in the data vector 
Return Value = OUT_SEL_SCRATCH: FFT/IFFT result located in the scratch vector 

 

4.3 Bit Reverse Function 
Before computing the FFT/IFFT on the HWAFFT, the input buffer must be bit-reversed to facilitate a 
Radix-2 DIT computation. This function contains optimized assembly that executes on the CPU to 
rearrange the Int32 elements of the input vector by placing each element in the destination vector at the 
index that corresponds to the bit-reversal of its current index. For example, in an 8-element vector, the 
index of the third element is 011 in binary, then the bit-reversed index is 110 in binary or 6 in decimal, so 
the third element of the input vector is copied to the sixth element of the bit-reversal destination vector. 

Int32 data[8] 

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

Index = 000 001 010 011 100 101 110 111 
 

Int32 data_br[8] 

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] 

Index = 000 100 010 110 001 101 011 111 

Figure 5. Bit Reversed Input Buffer 
 
 
 
 
 
 

SPRABB6B– June 2010 – Revised January 2013 FFT Implementation on the TMS320VC5505, TMS320C5505, and 13 
Submit Documentation Feedback TMS320C5515 DSPs 

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABB6B


Copyright © 2010–2013, Texas Instruments Incorporated 

HWAFFT Software Interface www.ti.com 
 

 

 

4.3.1 Bit Reverse Destination Vector Alignment Requirement 
Strict requirements are placed on the address of the bit-reversal destination buffer. This buffer must be 
aligned in RAM such that log2(4 * N) zeros appear in the least significant bits of the byte address (8 bits), 
where N is the FFT Length. For example, a 1024-point FFT needs to bit-reverse 1024 complex array 
elements (32-bit elements). The address for the bit-reversed buffer needs to have 12 zeros in the least 
significant bits of its byte address (log2(4 * 1024) = 12). Since the word address (16 bits) is the byte 
address shifted right one bit, the word address requires 11 zeros in the least significant bits. This bit- 
reverse is considered out-of-place because the inputs and outputs are stored in different vectors. In-place 
bit-reversal is not supported by this function. There are no alignment requirements for the bit-reverse 
source vector. 

 
4.3.2 Bit Reverse Format and Parameters 

The structure of the HWAFFT functions is: 
 

void hwafft_br( Performs out-of-place bit-reversal on 32-bit data vector 
Int32 *data, Input – 32-bit data vector 
Int32 Output – bit-reversed data vector 

*data_br, 

Uint16 Length of complex data vector 
data_len, 

); 

 
The parameters for the hwafft_br function are: 

Int32 *data 
This is the input vector to the bit reverse function. It contains complex data elements (real part in most 
significant 16 bits, imaginary part in least significant 16 bits). There are no specific alignment requirements 
for this vector. 
#pragma DATA_SECTION(data_buf, "data_buf"); 

//Static Allocation to Section: "data_buf : > DARAM" in Linker CMD File 
Int32 data_buf[N = FFT Length]; 
Int32 *data = data_buf; 

Int32 *data_br 
This is the destination vector of the bit-reverse function. It contains complex data elements (real part in 
most significant 16 bits, imaginary part in least significant 16 bits). A strict alignment requirement is placed 
on this destination vector of the bit-reverse function: This buffer must be aligned in RAM such that log2(4 * 
N) zeros appear in the least significant bits of the byte address (8 bits), where N is the FFT Length. See 
Section 9, Appendix A Methods for Aligning the Bit-Reverse Destination Vector, for ways to force the 
linker to enforce this alignment requirement. 
#define ALIGNMENT 2*N // ALIGNS data_br_buf to an address with log2(4*N) zeros in the 

// least significant bits of the byte address 
#pragma DATA_SECTION(data_br _buf, "data_br_buf"); 

// Allocation to Section: "data_br _buf : > DARAM" in Linker CMD File 
#pragma DATA_ALIGN (data_br_buf, ALIGNMENT); 
Int32 data_br_buf[N = FFT Length]; 
Int32 * data_br = data_br_buf; 
Int32 *data_br: 

Strict address alignment requirement: This buffer must be aligned in RAM such that (log2(4 * N) zeros 
appear in the least significant bits of the byte address (8 bits), where N is the FFT Length. See Section 9 
for ways to force the linker to enforce this alignment requirement. 
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Uint16 *data_len 
This Uint16 parameter indicates the length of the data and data_br vectors. 
Uint16 data_len: 

The data_len parameter indicates the length of the Int32 vector (FFT Length). Valid lengths include 
powers of two: {8, 16, 32, 64, 128, 256, 512, 1024}. 

 
4.4 Function Descriptions and ROM Locations 

Table 2 shows the available HWAFFT routines with descriptions and respective addresses in ROM. 
 

Table 2. Available HWAFFT Routines 
 

Function Name Description VC5505 (PG1.4) 
ROM Address 

C5505/C5515 
(PG2.0) ROM 
Address 

hwafft_br Int32 (32-bit) vector bit-reversal, Strict alignment requirement 0x00ff7342 0x00ff6cd6 
hwafft_8pts 8-point FFT/IFFT, 1 double-stage, 1 single-stage 0x00ff7356 0x00ff6cea 
hwafft_16pts 16-point FFT/IFFT, 2 double-stages, 0 single-stages 0x00ff7445 0x00ff6dd9 
hwafft_32pts 32-point FFT/IFFT, 2 double-stages, 1 single-stage 0x00ff759b 0x00ff6f2f 
hwafft_64pts 64-point FFT/IFFT, 3 double-stages, 0 single-stages 0x00ff78a4 0x00ff7238 
hwafft_128pts 128-point FFT/IFFT, 3 double-stages, 1 single-stage 0x00ff7a39 0x00ff73cd 
hwafft_256pts 256-point FFT/IFFT, 4 double-stages, 0 single-stages 0x00ff7c4a 0x00ff75de 
hwafft_512pts 512-point FFT/IFFT, 4 double-stages, 1 single-stage 0x00ff7e48 0x00ff77dc 
hwafft_1024pts 1024-point FFT/IFFT, 5 double-stages, 0 single-stages 0x00ff80c2 0x00ff7a56 
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4.5 Project Configuration for Calling Functions from ROM 
 

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy 
memory allocation restrictions for the data and scratch buffers. See the device-specific errata 
for an explanation of the restrictions and workarounds: 
• TMS320VC5505/VC5504 Fixed-Point DSP Silicon Errata (Silicon Revision 1.4) 

[literature number SPRZ281] 
• TMS320C5505/C5504 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ310] 
• TMS320C5515/C5514 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ308] 

The HWAFFT functions occupy approximately 4 KBytes of memory, so to conserve RAM they have been 
placed in the DSP’s 128 KBytes of on-chip ROM. These functions are identical to and have the same 
names as the functions stored in hwafft.asm, but they do not consume any RAM. In order to utilize these 
HWAFFT routines in ROM, add the following lines to the bottom of the project’s linker CMD file and  
remove the hwafft.asm file from the project (or exclude it from the build). When the project is rebuilt, the 
HWAFFT functions will reference the ROM locations. The HWAFFT ROM locations are different between 
VC5505 (PG1.4) and C5505/C5515 (PG2.0). ROM locations for both device families are shown in Table 2. 
/*** Add the following code to the linker command file to call HWAFFT Routines from ROM ***/ 

 
/* HWAFFT Routines ROM Addresses */ 
/* (PG1.4) */ 
/* 
_hwafft_br = 0x00ff7342; 
_hwafft_8pts = 0x00ff7356; 
_hwafft_16pts = 0x00ff7445; 
_hwafft_32pts = 0x00ff759b; 
_hwafft_64pts = 0x00ff78a4; 
_hwafft_128pts = 0x00ff7a39; 
_hwafft_256pts = 0x00ff7c4a; 
_hwafft_512pts = 0x00ff7e48; 
_hwafft_1024pts = 0x00ff80c2; 
*/ 

 
/* HWAFFT Routines ROM Addresses */ 
/* (PG 2.0) */ 
_hwafft_br = 0x00ff6cd6; 
_hwafft_8pts = 0x00ff6cea; 
_hwafft_16pts = 0x00ff6dd9; 
_hwafft_32pts = 0x00ff6f2f; 
_hwafft_64pts = 0x00ff7238; 
_hwafft_128pts = 0x00ff73cd; 
_hwafft_256pts = 0x00ff75de; 
_hwafft_512pts = 0x00ff77dc; 
_hwafft_1024pts = 0x00ff7a56; 
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5 Simple Example to Illustrate the Use of the FFT Accelerator 
 

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy 
memory allocation restrictions for the data and scratch buffers. See the device-specific errata 
for an explanation of the restrictions and workarounds: 
• TMS320VC5505/VC5504 Fixed-Point DSP Silicon Errata (Silicon Revision 1.4) 

[literature number SPRZ281] 
• TMS320C5505/C5504 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ310] 
• TMS320C5515/C5514 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ308] 

The source code below demonstrates typical use of the HWAFFT for the 1024-point FFT and IFFT cases. 
The HWAFFT Functions make use of Boolean flag variables to select between FFT and IFFT, Scale and 
No Scale mode, and Data and Scratch output locations. 

#define FFT_FLAG ( 0 ) /* HWAFFT to perform FFT */ 
#define IFFT_FLAG ( 1 ) /* HWAFFT to perform IFFT */ 
#define SCALE_FLAG ( 0 ) /* HWAFFT to scale butterfly output */ 
#define NOSCALE_FLAG ( 1 ) /* HWAFFT not to scale butterfly output */ 
#define OUT_SEL_DATA ( 0 ) /* Indicates HWAFFT output located in input data vector */ 
#define OUT_SEL_SCRATCH ( 1 ) /* Indicates HWAFFT output located in scratch vector */ 
Int32 *data; 
Int32 *data_br; 
Uint16 fft_flag; 
Uint16 scale_flag; 
Int32 *scratch; 
Uint16 out_sel; 
Int32 *result; 

 
5.1 1024-Point FFT, Scaling Disabled 

Compute 1024-point FFT with Scaling enabled: a ½ scale factor after every stage: 
fft_flag = FFT_FLAG; 
scale_flag = SCALE_FLAG; 

 
data = <1024-point Complex input>; 

 
/* Bit-Reverse 1024-point data, Store into data_br, data_br aligned to 

12-least significant binary zeros*/ 
hwafft_br(data, data_br, DATA_LEN_1024); /* bit-reverse input data, 

Destination buffer aligned */ 
data = data_br; 

 
/* Compute 1024-point FFT, scaling enabled. */ 
out_sel = hwafft_1024pts(data, scratch, fft_flag, scale_flag); 

 
if (out_sel == OUT_SEL_DATA) { 

result = data; 
}else { 

result = scratch; 
} 
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5.2 1024-Point IFFT, Scaling Disabled 
Compute 1024-point IFFT with Scaling disabled: 

fft_flag = IFFT_FLAG; 
scale_flag = NOSCALE_FLAG; 

 
data = <1024-point Complex input>; 

 
/* Bit-Reverse 1024-point data, Store into data_br, data_br aligned to 

12-least significant binary zeros */ 
hwafft_br(data, data_br, DATA_LEN_1024); 
data = data_br; 

 
/* Compute 1024-point IFFT, scaling disabled */ 
out_sel = hwafft_1024pts(data, scratch, fft_flag, scale_flag); 

 
if (out_sel == OUT_SEL_DATA) { 

result = data; 
} else { 

result = scratch; 
} 
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5.3 Graphing FFT Results in CCS4 
Code Composer includes a graphing utility that makes visualization of the FFT operation quick and easy. 
The Graph Utility is located in the CCSv4 window, under Tools → Graph → Single Time. 
If the FFT Result is stored in scratch (OutSel = 1) and scratch is located at address 0x3000… 

Plot the real part: 
 

Figure 6. Graphing the Real Part of the FFT Result in CCS4 

Plot the imaginary part: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Graphing the Imaginary Part of the FFT Result in CCS4 
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6 FFT Benchmarks 
Table 3 compares the FFT performance of the HWAFFT versus FFT computation using the CPU under 
the following conditions: 
• Core voltage = 1.05 V 
• PLL = 60 MHz 
• Power measurement condition: 

– At room temperature only 
– All peripherals are clock gated 
– Measured at VDDC 

Table 3. FFT Performance on HWAFFT vs CPU (Vcore = 1.05 V, PLL = 60 MHz) 
 

 
Complex FFT 

FFT with HWA CPU (Scale) HWA versus CPU 
FFT + BR (1) Cycles Energy/FFT 

(nJ/FFT) 
FFT + BR (1) Cycles Energy/FFT 

(nJ/FFT) 
x Times Faster 

(Scale) 
x Times Energy 
Efficient (Scale) 

8 pt 92 + 38 = 130 23.6 196 + 95 = 291 95.1 2.2 4 

16 pt 115 + 55 = 170 32.1 344 + 117 = 461 157.1 2.7 4.9 

32 pt 234 + 87 = 321 69.5 609 + 139 = 748 269.9 2.3 3.9 

64 pt 285 + 151 = 436 98.5 1194 + 211 = 1405 531.7 3.2 5.4 

128 pt 633 + 279 = 912 219.2 2499 + 299 = 2798 1090.4 3.1 5 

256 pt 1133 + 535 = 1668 407.2 5404 + 543 = 5947 2354.2 3.6 5.8 

512 pt 2693 + 1047 = 3740 939.7 11829 + 907 = 12736 5097.5 3.4 5.4 

1024 pt 5244 + 2071 = 7315 1836.2 25934 + 1783 = 27717 11097.9 3.8 6 
(1) BR = Bit Reverse 

 
In summary, Table 3 shows that for the test conditions used, HWAFFT is 4 to 6 times more energy 
efficient and 2.2 to 3.8 times faster than the CPU. Table 4 compares FFT performance of the accelerator 
versus FFT computation using the CPU under the following conditions: 
• Core voltage = 1.3 V 
• PLL = 100 MHz 
• Power measurement condition: 

– At room temperature only 
– All peripherals are clock gated 
– Measured at VDDC 

Table 4. FFT Performance on HWAFFT vs CPU (Vcore = 1.3 V, PLL = 100 MHz) 
 

 
Complex FFT 

FFT with HWA CPU (Scale) HWA versus. CPU 
FFT + BR (1) Cycles Energy/FFT 

(nJ/FFT) 
FFT + BR (1) Cycles Energy/FFT 

(nJ/FFT) 
x Times Faster 

(Scale) 
x Times Energy 
Efficient (Scale) 

8 pt 92 + 38 = 130 36.3 196 + 95 = 291 145.9 2.2 4 

16 pt 115 + 55 = 170 49.3 344 + 117 = 461 241 2.7 4.9 

32 pt 234 + 87 = 321 106.9 609 + 139 = 748 414 2.3 3.9 

64 pt 285 + 151 = 436 151.3 1194 + 211 = 1405 815.7 3.2 5.4 

128 pt 633 + 279 = 912 336.8 2499 + 299 = 2798 1672.9 3.1 5 

256 pt 1133 + 535 = 1668 625.6 5404 + 543 = 5947 3612.9 3.6 5.8 

512 pt 2693 + 1047 = 3740 1442.8 11829 + 907 = 12736 7823.8 3.4 5.4 

1024 pt 5244 + 2071 = 7315 2820.6 25934 + 1783 = 27717 17032.4 3.8 6 
(1) BR = Bit Reverse 

 
In summary, Table 4 shows that for the test conditions used, HWAFFT is 4 to 6 times more energy 
efficient and 2.2 to 3.8 times faster than the CPU. 
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7 Description of Open Source FFT Example Software 
An example application of the HWAFFT used in a real-time audio filter is available on the Open Source 
C5505 eZdsp website (http://www.code.google.com/p/c5505-ezdsp). The zip file named “VC5505 FFT 
Filter Demo” contains a Code Composer 4 Project and source code that implements a real-time low-pass 
filter on the VC5505 eZdsp USB Stick. Low-pass filtering is achieved through multiplication with a filter in 
the Frequency Domain. Recall that multiplication in the frequency domain is equivalent to convolution in 
the time domain. 
In this demo, 16-bit stereo samples are captured by the AIC3204 codec at a sampling frequency of 48 kHz 
and copied to the DSP memory with the DMA over the Inter-IC Sound (I2S) bus. Samples from the left and 
right channel are collected in separate ping-pong buffers. When the buffer becomes full a DMA interrupt 
updates the ping-pong buffer and triggers the FFT filter to convolve the new block of samples with the low- 
pass filter. 
Filtering is performed in three steps: 
1. Use the HWAFFT to calculate the FFT of the input block of samples from the ping-pong buffers. 
2. Multiply this complex FFT result with the pre-computed FFT result of the filter coefficients. 

Note: The FFT result of the filter coefficients is computed once during program initialization and stored 
for reuse. 

3. Calculate the IFFT of that product on the HWAFFT. 
Because a stream of samples is constantly arriving at the codec and block processing is utilized to filter 
the signal, the Constant-Overlap-and-Add (COLA) method is implemented to output a continuous, glitch- 
free signal to the codec. Finally, the resulting block of filtered and overlapped samples is transferred back 
to the codec for output with the DMA over the I2S bus. 
This demo provides you control over FFT Lengths (from 8 to 1024 points) and Filter Lengths (from 7 taps 
to 511 taps) for a thorough comparison. Additionally, simulation modes are available for using ideal 
sinusoidal signals (stored in memory) as inputs to the FFT Filter Demo. 
The block diagram in Figure 8 shows the data flow for one channel of the FFT Filter Demo. When 
processing stereo input (separate left and right channels), this data flow is duplicated for each channel. 

 

Figure 8. FFT Filter Demo Block Diagram 
 
 
 
 
 
 
 
 

SPRABB6B– June 2010 – Revised January 2013 FFT Implementation on the TMS320VC5505, TMS320C5505, and 21 
Submit Documentation Feedback TMS320C5515 DSPs 

To Codec From Codec or 
Waveforms in 

Memory 

IFFT    FFT 

FFT 

Filter 
Coeffs 

OutBuf 2 InBuf 2 

Overlap 
& 

Add 
CPLX 
MUL 

OutBuf 1 InBuf 1 

http://www.ti.com/
http://www.code.google.com/p/c5505-ezdsp
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABB6B


Copyright © 2010–2013, Texas Instruments Incorporated 

Computation of Large (Greater Than 1024-Point) FFTs www.ti.com 
 

 

 

8 Computation of Large (Greater Than 1024-Point) FFTs 
The HWAFFT can perform up to 1024-point complex FFTs/IFFTs at a maximum, but if larger FFT sizes 
(i.e. 2048-point) are required, the DSP core can be used to compute extra Radix-2 stages that are too 
large for the HWAFFT to handle. 
Recall the Radix-2 DIT equations: 
X (k ) = 1 ( X 

2 
(k ) + W k X 

even N odd 
(k )), k = 0 to N / 2 - 1  

(11) 

and 
X (k + N / 2) = 1 ( X 

2 

 
(k ) - W k X 

even N odd 

 
 
(k )), k = 0 to N / 2 - 1 

 
 
 

(12) 
 

8.1 Procedure for Computing Large FFTs 
The procedure for computing an additional Radix-2 DIT stage on the CPU is outlined: 
• Split the input signal into even and odd indexed signals, Xeven and Xodd. 
• Call N/2 point FFTs for the even and odd indexed inputs. 
• Complex Multiply the Xodd FFT results with the decimated twiddle factors for that stage. 
• Add the Xodd * Twiddle product to Xeven to find the first half of the FFT result. 
• Subtract Xodd * Twiddle to find the second half of the FFT result. 

 
8.2 Twiddle Factor Computation 

The HWAFFT stores 512 complex twiddle factors enabling FFT/IFFT computations up to 1024 points. 
Recall Equation 5 states that only twiddle factors from 0 to N/2 are needed. To compute FFT/IFFTs larger 
than 1024 points, you must supply N/2 complex twiddle factors, where N is the FFT length (powers of 2). 
The following MATLAB code creates real and imaginary parts of the twiddle factors for any N: 
N = 2048; 
n = 0:(N/2-1); 
twid_r = cos(2*pi*n/N); 
twid_i = -sin(2*pi*n/N); 

 
8.3 Bit-Reverse Separates Even and Odd Indexes 

A nice property of the bit-reversal process is the automatic separation of odd-indexed data from even- 
indexed data. Before the bit-reverse, even indexes have a 0 in the least significant bit and odd indexes 
have a 1 in the least significant bit. After the bit-reverse, even indexes have a 0 in the most significant bit, 
and odd indexes have a 1 in the most significant bit. Therefore, all even indexed data resides in the first 
half of the bit-reversed vector, and all odd indexed data resides in the second half of the bit-reversed 
vector. This process meets two needs: separation of even and odd indexed-data vectors and bit-reversing 
both vectors. 

 
8.4 2048-point FFT Source Code 

The following C source code demonstrates a 2048-point FFT using this approach. Two 1024-point FFTs 
are computed on the HWAFFT, and a final Radix-2 stage is performed on the CPU to generate a 2048- 
point FFT result: 

 

#define FFT_FLAG ( 0 ) /* HWAFFT to perform FFT */ 
#define IFFT_FLAG ( 1 ) /* HWAFFT to perform IFFT */ 
#define SCALE_FLAG ( 0 ) /* HWAFFT to scale butterfly output */ 
#define NOSCALE_FLAG ( 1 ) /* HWAFFT not to scale butterfly output */ 
#define OUT_SEL_DATA ( 0 ) /* Indicates HWAFFT output located in input data vector */ 
#define OUT_SEL_SCRATCH ( 1 ) /* Indicates HWAFFT output located in scratch vector */ 
#define DATA_LEN_2048 ( 2048 )  

 #define TEST_DATA_LEN (DATA_LEN_2048)  

 // Static Memory Allocations and Alignment:  

 #pragma DATA_SECTION(data_br_buf, "data_br_buf");  
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#pragma DATA_ALIGN (data_br_buf, 4096); 
// Align 2048-pt bit-reverse dest vector to byte addr w/ 13 least sig zeros 

Int32 data_br_buf[TEST_DATA_LEN]; 
 

#pragma DATA_SECTION(data_even_buf, "data_even_buf"); 
Int32 data_even_buf[TEST_DATA_LEN/2]; 

 
#pragma DATA_SECTION(data_odd_buf, "data_odd_buf"); 
Int32 data_odd_buf[TEST_DATA_LEN/2]; 

 
#pragma DATA_SECTION(scratch_even_buf, "scratch_even_buf"); 
Int32 scratch_even_buf[TEST_DATA_LEN/2]; 

 
#pragma DATA_SECTION(scratch_odd_buf, "scratch_odd_buf"); 
Int32 scratch_odd_buf[TEST_DATA_LEN/2]; 

 
// Function Prototypes: 
Int32 CPLX_Mul(Int32 op1, Int32 op2); 

// Yr = op1_r*op2*r - op1_i*op2_i, Yi = op1_r*op2_i + op1_i*op2_r 
Int32 CPLX_Add(Int32 op1, Int32 op2, Uint16 scale_flag); 

// Yr = 1/2 * (op1_r + op2_r), Yi = 1/2 *(op1_i + op2_i) 
Int32 CPLX_Subtract(Int32 op1, Int32 op2, Uint16 scale_flag); 

// Yr = 1/2 * (op1_r - op2_r), Yi = 1/2 *(op1_i - op2_i) 
 

// Declare Variables 
Int32 *data_br; 
Int32 *data; 
Int32 *data_even,  *data_odd; 
Int32 *scratch_even, *scratch_odd; 
Int32 *twiddle; 
Int32 twiddle_times_data_odd; 
Uint16 fft_flag; 
Uint16 scale_flag; 
Uint16 out_sel; 
Uint16 k; 

 
// Assign pointers to static memory allocations 
data_br = data_br_buf; 
data_even = data_even_buf; 
data_odd = data_odd_buf; 
scratch_even = scratch_even_buf; 
scratch_odd = scratch_odd_buf; 
twiddle = twiddle_buf; // 1024-pt Complex Twiddle Table 
data = invec_fft_2048pts; // 2048-pt Complex Input Vector 

 
// HWAFFT flags: 
fft_flag = FFT_FLAG; // HWAFFT to perform FFT (not IFFT) 
scale_flag = SCALE_FLAG; // HWAFFT to scale by 2 after each butterfly stage 

 
// Bit-reverse input data for DIT FFT calculation 
hwafft_br(data, data_br, DATA_LEN_2048); 

// data_br aligned to log2(4*2048) = 13 zeros in least sig bits 
data = data_br; 

 
// Split data into even-indexed data & odd-indexed data 
// data is already bit-reversed, so even-indexed data = first half & odd- 
indexed data = second half 
for(k=0; k<DATA_LEN_2048/2; k++) 
{ 

data_even[k] = data[k]; 
data_odd[k] = data[k+DATA_LEN_2048/2]; 

} 
 

// 1024-pt FFT the even data on the FFT Hardware Accelerator 
out_sel = hwafft_1024pts(data_even, scratch_even, fft_flag, scale_flag); 
if(out_sel == OUT_SEL_SCRATCH) data_even = scratch_even; 
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// 1024-pt FFT the odd data on the FFT Hardware Accelerator 
out_sel = hwafft_1024pts(data_odd, scratch_odd, fft_flag, scale_flag); 
if(out_sel == OUT_SEL_SCRATCH) data_odd = scratch_odd; 

 
// Combine the even and odd FFT results with a final Radix-2 Butterfly stage on the CPU 
for(k=0; k<DATA_LEN_2048/2; k++) // Computes 2048-point FFT 
{ 

// X(k) = 1/2*(X_even[k] + Twiddle[k]*X_odd(k)) 
// X(k+N/2) = 1/2*(X_even[k] - Twiddle[k]*X_odd(k)) 
// Twiddle[k]*X_odd(k): 

 
twiddle_times_data_odd = CPLX_Mul(twiddle[k], data_odd[k]); 

 
// X(k): 
data[k] = CPLX_Add(data_even[k], twiddle_times_data_odd, SCALE_FLAG); // Add then scale by 2 

 

// X(k+N/2): 
data[k+DATA_LEN_2048/2] = CPLX_Subtract(data_even[k], twiddle_times_data_odd, SCALE_FLAG); 

//Sub then scale 
} 

 

result = data; //2048-pt FFT result 
 

/* END OF 2048-POINT FFT SOURCE CODE */ 
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9 Appendix A Methods for Aligning the Bit-Reverse Destination Vector 
The optimized bit-reverse function hwafft_br requires the destination vector to be data aligned such that 
the starting address of the destination vector, data_br, contains log2(4 * N) zeros in the least significant 
bits of the binary address. There are a few different ways to force the linker map the bit-reverse 
destination vector to an address with log2(4 * N) zeros in the least significant bits. Three different methods 
are shown here. For further details, refer to the TMS320C55x C/C++ Compiler User’s Guide (SPRU280). 

 

9.1 Statically Allocate Buffer at Beginning of Suitable RAM Block 
 

NOTE: To execute the HWAFFT routines from the ROM of the DSP, the programmer must satisfy 
memory allocation restrictions for the data and scratch buffers. See the device-specific errata 
for an explanation of the restrictions and workarounds: 
• TMS320VC5505/VC5504 Fixed-Point DSP Silicon Errata (Silicon Revision 1.4) 

[literature number SPRZ281] 
• TMS320C5505/C5504 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ310] 
• TMS320C5515/C5514 Fixed-Point DSP Silicon Errata (Silicon Revision 2.0) 

[literature number SPRZ308] 

Place the buffer at the beginning of a DARAM or SARAM block with log2(4 * N) zeros in the least 
significant bits of its byte address. For example, memory section DARAM2_3 below starts at address 
0x0004000, which contains 14 zeros in the least significant bits of its binary address (0x0004000 = 
0b0100 0000 0000 0000). Therefore, this address is a suitable bit-reverse destination vector for FFT 
Lengths up to 4096-points because log2(4 * 4096) = 14. 
In the Linker CMD File... 

MEMORY 
{ 

MMR (RWIX): origin = 0000000h, length = 0000c0h /* MMRs */ 
DARAM0 (RWIX): origin = 00000c0h, length = 001f40h /* on-chip DARAM 0, 4000 words */ 
DARAM1 (RWIX): origin = 0002000h, length = 002000h /* on-chip DARAM 1, 4096 words */ 
DARAM2_3 (RWIX): origin = 0004000h, length = 004000h /* on-chip DARAM 2_3, 8192 words */ 
DARAM4 (RWIX): origin = 0008000h, length = 002000h /* on-chip DARAM 4, 4096 words */ 
... (leaving out rest of memory sections) 

} 
 

SECTIONS 
{ 

data_br_buf : > DARAM2_3 /* ADDR = 0x004000, Aligned to addr with 14 least-sig zeros */ 
} 
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9.2 Use the ALIGN Descriptor to Force log2(4 * N) Zeros in the Least Significant Bits 
The ALIGN descriptor forces the alignment of a specific memory section, while providing the linker with 
added flexibility to allocate sections across the entire DARAM or SARAM because no blocks are statically 
allocated. It aligns the memory section to an address with log2(ALIGN Value) zeros in the least significant 
bits of the binary address. 
For example, the following code aligns data_br_buf to an address with 12 zeros in the least significant 
bits, suitable for a 1024-point bit-reverse destination vector. 
In the Linker CMD File... 

MEMORY 
{ 

MMR (RWIX): origin = 0000000h, length = 0000c0h /* MMRs */ 
DARAM (RWIX): origin = 00000c0h, length = 00ff40h /* on-chip DARAM 32 Kwords */ 
SARAM (RWIX): origin = 0010000h, length = 040000h /* on-chip SARAM 128 Kwords */ 

} 
 

SECTIONS 
{ 

data_br_buf : > DARAM ALIGN = 4096 
/* 2^12 = 4096 , Aligned to addr with 12 least-sig zeros */ 

} 
 

9.3 Use the DATA_ALIGN Pragma 
The DATA_ALIGN pragma is placed in the source code where the vector is defined. The syntax is shown 
below. 
#pragma DATA_ALIGN (symbol, constant); 
The DATA_ALIGN pragma aligns the symbol to an alignment boundary. The boundary is the value of the 
constant in words. For example, a constant of 4 specifies a 64-bit alignment. The constant must be a 
power of 2. 
In this example, a constant of 2048 aligns the data_br_buf symbol to an address with 12 zeros in the least 
significant bits, suitable for a 1024-point bit-reverse destination vector. 
In the source file where data_br is declared (e.g. main.c)... 

#pragma DATA_SECTION(data_br_buf, "data_br_buf"); 
#pragma DATA_ALIGN (data_br_buf, 2048); 
Int32 data_br_buf[TEST_DATA_LEN]; 
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Appendix A Revision History 

 

This revision history highlights the changes made to this document to make it a SPRABB6B revision. 
 

Table 5. Revision History 
 

See Revision 

Entire document Added notes to satisfy memory allocation restrictions for the data and scratch FFT 
buffers before executing HWAFFT routines from the ROM of the DSP. 
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