
1SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Application Report
SPRABA5D–January 2014–Revised January 2019

Using the AM18xx Bootloader

Joseph Coombs

ABSTRACT
This application report describes various boot mechanisms supported by the AM18xx bootloader read-only
memory (ROM) image. Topics covered include the Application Image Script (AIS) boot process, an
AISgen tool used to generate boot scripts, protocol for booting the device from an external master device,
a UART Boot Host GUI for booting the device from a host PC, and any limitations, default settings, and
assumptions made by the bootloader.

Project collateral discussed in this application report can be downloaded from the following URL:
http://www.ti.com/lit/zip/spraba5.

Contents
1 Introduction ... 3
2 Boot Modes ... 3
3 Non-AIS Boot Modes .. 3
4 Application Image Script (AIS) Boot... 6
5 AISgen: Tool to Generate Boot Script (AIS Image).. 11
6 Master Boot – Booting From a Slave Memory Device .. 19
7 Slave Boot – Booting From an External Master Host ... 20
8 UART Boot Host - Using Your PC as a UART Boot Master.. 24
9 Boot Requirements, Constraints and Default Settings .. 26
10 References .. 30
Appendix A Boot Mode Selection Table .. 31
Appendix B Details of Supported NAND Devices ... 32
Appendix C CRC Computation Algorithm... 34
Appendix D Details of Pre-Defined ROM Functions... 37
Appendix E ROM Revision History .. 43

List of Figures

1 NOR Boot Configuration Word... 4
2 Structure of Secondary Bootloader for NOR Boot .. 4
3 Placement of AIS for NOR Boot ... 5
4 Structure of AIS .. 6
5 Structure of an AIS Command .. 6
6 Section Load Command .. 6
7 Section Fill Command... 7
8 Enable CRC Command ... 7
9 Disable CRC Command .. 7
10 Validate CRC Command.. 8
11 Handling CRC Error ... 8
12 Validate CRC Flow for Slave Mode ... 8
13 Start-Over Command ... 8
14 Jump and Close Command .. 9
15 Jump Command ... 9

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D
http://www.ti.com/lit/zip/spraba5

www.ti.com

2 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

16 Sequential Read Enable Command... 9
17 Function Execute Command.. 10
18 Boot Table Command ... 10
19 Type Word for Boot Table Opcode .. 11
20 AISgen Main Window.. 12
21 Structure of NAND Page and Spare Bytes ... 20
22 Flowchart: Start-Word Synchronization ... 21
23 Flowchart: Ping Op-Code Synchronization ... 23
24 Flowchart: Op-Code Synchronization ... 24
25 UART Boot Host utility... 25
26 I2C SDA Signal Diagram for I2C EEPROM Boot (with sequential read enabled) 28
27 SPI Mode for Communication .. 28
28 SPI Signal Diagram for SPI EEPROM Boot (with sequential read enabled) 29
29 PLL Configuration Register ... 37
30 PLL1 Configuration Register.. 38
31 SPI Master Register ... 38
32 I2C Master Register.. 39
33 I2C Master Register.. 39
34 MMC/SD Register .. 39

List of Tables

1 NOR Boot Configuration Word Field Descriptions .. 4
2 Type Word Values for Section Fill Opcode... 7
3 Type Word for Boot Table Opcode Field Descriptions .. 11
4 Optional Tabs in the AISgen Window ... 12
5 Values of Non-User Configurable PLL0 Dividers (relative to DIV1) ... 15
6 Default Clock Configurations for Various Boot Modes .. 27
7 UART Baud Rate Selection Using Boot Pins... 27
8 Default PLL Configuration in I2C1 Slave-Boot Mode.. 28
9 NAND Configuration Selection Using Boot Pins ... 29
10 MMC/SD Memory Card Selection Using Boot Pins.. 29
11 Boot Mode Selection... 31
12 Parameters for Supported NAND Devices.. 32
13 Expected Contents of Fourth ID Byte for NAND Devices Listed in With Sizes Greater Than 128 MB 33
14 Supported NAND Devices .. 33
15 Lookup Table for CRC Algorithm .. 34
16 List of Pre-Defined ROM Functions.. 37
17 PLL Configuration Register Field Descriptions ... 37
18 PLL Configuration Register Field Descriptions ... 38
19 SPI Master Register Field Descriptions ... 38
20 I2C Master Register Field Descriptions ... 39
21 I2C Master Register Field Descriptions ... 39
22 MMC/SD Register Field Descriptions.. 39
23 Power and Sleep Configuration (PSC) Register Field Descriptions ... 41
24 Pinmux Configuration Register Field Descriptions... 42

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com Introduction

3SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Trademarks
Code Composer Studio is a trademark of Texas Instruments.
Windows, Microsoft are registered trademarks of Microsoft Corporation in the United States and/or other
countries.
All other trademarks are the property of their respective owners.

1 Introduction
The AM18xx bootloader resides in the ROM of the device. This document describes the boot protocol
used by the bootloader, discusses tools required to generate boot script, and talks about
limitations/assumptions for the bootloader.

The AM18xx bootloader has undergone multiple revisions. To check the version of your device, perform
the following steps.
1. Connect to the device in the Code Composer Studio™ software.
2. Select View → Memory.
3. Enter the address of the beginning of the ROM, 0xFFFD0000, at the top of the memory window.
4. Select Character mode at the bottom.

The text d800k008 should appear in the memory window at offset 0x08. For earlier ROM revisions, the
text could also appear as d800k002, d800k004, or d800k006. It’s important to know your ROM revision
when generating boot images. If you don’t see any of these values in the memory window, this document
is not applicable to your device. An abbreviated summary of the ROM boot loader revision history can be
found in Appendix E.

2 Boot Modes
The bootloader supports booting from various memory devices (master mode) as well as from an external
master (slave mode). A complete list of the supported boot modes and the configuration of the boot pins
to select each one of them can be found in Appendix A.

All boot modes, except the host port interface (HPI) and two out of the three NOR-boot modes, make use
of the AIS for boot purpose. AIS is a Texas Instruments, Inc. proprietary boot script format widely used in
TI devices. All boot modes supporting AIS present a unified interface to you. AIS and AISgen, the tool
used to generate AIS, will be discussed in detail later in this document.

There are few boot modes that do not make use of AIS and have a special boot interface. For instance,
• The HPI boot method requires the HPI host to load the application image to the device memory and

does not use AIS.
• There are three methods to boot from a NOR Flash, only one of which uses AIS.

Each of these will be discussed later in the document.

3 Non-AIS Boot Modes

3.1 NOR Boot
NOR (or parallel Flash) boot happens from a NOR Flash device connected to the external memory
interface (EMIFA) peripheral on EMA_CS[2]. For this boot mode, the bootloader configures EMIFA for 8-
bit access and reads the first word from the NOR Flash. This first word indicates if the NOR Flash should
be accessed in 16-bit or 8-bit mode, as well as which boot method to be used. This word is interpreted as
shown in Figure 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Configuration Word

Secondary
Boot Loader

Non-AIS Boot Modes www.ti.com

4 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

The NOR boot configuration word register is shown in Figure 1 and described in Table 1.

Figure 1. NOR Boot Configuration Word
31 12 11 8

Reserved COPY

7 6 5 4 3 1 0
Reserved METHOD Reserved ACCESS

Table 1. NOR Boot Configuration Word Field Descriptions

Bit Field Value Description
31-12 Reserved 0 Reserved
11-8 COPY Length of data to copy from the base of the NOR Flash to the base of the On-chip RAM. This value

is used only for the Legacy NOR boot method.
0x00 1 KB
0x01 2 KB

...
0x0E 15 KB
0x0F 16 KB

7-6 Reserved 0 Reserved
5-4 METHOD Boot method

0x0 Legacy NOR boot
0x1 Direct NOR boot
0x2 AIS NOR boot

3-1 Reserved 0 Reserved
0 ACCESS EMIFA access mode

0x0 8-bit access
0x1 16-bit access

If ACCESS == 0x1, bootloader reconfigures EMIFA for 16-bit access before using specified boot
METHOD to boot from NOR. The default configuration of the bootloader is for an 8-bit access.

3.1.1 Legacy NOR Boot
When METHOD==0x0, the Legacy NOR boot option will be executed. For Legacy NOR boot, the
bootloader copies a block of data, whose size is indicated by the COPY field, from the start of NOR Flash
(address 0x60000000) to the start of On-chip RAM (0x80000000). This block of data should hold a
secondary bootloader, as shown in Figure 2.

Figure 2. Structure of Secondary Bootloader for NOR Boot

After copying the required data to On-chip RAM, the bootloader transfers control to the secondary
bootloader by branching to address 0x80000004.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Configuration Word

AIS

www.ti.com Non-AIS Boot Modes

5SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

3.1.2 Direct NOR Boot
When METHOD==0x1, the Direct NOR boot option will be executed. For Direct NOR boot, the bootloader
transfers control directly to the secondary bootloader present in NOR Flash by branching to address
0x60000004. The secondary bootloader is directly executed from there.

3.1.3 AIS NOR Boot
When METHOD==0x2, the AIS NOR boot option will be executed. When booting with this method, the
bootloader expects the AIS image to start from address 0x60000004, which is mapped to NOR Flash.

Figure 3. Placement of AIS for NOR Boot

The AIS boot method is described in detail later in this document.

3.2 Host Port Interface (HPI) Boot
HPI boot happens from the HPI0 peripheral in 16-bit mode. The sequence to boot from HPI is listed
below:
• Bootloader interrupts the host by setting the HINT bit, in the HPIC register, to inform that it is ready and

that the host can start loading the application image to device memory.
• Host acknowledges this interrupt by clearing the HINT bit.
• Host loads the application image to device memory and writes application entry point to location

0x80000000 in device memory.
• Host reads back the final word it wrote to device memory to make sure all HPI writes have completed

successfully.
• Host interrupts bootloader by setting DSPINT bit in HPIC register to inform that loading of application

image is complete.
• Bootloader acknowledges host by clearing DSPINT bit.
• Bootloader reads application entry point (written by host) from address 0x80000000 and branches to it.

3.3 Emulation Debug Boot
The emulation debug boot powers on the device, but does not load or execute any application code.
Instead, the ARM falls into an idle loop immediately after the device powers on. An emulation connection
(JTAG) must then be established to load program data or perform any other operations.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

0x58535901

Address

Size

Data

...

Opcode

Argument

...

Data
...

Magic Word

Command

...

J&C Command

Application Image Script (AIS) Boot www.ti.com

6 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

4 Application Image Script (AIS) Boot
AIS is a format of storing the boot image. Apart from the HPI and two NOR-boot modes described above,
all boot modes supported by the AM18xx bootloader use AIS for boot purposes.

AIS is a binary language, accessed in terms of 32-bit (4-byte) words in little endian format. AIS starts with
a magic word (0x41504954) and contains a series of AIS commands, which are executed by the
bootloader in sequential manner. The Jump & Close (J&C) command marks the end of AIS.

Figure 4. Structure of AIS

Each AIS command consists of an opcode, optionally followed by one or more arguments, followed by
optional data.

Figure 5. Structure of an AIS Command

The opcode and its arguments are each one word (4 bytes) wide. If the length of data is not a multiple of 4
bytes, it is padded with zeros to make it so.

Knowledge of AIS commands is not required to use the bootloader, but will be discussed in the following
sub-sections for completeness. You can skip to the next section if knowledge of AIS commands is not
desired.

4.1 Section Load Command (0x58535901)
The user application consists of a number of initialized sections and an application entry point. The
Section Load command is used to load each initialized section of the application to device memory.

Figure 6. Section Load Command

This command takes two arguments: address and size of the section to be loaded, followed by contents of
the section (data). If the length of the section content is not a multiple of 4 bytes, appropriate zero padding
is added to make it so; zero padding is not reflected in the SIZE argument.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

0x58535904

0x58535903

0x5853590A

Address

Type

Pattern

Size

www.ti.com Application Image Script (AIS) Boot

7SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

When CRC checking is enabled, the address and size arguments are fed into the CRC update function in
that order. After the section is fully loaded to memory, the section data is fed into the CRC update function
beginning at the specified address.

4.2 Section Fill Command (0x5853590A)
The Section Fill command is an optimized version of the Section Load command, which is used when a
section is completely filled with a pattern (for example, 0x00 or 0xFF).

Figure 7. Section Fill Command

This command takes four arguments: address and size of the section to be filled, the type of memory
access, and the pattern that will fill the memory.

Table 2. Type Word Values for Section Fill Opcode

Value Length of Data Pattern
0 8-bit
1 16-bit
2 32-bit

When CRC checking is enabled, the address, size, type, and pattern arguments are fed into the CRC
update function in that order. After the section is completely filled with the specified pattern, the section
data is fed into the CRC update function beginning at the specified address.

4.3 Enable CRC Command (0x58535903)
This command enables calculation of the cyclic redundancy check (CRC) over the user-application data
loaded using the Section Load/Section Fill commands.

Figure 8. Enable CRC Command

This command does not take any arguments or data.

4.4 Disable CRC Command (0x58535904)
This command disables the calculation of the CRC.

Figure 9. Disable CRC Command

This command does not take any arguments or data.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

0x58535908

OPCODE_SYNC

CRC

DeviceHost

0x58535902

CRC

Seek

Enable CRC

Section Load

Error

0x58535902

CRC

Seek

Application Image Script (AIS) Boot www.ti.com

8 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

4.5 Validate CRC Command (0x58535902)
This command is used to validate the CRC calculated by the bootloader.

Figure 10. Validate CRC Command

This command takes two arguments: the CRC and the seek value. The CRC is the expected value of the
CRC with which the calculated CRC should be compared. In the case of a CRC match, the seek value is
ignored and the next command is executed. However, in the case of a CRC mismatch, the seek value can
be added to the current position in AIS to locate the last Section Load/Section Fill command so that the
command can be executed again.

Figure 11. Handling CRC Error

This command behaves differently for master- and slave-boot modes. In master-boot mode, the
bootloader reads the expected CRC from the boot device and compares it with the calculated CRC. In
case of an error, the bootloader adds the seek value to the current read position in AIS and starts
executing commands from that position in AIS.

Figure 12. Validate CRC Flow for Slave Mode

In slave-boot mode, on receiving the Validate CRC command, the bootloader provides the calculated CRC
to the host. The host then compares this value with the one from AIS and updates its AIS read position,
depending on the result of the CRC comparison. In the case of an error, the host sends the Start-Over
command to the device so that the bootloader can re-initialize the calculated CRC and be ready to receive
the next command.

Figure 13. Start-Over Command

The Start-Over command (0x58535908) takes no arguments or data. This command does not appear in
AIS and is only used in slave-boot mode by the host to recover from a CRC error.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

0x58535963

0x58535905

Address

0x58535906

Address

www.ti.com Application Image Script (AIS) Boot

9SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

4.6 Jump & Close Command (0x58535906)
The Jump & Close command is used to mark the end of AIS. On receiving this command, the bootloader
closes the boot peripheral, restores the selected configurations of the device to its default state, and then
transfers control to the user application.

Figure 14. Jump and Close Command

This command takes one argument: the entry point of the ARM application. This is the address the
bootloader transfers control to after closing the boot peripheral. The application starts execution after this
jump and the bootloader loses its control over the device.

4.7 Jump Command (0x58535905)
This command is similar to the Jump & Close command, except that the bootloader does not close the
boot peripheral and does not change any device state. This command is not used to transfer control to the
application. Rather, it is used to execute a temporary code, which may tweak the bootloader or device
state. This command is used to add post-ROM features to the bootloader.

Figure 15. Jump Command

This command takes one argument: the address of a temporary function to be called. This function should
be loaded to the device memory before the Jump command, and it should also return control to the
bootloader after performing its intended task.

4.8 Sequential Read Enable Command (0x58535963)
When booting from a serial peripheral interface (SPI) or inter-integrated circuit (I2C) slave device, the
bootloader uses a random read method to read the boot image from the slave memory device. This
method requires sending a read command and a read address to read each byte. Many recent memory
devices support reading in sequential method, where data can be read in sequential order without sending
a read command/address for each byte. Using this method to read data greatly reduces boot time. The
Sequential Read Enable command is used to enable the bootloader to use the sequential read method.

Figure 16. Sequential Read Enable Command

This command takes no arguments or data.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

0x58535907

Type

Address

Data

Sleep

0x5853590D

FXN NUM & ARG CNT

Argument

...

Application Image Script (AIS) Boot www.ti.com

10 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

4.9 Function Execute Command (0x5853590D)
The Function Execute command is a generic interface for device-specific initialization functions such as
phase-locked loop (PLL) and external memory interface (EMIF) configuration. A set of pre-defined
functions are part of the ROM and a function table is maintained by the bootloader with pointers to each of
them. The Function Execute command can be used to execute any of them. Details of pre-defined ROM
functions that can be called using this command are given in Appendix D.

Figure 17. Function Execute Command

The number of arguments in this command is variable. The first argument specifies the function ID (index
of function in the function table) in the lower 16 bits and the number of arguments that the function takes
in the upper 16 bits. The number of arguments following the first argument matches the number specified
in its upper 16 bits.

4.10 Boot Table Command (0x58535907)
The Boot Table (or SET) command writes 8-, 16-, or 32-bit data to any address in device memory.
Additionally, it instructs the device to wait for a fixed number of cycles after the memory write occurs. This
can allow memory-mapped register writes to take effect before the bootloader moves on to the next
opcode.

Figure 18. Boot Table Command

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com AISgen: Tool to Generate Boot Script (AIS Image)

11SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

This command takes four arguments. First is the type (size and format) of the memory location to be
written; the contents of this word are described in the table below. The address comes next, followed by
the data. Note that the data is given as 32 bits in the AIS regardless of how many bits will actually be
written. The last parameter is the number of cycles to delay execution of the next opcode.

Figure 19. Type Word for Boot Table Opcode
31 24 23 16 15 8 7 0

Reserved STOP START LENGTH

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3. Type Word for Boot Table Opcode Field Descriptions

Bit Field Value Description
31-24 Reserved 0 Reserved
23-16 STOP 0-31 The highest (or most significant) bit of the custom data field. Only used when LENGTH = 3 or 4.
15-8 START 0-31 The lowest (or least significant) bit of the custom data field. Only used when LENGTH = 3 or 4.
7-0 LENGTH Size of data word

0 8-bit
1 16-bit
2 32-bit

3-4 Custom field defined by STOP, START. Data outside this field at the target address will be
preserved.

5-FFhC Reserved

5 AISgen: Tool to Generate Boot Script (AIS Image)
AISgen is a Windows®-based tool that is used to generate the boot image in AIS format. This tool requires
Microsoft® .NET Framework for its operation.

5.1 Installation
Before starting, make sure that you have Microsoft .NET Framework Version 2.0 or later installed on your
system. You can download it from the Microsoft website at http://www.microsoft.com.

To install AISgen, download and execute the latest installer from the following URL:
http://www.ti.com/lit/zip/SPRABA5.

It is recommended to install this tool at its default location.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D
http://www.microsoft.com
http://www.ti.com/lit/zip/SPRABA5

AISgen: Tool to Generate Boot Script (AIS Image) www.ti.com

12 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

5.2 Getting Started
On successful installation, a link to start AISgen is created in the following folder: Start Menu → Program
Files → Texas Instruments → AISgen for D800K008.

Click on this link to start AISgen. It may take some time for the main window to appear.

Figure 20. AISgen Main Window

The AISgen window groups controls within tabs to reduce interface clutter. The General tab is always
enabled and controls general configuration settings, such as the boot mode selection. Table 4 lists
additional tabs that can appear depending on selections made in the General tab.

(1) Enabled for NOR Flash and NAND Flash-boot modes only
(2) Enabled for SPI master, I2C master, and UART-boot modes only

Table 4. Optional Tabs in the AISgen Window

Tab Name Enabled By Description
Flash Boot mode selection (1) Configures data width (NOR only) and EMIF timing for Flash interface
Peripheral Boot mode selection (2) Configures peripheral speed and enables sequential read
PLL0 Configure PLL0 checkbox Configures PLL0 clock multiplication and division
SDRAM Configure SDRAM checkbox Configures SDRAM interface register settings
PLL1 Configure PLL1 checkbox Configures PLL1 clock multiplication and division
DDR Configure DDR2 checkbox Configures DDR interface register settings
PSC Configure PSC checkbox Allows LPSCs to be turned on, turned off, or placed in sync. reset
Pinmux Configure Pinmux checkbox Configures Pinmux registers

You may notice that some controls are disabled. A control may be disabled for multiple reasons:
• You may not have selected an associated option. For example, when the Specify Entrypoint checkbox

is not selected, the adjacent numeric entry field is disabled.
• The control displays a calculated result and cannot be set directly. For example, CPU frequency on the

PLL0 tab is a calculated result.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com AISgen: Tool to Generate Boot Script (AIS Image)

13SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

The File menu can be used to remember and re-apply previous settings. File → Save Configuration saves
the current settings from all tabs to a file for later use, and File → Load Configuration re-applies settings
from a file. Select File → Restore Defaults at any time to restore all fields to the default configuration
shown in Figure 20.

You may also notice an icon next to one or more controls (such as the AIS File text box near the bottom of
the main window) of a red circle and exclamation point. This icon indicates an improper value in the
control left of the icon.

To see error details, hover the mouse over this icon for 2 seconds and an error message tool tip will
appear. An icon next to the AIS file specification box indicates that a file name is required to generate AIS.

The area below the AIS file specification box is used to display status messages.

For example, if you click on the Generate AIS button when one or more error indicators are visible, a
message appears stating: One or more parameter error must be corrected.

When an AIS file is successfully generated, this area will display the AIS file’s size. It will also report when
the AISgen configuration settings are saved to or loaded from a file.

5.3 Generating AIS
As an example, create a simple AIS that boots an application on the ARM using the default configuration.

Click the first Device Type dialog box and select the appropriate ROM revision ID for your device. If you’re
not sure which option to pick, please refer to the introduction of this document for instructions on how to
check the ROM ID of your device. The default selection in the AISgen tool is d800k008, which
corresponds to the most recent ROM revision.

Click the second Device Type dialog box and select ARM. You have to manually specify the ARM
application and output AIS files. To specify the AIS file, type C:\ais.bin in the AIS file text box (left of
error indicator) or use the browser button (right of the error indicator) to do so. Notice that the error
indicator vanishes as the text is entered in the AIS file specification box.

Specify an ARM application file (*.out) in the appropriate box by either typing its name in the appropriate
box or using the browse button to locate it. A valid ARM application can be created by building a project in
Code Composer Studio.
Now, clicking on the Generate AIS button will successfully generate an AIS file (as C:\ais.bin). The
size of this file depends on the ARM application.

Now you are ready to examine some of the additional options available.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

AISgen: Tool to Generate Boot Script (AIS Image) www.ti.com

14 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

5.3.1 Boot Mode and Boot Peripheral Setup
The General tab allows you to specify the boot mode that you plan to use. Depending on your selection, a
Flash or Peripheral tab may appear. These tabs contain additional controls that allow you to optimize boot
time (in master mode).

The Flash tab appears when either NOR Flash or NAND Flash-boot mode is selected. This tab contains
controls that specify 8- or 16-bit data width (NAND is fixed at 8-bit data width) and interface timing settings
for the EMIF flash interface. For more information on the register fields, see AM17x/AM18x ARM
Microprocessor External Memory Interface A (EMIFA) User's Guide (SPRUFV0).

The Peripheral tab appears when one of the SPI or I2C master-boot modes is selected or when universal
asynchronous receiver/transmitter (UART) boot mode is selected. This tab configures the peripheral speed
and defaults to conservative speeds for broader compatibility. These are documented in Table 6. If the
boot peripheral supports faster speeds, you can specify a speed so that the bootloader can re-configure
clocks and boot faster. The Module Clock field displays the clock input to the boot peripheral from the
PLL. This value may change based on PLL configuration.

For SPI and I2C master modes, you can enter a desired speed. Depending on the PLL settings and
granularity in peripheral clock division, AISgen calculates the actual speed nearest to the desired speed
and shows it in an adjacent box. Recent I2C devices support speeds up to 400 kHz, and SPI devices
support speeds up to 33 MHz.

SPI and I2C master modes also support sequential read mode. This option speeds up the boot process by
allowing the bootloader to repeatedly read sequential data words from a slave memory device after
sending only one read request and address to the device. Make sure that your slave memory device
supports sequential read mode before selecting the Enable Sequential Read checkbox.

For UART-boot modes, baud rate is fixed at 115.2 kbps for boot purposes and cannot be changed.
However, AISgen will still calculate an actual baud rate based on your PLL configuration and show it in the
Peripheral tab.

5.3.2 Phase-Locked Loop (PLL) Setup
When the device is taken out of reset, the PLL modules are set in bypass mode by default. During
application development, the PLL configuration is typically handled by a GEL file. In a production
environment, the bootloader can configure the PLL. The AISgen General tab specifies the clock source
and its frequency, and the PLL0 and PLL1 tabs can configure the multipliers and dividers to reach the
desired CPU frequency.

The PLL0 tab appears when the Configure PLL0 checkbox is selected. This tab configures the multiplier
and dividers for PLL0. When changing any of these values, calculated frequencies will update to reflect
the changes. The multiplier and divider values that you enter are the actual multiplication and division
factors (x), not the values that get programmed into the corresponding PLL registers (x - 1). The default
settings of the PLL dividers that are not configurable are shown in Table 5.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D
http://www.ti.com/lit/pdf/SPRUFV0

www.ti.com AISgen: Tool to Generate Boot Script (AIS Image)

15SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Table 5. Values of Non-User Configurable PLL0 Dividers (relative to DIV1)

Divider Configured To
PLL0 DIV2 Divide by 2
PLL0 DIV4 Divide by 4
PLL0 DIV6 Divide by 1

The PLL1 tab appears when the Configure PLL1 checkbox is selected. Note that PLL1 must be configured
if DDR is configured. Selecting the Configure DDR checkbox will automatically select Configure PLL1 as
well. This tab is similar to the PLL0 tab, but its settings are applied to PLL1 instead of PLL0.

5.3.3 Synchronous Dynamic Random Access Memory (SDRAM) Setup
The SDRAM tab appears when the Configure SDRAM checkbox is selected. This tab configures external
SDRAM access through EMIFA. The EMIFA registers need to be configured before any access to
SDRAM is made.

Values entered for each the EMIF register are directly programmed to the corresponding register by the
bootloader. The Use 4.5 divisor for the SDRAM checkbox enables the use of an alternate clock divider.
The SDRAM clock field displays the calculated clock speed, and is the same as the identical field in the
PLL0 tab.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

AISgen: Tool to Generate Boot Script (AIS Image) www.ti.com

16 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

5.3.4 DDR Setup
The DDR tab appears when the Configure DDR checkbox is selected. This tab configures external DDR
memory access through the DDR Controller. The DDR Controller registers need to be configured before
any access to DDR is made. The DDR controller can be configured to access DDR2 or mDDR memory.
Certain registers are only used for mDDR.

Values entered for each DDR register are directly programmed to the corresponding register by the
bootloader. The Use direct clock from PLL1 checkbox allows the DDR Controller to use the output of PLL1
before the post divider is applied. The DDR clock field displays the calculated clock speed for DDR
access, and is the same as the identical field in the PLL1 tab.

5.3.5 PSC Setup
The PSC tab appears when the Configure PSC checkbox is selected. This tab instructs the bootloader to
explicitly set the state of specified LPSCs within power and sleep controller (PSC). LPSCs can be
enabled, disabled, or placed in synchronous reset. Each text box can contain an arbitrary number of LPSC
numbers separated by semicolons (;). The bootloader automatically enables the LPSC for the active boot
peripheral.

Care must be exercised when specifying the state of LPSC modules. The AISgen tool does not
comprehend the function of each LPSC, and it will not warn you if inappropriate choices are made.
Turning on extra LPSCs can cause unnecessary power consumption, and turning off critical LPSCs can
disable the boot peripheral or even shut down the CPU. For more information on the use of each LPSC,
see the device-specific data sheet .

NOTE: Enabling PSC1 module 8 requires a forced transition that is not supported by the bootloader.
The AISgen application will display an error message if you attempt to enable this module.

5.3.6 Pin Multiplexing Setup
The Pinmux tab appears when the Configure Pinmux checkbox is selected. This tab instructs the
bootloader to apply specified pin multiplexing (pinmux) settings to one or more pinmux register. The
bootloader automatically applies pinmux necessary to operate the active boot peripheral.

To set a pinmux register during boot, set a numeric up/down field to the desired pinmux register (0-19).
The adjacent entry field will then specify the value for that pinmux register. The AISgen application only
allows one bit per hexadecimal digit to equal 1; the only valid digits are 0, 1, 2, 4, and 8. Additional
restrictions may apply for a particular register. For more information on the pinmux registers, see your
device-specific System Reference Guide.

Take care not to undo the pinmux setting for the active boot peripheral. Doing so can cause the boot
process to fail.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com AISgen: Tool to Generate Boot Script (AIS Image)

17SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

5.3.7 Application File Selection
The bootloader requires a valid application in order to boot the ARM. The full path to an application file
must be specified in the ARM Application text field.

NOTE: As of version 1.3, AISgen recognizes both COFF and ELF input files as application files.
Files in any other format will be treated as binary files.

Non-application files may also be used. AISgen automatically parses input files to determine whether they
are valid application files. Files that don’t match the expected format are treated as binary files. Binary files
require a target address, which is specified as “@<32-bit hex address>” immediately following the file
name. Note that SDRAM or DDR addresses will only load successfully if the appropriate configuration is
applied; the AISgen utility will not automatically configure external memory access. For more information,
see Section 5.3.3 and Section 5.3.4.

The AISgen utility allows multiple application and/or binary files to be combined into a single AIS file. Each
file name must be separated by a semicolon (;). If an entrypoint is specified in the General tab, that
entrypoint always takes precedence. Otherwise, the entrypoint of the first application file is used. If no
application file is specified (all files are binary files), an entrypoint must be specified. For more information
specifying an application entrypoint, see Section 5.3.10.2.

Files can be entered directly into the ARM Application File text box or selected graphically using the
browse button (…). To add another application or binary file without deleting the current contents of the
text box, use the add button (+).

5.3.8 AIS File Selection
Finally, you must specify the name of the AIS file that you want to generate. You can manually enter the
full path of the desired AIS file or click on the browse button (…) to select it graphically.

If the specified AIS file has *.h or *.c as an extension, it is generated in C header format that can be
inserted into the source of another application. This format is plain text and can be read to check
information about embedded AIS commands, their arguments, and optional data. This can be useful for
diagnostic purposes.

When any other extension is specified, the file is generated in AIS Binary format. A file in this format is
typically written to a Flash memory device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Validate CRC

Enable CRC

Section Load

Error

AISgen: Tool to Generate Boot Script (AIS Image) www.ti.com

18 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

5.3.9 Status and Messages
After specifying all the boot parameters, generate the AIS by clicking on the Generate AIS button at the
lower right corner of the AISgen main window. If AIS generation succeeds, a message will appear
reporting the AIS file size.

If AIS generation fails, a message reporting the error encountered will appear. Possible error conditions
include specifying only binary input files without specifying an entrypoint, invalid AIS file names, or file
access errors.

The AISgen utility also stores more detailed information in the file AISgen_log.txt. Before viewing this file,
close the AISgen utility to ensure all log data has been written. Also, be aware that this file is reset
(overwritten) every time the AISgen utility is run.

5.3.10 Additional AIS Options
In addition to the basic options, the bootloader also supports error checking (CRC) and the ability to
specify a custom entry point for the application following boot.

5.3.10.1 CRC
When the Enable CRC checkbox is selected, AISgen adds extra commands in the AIS to check for errors
while transferring/loading the application data.

For master boot modes, the bootloader calculates the CRC over each section of the application data and
checks it against the expected value from AIS. In case of an error, the bootloader loads the section again,
re-calculates the CRC and checks again with the expected value. If a CRC error is found in three
successive attempts, the boot process is aborted.

For slave-boot modes, the external master reads the calculated CRC from the device and validates it
against the expected value from AIS. In case of an error, it is up to the external master to decide how
many times it wants to retry loading the section before reporting failure.

5.3.10.2 Specifying the Application Entrypoint
When the Specify Entrypoint checkbox is selected, AISgen allows a custom entrypoint to be specified in
the adjacent text box. This is the address to which the bootloader will exit after boot completes. It is often
unnecessary to specify this value; AISgen will automatically read the entrypoint from an ARM application
file (in COFF or ELF format).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com Master Boot – Booting From a Slave Memory Device

19SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

If an entrypoint is specified, that entrypoint always takes precedence. Otherwise, the entrypoint of the
application file is used. If more than one application file is specified, the entrypoint from the first file is
used, but a manually specified entrypoint supersedes any number of application files.

If no application file is specified (all files are binary files), an entrypoint must be specified manually.

5.3.11 Command Line Usage
The AISgen tool supports command line usage to facilitate the automation. To run AISgen from a terminal
window, follow this procedure:
1. Create a configuration file (*.cfg) using the GUI. This file will specify all parameters needed to generate

an AIS file, including the input and output file names.
2. Open a terminal window and navigate to the AISgen directory.
3. Run AISgen with the following usage:

AISgen_d800k008.exe –cfg=”<CFG file
name>”

This procedure allows quick generation of an updated AIS image after modifying the underlying application
or binary input files.

6 Master Boot – Booting From a Slave Memory Device

6.1 I2C EEPROM Boot
To boot from a slave memory device connected to an I2C peripheral, the AIS contents (in binary format)
can be flashed directly to the memory device. The boot image must be placed at address 0 of the memory
device. The memory device must respond to I2C slave address 0x50.

6.2 SPI EEPROM or Flash Boot
To boot from a slave memory device connected to an SPI peripheral, the AIS contents (in binary format)
can be flashed directly to the memory device. The boot image must be placed at address 0 of the memory
device. SPI EEPROMs must use 16-bit addressing, while SPI flash chips must use 24-bit addressing. The
read command opcode for the SPI flash device must be 0x03.

6.3 NOR Flash Boot
To boot from a NOR Flash, a configuration word is required before AIS as shown in Figure 3. NOR Flash
should be connected to EMA_CS[2] of the EMIFA peripheral.

6.4 NAND Flash Boot
To boot from NAND Flash, the AIS should be written to NAND block 1 (NAND block 0 is not used by
default) in a sequential manner, skipping (and marking) any bad blocks. The bootloader detects a bad
block by examining the spare bytes in the first and second pages of the current block. For NAND devices
that comply with the ONFI standard, the first and last pages are used instead. Figure 21 illustrates the
structure of a NAND data page. Each page includes N segments of spare bytes, where N is the number of
data bytes per page divided by 512. Each segment of spare bytes contains 6 test bytes and 10 ECC
bytes. For those pages that are checked during bad block detection, all the test bytes in each segment
must equal FFh; any other value indicates that the page (and its entire block) is bad and should not be
used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

6

Page Data

Spare Bytes 1

. . .

Spare Bytes N

Test Bytes

ECC Bytes 10

N x 512

16

N x 512

16

Master Boot – Booting From a Slave Memory Device www.ti.com

20 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Figure 21. Structure of NAND Page and Spare Bytes

NAND Flash should be connected to EMA_CS[3] of the EMIFA peripheral. The ALE and CLE pins of the
NAND device should be connected to the EMA_A[1] and EMA_A[2] pins of the EMIFA peripheral,
respectively. Complete details of supported NAND devices are available in Appendix B.

6.5 MMC/SD Boot
The MultiMedia Card/Secure Data (MMC/SD) boot mode is compliant with version 2.0 of the SD
specification and version 4.2 of the enhanced MultiMedia Card (eMMC) specification. The boot loader and
MMC/SD peripheral does not support features of the eMMC 4.3 or 4.4 specifications related to boot (no
boot operation mode and no support for boot partitions). The AIS boot image is expected to be in the user
data area of the memory device, written to address 0 of that region. The bootloader detects the AIS image
by checking for the magic word (0x41504954). If the magic word is not found, the bootloader increments
the starting address by 0x200 and tries again. The bootloader fails if the magic word is not found within
the first 2 MB of the memory card.

Typically, the ROM boot loader will first try to detect an SD card. If that fails (a timeout occurs), the boot
loader will then attempt to find an MMC or eMMC device. In cases where it is known that an SD card will
never be present (for example, a memory card slot is not used and an eMMC device is placed on the
PCB), the BOOT[5] pin of the SoC device should be pulled high to force the bootloader to skip the SD
detection. This will guarantee the quickest boot in these circumstances. For further details, see Section 9.

7 Slave Boot – Booting From an External Master Host
When booting from an external host processor, the host processor acts as the communication master, and
the bootloader acts as the slave. Since the bootloader doesn’t have direct access to the AIS, the host
processor must transfer it to the bootloader through a well-defined protocol explained in the following
sections. An AIS interpreter is required on the host processor to control this transfer. A reference
implementation of the host-side AIS parsing process is provided with the software collateral for this
application report. For more information, see Section 8.3.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Start

Send
XMT_START

Receive
a Word

Is it
RECV_START

?

No

End

XMT_START
Host ARM

XMT_START

XMT_START

RECV_START

www.ti.com Slave Boot – Booting From an External Master Host

21SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

7.1 About the AIS Interpreter on the Host
The AIS interpreter on the host processor is responsible for transferring the AIS to the bootloader.
Therefore, the host has to understand the transfer protocol and implement the required handshake
mechanism.

NOTE: For the sake of simplicity, the AIS interpreter on the host processor will simply be referred to
as host in these sections.

It is important to establish a reliable link between the host and the bootloader before starting a serial boot
load using the AIS. Once this link is established, the AIS can be transferred to the bootloader. This
process is divided into three states: start-word synchronization (SWS), ping Op-code synchronization
(POS) and op-code synchronization (OS).

7.2 Start-Word Synchronization (SWS)
After power ON reset (POR), the bootloader takes some time to initialize and configure the boot
peripheral. Similarly, the host also takes its own time to initialize and prepare to boot the device. A SWS
mechanism is used to synchronize the device and host after POR.

To achieve SWS, the host repeatedly sends transmit-start-word (XMT_START) to the device until it
receives the proper response (receive-start-word or RECV_START) from the device.

Figure 22. Flowchart: Start-Word Synchronization

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Slave Boot – Booting From an External Master Host www.ti.com

22 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

For the SPI and I2C slave modes, the bootloader operates the SPI/I2C peripheral in 16-bit mode, so that
both start words are 16-bit (0x5853 & 0x5253). For the UART-boot mode, the bootloader operates the
UART peripheral in 8-bit mode, so that both start words are 8-bit (0x58 & 0x52).

NOTE: While start-words are 8-/16-bit, all other data including op-codes and CRC are 32-bit, and all
32 bits need to be transmitted to the bootloader regardless of the boot mode.

For UART boot mode, the bootloader transmits the ASCII string BOOTME to the host before it is ready to
begin SWS. This transmission occurs only once immediately following reset, and the host should not
initiate SWS until after receiving this string. SWS and all subsequent steps proceed as normal using
binary data transmission; no other data should be sent or received in ASCII format.

NOTE: When the bootloader begins running, the device’s PLL is configured in bypass mode. If the
external host device is fast enough, it will need to insert a delay after each transmission to
allow the bootloader time to finish processing the previous data. The need for such delays
can be alleviated later in the boot process by configuring the PLL via the Function Execute
Command.

7.3 Ping Op-Code Synchronization (POS)
The POS is used to further ensure that the serial link between the host and the device is reliable for
exchanging boot information.

After successful SWS:
• The host sends the PING_DEVICE (0x5853590B) op-code to the bootloader and receives the

RECV_PING_DEVICE (0x5253590B) as acknowledgment from the bootloader.
• The host sends an arbitrary 32-bit number (N) to the bootloader and gets back the same number (N)

from the bootloader.
• The host counts from 1 to N, sending each number to the bootloader and receiving the same number

in response. Each number sent or received is a 32-bit value.

NOTE: All multi-word values transmitted by the host should be sent in little-endian order. For
instance, the Ping opcode (0x5853590B) is sent as 0x0B, 0x59, 0x53, 0x58 in 8-bit mode or
0x590B, 0x5853 in 16-bit mode. The same applies to responses received from the
bootloader.

The count (N) is selected by the host (OEM) and should be appropriate to assure successful
communication between the device and host. The recommended value of N is 2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Start

Is it
RECV_PING_

DEVICE
?

No

PING_DEVICE
Host ARM

RECV_PING_DEVICE

N(2)

N(2)

Send PING_DEVICE
and Receive a Word

Is it N
?

No

Send N
and Receive a Word

SWS

Is it 1
?

No

Send 1
and Receive a Word

SWS

2, 3, ..., N-1

Is it N
?

No

Send N
and Receive a Word

SWS

End

1

1

2

2

www.ti.com Slave Boot – Booting From an External Master Host

23SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Figure 23 shows the flowchart of how the POS should be implemented on the host:

Figure 23. Flowchart: Ping Op-Code Synchronization

After the successful execution of POS, the host starts reading AIS commands (magic number is checked
and ignored by the host) from its source and starts booting the device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Start

Is it
RECV_<op-code>

?

No

<op-code>
Host ARM

RECV_<op-code>

Send <op-code>
and Receive a Word

End

<op-code>

<op-code>

Slave Boot – Booting From an External Master Host www.ti.com

24 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

7.4 Opcode Synchronization (OS)
As the bootloader may take an indeterminate amount of time to execute an AIS command, a handshake
mechanism is needed between the host and the bootloader before the host can send any command to the
bootloader. The opcode synchronization method is used for this purpose.

All opcodes, including PING_DEVICE, that are transmitted by the host to the bootloader are of the form
0x585359##, where ## varies for individual opcodes. The bootloader acknowledges each opcode with a
corresponding RECV opcode. The RECV opcodes are generated from the original opcodes by changing
the most significant byte to 0x52. Thus, they are of the form 0x525359##.

Not getting a correct response (RECV opcode) from the bootloader indicates that the bootloader is busy
executing the previous command. The host should continue sending the opcode until it is successfully
acknowledged by the bootloader. Figure 24 shows the flowchart of how the OS should be implemented on
the host:

Figure 24. Flowchart: Op-Code Synchronization

The host is required to understand each command and supply the required arguments and data to the
bootloader.

8 UART Boot Host - Using Your PC as a UART Boot Master
UART Boot Host is a Windows™ based tool that is serves as an external boot master for UART boot
mode. It uses a binary AIS file generated by AISgen to execute the entire UART boot process using a
COM port on the host PC. This tool requires Microsoft .NET Framework Version 2.0 to run.

8.1 Getting Started
The UART Boot Host utility is installed alongside the AISgen utility. For installation instructions, see
Section 5.2. After installing AISgen, look for the UART Boot Host in the UartHost subfolder. Run
UartHost.exe to begin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com UART Boot Host - Using Your PC as a UART Boot Master

25SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

The UART Boot Host utility consists of a single window. This window handles all configuration, allows you
to start and stop the boot process, and reports status and error messages as the device boots (see
Figure 25).

Figure 25. UART Boot Host utility

The AIS File text box specifies the AIS file to be used during boot. Note that only binary AIS files should
be used; AIS files in C header format are invalid. The file can be typed manually or found using the
browse button (“…”).

The Serial Port text box specifies the name of the serial port that will be used to boot the device. For most
PCs, the serial port has a name like COM1 or COM2. The default baud rate used by the bootloader is
115.2 kbps. For more information on using different baud rates, see Section 9.

The Wait for BOOTME checkbox allows you to specify whether the PC waits to receive BOOTME on its
serial port before beginning boot. This should be checked by default.

The large read-only text box displays status and error message during the boot process. It will initially be
blank and should automatically clear itself at the beginning of each boot process.

The Start and Stop buttons, respectively, initiate and abort the boot process. The Start button is only
active when no boot is currently in progress and the Stop button is only active when boot is currently in
progress.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

UART Boot Host - Using Your PC as a UART Boot Master www.ti.com

26 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

8.2 Booting the Device
If Wait for BOOTME is checked:
1. Connect the PC serial port to the boot device.
2. Choose a binary AIS file and serial port in the UART Boot Host GUI.
3. Click Start
4. Turn on (or reset) the boot device

If Wait for BOOTME is not checked:
1. Connect the PC serial port to the boot device.
2. Choose a binary AIS file and serial port in the UART Boot Host GUI.
3. Turn on (or reset) the boot device
4. Click Start

The boot process runs until completing successfully or encountering an error. A series of messages will
appear in the large text box as the device boots. Messages are prefixed by category names:
• File I/O – PC system messages related to opening and reading the specified AIS file.
• Serial Port – PC system messages related to sending and receiving data with the UART device.
• System – Miscellaneous PC system messages.
• AIS Parse – Messages related to the boot master process as outlined in Section 7.

When a message stating boot completed successfully appears, the boot device is already executing the
application contained within the AIS file.

A boot in progress can be cancelled at any time using the Stop button.

8.3 The AIS_Util.cs Source Code
The UART Boot Host includes a single C# source file named AIS_Util.cs, which serves as a reference
implementation of the boot master requirements laid out in Section 7. This source file is used by the UART
Boot Host application itself, and is provided as-is with no direct support.

9 Boot Requirements, Constraints and Default Settings

9.1 General Comments
• Non-NAND Memory Usage: The bootloader uses 2 KB of ARM local RAM starting from 0xFFFF0000.

This memory should not be used by any initialized section of the user application.
• Peripheral Configuration: The bootloader automatically configures the PSC and pinmux for the boot

peripheral. It is not necessary to manually configure the PSC and pinmux for the boot peripheral.
• DDR Configuration: If the DDR configuration ROM function is called, then the bootloader automatically

configures the PSC and pinmux for the DDR interface. It is not necessary to manually configure the
PSC and pinmux for the DDR interface if the ROM function is called.

• Peripheral Configuration: Peripheral configuration settings applied during boot are not necessarily
preserved when boot completes. If your application code uses the same peripheral that boots the
device, your application should perform the normal procedure to initialize and configure that peripheral
after boot. The exceptions to this rule are LPSC and pinmux settings, which are preserved after boot
completes.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com Boot Requirements, Constraints and Default Settings

27SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

• Default clocks: For I2C and SPI master-boot modes and UART-boot modes, the bootloader applies
default peripheral clocks settings as shown in Table 6.

Table 6. Default Clock Configurations for Various Boot Modes

Input Clock
Boot Mode 25 MHz 24 MHz
I2C0 Master 104.2 kHz 100.0 kHz
I2C1 Master 130.2 kHz 125.0 kHz
SPI Master 833 kHz 800 kHz
UART - 115200 baud

9.2 UART-Boot Modes
• By default, UART boot operates at 115.2 kbps. The external UART device must be configured as

follows: 115200 baud, 8 data bits, no parity, 1 stop bit, and no flow control.
• To obtain a standard baud rate of 115.2 kbps with default settings, the device input clock must be

24.000 MHz. Optionally, boot pins BOOT[7:5] may be used to enable alternative input clock sources
and baud rates. You must specify the appropriate input clock speed, PLL0 multiplier, and UART baud
rate in the AISgen tool to ensure that the UART peripheral operates at constant speed throughout the
boot process.

Table 7. UART Baud Rate Selection Using Boot Pins

BOOT[7..5] PLL0 Multiplier UART Divider UART
Oversampling

Input Clock
(MHz)

Resulting Baud
Rate

Usable
Standard Baud

000 x1 8 x13 24 115384 115200
000 x1 8 x13 12 57692 57600
001 x1 9 x13 27 115384 115200
001 x1 9 x13 13.5 57692 57600
010 x1 10 x13 30 115384 115200
010 x1 10 x13 15 57692 57600
011 x25 70 x13 16.8 115384 115200
100 x25 80 x13 19.2 115384 115200
101 x20 82 x13 24.576 115272 115200
101 x20 82 x13 12.288 57636 57600
110 x23 96 x13 25 115184 115200
111 x21 91 x13 26 115384 115200
111 x21 91 x13 13 57692 57600

NOTE: ROM revision d800k002 ignores these pins and always uses the 000 configuration. To check
your ROM revision, follow the instructions in Section 1.

9.3 I2C-Boot Modes
• Default clocks: For I2C and SPI master-boot modes and UART-boot modes, the bootloader applies

default peripheral clocks settings as shown in Table 6:
• All I2C Modes: The I2C bus must use 7-bit addressing.
• When booting from I2C0 in slave mode, the input clock source must be in the 21.0 MHz – 36.0 MHz

range.
• The bootloader must be addressed with the I2C slave address 0x28.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

MSB D6 D5 D4 D3 D2 D1 LSB

D7 D6 D5 D4 D3 D2 D1 D0

SPICLK

SPISIMO

SPISOMI

Sample In
Reception

1 2 3 4 5 6 7 8

Boot Requirements, Constraints and Default Settings www.ti.com

28 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

• When booting from I2C1 in slave mode, the input clock source must be in the 16.8 MHz – 30.0 MHz
range. In this boot mode, the bootloader initializes the PLL0 with the following parameters and takes it
out of the default bypass mode. This is required to set the I2C1 module clock to a valid range.

• The bootloader must be addressed with the I2C slave address 0x29.
• The EEPROM must respond to the I2C slave address 0x50. The bootloader will look for an AIS image

at offset 0x00000000.

Table 8. Default PLL Configuration in I2C1 Slave-Boot Mode

Div/Mul Value Clock
Freq Assuming
24 MHz Input

Freq Assuming
25 MHz Input

PREDIV /1
PLLM *20
POSTDIV /2
PLLDIV1 /1 SYSCLK1 240 250
PLLDIV2 /2 SYSCLK2 120 125
PLLDIV3 /4 SYSCLK3 60 62.5
PLLDIV4 /4 SYSCLK4 60 62.5
PLLDIV6 /1 SYSCLK6 240 250
PLLDIV7 /5 SYSCLK7 48 50

Figure 26. I2C SDA Signal Diagram for I2C EEPROM Boot (with sequential read enabled)

9.4 SPI-Boot Modes
• All SPI boot modes use the chip select 0 signal. The appropriate pin (SPI0_SCS[0] or SPI1_SCS[0])

must be connected to the external SPI device.
• The SPI EEPROM device must use 16-bit addressing, and its read command must equal 0x03. The

bootloader will look for an AIS image at offset 0x00000000.
• The SPI flash device must use 24-bit addressing, and its read command must equal 0x03. The

bootloader will look for an AIS image at offset 0x00000000.
• In the SPI-boot modes, the received data is sampled at the rising edge of the clock and the data to be

transmitted on the falling edge of the clock as shown in Figure 27:

Figure 27. SPI Mode for Communication

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com Boot Requirements, Constraints and Default Settings

29SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Figure 28. SPI Signal Diagram for SPI EEPROM Boot (with sequential read enabled)

9.5 NOR-Boot Modes
• For NOR legacy boot mode, the bootloader uses between 1 KB and 16 KB of Shared RAM starting

from 0x80000000. The exact amount used depends on the NOR configuration word. For more details,
see Section 3.1. This memory should not be used by any initialized section of the user application.

• See Section 6 for details.

9.6 NAND-Boot Modes
• The bootloader uses 8 KB of ARM local RAM starting from 0xFFFF0000. This memory should not be

used by any initialized section of the user application.
• The bootloader normally begins with NAND block 1 and reads an entire block of NAND memory before

any ROM functions, including PLL configuration, can be run. Optionally, boot pins BOOT[6:5] can be
used to start at NAND block 0 and apply a standard PLL configuration before the initial NAND read
operation. This PLL configuration is superseded by any configuration that is later applied using the
PLL0 or PLL1 Configuration ROM functions.

• See Section 6 for details.

Table 9. NAND Configuration Selection Using Boot Pins

BOOT[6:5] Starting NAND Block PLL0 Configuration Applied
00 1 None
01 1 PLLM = 24; POSTDIV = 3; SYSCLK3 = 2
10 0 None
11 0 PLLM = 24; POSTDIV = 3; SYSCLK3 = 2

NOTE: ROM revisions d800k002, d800k004, and d800k006 ignore these pins and always use the
00 configuration. To check your ROM revision, follow the instructions in Section 1.

9.7 MMC/SD-Boot Modes
• The bootloader determines which type of memory card to read (MMC or SD) based on boot pin

BOOT[5].

Table 10. MMC/SD Memory Card Selection Using Boot Pins

BOOT[5] Memory Card Type
0 SD or MMC
1 MMC only

• See Section 6 for details.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Boot Requirements, Constraints and Default Settings www.ti.com

30 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

9.8 HPI-Boot Modes
• The bootloader uses the first 4 B of Shared RAM starting at 0x80000000. This memory should not be

used by any initialized section of the user application.

10 References
• AM17x/AM18x ARM Microprocessor External Memory Interface A (EMIFA) User's Guide (SPRUFV0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D
http://www.ti.com/lit/pdf/SPRUFV0

31SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Appendix A
SPRABA5D–January 2014–Revised January 2019

Boot Mode Selection Table

A.1 Boot Mode Selection Table
Table 11 lists various boot modes supported by the bootloader and a configuration of boot pins required to
select a boot mode. The boot pins are latched by the bootloader when the device exits reset (on the rising
edge of reset).

(1) The boot pins, BOOT[7:0], are multiplexed with the following signals: VPIF_DOUT[15:8], LCD_DATA[15:8], UPP_XDATA[7:0],
and GPIO_7[7:0].

(2) There are three methods to boot from NOR flash; only one of them uses AIS.
(3) In NAND boot mode, BOOT[6:5] apply additional configuration at the start of the boot process. For BOOT[6:5] = 00, NAND boot

begins in block 1 and does not apply any initial PLL configuration before the first block read. For more information, see
Section 9.

(4) NAND 16 boot mode is not supported for ROM revision d800k002. To check your ROM revision, follow the instructions in
Section 1.

(5) In MMC/SD boot mode, BOOT[5] determines which type of memory card is used: MMC or SD. For more information, see
Section 9.

(6) MMC/SD boot mode is only supported by ROM revision d800k008. To check your ROM revision, follow the instructions in
Section 1.

(7) In UART boot mode, BOOT[7:5] configure the UART peripheral to run at standard baud rates for different input clocks. For
BOOT[7:5] = 000, the UART peripheral runs at 115.2 kbps with a 24 MHz input clock. For more information, see Section 9.

Table 11. Boot Mode Selection
BOOT[7:0] (1) Boot Mode AIS

0000 0010 NOR Yes (2)

0xx0 1110 (3) NAND 8 Yes

0xx1 0000 (3) (4) NAND 16 Yes

00x1 1100 (5) (6) MMC/SD0 Yes

0000 0000 I2C0 EEPROM Yes

0000 0110 I2C1 EEPROM Yes

0000 0001 I2C0 Slave Yes

0000 0111 I2C1 Slave Yes

0000 1000 SPI0 EEPROM Yes

0000 1001 SPI1 EEPROM Yes

0000 1010 SPI0 Flash Yes

0000 1100 SPI1 Flash Yes

0001 0010 SPI0 Slave Yes

0001 0011 SPI1 Slave Yes

xxx1 0110 (7) UART0 Yes

xxx1 0111 (7) UART1 Yes

xxx1 0100 (7) UART2 Yes

0000 0100 HPI No

0001 1110 Emulation Debug No

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

32 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Appendix B
SPRABA5D–January 2014–Revised January 2019

Details of Supported NAND Devices

B.1 Details of Supported NAND Devices
The AM18xx bootloader supports NAND devices that comply with the ONFI standard. If a NAND device is
ONFI-compliant, the bootloader reads device information from the NAND parameters page.

If the device is not ONFI-compliant or if the bootloader fails to read valid ONFI parameters (with correct
CRC), the bootloader reads the NAND device ID and attempts to use Table 12 to determine the device
parameters. If the table reports that the NAND is larger than 128 MB, or if the device ID is not found in the
table, the bootloader attempts to read parameters from the NAND device’s fourth ID byte. Otherwise, the
table parameters are used. The bootloader expects the contents of this ID byte to match Table 13. Fields
marked unused are not checked by the bootloader.

Table 12. Parameters for Supported NAND Devices

Device ID Number of Blocks Pages Per Block Bytes Per Page Size Interface
0x33 1024 32 512+16 16 MB 8 bit
0x35 2048 32 512+16 32 MB 8 bit
0x36 4096 32 512+16 64 MB 8 bit
0x39 1024 16 512+16 8 MB 8 bit
0x43 1024 32 512+16 16 MB 16 bit
0x45 2048 32 512+16 32 MB 16 bit
0x46 4096 32 512+16 64 MB 16 bit
0x49 1024 16 512+16 8 MB 16 bit
0x53 1024 32 512+16 16 MB 16 bit
0x55 2048 32 512+16 32 MB 16 bit
0x56 4096 32 512+16 64 MB 16 bit
0x59 1024 16 512+16 8 MB 16 bit
0x6B 1024 16 512+16 8 MB 8 bit
0x71 16384 32 512+16 256 MB 8 bit
0x72 8192 32 512+16 128 MB 16 bit
0x73 1024 32 512+16 16 MB 8 bit
0x74 8192 32 512+16 128 MB 16 bit
0x75 2048 32 512+16 32 MB 8 bit
0x76 4096 32 512+16 64 MB 8 bit
0x78 8192 32 512+16 128 MB 8 bit
0x79 8192 32 512+16 128 MB 8 bit
0xA1 1024 64 2048+64 128 MB 8 bit
0xB1 1024 64 2048+64 128 MB 16 bit
0xC1 1024 64 2048+64 128 MB 16 bit
0xE3 512 16 512+16 4 MB 8 bit
0xE5 512 16 512+16 4 MB 8 bit
0xE6 1024 16 512+16 8 MB 8 bit
0xF1 1024 64 2048+64 128 MB 8 bit
0xF5 2048 32 512+16 32 MB 8 bit

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com Details of Supported NAND Devices

33SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Table 13. Expected Contents of Fourth ID Byte for NAND Devices Listed in Table 12 With Sizes Greater
Than 128 MB

Bit Field Value Description
7 - - Unused
6 BUS 0 Data bus width (8-bit)

5:4 BLOCK Block size (without spare bytes)
0x0 64 KB
0x1 128 KB
0x2 256 KB
0x3 512 KB

3 - - Unused
2 SPARE 1 Spare area size (16 B)

1:0 PAGE Page size (without spare bytes)
0x0 1 KB
0x1 2 KB
0x2 4 KB
0x3 8 KB (not supported)

Table 14 provides a list of verified-supported NAND flash devices.

Table 14. Supported NAND Devices

Device Manufacturer
MT29F4G08AACWC:C Micron
MT29F4G08ABADAWP:D Micron
MT29F2G08AAC Micron
NAND01GR3B2CZ STMicroelectronics
MT29F8G08ADBDAH4 Micron
MT29F4G16ABADAH4-IT:D Micron

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

34 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Appendix C
SPRABA5D–January 2014–Revised January 2019

CRC Computation Algorithm

C.1 CRC Computation Algorithm
The following code demonstrates calculation of the CRC as performed by the AIS generation script and
the bootloader. This code should be used as a reference to implement CRC calculation on other
platforms.
static Uint32 LOCAL_updateCRC (Uint8 *data_ptr, Uint32

section_size, Uint32 crc)
{

Uint32 i;

// Prepare input to get back into calculation state (this means
// initial input when starting fresh should be 0x00000000)
crc = crc ^ 0xFFFFFFFF;

// Perform the algorithm on each byte
for (i = 0; i < section_size; i++)
{

crc = (crc >> 8) ^ CRC_Lut[(crc & 0xFF) ^ data_ptr[i]];
}

// Exclusive OR the result with the specified value
crc = (crc ^ 0xFFFFFFFF);

return crc;
}

This algorithm takes a lookup table (LUT) approach. The table consists of 256 32-bit values, which are
given in Table 15.

Table 15. Lookup Table for CRC Algorithm

Index Word Index Word Index Word Index Word
1 0x00000000 65 0x76DC4190 129 0xEDB88320 193 0x9B64C2B0
2 0x77073096 66 0x01DB7106 130 0x9ABFB3B6 194 0xEC63F226
3 0xEE0E612C 67 0x98D220BC 131 0x03B6E20C 195 0x756AA39C
4 0x990951BA 68 0xEFD5102A 132 0x74B1D29A 196 0x026D930A
5 0x076DC419 69 0x71B18589 133 0xEAD54739 197 0x9C0906A9
6 0x706AF48F 70 0x06B6B51F 134 0x9DD277AF 198 0xEB0E363F
7 0xE963A535 71 0x9FBFE4A5 135 0x04DB2615 199 0x72076785
8 0x9E6495A3 72 0xE8B8D433 136 0x73DC1683 200 0x05005713
9 0x0EDB8832 73 0x7807C9A2 137 0xE3630B12 201 0x95BF4A82
10 0x79DCB8A4 74 0x0F00F934 138 0x94643B84 202 0xE2B87A14
11 0xE0D5E91E 75 0x9609A88E 139 0x0D6D6A3E 203 0x7BB12BAE
12 0x97D2D988 76 0xE10E9818 140 0x7A6A5AA8 204 0x0CB61B38
13 0x09B64C2B 77 0x7F6A0DBB 141 0xE40ECF0B 205 0x92D28E9B
14 0x7EB17CBD 78 0x086D3D2D 142 0x9309FF9D 206 0xE5D5BE0D
15 0xE7B82D07 79 0x91646C97 143 0x0A00AE27 207 0x7CDCEFB7
16 0x90BF1D91 80 0xE6635C01 144 0x7D079EB1 208 0x0BDBDF21

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com CRC Computation Algorithm

35SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Table 15. Lookup Table for CRC Algorithm (continued)
Index Word Index Word Index Word Index Word

17 0x1DB71064 81 0x6B6B51F4 145 0xF00F9344 209 0x86D3D2D4
18 0x6AB020F2 82 0x1C6C6162 146 0x8708A3D2 210 0xF1D4E242
19 0xF3B97148 83 0x856530D8 147 0x1E01F268 211 0x68DDB3F8
20 0x84BE41DE 84 0xF262004E 148 0x6906C2FE 212 0x1FDA836E
21 0x1ADAD47D 85 0x6C0695ED 149 0xF762575D 213 0x81BE16CD
22 0x6DDDE4EB 86 0x1B01A57B 150 0x806567CB 214 0xF6B9265B
23 0xF4D4B551 87 0x8208F4C1 151 0x196C3671 215 0x6FB077E1
24 0x83D385C7 88 0xF50FC457 152 0x6E6B06E7 216 0x18B74777
25 0x136C9856 89 0x65B0D9C6 153 0xFED41B76 217 0x88085AE6
26 0x646BA8C0 90 0x12B7E950 154 0x89D32BE0 218 0xFF0F6A70
27 0xFD62F97A 91 0x8BBEB8EA 155 0x10DA7A5A 219 0x66063BCA
28 0x8A65C9EC 92 0xFCB9887C 156 0x67DD4ACC 220 0x11010B5C
29 0x14015C4F 93 0x62DD1DDF 157 0xF9B9DF6F 221 0x8F659EFF
30 0x63066CD9 94 0x15DA2D49 158 0x8EBEEFF9 222 0xF862AE69
31 0xFA0F3D63 95 0x8CD37CF3 159 0x17B7BE43 223 0x616BFFD3
32 0x8D080DF5 96 0xFBD44C65 160 0x60B08ED5 224 0x166CCF45
33 0x3B6E20C8 97 0x4DB26158 161 0xD6D6A3E8 225 0xA00AE278
34 0x4C69105E 98 0x3AB551CE 162 0xA1D1937E 226 0xD70DD2EE
35 0xD56041E4 99 0xA3BC0074 163 0x38D8C2C4 227 0x4E048354
36 0xA2677172 100 0xD4BB30E2 164 0x4FDFF252 228 0x3903B3C2
37 0x3C03E4D1 101 0x4ADFA541 165 0xD1BB67F1 229 0xA7672661
38 0x4B04D447 102 0x3DD895D7 166 0xA6BC5767 230 0xD06016F7
39 0xD20D85FD 103 0xA4D1C46D 167 0x3FB506DD 231 0x4969474D
40 0xA50AB56B 104 0xD3D6F4FB 168 0x48B2364B 232 0x3E6E77DB
41 0x35B5A8FA 105 0x4369E96A 169 0xD80D2BDA 233 0xAED16A4A
42 0x42B2986C 106 0x346ED9FC 170 0xAF0A1B4C 234 0xD9D65ADC
43 0xDBBBC9D6 107 0xAD678846 171 0x36034AF6 235 0x40DF0B66
44 0xACBCF940 108 0xDA60B8D0 172 0x41047A60 236 0x37D83BF0
45 0x32D86CE3 109 0x44042D73 173 0xDF60EFC3 237 0xA9BCAE53
46 0x45DF5C75 110 0x33031DE5 174 0xA867DF55 238 0xDEBB9EC5
47 0xDCD60DCF 111 0xAA0A4C5F 175 0x316E8EEF 239 0x47B2CF7F
48 0xABD13D59 112 0xDD0D7CC9 176 0x4669BE79 240 0x30B5FFE9
49 0x26D930AC 113 0x5005713C 177 0xCB61B38C 241 0xBDBDF21C
50 0x51DE003A 114 0x270241AA 178 0xBC66831A 242 0xCABAC28A
51 0xC8D75180 115 0xBE0B1010 179 0x256FD2A0 243 0x53B39330
52 0xBFD06116 116 0xC90C2086 180 0x5268E236 244 0x24B4A3A6
53 0x21B4F4B5 117 0x5768B525 181 0xCC0C7795 245 0xBAD03605
54 0x56B3C423 118 0x206F85B3 182 0xBB0B4703 246 0xCDD70693
55 0xCFBA9599 119 0xB966D409 183 0x220216B9 247 0x54DE5729
56 0xB8BDA50F 120 0xCE61E49F 184 0x5505262F 248 0x23D967BF
57 0x2802B89E 121 0x5EDEF90E 185 0xC5BA3BBE 249 0xB3667A2E
58 0x5F058808 122 0x29D9C998 186 0xB2BD0B28 250 0xC4614AB8
59 0xC60CD9B2 123 0xB0D09822 187 0x2BB45A92 251 0x5D681B02
60 0xB10BE924 124 0xC7D7A8B4 188 0x5CB36A04 252 0x2A6F2B94
61 0x2F6F7C87 125 0x59B33D17 189 0xC2D7FFA7 253 0xB40BBE37
62 0x58684C11 126 0x2EB40D81 190 0xB5D0CF31 254 0xC30C8EA1
63 0xC1611DAB 127 0xB7BD5C3B 191 0x2CD99E8B 255 0x5A05DF1B

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

CRC Computation Algorithm www.ti.com

36 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Table 15. Lookup Table for CRC Algorithm (continued)
Index Word Index Word Index Word Index Word

64 0xB6662D3D 128 0xC0BA6CAD 192 0x5BDEAE1D 256 0x2D02EF8D

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

37SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Appendix D
SPRABA5D–January 2014–Revised January 2019

Details of Pre-Defined ROM Functions

The AM18xx bootloader can call several ROM functions using the AIS Function Execute command. This
appendix describes the available ROM functions and the arguments required to call them.

Table 16. List of Pre-Defined ROM Functions

Index Function Section
0 PLL0 Configuration Section D.1
1 PLL1 Configuration Section D.2
2 Clock Configuration Section D.3
3 mDDR/DDR2 Controller Configuration Section D.4
4 EMIFA SDRAM Configuration Section D.5
5 EMIFA ASYNC Configuration Section D.6
6 PLL and Clock Configuration Section D.7
7 Power and Sleep Controller Configuration Section D.8
8 Pinmux Configuration Section D.9

D.1 PLL0 Configuration (Index = 0, Argument Count = 2)
The PLL0 Configuration function configures the PLL0 registers. This function takes two arguments, as
shown below.

The PLL0 configuration register is shown in Figure 29 and described in Table 17.

Figure 29. PLL Configuration Register
31 24 23 16 15 8 7 0

Arg1 CLKMODE PLLM PREDIV POSTDIV
Arg2 Reserved PLLDIV1 PLLDIV3 PLLDIV7

Table 17. PLL Configuration Register Field Descriptions

Bit Field Value Description
Arg1 31-24 CLKMODE Value to be programmed to the PLL clock source.

0 Crystal
1 Oscillator

23-16 PLLM Value to be programmed to the PLL multiplier register.
15-8 PLLDIV Value to be programmed to the PLL PREDIV register, used to divide the input

clock before the PLL multiplier.
7-0 POSTDIV Value to be programmed to the PLL POSTDIV register, used to divide the

output of the the PLL multiplier.
Arg2 31-24 Reserved 0 Reserved

23-0 PLLDIV1
PLLDIV3
PLLDIV7

Values to be programmed to the PLLDIV1, PLLDIV3 and PLLDIV7 registers,
used to generate SYSCLK1, SYSCLK2, SYSCLK4, SYSCLK6, SYSCLK3, and
SYSCLK7.
SYSCLK6 = SYSCLK1, SYSCLK2 = SYSCLK1/2, SYSCLK4 = SYSCLK1/4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

PLL1 Configuration (Index = 1, Argument Count = 2) www.ti.com

38 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

D.2 PLL1 Configuration (Index = 1, Argument Count = 2)
The PLL1 Configuration function configures the PLL1 registers. This function takes two arguments, as
shown below.

The PLL1 configuration register is shown in Figure 30 and described in Table 18.

Figure 30. PLL1 Configuration Register
31 24 23 16 15 8 7 0

Arg1 PLLM POSTDIV PLLDIV1 PLLDIV2
Arg2 Reserved PLLDIV3

Table 18. PLL Configuration Register Field Descriptions

Bit Field Value Description
Arg1 31-24 PLLM Value to be programmed to the PLL Multiplier register.

23-18 POSTDIV Value to be programmed to PLL POSTDIV register, used to divide the output
of the PLL multiplier.

15-8 PLLDIV1 Values to be programmed to the PLLDIV1, PLLDIV2, and PLLDIV3 registers,
used to generate SYSCLK1, SYSCLK2, and SYSCLK3.

7-0 PLLDIV2 Values to be programmed to the PLLDIV1, PLLDIV2, and PLLDIV3 registers,
used to generate SYSCLK1, SYSCLK2, and SYSCLK3.

Arg2 31-8 Reserved 0 Reserved
7-0 PLLDIV3 Values to be programmed to the PLLDIV1, PLLDIV2, and PLLDIV3 registers,

used to generate SYSCLK1, SYSCLK2, and SYSCLK3.

D.3 Clock Configuration (Index = 2, Argument Count = 1)
The clock configuration function configures the clocks for the active boot peripheral. It programs the
peripheral clocks in SPI/I2C master boot modes, UART boot mode, or MMC/SD boot mode. In all other
boot modes, this function has no effect. This function takes only one argument, but the contents of that
argument vary depending on boot mode.

D.3.1 SPI Master Register
The SPI master register is shown in Figure 31 and described in Table 19.

Figure 31. SPI Master Register
31 8 7 0

Arg1 Reserved PRESCALE

Table 19. SPI Master Register Field Descriptions

Bit Field Value Description
31-8 Reserved 0 Reserved
7-0 PRESCALE Value to be programmed to the PRESCALE field of the SPIFMT register

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com Clock Configuration (Index = 2, Argument Count = 1)

39SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

D.3.2 I2C Master Register
The I2C master register is shown in Figure 32 and described in Table 20.

Figure 32. I2C Master Register
31 24 23 16 15 8 7 0

Arg1 Reserved IPSC ICCL ICCH

Table 20. I2C Master Register Field Descriptions

Bit Field Value Description
31-24 Reserved 0 Reserved
23-16 IPSC Value to be programmed to I2C ICPSC register
15-8 ICCL Value to be programmed to I2C ICCLKL register
7-0 ICCH Value to be programmed to I2C ICCLKH register

D.3.3 UART Slave Register
The UART master register is shown in Figure 33 and described in Table 21.

Figure 33. I2C Master Register
31 24 23 16 15 8 7 0

Arg1 Reserved OSR DLH DLL

Table 21. I2C Master Register Field Descriptions

Bit Field Value Description
31-24 Reserved 0 Reserved
23-16 OSR Value to be programmed to OSR field of UART MDR register
15-8 DLH Value to be programmed to UART DLH register
7-0 DLL Value to be programmed to UART DLL register

D.3.4 MMC/SD Register
The MMC/SD register is shown in Figure 34 and described in Table 22.

Figure 34. MMC/SD Register
31 16 15 8 7 0

Arg1 Reserved DIV4 CLKRT

Table 22. MMC/SD Register Field Descriptions

Bit Field Value Description
31-16 Reserved 0 Reserved
15-8 DIV4 Value to be programmed to DIV4 field of MMCCLK register
7-0 CLKRT Value to be programmed to CLKRT field of MMCCLK register

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

mDDR/DDR2 Controller Configuration (Index = 3, Argument Count = 8) www.ti.com

40 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

D.4 mDDR/DDR2 Controller Configuration (Index = 3, Argument Count = 8)
The mDDR/DDR2 controller configuration function configures the mDDR/DDR2 registers responsible for
DDR timing and configuration. Since the mDDR/DDR2 controller setup requires that the PLL1 is
configured, the PLL1 configuration function is called before the mDDR/DDR2 controller itself is initialized.
Therefore, the first two arguments are the same as required for the PLL1 configuration function.

The next five arguments are required timing parameters for the mDDR/DDR2 Controller registers. They
are written directly to mDDR/DDR2 controller registers with the same names.

The last argument contains three fields: PASR, ROWSIZE, and CLK2XSRC. The first two fields are
copied to fields with the same names in the SDCR2 register if and only if MSDRAMEN of SDCR (bit 25 of
Arg4) = 1. In other words, these fields only apply when using mDDR, not DDR2. The third field applies in
all cases and allows selection of the clock source for the mDDR/DDR2 controller. A value of zero uses the
normal clock source, while a value of one selects an un-divided clock that is typically twice as fast. (More
precisely, it ignores the PLL1 post divider.)

31 19 18 16 15 11 10 8 7 0
Arg1 PLL1 Configuration Arg1
Arg2 PLL1 Configuration Arg2
Arg3 DRPYC1R
Arg4 SDCR
Arg5 SDTIMR1
Arg6 SDTIMR2
Arg7 SDRCR
Arg8 Reserved PASR Reserved ROWSIZE CLK2XSRC

The mDDR/DDR2 Controller Configuration function wakes up the mDDR/DDR2 peripheral from its default
reset state and correctly applies the register configurations as required.

NOTE: For devices with ROM revision d800k002, this function supports only DDR2, not mDDR.
When creating AIS files for this version of the bootloader, the AISgen tool uses a software
patch to configure mDDR as required. Subsequent ROM revisions (e.g., d800k004 and later)
apply mDDR configuration using the up-to-date ROM function. For this reason, it’s important
to specify the correct ROM ID in the AISgen tool when configuring mDDR/DDR2.

AIS files generated for the d800k002 ROM revision will still work with later revisions of the
ROM, but AIS files created for later revisions may not work with d800k002 devices.

D.5 EMIFA SDRAM Configuration (Index = 4, Argument Count = 5)
The EMIFA SDRAM configuration function configures the EMIFA registers responsible for SDRAM timing
and configuration.

31 0
Arg1 SDCR
Arg2 SDTIMR
Arg3 SDSRETR
Arg4 SDRCR
Arg5 DIV4p5_CLK_EN

This first four function arguments are written directly to the EMIFA registers with the same names.

The DIV4p5_CLK_EN is a Boolean value to enable the use of the 4.5 divider of the PLL0 multiplier output
as the input clock to the EMIFA peripheral.

Before programming EMIFA registers, this function applies the necessary PINMUX for 16- or 32-bit
SDRAM access (based on the value of the SDCR register) and wakes up the EMIFA peripheral from its
default reset state.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

www.ti.com EMIFA Async Configuration (Index = 5, Argument Count = 5)

41SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

D.6 EMIFA Async Configuration (Index = 5, Argument Count = 5)
The EMIFA CE Space Configuration function configures the EMIFA CExCFG registers. This function takes
five arguments and writes them to the EMIFA registers with the same names.

31 0
Arg1 CE2CFG
Arg2 CE3CFG
Arg3 CE4CFG
Arg4 CE5CFG
Arg5 NANDFCR

Before programming the EMIFA registers, this function wakes up the EMIFA peripheral from its default
reset state.

D.7 PLL and Clock Configuration (Index = 6, Argument Count = 3)
The PLL and clock configuration function combines the PLL configuration and clock configuration
functions into a single function call. This function takes three arguments. The first two arguments match
the arguments for the PLL configuration function (Section D.1), and the third argument matches the
argument for the clock configuration function (Section D.3).

31 0
Arg1 PLL0 Configuration Arg1
Arg2 PLL0 Configuration Arg2
Arg3 Clock Configuration Arg1

If the device is booting from the boot modes listed in the clock configuration description, it is required to
call this function rather than calling the PLL0 Configuration and Clock Configuration functions separately.
Failure to do so may result in the boot failing since the peripheral functionality is tied to the PLL0 settings,
and setting the PLL0 first may cause the peripheral to operate at an unintended frequency.

D.8 Power and Sleep Configuration (PSC) (Index = 7, Argument Count = 1)
The power and sleep configuration (PSC) function can be used multiple times to set the power domains
for various LPSC modules of the system’s two PSCs; 0x1-0x3 are the only valid values (all others are
reserved).

31 24 23 16 15 8 7 0
Arg1 PSCNUM MODULE PD STATE

For more details on the power domains and the Power and Sleep Controller, see the device-specific
datasheet or system guide.

Table 23. Power and Sleep Configuration (PSC) Register Field Descriptions

Bit Field Value Description
31-24 PSCNUM Selected PSC

0 PSC0
1 PSC1

23-16 MODULE The module for which the LPSC state is being changed.
15-8 PD The power domain to which the module belongs (typically 0).
7-0 STATE The state to which transition

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Pinmux Configuration (Index = 8, Argument Count = 3) www.ti.com

42 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

D.9 Pinmux Configuration (Index = 8, Argument Count = 3)
The pinmux configuration function can be used multiple times to set the state of the 20 system pinmux
registers during the boot process.

31 0
Arg1 REGNUM
Arg2 MASK
Arg3 VALUE

Table 24. Pinmux Configuration Register Field Descriptions

Bit Field Value Description
Arg1 31-0 REGNUM Pinmux register number (0-19)
Arg2 31-0 MASK Register mask to select which bits of the register are modified
Arg3 31-0 VALUE The value (filtered by the mask) to apply to the register

The function applies to the pinmux register value as follows:
Pinmux[REGNUM] = (Pinmux[REGNUM] & ~MASK) |

(MASK & VALUE)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

43SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Using the AM18xx Bootloader

Appendix E
SPRABA5D–January 2014–Revised January 2019

ROM Revision History

E.1 ROMID: D800K002, Silicon Revision 1.0
Initial ROM boot loader revision.

E.2 ROMID: D800K004, Silicon Revision 1.1
• Added 16-bit raw NAND boot modes
• Added check for SPI TXINTFLAG when doing SPI master boot modes
• Added new default UART and PLL clock settings for UART boot modes (based on BOOT[7..5] pins)
• Removed the locking of the KICK registers that happened at the end of boot
• Updated pinmux control Function Execute to mask and update with one write to the PINMUX register

(instead of two)
• Added support for configuring mDDR (in addition to DDR2) in the DDR Configure Function Execute

(added ability to specify contents of SDCR2 register)
• In NAND ECC check function, added a dummy read to clear the ECC data registers when the ECC

failed
• Changed NAND wait-for-ready logic to check if R/Bn line of the NAND goes low before going high (so

we don't think it is ready before it actually is)

E.3 ROMID: D800K006, Silicon Revision 2.0
No substantive changes to the ROM boot loader. Note that the KICK registers were disabled in hardware
with this silicon revision.

E.4 ROMID: D800K008, Silicon Revision 2.1
• Fix potential boot hang (corrects Silicon Advisory 2.0.20)
• All peripheral read functions updated to read in chunks of required size, rather than one 32-bit word at

a time (boot time optimization)
• Added MMC/SD0 boot mode (boot from MMC cards, SD card, and eMMC devices)
• Updated NAND boot mode to offer boot from block 0 or block 1, and to select default PLL settings for

faster boot
• Update NAND boot modes so that page data is read from the EMIF as 32-bit words instead of 8-bit

bytes (boot time optimization)
• Update to NAND boot modes so that if no valid boot image is found at in current block, next block is

tried until image is found (within first 32 blocks).
• Adjustment to NAND timeout value (improves boot time in cases where the ROM misses the NAND

R/Bn low to high transition)
• Make boot abort function callable via pointer (makes the ROM abort functionality patchable)
• Update DDR Configure Function Execute to skip VTP calibration if it is already done

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

Revision History www.ti.com

44 SPRABA5D–January 2014–Revised January 2019
Submit Documentation Feedback

Copyright © 2014–2019, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from C Revision (January 2014) to D Revision ... Page

• Updates were made in Section B.1.. 32

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABA5D

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Using the AM18xx Bootloader
	1 Introduction
	2 Boot Modes
	3 Non-AIS Boot Modes
	3.1 NOR Boot
	3.1.1 Legacy NOR Boot
	3.1.2 Direct NOR Boot
	3.1.3 AIS NOR Boot

	3.2 Host Port Interface (HPI) Boot
	3.3 Emulation Debug Boot

	4 Application Image Script (AIS) Boot
	4.1 Section Load Command (0x58535901)
	4.2 Section Fill Command (0x5853590A)
	4.3 Enable CRC Command (0x58535903)
	4.4 Disable CRC Command (0x58535904)
	4.5 Validate CRC Command (0x58535902)
	4.6 Jump & Close Command (0x58535906)
	4.7 Jump Command (0x58535905)
	4.8 Sequential Read Enable Command (0x58535963)
	4.9 Function Execute Command (0x5853590D)
	4.10 Boot Table Command (0x58535907)

	5 AISgen: Tool to Generate Boot Script (AIS Image)
	5.1 Installation
	5.2 Getting Started
	5.3 Generating AIS
	5.3.1 Boot Mode and Boot Peripheral Setup
	5.3.2 Phase-Locked Loop (PLL) Setup
	5.3.3 Synchronous Dynamic Random Access Memory (SDRAM) Setup
	5.3.4 DDR Setup
	5.3.5 PSC Setup
	5.3.6 Pin Multiplexing Setup
	5.3.7 Application File Selection
	5.3.8 AIS File Selection
	5.3.9 Status and Messages
	5.3.10 Additional AIS Options
	5.3.10.1 CRC
	5.3.10.2 Specifying the Application Entrypoint

	5.3.11 Command Line Usage

	6 Master Boot – Booting From a Slave Memory Device
	6.1 I2C EEPROM Boot
	6.2 SPI EEPROM or Flash Boot
	6.3 NOR Flash Boot
	6.4 NAND Flash Boot
	6.5 MMC/SD Boot

	7 Slave Boot – Booting From an External Master Host
	7.1 About the AIS Interpreter on the Host
	7.2 Start-Word Synchronization (SWS)
	7.3 Ping Op-Code Synchronization (POS)
	7.4 Opcode Synchronization (OS)

	8 UART Boot Host - Using Your PC as a UART Boot Master
	8.1 Getting Started
	8.2 Booting the Device
	8.3 The AIS_Util.cs Source Code

	9 Boot Requirements, Constraints and Default Settings
	9.1 General Comments
	9.2 UART-Boot Modes
	9.3 I2C-Boot Modes
	9.4 SPI-Boot Modes
	9.5 NOR-Boot Modes
	9.6 NAND-Boot Modes
	9.7 MMC/SD-Boot Modes
	9.8 HPI-Boot Modes

	10 References
	Appendix A Boot Mode Selection Table
	A.1 Boot Mode Selection Table

	Appendix B Details of Supported NAND Devices
	B.1 Details of Supported NAND Devices

	Appendix C CRC Computation Algorithm
	C.1 CRC Computation Algorithm

	Appendix D Details of Pre-Defined ROM Functions
	D.1 PLL0 Configuration (Index = 0, Argument Count = 2)
	D.2 PLL1 Configuration (Index = 1, Argument Count = 2)
	D.3 Clock Configuration (Index = 2, Argument Count = 1)
	D.3.1 SPI Master Register
	D.3.2 I2C Master Register
	D.3.3 UART Slave Register
	D.3.4 MMC/SD Register

	D.4 mDDR/DDR2 Controller Configuration (Index = 3, Argument Count = 8)
	D.5 EMIFA SDRAM Configuration (Index = 4, Argument Count = 5)
	D.6 EMIFA Async Configuration (Index = 5, Argument Count = 5)
	D.7 PLL and Clock Configuration (Index = 6, Argument Count = 3)
	D.8 Power and Sleep Configuration (PSC) (Index = 7, Argument Count = 1)
	D.9 Pinmux Configuration (Index = 8, Argument Count = 3)

	Appendix E ROM Revision History
	E.1 ROMID: D800K002, Silicon Revision 1.0
	E.2 ROMID: D800K004, Silicon Revision 1.1
	E.3 ROMID: D800K006, Silicon Revision 2.0
	E.4 ROMID: D800K008, Silicon Revision 2.1

	Revision History
	Important Notice

