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ABSTRACT

This application report describes the basic steps necessary to generate a simple pulse width modulation
(PWM) with the next generation high-end timer (NHET) module. It reviews the calculations necessary to
achieve a PWM with a certain frequency and duty cycle, setting up the NHET registers and writing the
NHET program. Finally, it shows code excerpts of the setup to run the simple example code.

This document assumes that you have some basic understanding of the NHET terms used and the
module operation.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www-s.ti.com/sc/techlit/spraba0.zip.

Table 1. Abbreviations

Abbreviation/Accronym Description

CNT Virtual counter instruction

CNT_max Maximum counter value of virtual count instruction CNT

data Loop-resolution data field of an instruction

HCLK Main system clock

hr High resolution divide ratio

hr_data High resolution data field of an instruction

HRP High resolution period

lr Loop-resolution divide ratio

LRP Loop-resolution period

MCMP Magnitude compare instruction

MCMP_DF[31:0] 32-bit data field of the MCMP instruction

PFR Prescale Factor Register

PWM_duty PWM duty cycle

RAM Random access memory

ts Timeslots

VCLK2 Peripheral clock used as master clock for NHET
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1 PWM Calculation

This section shows how to calculate the PWM frequency and duty cycle of an output signal. In order to do
this, certain assumptions are made regarding the frequency the device and the NHET module are working
with and the desired PWM frequency, duty cycle and duty cycle update accuracy.

First, some of the basic settings of the later applications have to be assumed for the calculations. For
example:

• Main system clock HCLK = 50 MHz
• NHET clock VCLK2 = 50 MHz
• PWM frequency = 10 kHz
• PWM duty cycle dc = 25%
• PWM accuracy = 20 ns steps

The accuracy requirement of 20 ns makes it necessary to program the high-resolution divide ratio (hr) to
1. This ensures that the hardware counters on the NHET pins are working with VCLK2 frequency and will
generate the PWM signal with desired accuracy.

→ hr = 1

Next, the loop-resolution prescaler has to be selected. The loop-resolution period determines the stepsize
between PWM frequency changes, but also influences how many NHET instructions can be executed in
one loop-resolution period. A simple PWM can be generated with only 2 NHET instructions. Since there is
no frequency stepsize requirement and the NHET program itself is very simple, it allows you to set the
loop resolution prescaler to divide-by-8.

→ lr = 8

With this, there will be eight high-resolution clock cycles in one loop resolution.

The number of timeslots (cycles for instruction execution) in one loop resolution can be determined by:

ts = lr × hr = 8

This means that the total execution time of the NHET program must not exceed eight cycles. Most
instructions only take one cycle, but a few are taking multiple cycles. In this simple case, the program will
only take two cycles.

With these settings, the LRP and HRP can be calculated.

Now a closer look at the NHET program implementation can be taken, since the base parameters of the
NHET configuration have been determined.

As mentioned before, a simple PWM can be generated with only 2 NHET instructions. The PWM
frequency is defined by setting up a virtual counter (CNT instruction) and the duty cycle of the PWM signal
can be generated with a MCMP instruction.

The max parameter of the CNT instruction needs to be determined to achieve a PWM frequency of 10
kHz. The max setting defines the max value of the counter. The CNT increments every LRP cycle; once it
reaches the max value, the counter is set back to 0.

Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
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Signal Period 100μs
CNT_max = - 1= - 1= 624

LRP 160 ns
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With the above, the number of high-resolution clock cycles in one PWM period is:

HRC_pwm = (CNT_max + 1) × lr = (624 + 1) × 8 = 5000

Next, it is necessary to calculate the compare value for the MCMP instruction to generate the desired duty
cycle. The MCMP instruction can be configured to set the pin to a logic 1 when the compare matches the
virtual counter value. With a duty cycle requirement of 25% (high time of signal), the number of
high-resolution clock cycles can be calculated to:

PWM_duty = ((CNT_max + 1) × lr) × (1 – dc) = ((624 + 1) × 8) × (1 – 0.25) = 3750

However, this value cannot simply be programmed as the compare value for the MCMP instruction. The
implementation of the MCMP instruction splits the compare value into loop-resolution (data) and
high-resolution (hr_data) fields. See Figure 1 for details.

Figure 1. MCMP Data Field
31 7 6 0

data hr_data

R/W-x R/W-x

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

The lower 7 bits of the data field hold the high resolution part and the upper 25 bits hold the loop
resolution part. The high-resolution field is fixed in size, but there are not always 128 high-resolution
cycles in one LRP. This means that only certain fields of the MCMP hr_data field are valid depending on
the lr setting. Table 2 shows the valid bits of the hr_data field based on the chosen lr divide ratio.

Table 2. Table 1. Interpretation of the 7-Bit HR Data Field

Bits of HR Data FieldLoop Resolution Prescale
Divide Rate (lr) D[6] D[5] D[4] D[3] D[2] D[1] D[0] HRP Cycles Delay Range

1 X X X X X X X 0

2 V X X X X X X 0 to 1

4 V V X X X X X 0 to 3

8 V V V X X X X 0 to 7

16 V V V V X X X 0 to 15

32 V V V V V X X 0 to 31

64 V V V V V V X 0 to 63

128 V V V V V V V 0 to 127

With the setting (lr = 8), chosen as the project settings, only the upper three bits of the hr_data field are
valid, so the calculated value has to be shifted left by four bits (or multiplied with 16).

The compare value written into the 32 bits of the MCMP data field is:

MCMP_DF[31:0] = PWM_duty × 16 = 60000 = 0xEA60

or in the representation of the MCMP data field structure:

data = 0x1D4

hr_data = 0x60

The necessary parameters have been calculated, now the NHET program can be written.

2 NHET PWM Program

It has been determined that a virtual counter (CNT instruction) and a compare (MCMP) instruction for the
program is needed; however, a decision needs to be made on which NHET pin the PWM should be
generated. In this example, the NHET[0] was chosen as the output pin.
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The following code shows the implementation details of the two instructions in the NHET assembler.

L00: CNT{next = L01, reg = A, max = 624}
L01: MCMP{next = L00, reg = A, en_pin_action = ON, hr_lr=HIGH, pin = CC0, action

PULSEHI, order = REG_GE_DATA, data = 0x1D4, hr_data = 0x60}

The labels L00 and L01 are optional, but help make it easier to follow the flow of the program. Labels
have to start in the 1st column of a new line of code. Instructions cannot start in the 1st column of a new
line, since they would be interpreted as labels.

The NHET does not know the concept of a program counter, however, each instruction points to the next
instruction to be executed. With this, and the ability of certain instructions to divert the program flow under
special conditions, it is very easy to implement sub-functions in a NHET program.

The following is a review of the instructions one-by-one.

CNT{next = L01, reg = A, max = 624}

The CNT instruction defines the virtual counter and is executed each loop resolution once. The next field
points to the next instruction to be executed. In this case, it’s the instruction at label L01. reg = A defines
that the NHET internal register A is used to store the intermediate counter value. When the CNT is
executed, the datafield of the instruction is incremented by one and the newly generated value is also
copied into the specified register. The instruction keeps on incrementing each time it is executed, until it
matches the max field coded in the instruction. In the very next loop, after reaching the max value, the
data field of the CNT instruction is then reset to 0.

L01: MCMP{next = L00, reg = A, en_pin_action = ON, hr_lr=HIGH, pin = CC0, action =
PULSEHI, order = REG_GE_DATA, data = 0x1D4, hr_data = 0x60}

The MCMP instruction defines the compare value that should be compared to the virtual counter and also
which action should be taken on a compare match. The next field points back to the CNT instruction,
which means that the two instructions are executed in sequence. reg = A defines that the compare value
stored in the data field should be compared to the value in register A. en_pin_action = ON tells the NHET
that an action has to be performed at the specified pin at a compare match. hr_lr = HIGH defines that the
high-resolution pin structure on the pin should be used to control the state change of the pin with
high-resolution accuracy. pin = CC0 determines that the pin action has to be performed on pin NHET[0].
CC0 is an alias for 0, which is used by the assembler to generate the according bit encoding for the
specified pin. action = PULSEHI defines that the pin should be set to a logic 1 state when the compare
matches and that it should be set to a logic 0 state when the virtual counter overflows. data holds the
loop-resolution compare value that is compared to the specified register and hr_data holds the
high-resolution delay that is applied at the pin once the compare matches.

2.1 NHET Assembler

Now that the NHET program has been written and saved under a specific name (in this case,
PWM_test.het), it needs to be translated into the opcode that the NHET can execute. This is done with the
NHET assembler hetp. You should have the assembler already installed on your system, if not make sure
to install it first.

The assembler can be executed on the command line. Here’s an example of the command line to use:

hetp -n0 -hc32 PWM_test.het

There can be multiple NHET modules on a device. -n0 tells the tool to assemble the code for NHET
module 1. The NHET program is executed on the device in the NHET RAM. The application needs to
copy the code during initialization of the device into this NHET RAM. To use the code later in the main
project, the assembler generates C-code with the -hc32 option. More details will be discussed in
Section 3.

4 NHET Getting Started SPRABA0B–August 2010

Copyright © 2010, Texas Instruments Incorporated



www.ti.com NHET PWM Program

Before programming the microcontroller to run the program, you can check the configuration of the PWM
with the NHET simulator.

2.2 NHET Simulator

To simulate the PWM, you need to invoke the simulator and select which device you want to use for
simulation.

Do the following steps to create a new project.

1. Select Project → New Project
2. Define a name for the project, e.g., PWM_Test, and where you want to store the project.
3. Click Next to select the device that should be used for the simulation. In this case, select the

TMS570LS20216SZWT device.
The next window asks you about the clock frequency used to run the NHET. This is equal to the
VCLK2 frequency that was defined as 50 MHz before.

4. Wizard asks to create a new NHET program file or if an existing one should be used. Select the
previously generated PWM_test.het file, since the program has been written already.

5. Click Finish and the project will be created.

You should see something similar to the picture shown in Figure 2.

Figure 2. PWM Simulation Project Example
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In the next step, set the correct simulator settings for the loop-resolution and high-resolution prescaler.
This can be done by selecting Project → Project Properties → Clock. The loop-resolution value should be
set to 8 and the HR value to 1. See Figure 3 for the setting.

Figure 3. Simulation Clock Settings

After the clock settings are done, you can assemble the program by selecting Debug → Assemble. This
generates the output file for the simulator to load. Once it’s assembled without errors, the program can be
loaded by selecting Debug → Load HET Program. This changes to the disassembly view and you can
start running or single stepping the program.

Before doing this, you have to specify which pins you want to look at in the simulation results. This can be
done with the Tools → Waveform Wizard menu item. In the window that opens, click the Pins tab and
select HET_0. Figure 4 shows the pin configuration.

Figure 4. Simulation Pin Configuration

Once the pin has been selected, click the Ok button.
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For a simple test, run the process for a certain amount of loops by inserting the number of loops in the
spinbox toolbar and clicking the Run For Loops button. Figure 5 illustrates the setting.

Figure 5. Simulation Running Specific Number of Cycles

After the simulation is complete, you can look at the generated waveform (see Figure 6).

Figure 6. Simulation Completion

To do this, stop the simulator by selecting Debug → Stop. Then, you can look at the generated waveform
by selecting View → Waveform. You should see something similar to the picture shown in Figure 7.

Figure 7. Simulation Waveform

As you can see, a PWM signal has been generated with 100 µs period (10 kHz frequency) and 25% duty
cycle.

Now it is time to program a real device to get the same output.
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3 Device Implementation

The previous run of the NHET assembler should have generated the files PWM_test.c and PWM_test.h.
PWM_test.c defines a constant array that holds the values of the instructions (CNT, MCMP) in their
program-, control-, data- and reserved-field representation (see the following).

HET_MEMORY const HET_INIT0_PST[2] =
{

/* L00_1 */
{

0x00002C20, /* Program Field */
0x00000270, /* Control Field */
0x00000000, /* Data Field */
0x00000000 /* Reserved */

},

/* L01_1 */
{

0x00000000, /* Program Field */
0x00404058, /* Control Field */
0x0000EA60, /* Data Field */
0x00000000 /* Reserved */

}
};

The contents of the array are stored in the main memory and need to be copied to the NHET RAM at
application runtime, before the NHET is turned on. This can be accomplished by inserting.

memcpy( (void *)&e_HETPROGRAM0_UN, HET_INIT0_PST, sizeof (HET_INIT0_PST));

in the initialization section of the application.

The header file PWM_test.h defines a union to provide easy access to the two instructions.

typedef union
{

HET_MEMORY Memory0_PST[2];
struct
{

CNT_INSTRUCTION L00_0;
MCMP_INSTRUCTION L01_0;

} Program0_ST;

} HETPROGRAM0_UN;

extern volatile HETPROGRAM0_UN e_HETPROGRAM0_UN;

This can be used to modify the instructions, e.g., duty cycle updates for the PWM, during the runtime of
the application. The union is overlayed over the NHET memory and the address where to place the union
can be defined in the linker command file. Below is an example how to do this in the linker command file.

SECTIONS
{

.

.HETCODE : { _e_HETPROGRAM0_UN = .;} > 0xFF460000 /* HET PROGRAM */

}
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Now you have to configure the NHET registers for the correct settings to execute the example program.

Below is the code to set up all necessary registers:

typedef volatile struct hetBase
{

unsigned GCR; /**< 0X0000: Globoal control register */
unsigned PDFR; /**< 0X0004: Prescale factor register */
unsigned ADDR; /**< 0X0008: Current address register */
unsigned OFF1; /**< 0X000C: Interrupt offset register 1 */
unsigned OFF2; /**< 0X0010: Interrupt offset register 2 */
unsigned INTENAS; /**< 0X0014: Interrupt enable set register */
unsigned INTENAC; /**< 0X0018: Interrupt enable clear register */
unsigned EXC1; /**< 0X001C: Exception control register 1 */
unsigned EXC2; /**< 0X0020: Exception control register 2 */
unsigned PRY; /**< 0X0024: Interrupt priority register */
unsigned FLG; /**< 0X0028: Interrupt flag register */
unsigned : 32U; /**< 0X002C: Reserved */
unsigned : 32U; /**< 0X0030: Reserved */
unsigned HRSH; /**< 0X0034: High resolution share register */
unsigned XOR; /**< 0X0038: XOR share register */
unsigned REQENS; /**< 0X003C: Request enable set register */
unsigned REQENC; /**< 0X0040: Request enable clear register */
unsigned REQDS /**< 0X0044: Request destination select register */
unsigned : 32U; /**< 0X0048: Reserved */
unsigned DIR; /**< 0X004C: Direction register */
unsigned DIN; /**< 0X0050: Data input register */
unsigned DOUT; /**< 0X0054: Data output register */
unsigned DSET; /**< 0X0058: Data output set register */
unsigned DCLR; /**< 0X005C: Data output clear register */
unsigned PDR; /**< 0X0060: Open drain register */
unsigned PULDIS; /**< 0X0064: Pull disable register */
unsigned PSL; /**< 0X0068: Pull select register */
unsigned : 32U; /**< 0X006C: Reserved */
unsigned : 32U; /**< 0X0070: Reserved */
unsigned PCREG /**< 0X0074: Parity control register */
unsigned PAR; /**< 0X0078: Parity address register */
unsigned PPR; /**< 0X007C: Parity pin select register */
unsigned SFPRLD; /**< 0X0080: Suppression filter preload register */
unsigned SFENA; /**< 0X0084: Suppression filter enable register */
unsigned : 32U; /**< 0X0088: Reserved */
unsigned LBPSEL; /**< 0X008C: Loop back pair select register */
unsigned LBPDIR; /**< 0X0090: Loop back pair direction register */

} hetBASE_t;

#define hetREG ((hetBASE_t *)0xFFF7B800U)

void NEHT_init(void)
{

hetREG -> PFR = 0x00000300; /* lr = 8; hr = 1 */
hetREG -> DIR = 0x00000001; /* NHET[0] = output */
hetREG -> GCR = 0x00070001; /* Protect Program field */

/* Ignore Suspend */
/* NHET is master */
/* Turn NHET on */

}

Writing to the Prescale Factor Register (PFR) sets up the timebases for the loop-resolution and
high-resolution periods. Then, pin NHET[0] is configured as output and, finally, the NHET is turned on.

Once all these steps are followed and the device is set up with the correct HCLK and VCLK2 frequency,
you should then be able to monitor the output waveform on pin NHET[0] with an oscilloscope. You should
see that you are generating a PWM signal with 10 kHz frequency and 25% duty cycle.

A complete Code Composer Studio™ project with the entire device setup can be downloaded from the
following URL: http://www-s.ti.com/sc/techlit/spraba0.zip.
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4 Conclusion

You should now be able to have a basic understanding of the steps necessary to write a NHET program.
The NHET is a very powerful module and can be used for many application scenarios that would often be
difficult to implement with a general-purpose hardware timer.
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