
SPRAB27B—August 2012 Multicore Programming Guide Page 1 of 52
Submit Documentation Feedback

SPRAB27B—August 2012

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications
of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.

Application Report

Multicore Programming Guide
Multicore Programming and Applications/DSP Systems

Abstract
As application complexity continues to grow, we have reached a limit on increasing
performance by merely scaling clock speed. To meet the ever-increasing processing
demand, modern System-On-Chip solutions contain multiple processing cores. The
dilemma is how to map applications to multicore devices. In this paper, we present a
programming methodology for converting applications to run on multicore devices.
We also describe the features of Texas Instruments DSPs that enable efficient
implementation, execution, synchronization, and analysis of multicore applications.

Contents
1 Introduction. 3
2 Mapping an Application to a Multicore Processor . 3

2.1 Parallel Processing Models . 3
2.2 Identifying a Parallel Task Implementation . 9

3 Inter-Processor Communication. 14
3.1 Data Movement . 14
3.2 Multicore Navigator Data Movement. 17
3.3 Notification and Synchronization . 17
3.4 Multicore Navigator Notification Methods . 22

4 Data Transfer Engines . 23
4.1 Packet DMA . 23
4.2 EDMA . 24
4.3 Ethernet. 24
4.4 RapidIO . 24
4.5 Antenna Interface . 25
4.6 PCI Express . 25
4.7 HyperLink . 25

5 Shared Resource Management. 26
5.1 Global Flags . 26
5.2 OS Semaphores . 26
5.3 Hardware Semaphores . 26
5.4 Direct Signaling . 26

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 2 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

6 Memory Management . 27
6.1 CPU View of the Device . 28
6.2 Cache and Prefetch Considerations . 29
6.3 Shared Code Program Memory Placement . 30
6.4 Peripheral Drivers . 32
6.5 Data Memory Placement and Access . 33

7 DSP Code and Data Images . 34
7.1 Single Image . 34
7.2 Multiple Images . 34
7.3 Multiple Images with Shared Code and Data . 34
7.4 Device Boot . 35
7.5 Multicore Application Deployment (MAD) Utilities . 36

8 System Debug. 38
8.1 Debug and Tooling Categories. 38
8.2 Trace Logs . 39
8.3 System Trace . 50

9 Summary. 51
10 References . 52

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 3 of 52
Submit Documentation Feedback

www.ti.com

1 Introduction
For the past 50 years, Moore’s law accurately predicted that the number of transistors
on an integrated circuit would double every two years. To translate these transistors
into equivalent levels of system performance, chip designers increased clock
frequencies (requiring deeper instruction pipelines), increased instruction level
parallelism (requiring concurrent threads and branch prediction), increased memory
performance (requiring larger caches), and increased power consumption (requiring
active power management).

Each of these four areas is hitting a wall that impedes further growth:
• Increased processing frequency is slowing due to diminishing improvements in

clock rates and poor wire scaling as semiconductor devices shrink.
• Instruction-level parallelism is limited by the inherent lack of parallelism in the

applications.
• Memory performance is limited by the increasing gap between processor and

memory speeds.
• Power consumption scales with clock frequency; so, at some point, extraordinary

means are needed to cool the device.

Using multiple processor cores on a single chip allows designers to meet performance
goals without using the maximum operating frequency. They can select a frequency in
the sweet spot of a process technology that results in lower power consumption. Overall
performance is achieved with cores having simplified pipeline architectures relative to
an equivalent single core solution. Multiple instances of the core in the device result in
dramatic increases in the MIPS-per-watt performance.

2 Mapping an Application to a Multicore Processor
Until recently, advances in computing hardware provided significant increases in the
execution speed of software with little effort from software developers. The
introduction of multicore processors provides a new challenge for software developers,
who must now master the programming techniques necessary to fully exploit multicore
processing potential.

Task parallelism is the concurrent execution of independent tasks in software. On a
single-core processor, separate tasks must share the same processor. On a multicore
processor, tasks essentially run independently of one another, resulting in more
efficient execution.

2.1 Parallel Processing Models
One of the first steps in mapping an application to a multicore processor is to identify
the task parallelism and select a processing model that fits best. The two dominant
models are a Master/Slave model in which one core controls the work assignments on
all cores, and the Data Flow model in which work flows through processing stages as in
a pipeline.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 4 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

2.1.1 Master/Slave Model
The Master/Slave model represents centralized control with distributed execution. A
master core is responsible for scheduling various threads of execution that can be
allocated to any available core for processing. It also must deliver any data required by
the thread to the slave core. Applications that fit this model inherently consist of many
small independent threads that fit easily within the processing resources of a single
core. This software often contains a significant amount of control code and often
accesses memory in random order with multiple levels of indirection. There is
relatively little computation per memory access and the code base is usually very large.
Applications that fit the Master/Slave model often run on a high-level OS like Linux
and potentially already have multiple threads of execution defined. In this scenario, the
high-level OS is the master in charge of the scheduling.

The challenge for applications using this model is real-time load balancing because the
thread activation can be random. Individual threads of execution can have very
different throughput requirements. The master must maintain a list of cores with free
resources and be able to optimize the balance of work across the cores so that optimal
parallelism is achieved. An example of a Master/Slave task allocation model is shown
in Figure 1.
Figure 1 Master / Slave Processing Model

One application that lends itself to the Master/Slave model is the multi-user data link
layer of a communication protocol stack. It is responsible for media access control and
logical link control of a physical layer including complex, dynamic scheduling and data
movement through transport channels. The software often accesses multi-dimensional
arrays resulting in very disjointed memory access.

Task Master

Task A

Task B

Tasks C, D, E

Tasks F, G

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 5 of 52
Submit Documentation Feedback

www.ti.com

One or more execution threads are mapped to each core. Task assignment is achieved
using message-passing between cores. The messages provide the control triggers to
begin execution and pointers to the required data. Each core has at least one task whose
job is to receive messages containing job assignments. The task is suspended until a
message arrives triggering the thread of execution.

2.1.2 Data Flow Model
The Data Flow model represents distributed control and execution. Each core
processes a block of data using various algorithms and then the data is passed to
another core for further processing. The initial core is often connected to an input
interface supplying the initial data for processing from either a sensor or FPGA.
Scheduling is triggered upon data availability. Applications that fit the Data Flow
model often contain large and computationally complex components that are
dependent on each other and may not fit on a single core. They likely run on a realtime
OS where minimizing latency is critical. Data access patterns are very regular because
each element of the data arrays is processed uniformly.

The challenge for applications using this model is partitioning the complex
components across cores and the high data flow rate through the system. Components
often need to be split and mapped to multiple cores to keep the processing pipeline
flowing regularly. The high data rate requires good memory bandwidth between cores.
The data movement between cores is regular and low latency hand-offs are critical. An
example of Data Flow processing is shown in Figure 2.

Figure 2 Data Flow Processing Model

One application that lends itself to the Data Flow model is the physical layer of a
communication protocol stack. It translates communications requests from the data
link layer into hardware-specific operations to affect transmission or reception of
electronic signals. The software implements complex signal processing using intrinsic
instructions that take advantage of the instruction-level parallelism in the hardware.

The processing chain requires one or more tasks to be mapped to each core.
Synchronization of execution is achieved using message passing between cores. Data is
passed between cores using shared memory or DMA transfers.

Task A Task G

Tasks B, C

Tasks B, C

Tasks D, E, F

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 6 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

2.1.3 OpenMP Model
OpenMP is an Application Programming Interface (API) for developing
multi-threaded applications in C/C++ or Fortran for shared-memory parallel (SMP)
architectures.

OpenMP standardizes the last 20 years of SMP practice and is a programmer-friendly
approach with many advantages. The API is easy to use and quick to implement; once
the programmer identifies parallel regions and inserts the relevant OpenMP
constructs, the compiler and runtime system figures out the rest of the details. The API
makes it easy to scale across cores and allows moving from an ‘m’ core implementation
to an ‘n’ core implementation with minimal modifications to source code. OpenMP is
sequential-coder friendly; that is, when a programmer has a sequential piece of code
and would like to parallelize it, it is not necessary to create a totally separate multicore
version of the program. Instead of this all-or-nothing approach, OpenMP encourages
an incremental approach to parallelization, where programmers can focus on
parallelizing small blocks of code at a time. The API also allows users to maintain a
single unified code base for both sequential and parallel versions of code.

2.1.3.1 Features

The OpenMP API consists primarily of compiler directives, library routines, and
environment variables that can be leveraged to parallelize a program.

Compiler directives allow programmers to specify which instructions they want to
execute in parallel and how they would like the work distributed across cores. OpenMP
directives typically have the syntax “#pragma omp construct [clause [clause]…].” For
example, “#pragma omp section nowait” where section is the construct and nowait is a
clause. The next section shows example implementations that contain directives.

Library routines or runtime library calls allow programmers to perform a host of
different functions. There are execution environment routines that can configure and
monitor threads, processors, and other aspects of the parallel environment.

There are lock routines that provide function calls for synchronization. There are
timing routines that provide a portable wall clock timer. For example, the library
routine “omp_set_num_threads (int numthreads)” tells the compiler how many
threads need to be created for an upcoming parallel region.

Finally, environment variables enable programmers to query the state or alter the
execution features of an application like the default number of threads, loop iteration
count, etc. For example, “OMP_NUM_THREADS” is the environment variable that
holds the total number of OpenMP threads.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 7 of 52
Submit Documentation Feedback

www.ti.com

2.1.3.2 Implementation

This section contains four typical implementation scenarios and shows how OpenMP
allows programmers to handle each of them. The following examples introduce some
important OpenMP compiler directives that are applicable to these implementation
scenarios. For a complete list of directives, see the OpenMP specification available on
the official OpenMP website at http://www.openmp.org.

Create Teams of Threads Figure 3 shows how OpenMP implementations are based on a fork-join model. An
OpenMP program begins with an initial thread (known as a master thread) in a
sequential region. When a parallel region is encountered—indicated by the compiler
directive “#pragma omp parallel”—extra threads called worker threads are
automatically created by the scheduler. This team of threads executes simultaneously
to work on the block of parallel code. When the parallel region ends, the program waits
for all threads to terminate, then resumes its single-threaded execution for the next
sequential region.
Figure 3 OpenMP Fork-Join Model

To illustrate this point further, it is useful to look at an implementation example.
Figure 4 on page 8 shows a sample OpenMP Hello World program. The first line in the
code includes the omp.h header file that includes the OpenMP API definitions. Next,
the call to the library routine sets the number of threads for the OpenMP parallel region
to follow. When the parallel compiler directive is encountered, the scheduler spawns
three additional threads. Each of the threads runs the code within the parallel region
and prints the Hello World line with its unique thread id. The implicit barrier at the end
of the region ensures that all threads terminate before the program continues.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.openmp.org

Page 8 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

Figure 4 Hello World Example Using OpenMP Parallel Compiler Directive

Share Work Among Threads After the programmer has identified which blocks of code in the region are to be run
by multiple threads, the next step is to express how the work in the parallel region will
be shared among the threads. The OpenMP work-sharing constructs are designed to do
exactly this. There are a variety of work-sharing constructs available; the following two
examples focus on two commonly-used constructs.

The “#pragma omp for” work-sharing construct enables programmers to distribute a
for loop among multiple threads. This construct applies to for loops where subsequent
iterations are independent of each other; that is, changing the order in which iterations
are called does not change the result.

To appreciate the power of the for work-sharing construct, look at the following three
situations of implementation: sequential; only with the parallel construct; and both the
parallel and work-sharing constructs. Assume a for loop with N iterations, that does a
basic array computation.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 9 of 52
Submit Documentation Feedback

www.ti.com

The second work-sharing construct example is “#pragma omp sections” which allows
the programmer to distribute multiple tasks across cores, where each core runs a
unique piece of code. The following code snippet illustrates the use of this work-sharing
construct.

Note that by default a barrier is implicit at the end of the block of code. However,
OpenMP makes the nowait clause available to turn off the barrier. This would be
implemented as “#pragma omp sections nowait”.

2.2 Identifying a Parallel Task Implementation
Identifying the task parallelism in an application is a challenge that, for now, must be
tackled manually. TI is developing code generation tools that will allow users to
instrument their source code to identify opportunities for automating the mapping of
tasks to individual cores. Even after identifying parallel tasks, mapping and scheduling
the tasks across a multicore system requires careful planning.

A four-step process, derived from Software Decomposition for Multicore
Architectures [1], is proposed to guide the design of the application:

1. Partitioning — Partitioning of a design is intended to expose opportunities for
parallel execution. The focus is on defining a large number of small tasks in order
to yield a fine-grained decomposition of a problem.

2. Communication — The tasks generated by a partition are intended to execute
concurrently but cannot, in general, execute independently. The computation to
be performed in one task will typically require data associated with another task.
Data must then be transferred between tasks to allow computation to proceed.
This information flow is specified in the communication phase of a design.

3. Combining — Decisions made in the partitioning and communication phases
are reviewed to identify a grouping that will execute efficiently on the multicore
architecture.

4. Mapping — This stage consists of determining where each task is to execute.

2.2.1 Partitioning
Partitioning an application into base components requires a complexity analysis of the
computation (Reads, Writes, Executes, Multiplies) in each software component and an
analysis of the coupling and cohesion of each component.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 10 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

For an existing application, the easiest way to measure the computational requirements
is to instrument the software to collect timestamps at the entry and exit of each module
of interest. Using the execution schedule, it is then possible to calculate the throughput
rate requirements in MIPS. Measurements should be collected with both cold and
warm caches to understand the overhead of instruction and data cache misses.

Estimating the coupling of a component characterizes its interdependence with other
subsystems. An analysis of the number of functions or global data outside the
subsystem that depend on entities within the subsystem can pinpoint too many
responsibilities to other systems. An analysis of the number of functions inside the
subsystem that depend on functions or global data outside the subsystem identifies the
level of dependency on other systems.

A subsystem's cohesion characterizes its internal interdependencies and the degree to
which the various responsibilities of the module are focused. It expresses how well all
the internal functions of the subsystem work together. If a single algorithm must use
every function in a subsystem, then there is high cohesion. If several algorithms each
use only a few functions in a subsystem, then there is low cohesion. Subsystems with
high cohesion tend to be very modular, supporting partitioning more easily.

Partitioning the application into modules or subsystems is a matter of finding the
breakpoints where coupling is low and cohesion is high. If a module has too many
external dependencies, it should be grouped with another module that together would
reduce coupling and increase cohesion. It is also necessary to take into account the
overall throughput requirements of the module to ensure it fits within a single core.

2.2.2 Communication
After the software modules are identified in the partitioning stage it is necessary to
measure the control and data communication requirements between them. Control
flow diagrams can identify independent control paths that help determine concurrent
tasks in the system. Data flow diagrams help determine object and data
synchronization needs.

Control flow diagrams represent the execution paths between modules. Modules in a
processing sequence that are not on the same core must rely on message passing to
synchronize their execution and possibly require data transfers. Both of these actions
can introduce latency. The control flow diagrams should be used to create metrics that

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 11 of 52
Submit Documentation Feedback

www.ti.com

assist the module grouping decision to maximize overall throughput. Figure 5 shows an
example of a control flow diagram.
Figure 5 Example Control Flow Diagram

Data flow diagrams identify the data that must pass between modules and this can be
used to create a measure of the amount and rate of data passed. A data flow diagram
also shows the level of interaction between a module and outside entities. Metrics
should be created to assist the grouping of modules to minimize the number and
amount of data communicated between cores. Figure 6 shows an example diagram.
Figure 6 Example Data Flow Diagram

Configuration Request

Configuration Confirmation

Data Delivery

Frame Processing Start

Processing Complete Indication

Frame Input

Frame Output

Data I/O Task Controller Accelerator

Bit Data 3 Bit Data 2

Core 1

Core 2

Cmd Status Cmd

CoProcessor 1

Symbol Data

Core 3

Status

Core 0

Bit Data 1

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 12 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

2.2.3 Combining
The combining phase determines whether it is useful to combine tasks identified by the
partitioning phase, so as to provide a smaller number of tasks, each of greater size.
Combining also includes determining whether it is worthwhile to replicate data or
computation. Related modules with low computational requirements and high
coupling are grouped together. Modules with high computation and high
communication costs are decomposed into smaller modules with lower individual
costs.

2.2.4 Mapping
Mapping is the process of assigning modules, tasks, or subsystems to individual cores.
Using the results from Partitioning, Communication, and Combining, a plan is made
identifying concurrency issues and module coupling. This is also the time to consider
available hardware accelerators and any dependencies this would place on software
modules.

Subsystems are allocated onto different cores based on the selected programming
model: Master/Slave or Data Flow. To allow for inter-processor communication
latency and parametric scaling, it is important to reserve some of the available MIPS,
L2 memory, and communication bandwidth on the first iteration of mapping. After all
the modules are mapped, the overall loading of each core can be evaluated to indicate
areas for additional refactoring to balance the processing load across cores.

In addition to the throughput requirements of each module, message passing latency
and processing synchronization must be factored into the overall timeline. Critical
latency issues can be addressed by adjusting the module factoring to reduce the overall
number of communication steps. When multiple cores need to share a resource like a
DMA engine or critical memory section, a hardware semaphore is used to ensure
mutual exclusion as described in Section 5.3. Blocking time for a resource must be
factored into the overall processing efficiency equation.

Embedded processors typically have a memory hierarchy with multiple levels of cache
and off-chip memory. It is preferred to operate on data in cache to minimize the
performance hit on the external memory interface. The processing partition selected
may require additional memory buffers or data duplication to compensate for
inter-processor-communication latency. Refactoring the software modules to optimize
the cache performance is an important consideration.

When a particular algorithm or critical processing loop requires more throughput than
available on a single core, consider the data parallelism as a potential way to split the
processing requirements. A brute force division of the data by the available number of
cores is not always the best split due to data locality and organization, and required
signal processing. Carefully evaluate the amount of data that must be shared between
cores to determine the best split and any need to duplicate some portion of the data.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 13 of 52
Submit Documentation Feedback

www.ti.com

The use of hardware accelerators like FFT or Viterbi coprocessors is common in
embedded processing. Sharing the accelerator across multiple cores would require
mutual exclusion via a lock to ensure correct behavior. Partitioning all functionality
requiring the use of the coprocessor to a single core eliminates the need for a hardware
semaphore and the associated latency. Developers should study the efficiency of
blocking multicore access to the accelerator versus non-blocking single core access
with potentially additional data transfer costs to get the data to the single core.

Consideration must be given to scalability as part of the partitioning process. Critical
system parameters are identified and their likely instantiations and combinations
mapped to important use cases. The mapping of tasks to cores would ideally remain
fixed as the application scales for the various use cases.

The mapping process requires multiple cycles of task allocation and parallel efficiency
measurement to find an optimal solution. There is no heuristic that is optimal for all
applications.

2.2.5 Identifying and Modifying the Code for OpenMP-based Parallelization
OpenMP provides some very useful APIs for parallelization, but it is the programmer's
responsibility to identify a parallelization strategy, then leverage relevant OpenMP
APIs. Deciding what code snippets to parallelize depends on the application code and
the use-case. The 'omp parallel' construct, introduced earlier in this section, can
essentially be used to parallelize any redundant function across cores. If the sequential
code contains 'for' loops with a large number of iterations, the programmer can
leverage the 'omp for' OpenMP construct that splits the 'for' loop iterations across
cores.

Another question the programmer should consider here is whether the application
lends itself to data-based or task-based partitioning. For example, splitting an image
into 8 slices, where each core receives one input slice and runs the same set of
algorithms on the slice, is an example of data-based partitioning, which could lend itself
to the 'omp parallel' and 'omp for' constructs. In contrast, if each core is running a
different algorithm, the programmer could leverage the 'omp sections' construct to split
unique tasks across cores.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 14 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

3 Inter-Processor Communication
The Texas Instruments KeyStone family of devices TCI66xx and C66xx, as well as the
older TCI64xx and C64xx multicore devices, offer several architectural mechanisms to
support inter-processor communication. All cores have full access to the device
memory map; this means that any core can read from and write to any memory. In
addition, there is support for direct event signaling between cores for notification as
well as DMA event control for third-party notification. The signaling available is
flexible to allow the solution to be tailored to the communication desired. Last, there
are hardware elements to allow for atomic access arbitration, which can be used to
communicate ownership of a shared resource. The Multicore Navigator module,
available in most KeyStone devices, provides an efficient way to synchronize cores,
communicate and transfer data between cores, and easy access to some of the
high-bit-rate peripherals and coprocessors with minimal involvement of the cores.

Inter-core communication consists of two primary actions: data movement and
notification (including synchronization).

3.1 Data Movement
The physical movement of data can be accomplished by several different techniques:

• Use of a shared message buffer — The sender and receiver have access to the
same physical memory.

• Use of dedicated memories — There is a transfer between dedicated send and
receive buffers.

• Transitioned memory buffer — The ownership of a memory buffer is given from
sender to receiver, but the contents do not transfer.

For each technique, there are two means to read and write the memory contents: CPU
load/store and DMA transfer. Each transfer can be configured to use a different
method.

3.1.1 Shared Memory
Using a shared memory buffer does not necessarily mean that an equally-shared
memory is used, though this would be typical. Rather, it means that a message buffer is
set up in a memory that is accessible by both sender and receiver, with each responsible
for its portion of the transaction. The sender sends the message to the shared buffer and
notifies the receiver. The receiver retrieves the message by copying the contents from a
source buffer to a destination buffer and notifies the sender that the buffer is free. It is
important to maintain coherency when multiple cores access data from shared
memory.

The SYS/BIOS message queue transport, developed for TCI64x and C64xx multicore
devices to send messages between cores, as well as IPC software layer developed for the
KeyStone family to send messages and synchronize between cores may use this scheme.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 15 of 52
Submit Documentation Feedback

www.ti.com

3.1.2 Dedicated Memories
It is also possible to manage the transport between the sending and receiving memories.
This is typically used when the cores are using dedicated area of the shared memory for
each core or local memory for their data where overhead is reduced by keeping the data
local. The data movement can be done by direct communication between cores or with
the Multicore Navigator specifically within the KeyStone family of devices. First we
describe direct communication between cores. As with the shared memory, there are
notification and transfer stages, and this can be accomplished through a push or pull
mechanism, depending on the use case.

In a push model, the sender is responsible to fill the receive buffer; in a pull model, the
receiver is responsible to retrieve the data from the send buffer (Table 1). There are
advantages and disadvantages to both. Primarily, it affects the point of
synchronization.

The differences are only in the notifications. Typically the push model is used due to
the overhead of a remote read request used in the pull model. However, if resources are
tight on the receiver, it may be advantageous for the receiver to control the data transfer
to allow tighter management of its memory.

Using the Multicore Navigator reduces the work that the cores have to do during
realtime processing. The Multicore Navigator model for transporting data between
dedicated memories is as follows:

1. Sender uses a predefined structure called a descriptor to either pass data directly
or point to a data buffer to send. This is determined by the descriptor structure
type.

2. The Sender pushes the descriptor to a hardware queue associated with the
receiver.

3. The data is available to the receiver.

To notify the receiver that the data is available, the Multicore Navigator provides
multiple methods of notification. These methods are described in the notification
section of this document.

3.1.3 Transitioned Memory
It is also possible for the sender and receiver to use the same physical memory, but
unlike the shared memory transfer described above, common memory is not
temporary. Rather, the buffer ownership is transferred, but the data does not move
through a message path. The sender passes a pointer to the receiver and the receiver
uses the contents from the original memory buffer.

Table 1 Dedicated Memory Models

Push Model Pull Model

Sender prepares send buffer Sender prepares send buffer

Sender transfers to receive buffer Receiver is notified of data ready

Receiver is notified of data ready Receiver transfers to receive buffer

Receiver consumes data Receiver frees memory

Receiver frees memory Receiver consumes data

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 16 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

Message sequence:
1. Sender generates data into memory.
2. Sender notifies receiver of data ready/ownership given.
3. Receiver consumes memory directly.
4. Receiver notifies sender of data ready/ownership given.

If applicable for symmetric flow of data, the receiver may switch to the sender role prior
to returning ownership and use the same buffer for its message.

3.1.4 Data Movement in OpenMP
Programmers can manage data scoping by using clauses such as private, shared, and
default in their OpenMP compiler directives. As mentioned previously, OpenMP
compiler directives take the form “#pragma omp construct [clause [clause]…].” The
data scoping clauses are followed by a list of variables in curved brackets. For example,
“#pragma omp parallel private(i,j).”

When variables are qualified by a private clause, each thread has a private copy of the
variable and a unique value of the variable throughout the parallel construct. These
variables are stored in the thread's stack, the default size of which is set by the compiler,
but can be overridden.

When variables are qualified by a shared clause, the same copy of the variable is seen by
all threads. These are typically stored in shared memory like DDR or MSMC.

By default, OpenMP manages data scoping of some variables. Variables that are
declared outside a parallel region are automatically scoped as shared. Variables that are
declared inside a parallel region are automatically scoped as private. Other default
scenarios also exist; for example, iteration counts are automatically enforced by the
compiler as private variables.

The default clause enables programmers to override the default scope assigned to any
variable. For example, default none can be used to state that no variables declared inside
or outside the parallel region are implied to be private or shared, respectively, and it is
the programmer's task to explicitly specify the scope of all variables inside the parallel
region.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 17 of 52
Submit Documentation Feedback

www.ti.com

The example block of code below shows these data scoping clauses:

3.2 Multicore Navigator Data Movement
The Multicore Navigator encapsulates messages—including messages that contain
data in containers called descriptors—and moves them between hardware queues. The
Queue Manager Subsystem (QMSS) is the central part of the Multicore Navigator that
controls the behavior of the hardware queues and enables routing of descriptors.
Multiple instances of logic-based DMA called PKTDMA moves descriptors between
queues and to and from peripherals as will be discussed later. A special instance of
PKTDMA called Infrastructure PKTDMA resides inside the QMSS and facilitates
moving data between threads that belong to different cores. When a core wants to move
data to another core, it puts the data in a buffer that is associated with a descriptor and
pushes the descriptor to a queue. All the routing and monitoring is done inside the
QMSS. The descriptor is pushed into a queue that belongs to the receive core. Different
methods of notifying the receive core that a descriptor with data is available to it are
described in the Notification chapter.

Moving data between cores using the Multicore Navigator queues enables the sending
core to “fire and forget” the data movement and offloads the cores from copying the
data. It enables a loose link between cores so that the send core is not blocked by the
receive core.

3.3 Notification and Synchronization
The multicore model requires the ability to synchronize cores and to send notifications
between cores. A typical synchronization use case is when a single core does all the
system initialization and all other cores must wait until initialization is complete before
continuing execution. Fork and joint points in parallel processing require
synchronization between (conceivably a subset of) the cores. Synchronization and
notification can be implemented using the Multicore Navigator or by CPU execution.
Transport data from one core to another requires notifications. As previously
mentioned, the Multicore Navigator offers a variety of methods to notify the receive
core that data is available. The notification methods are described in ‘‘Multicore
Navigator Notification Methods’’ on page 22.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 18 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

For non-navigator data transport, after communication message data is prepared by
the sender for delivery to the receiver using shared, dedicated, or transitional memory,
it is necessary to notify the receiver of the message availability. This can be
accomplished by direct or indirect signaling, or by atomic arbitration.

3.3.1 Direct Signaling
The devices support a simple peripheral that allows a core to generate a physical event
to another core. This event is routed through the core’s local interrupt controller along
with all other system events. The programmer can select whether this event will
generate a CPU interrupt or if the CPU will poll its status. The peripheral includes a flag
register to indicate the originator of the event so that the notified CPU can take the
appropriate action (including clearing the flag) as shown in Figure 7.

The processing steps are:
1. CPU A writes to CPU B’s inter-processor communication (IPC) control register
2. IPC event generated to interrupt controller
3. Interrupt controller notifies CPU B (or polls)
4. CPU B queries IPC
5. CPU B clears IPC flag(s)
6. CPU B performs appropriate action

Figure 7 Direct IPC Signaling

IPC Peripheral

CPU B
Interrupt

Controller

CPU A

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 19 of 52
Submit Documentation Feedback

www.ti.com

3.3.2 Indirect Signaling
If a third-party transport, such as the EDMA controller, is used to move data, the
signaling between cores can also be performed through this transport. In other words,
the notification follows the data movement in hardware, rather than through software
control, as shown in Figure 8.

The processing steps are:
1. CPU A configures and triggers transfer using EDMA
2. EDMA completion event generated to interrupt controller
3. Interrupt controller notifies CPU B (or polls)

Figure 8 Indirect Signaling

Data

Send
BufferCPU A

Configure

EDMA

Notify

CPU B
Receive
Buffer

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 20 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

3.3.3 Atomic Arbitration
Each device includes hardware support for atomic arbitration. The supporting
architecture varies on different devices, but the same underlying function can be
achieved easily. Atomic arbitration instructions are supported with hardware monitors
in the Shared L2 controller on the TCI6486 and C6472 devices, while a semaphore
peripheral is on the TCI6487/88 and C6474 devices because they do not have a shared
L2 memory. The KeyStone family of devices has both atomic arbitration instructions
and a semaphore peripheral. On all devices, a CPU can atomically acquire a lock,
modify any shared resource, and release the lock back to the system.

The hardware guarantees that the acquisition of the lock itself is atomic, meaning only
a single core can own it at any time. There is no hardware guarantee that the shared
resource(s) associated with the lock are protected. Rather, the lock is a hardware tool
that allows software to guarantee atomicity through a well-defined (and simple)
protocol outlined in Table 2 and shown in Figure 9.

Table 2 Atomic Arbitration Protocol

CPU A CPU B

1: Acquire lock 1: Acquire lock

→ Pass (lock available) → Fail (Fails because lock is unavailable)

2: Modify resource 2: Repeat step 1 until Pass

3: Release lock → Pass (lock available)

3: Modify resource

4: Release lock

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 21 of 52
Submit Documentation Feedback

www.ti.com

Figure 9 Atomic Arbitration

3.3.4 Synchronization in OpenMP
With OpenMP, synchronizations are either implicit or can be explicitly defined using
compiler directives.

Thread synchronizations are implicit at the end of parallel or work-sharing constructs.
This means that no thread can progress until all other threads in the team have reached
the end of the block of code.

Synchronization directives can also be defined explicitly. For example, the critical
construct ensures that only one thread can enter the block of code at a time. It is
important to include a unique region name as “#pragma omp critical <region name>.”
If critical sections are unnamed, threads will not enter any of the critical regions.
Another example of an explicit synchronization directive is the atomic directive. There
are some key differences between the atomic and critical directives: atomic applies only
to a line of code, which is translated into a hardware-based atomic operation, and is
therefore more hardware-dependent and less-portable than the critical construct,
which applies to a block of code.

Free Lock

Resource
Lock

Pass

Acquire Lock
Fail

Modify
Resource

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 22 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

3.4 Multicore Navigator Notification Methods
The Multicore Navigator encapsulates messages, including messages that contain data
in containers called descriptors, and moves them between hardware queues. Each
destination has one or more dedicated receive queues. The Multicore Navigator
enables the following methods for the receiver to access the descriptors in a receive
queue.

3.4.1 Non-blocking Polling
In this method, the receiver checks to see if there is a descriptor waiting for it in the
receive queue. If there is no descriptor, the receiver continues its execution.

3.4.2 Blocking Polling
In this method, the receiver blocks its execution until there is a descriptor in the receive
queue, then it continues to process the descriptor.

3.4.3 Interrupt-based Notification
In this method, the receiver gets an interrupt whenever a new descriptor is put into its
receive queue. This method guarantees fast response to incoming descriptors. When a
new descriptor arrives, the receiver performs context switching and starts processing
the new descriptor.

3.4.4 Delayed (Staggered) Interrupt Notification
When the frequency of incoming descriptors is high, the navigator can configure the
interrupt to be sent only when the number of new descriptors in the queue reaches a
programmable watermark, or after a certain time from the arrival of the first descriptor
in the queue. This method reduces the context switching load of the receiver.

3.4.5 QoS-based Notification
A quality-of-service mechanism is supported by the Multicore Navigator to prioritize
the data stream traffic of the peripheral modules; this mechanism evaluates each data
stream with a view to delaying or expediting the data stream according to predefined
quality-of-service parameters. The same mechanism can be used to transfer messages
of different importance between cores.

The quality-of-service (QoS) firmware has the job of policing all packet flows in the
system and verifying that neither the peripherals nor the host CPU are overwhelmed
with packets. To support QoS, a special processor called the QoS PDSP monitors and
moves descriptors between queues.

The key to the functionality of the QoS system is the arrangement of packet queues.
There are two sets of packet queues: the QoS ingress queues and the final destination
queues. The final destination queues are further divided into host queues and
peripheral egress queues. Host queues are those that terminate on the host device and
are actually received by the host. Egress queues are those that terminate at a physical
egress peripheral device. When shaping traffic, only the QoS PDSP writes to either the
host queues or the egress queues. Unshaped traffic is written only to QoS ingress
queues.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 23 of 52
Submit Documentation Feedback

www.ti.com

It is the job of the QoS PDSP to move packets from the QoS ingress queues to their final
destination queues while performing the proper traffic shaping in the process. There is
a designated set of queues in the system that feed into the QoS PDSP. These are called
QoS queues. The QoS queues are simply queues that are controlled by the firmware
running on the PDSP. There are no inherent properties of the queues that fix them to
a specific purpose.

4 Data Transfer Engines
Within the device, the primary data transfer engines on current Texas Instruments
KeyStone TCI66xx and C66xx devices are the EDMA (enhanced DMA) modules and
the PKTDMA (Packet DMA, part of the Multicore Navigator) modules. For high-bit
communication between devices, there are several transfer engines, depending on the
physical interface selected for communication. Some of the transfer engines have an
instance of PKTDMA to move data in and out from the peripheral engine. High
bit-rate peripherals include:

• Antenna Interface (Wireless devices): Multiple PKTDMA instances are used in
conjunction with multiple AIF instances to transport data.

• Serial RapidIO: There are two modes available — DirectIO and Messaging.
Depending on the mode, the PKTDMA or built-in direct DMA control are
available.

• Ethernet: There is a PKTDMA instance for handling all of the data movement.
• PCI express: There is build-in DMA control that moves data in and out of the

PCI express into dedicated memory
• HyperLink: The KeyStone family has a proprietary point to point fast bus that

enables direct linking of two devices together. There is a build-in DMA control
that moves data in and out of the HyperLink module into dedicated memory.

In addition, PKTDMA is used to move data between the cores and high-bit-rate
coprocessors such as the FFT engines on the wireless devices of the family.

4.1 Packet DMA
Packet DMA (PKTDMA) instances are part of the Multicore Navigator. Each
PKTDMA instance has a separate hardware path for receive and transmit data with
multiple DMA channels in each direction. For transmit data, PKTDMA converts data
encapsulated in descriptors into a bit stream. Receive bit-stream data is encapsulated
into descriptors and is routed to a predefined destination.

The other part of the Multicore Navigator is the Queue Manager Subsystem (QMSS).
Currently, the Multicore Navigator has 8192 hardware queues and can support up to
512K descriptors. It includes a queue manager, multiple processors (called PDSP), and
an interrupt manager unit. The queue manager controls the queues while the
PKTDMA moves descriptors between queues. The notification methods that are
described above are controlled by the queue manager special PDSP processors. The
queue manager is responsible for routing descriptors to the correct destination.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 24 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

Some peripherals and coprocessors that may require routing of data to different cores
or different destinations have an instance of PKTDMA as part of the peripheral or the
coprocessor. In addition, a special PKTDMA instance called an infrastructure
PKTDMA resides in the QMSS to support communications between cores.

4.2 EDMA
Channels and parameter RAM can be separated by software into regions with each
region assigned to a core. The event-to-channel routing and EDMA interrupts are fully
programmable, allowing flexibility as to ownership. All event, interrupt, and channel
parameter control is designed to be controlled independently, meaning that once
allocated to a core, that core does not need to arbitrate before accessing the resource. In
addition, a sophisticated mechanism ensures that EMDA transfer initiated by a certain
core will keep the same memory access attributes of the originated core in terms of
address translation and privileges. For more information, see ‘‘Shared Resource
Management’’ on page 26.

4.3 Ethernet
The Network Coprocessor (NetCP) peripheral supports Ethernet communication. It
has two SGMII ports (10/100/1000) and one internal port. A special packet accelerator
module supports routing based on L2 address values (up to 64 different addresses), L3
address values (up to 64 different addresses), L4 address values (up to 8192 addresses)
or any combination of L2, L3, and L4 addressing. In addition, the packet accelerator can
calculate CRC and other error detection values to help incoming and outgoing packets.
A special security engine can do decryption and encryption of packets to support VPN
or other applications that require security.

An instance of PKTDMA is part of the NetCP and it manages all traffic into, out of, and
inside the NetCP and enables routing of packets to a predefined destination.

4.4 RapidIO
Both DirectIO and messaging protocols allow for orthogonal control by each of the
cores. For DSP-initiated DirectIO transfers, the load-store units (LSUs) are used. There
are multiple LSUs (depending on the device), each independent from the others, and
each can submit transactions to any physical link. The LSUs may be allocated to
individual cores, after which the cores need not arbitrate for access. Alternatively, the
LSUs can be allocated as needed to any core, in which case there would need to be a
temporary ownership assigned that may be done using a semaphore resource. Similar
to the Ethernet peripheral, messaging allows for individual control of multiple transfer
channels. When using messaging protocols, a special instance of PKTDMA is
responsible for routing incoming packets to a destination core based on destination ID,
mail-box and letter values, and to route outbound messages from cores to the external
world. After each core configures the Multicore Navigator parameters for its own
messaging traffic, the data movement is done by the Multicore Navigator and is
transparent to the user.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 25 of 52
Submit Documentation Feedback

www.ti.com

4.5 Antenna Interface
The AIF2 antenna interface supports many wireless standards such as WCDMA, LTE,
WiMAX, TD-SCDMA, and GSM/EDGE. AIF2 can be accessed in direct mode using its
own DMA module, or packet-based access using PKTDMA instance that is part of each
AIF2 instance.

When direct IO is used, it is the responsibility of the cores to manage the ingress and
egress traffic explicitly. In many cases, egress antenna data comes from the FFT engine
(FFTC) and ingress antenna data goes to the FFTC. Using the PKTDMA and the
Multicore Navigator system can facilitate the data movement between the AIF and
FFTC without the involvement of any core.

Each of the FFTC engines has its own PKTDMA instance. The Multicore Navigator can
be configured to send incoming antenna data directly into the correct FFTC engine for
processing; from there, the data will be routed to continue processing.

128 queues of the queue manager subsystem are dedicated to the AIF2. When a
descriptor enters into one of these queues, a pending signal is sent to the appropriate
PKTDMA of the AIF instance that is associated with the queue, and the data is read and
sent out via the AIF2 interface. Similarly, data arriving at the AIF is encapsulated by the
PKTDMA into descriptors and, based on pre-configuration, the descriptor is routed to
the destination, usually, an FFTC instance for FFT processing.

4.6 PCI Express
The PCI express engine in the KeyStone TCI66XX and C66XX devices supports three
modes of operation, Root complex, endpoint, and legacy endpoint. The PCI express
peripheral uses a built-in DMA control to move data to and from the external world
directly into internal or external memory locations.

4.7 HyperLink
The HyperLink peripheral in the KeyStone TCI66XX and C66XX devices enables one
device to read and write to and from the other device memory via the HyperLink. In
addition, the Hyperlink enables sending events and interrupts to the other side of the
HyperLink connection. The HyperLink peripheral uses a built-in DMA control to read
and write data to and from the memory to the interface.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 26 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

5 Shared Resource Management
When sharing resources on the device, it is critical that there is a uniform protocol
followed by all the cores in the system. The protocol may depend on the set of resources
being shared, but all cores must follow the same rules.

Section 3.3 describes signaling in the context of message passing. The same signalling
mechanisms can also be used for general resource management. Direct signaling or
atomic arbitration can be used between cores. Within a core, a global flag or an OS
semaphore can be used. It is not recommended to use a simple global flag for intercore
arbitration because there is significant overhead to ensure updates are atomic.

5.1 Global Flags
Global flags are useful within a single core using a single-threaded model. If there is a
resource that depends on an action being completed (typically a hardware event), a
global flag may be set and cleared for simple control. While global flags that are based
on software structure can be used in multicore environment, it is not recommended.
The overhead needed to ensure proper operation across multiple cores (preventing
race conditions, ensuring that all cores see a global flag, managing state change over
multiple cores) is too high and other methods such as using the IPC registers or
semaphores are more efficient.

5.2 OS Semaphores
All multitask operating systems include semaphore support for arbitration of shared
resources and for task synchronization. On a single core, this is essentially a global flag
controlled by the OS that keeps track of when a resource is owned by a task or when a
thread should block or proceed with execution based on signals the semaphore has
received.

5.3 Hardware Semaphores
Hardware semaphores are needed only when arbitrating between cores. There is no
advantage to using them for single-core arbitration; the OS can use its own mechanism
with much less overhead. When arbitrating between cores, hardware support is
essential to ensure updates are atomic. There are software algorithms that can be used
along with shared memory, but these consume CPU cycles unnecessarily.

5.4 Direct Signaling
As with message passing, direct signaling can be used for simple arbitration. If there is
only a small set of resources being shared between cores, the IPC signaling described in
Section 3.3.1 can be used. A protocol can be followed to allow a
notify-and-acknowledge handshake to pass ownership of a resource. The KeyStone
TCI66XX and C66XX devices have a set of hardware registers that can be used to
facilitate efficiently core-to-core interrupts, event/signaling and host-to-core
interrupts, and events generation and acknowledgements.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 27 of 52
Submit Documentation Feedback

www.ti.com

6 Memory Management
In programming a multicore device, it is important to consider the processing model.
On the Texas Instruments TCI66xx and C6xx devices, each core has local L1/L2
memory and equal access to any shared internal and external memory. It is typically
expected that each core will execute some or the entire code image from shared
memory, with data being the predominant use of the local memories. This is not a
restriction on the user and is described later in this section.

In the case of each core having its own code and data space, the aliased local L1/L2
addresses should not be used. Only the global addresses should be used, which gives a
common view to the entire system of each memory location. This also means that for
software development, each core would have its own project, built in isolation from the
others. Shared regions would be commonly defined in each core’s map and accessed
directly by any master using the same address.

In the case of there being a shared code section, there may be a desire to use aliased
addresses for data structures or scratch memory used in the common function(s). This
would allow the same address to be used by any of the cores without regard for checking
which core it is. The data structure/scratch buffer would need to have a run address
defined using the aliased address region so that when accessed by the function it is
core-agnostic. The load address would need to be the global address for the same offset.
The runtime, aliased address is usable for direct CPU load/store and internal DMA
(IDMA) paging, though not EDMA, PKTDMA, or other master transactions. These
transactions must use the global address.

It is always possible for the software to verify on which core it is running, so the aliased
addresses are not required to be used in common code. There is a CPU register
(DNUM) that holds the DSP core number and can be read during runtime to
conditionally execute code and update pointers.

Any shared data resource should be arbitrated so that there are no conflicts of
ownership. There is an on-chip semaphore peripheral that allows threads executing on
different CPUs to arbitrate for ownership of a shared resource. This ensures that a
read-modify-write update to a shared resource can be made atomically.

To speed up reading program and data from external DDR3 memory and from the
shared L2 memory, each core has a set of dedicated prefetch registers. These prefetch
registers are used to pre-load consecutive memory from the external memory (or the
shared L2 memory) before it is needed by the core. The prefetch mechanism assesses
the direction from which data and program are read from external memory, and
pre-load data and program that may be read in the future, resulting in higher
bandwidth if the pre-load data is needed, or with un-needed reading from external
memory if the read data is not read later. Each core can control the prefetch as well as
the cache for each memory segment (16MB) separately.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 28 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

6.1 CPU View of the Device
Each of the CPUs has an identical view of the device. As shown in Figure 10, beyond
each core’s L2 memory there is a switched central resource (SCR) that interconnects the
cores, external memory interface, and on-chip peripherals through a switch fabric.
Figure 10 CPUs' Device View

Each of the cores is a master to both the configuration (access to peripheral control
registers) and DMA (internal and external data memories) switch fabrics. In addition,
each core has a slave interface to the DMA switch fabric allowing access to its L1 and
L2 SRAM. All cores have equal access to all slave endpoints with priority assigned per
master by user software for arbitration between all accesses at each endpoint.

Each slave in the system (e.g. Timer control, DDR3 SDRAM, each core's L1/L2 SRAM)
has a unique address in the device’s memory map that is used by any of the masters to
access it. Restrictions to the chip-level routing is beyond the scope of the document, but
for the most part, each core has access to all control registers and all RAM locations in
the memory map. For details of restrictions to chip-level routing, see TI reference guide
SPRUGW0, TMS320C66x DSP CorePac User Guide[3].

Within each core there are Level 1 program and data memories directly connected to
the CPU, and a Level 2 unified memory. Details for the cache and SRAM control
(see [3]) are beyond the scope of this document, but each memory is user-configurable
to have some portion be memory-mapped SRAM.

As described previously, the local core's L1/L2 memories have two entries in the
memory map. All memory local to the processors has global addresses that are
accessible to all masters in the device. In addition, local memory can be accessed
directly by the associated processor through aliased addresses, where the eight most
significant bits are masked to zero. The aliasing is handled within the core and allows
for common code to be run unmodified on multiple cores. For example, address
location 0x10800000 is the global base address for core 0’s L2 memory. Core 0 can

CPU DSP Core

Local memories

Memory Subsystem Multi-Core
(MSMC)

Data Teranet
Non Local
memories

Non Local
memories

Non Local
memories

Non Local
memories

CFG Teranet Peripherals
Config

L2 Shared
Memory External DDR3

SRAM

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 29 of 52
Submit Documentation Feedback

www.ti.com

access this location by using either 0x10800000 or 0x00800000. Any other master on
the device must use 0x10800000 only. Conversely, 0x00800000 can be used by any of
the cores as their own L2 base addresses. For Core 0, as mentioned, this is equivalent to
0x10800000, for Core 1 this is equivalent to 0x11800000, and for Core 2 this is
equivalent to 0x12800000 and so on for all cores in the device. Local addresses should
be used only for shared code or data, allowing a single image to be included in memory.
Any code/data targeted to a specific core, or a memory region allocated during runtime
by a particular core, should always use the global address only.

Each core accesses any of the shared memories either L2 shared memory (MSM -
multicore shared memory) or the external memory DDR3 via the memory subsystem
multicore (MSMC) module. Each core has a direct master port into the MSMC. The
MSMC arbitrate and optimize access to shared memory from all masters, including
each core, EDMA access or other masters and it performs error detection and
correction. The XMC (external memory controller) registers and the EMC (enhanced
memory controller) registers manage the MSMC interface individually for each core
and provide memory protection and address translation from 32 bits to 36 bits to
enable various address manipulations such as accessing up to 8 GB of external memory.

6.2 Cache and Prefetch Considerations
It is important to point out that the only coherency guaranteed by hardware with no
software management is L1D cache coherency with L2 SRAM within the same core.
The hardware will guarantee that any updates to L2 will be reflected in L1D cache, and
vice versa. There is no guaranteed coherency between L1P cache and L2 within the
same core, there is no coherency between L1/L2 on one core and L1/L2 on another
core, and there is no coherency between any L1/L2 on the chip and shared L2 memory
and external memory.

The TCI66xx and C66xx devices do not support automated cache coherency because
of the power consumption involved and the latency overhead introduced. Realtime
applications targeted for these devices require predictability and determinism, which
comes from data coherency being coordinated at select times by the application
software. As developers manage this coherency, they develop designs that run faster
and at lower power because they control when and if local data must be replicated into
different memories. Figure 11 describes the coherency and non-coherency of the cache.

As with L2 cache, prefetch coherency is not maintained across cores. It is the
application responsibility to manage coherency, either by disable the prefetch for
certain memory segment, or by invalidate the prefetch data if necessary.

TI provides a set of API functions to perform cache coherency and prefetch coherency
operations including cache line invalidation, cache line writeback to stored memory,
and a writeback-invalidation operation.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 30 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

Figure 11 Cache Coherency Mapping

In addition, if any portion of the L1s is configured as memory-mapped SRAM, there is
a small paging engine built into the core (IDMA) that can be used to transfer linear
blocks of memory between L1 and L2 in the background of CPU operation. IDMA
transfers have a user-programmable priority to arbitrate against other masters in the
system. The IDMA may also be used to perform bulk peripheral configuration register
access.

In programming a TCI66XX or C66XX device, it is important to consider the
processing model. Figure 11 shows how each core has local L1/L2 memory and a direct
connection to the MSMC (memory Subsystem multi Core) that provides access to the
shared L2 memory and to the external DDR3 SDRAM (if present in the system).

6.3 Shared Code Program Memory Placement
When CPUs execute from a shared code image, it is important to take care to manage
local data buffers. Memory used for stack or local data tables can use the aliased address
and will therefore be identical for all cores. In addition, any L1D SRAM used for scratch
data, with paging from L2 SRAM using the IDMA, can use the aliased address.

As mentioned previously, DMA masters must use the global address for any memory
transaction. Therefore, when programming the DMA context in any peripheral, the
code must insert the core number (DNUM) into the address.

To partition external memory sections between cores in the KeyStone family of devices,
the application uses the MPAX module. Using MPAX, a KeyStone SoC with native
addressing of 32-bits can address memory space of 64 Gbytes addressable with a 36-bit
address. There are multiple MPAX units available in the KeyStone SoC which allows
address translation for all masters of the SoC to shared memories like MSM SRAM and

DSP Core 0

Local
memories

Memory Subsystem Multi-
Core (MSMC)

L2 Shared
Memory

External
DDR3 SRAM

L2 cache and
ram

L1 cache

DSP Core 1

Local
memories

L2 cache and
ram

L1 cache

No Coherent

Coherent within
core 0

Coherent within
core 1

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 31 of 52
Submit Documentation Feedback

www.ti.com

DDR memory. The C66x CorePac uses its own MPAX modules to extend 32-bit
addresses to 36-bit addresses before presenting them to the MSMC module. The
MPAX module uses MPAXH and MPAXL registers to do address translation per
master.

6.3.1 Using the Same Address for Different Code In Shared Memory
As mentioned previously for the Keystone family of devices, the XMC of each core has
16 MPAX registers that translate 32-bit logical addresses into 36-bit physical addresses.
This feature enables the application to use the same logical memory address in all cores
and to configure the MPAX registers of each core to point to a different physical
address.

Detailed information about how to use the MPAX registers is given in Chapter 2 of the
KeyStone Architecture Multicore Shared Memory Controller (MSMC) User Guide
(SPRUGW7) [4].

6.3.2 Using a Different Address for the Same Code In Shared Memory
If the application uses a different address for each core, the per-core address must be
determined at initialization time and stored in a pointer (or calculated each time it is
used).

The programmer can use the formula:

<base address> + <per-core-area size> × DNUM

This can be done at boot time or during thread-creation time when pointers are
calculated and stored in local L2. This allows the rest of the processing through this
pointer to be core-independent, so the correct unique pointer is always retrieved from
local L2 when it is needed.

FFFF_FFFF

8000_0000
7FFF_FFFF 0:8000_0000

0:7FFF_FFFF

1:0000_0000
0:FFFF_FFFF

C66x CorePac
Logical 32-bit
Memory Map

System
Physical 36-bit
Memory Map

0:0C00_0000
0:0BFF_FFFF

0:0000_0000

F:FFFF_FFFF

8:8000_0000
8:7FFF_FFFF

8:0000_0000
7:FFFF_FFFF

0C00_0000
0BFF_FFFF

0000_0000
Segment 1
Segment 0

MPAX Registers

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 32 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

Thus, the shared application can be created, using the local L2 memory, so each core
can run the same application with little knowledge of the multicore system (such
knowledge is only in initialization code). The actual components within the thread are
not aware that they are running on a multicore system.

For the KeyStone family of devices, the MPAX module inside each CorePac can be
configured to a different address for the same program code in the shared memory.

6.4 Peripheral Drivers
All device peripherals are shared and any core can access any of the peripherals at any
time. Initialization should occur during the boot process, either directly by an external
host, by parameter tables in an I2C EEPROM, or by an initialization sequence within
the application code itself (one core only). For all runtime control, it is up to the
software to determine when a particular core is to initialize a peripheral.

Generally speaking, peripherals that read or write directly from a memory location use
a generic DMA resource that is either built into the peripheral or provided by an
EDMA controller or controllers (depending on the device). Peripherals that send or
receive data based on a routing scheme use the Multicore Navigator and have an
instance of PKTDMA.

Therefore, when a routing peripheral such as SRIO type 9 or type 11 or a NetCP
Ethernet coprocessor is used, the executable must initialize the peripheral hardware,
the PKTDMA that is associated with the peripheral, and the queues that are used by the
peripheral and by the routing scheme.

Each routing peripheral has dedicated transmit queues that are hard-connected to the
PKTDMA; when a descriptor is pushed into on of these TX queues, the PKTDMA sees
a pending signal that prompts it to pop the descriptor, read the buffer that the
descriptor is linked to if it is a host descriptor, convert the data to a bitstream, send the
data, and recycle the descriptor back into a free descriptor queue. Note that all cores
that send data to a peripheral use the same queues. Usually each TX queue is connected
to a channel. For example, SRIO has 16 dedicated queues and 16 dedicated channels
where each queue is hard-connected to a channel. If the peripheral sets priorities based
on its channel number, pushing a descriptor to different queue results in a different
priority for the transmit data. See the KeyStone Architecture Multicore Navigator User
Guide (SPRUGR9)[2]for more information about channels priorities.

While the transmit queues for peripherals are fixed, receive queues can be chosen from
a general purpose queue set or from a special queue set based on the notification
methods used to notify a core that a descriptor is available for processing (as described
in chapter 3.3). For the pulling method, any general purpose queue can be used. Special
interrupt queues should be used for the fastest response. Accumulation queues are used
to reduce context switching for delayed notification method.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 33 of 52
Submit Documentation Feedback

www.ti.com

The application must configure the routing mechanism. For example, for NetCP the
user can route packets based on L2, L3, or L4 layers or any combination of the above.
The application must configure the NetCP engine to route any package. To route a
package to a specific core, the descriptor must be pushed into a queue associated with
that core. The same is true for SRIO: the routine information, ID, mailbox and letters
for type 11, stream ID for type 9 must be configured by the application.

Peripherals that use memory location directly (SRIO directIO, HyperLink, PCI
express) have built-in DMA engines to move data to and from memory. When the data
is in memory, the application is responsible to assign one or more cores to access the
data.

For each of the DMA resources on the device—PKTDMA or built-in DMA engine—
the software architecture determines whether all resources for a given peripheral will
be controlled by a single core (master control) or if each core will control its own (peer
control). With the TCI66XX or C66XX, as summarized above, all peripherals have
multiple DMA channel context as part of the PKTDMA engine or the DMA built-in
engine that allows for peer control without requiring arbitration. Each DMA context is
autonomous and no considerations for atomic access need to be taken into account.

Because a subset of the cores can be reset during runtime, the application software must
own re-initialization of the reset cores so that it avoids interrupting cores that are not
being reset. This can be accomplished by having each core check the state of the
peripheral it is configuring. If the peripheral is not powered up and enabled for
transmit and receive, the core will perform the power up and global configuration.
There is an inherent race condition in this method if two cores read the peripheral state
when it is powered down and begin a power up sequence, but this can be managed by
using the atomic monitors in the shared memory controller (SMC) or other
synchronization methods (semaphores and others).

A host control method allows deferring the decision on device initialization to a higher
layer outside the DSP. When a core needs to access a peripheral, it is directed by this
upper layer whether to perform a global or a local initialization.

6.5 Data Memory Placement and Access
Memory selection for data depends primarily on how the data is to be transmitted and
received and the access pattern/timing of the data by the CPU(s). Ideally, all data is
allocated to L2 SRAM. However, there is often a space limitation in the internal DSP
memory that requires some code and data to reside off-chip in DDR3 SDRAM.

Typically, data for runtime critical functions are located within local L2 RAM for the
core to which the data is assigned and non-time-critical data such as statistics are
pushed to external memory and accessed through the cache. When runtime data must
be placed off-chip, it is often preferred to move data using EDMA and ping-pong buffer
structure between external memory and L2 SRAM rather than access through the
cache. The trade-off is simply control overhead versus performance, though even if
accessing the data through the cache, coherency must be maintained in software for any
DMA of data to or from the external memory.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 34 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

7 DSP Code and Data Images
To better support the configuration of multicore devices, it is important to understand
how to define the software project(s) and OS partitioning. In this section, SYS/BIOS
will be referenced, but comparable considerations would need to be observed for any
OS.

SYS/BIOS provides configuration platforms for all Texas Instruments C64xx and
C66xx devices. In the SYS/BIOS configuration for any of the multicore SoCs, there are
separate memory sections for local L2 memory (LL2RAM) and shared L2 memory
(SL2RAM). Depending on how much of the application is common across the cores,
different configurations are necessary to minimize the footprint of the OS and
application in the device memory.

7.1 Single Image
The single image application shares some code and data memory across all cores. This
technique allows the exact same application to load and run on all cores. If running a
completely shared application (when all cores execute the same program), only one
project is required for the device, and likewise, only one SYS/BIOS configuration file is
required. As mentioned previously, there are some considerations for the code and
linker command file:

• The code must set up pointer tables for unique data sections that reside in shared
L2 or DDR SDRAM.

• The code must add DNUM to any data buffer addresses when programming
DMA channels.

• The linker command file should define the device memory map using aliased
addresses only.

7.2 Multiple Images
In this scenario, each core runs a different and independent application. This requires
that any code or data placed in a shared memory region (L2 or DDR) be allocated a
unique address range to prevent other cores from accessing the same memory region.

For this application, the SYS/BIOS configuration file for each application adjusts the
locations of the memory sections to ensure that overlapping memory ranges are not
accessible by multiple cores.

Each core requires a dedicated project—or at least a dedicated linker command file—
if the code is to be replicated. The linker output needs to map all sections to unique
addresses, which can be done using global addressing for all sections. In this case, there
is no aliasing required, and all addresses used by DMA are identical to those used by
each CPU.

7.3 Multiple Images with Shared Code and Data
In this scenario, a common code image is shared by different applications running on
different cores. Sharing common code among multiple applications reduces the overall
memory requirement while still allowing for the different cores to run unique
applications.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 35 of 52
Submit Documentation Feedback

www.ti.com

This requires a combination of the techniques used for a single image and multiple
images, which can be accomplished through the use of partial linking.

The output generated from a partially-linked image can be linked again with additional
modules or applications. Partial linking allows the programmer to partition large
applications, link each part separately, then link all the parts together to create the final
executable. The TI Code Generation tool's linker provides an option (–r) to create a
partial image. The –r option allows the image to be linked again with the final
application.

There are a few restrictions when using the –r linker option to create a partial image:
• Conditional linking is disabled. The memory requirement may increase.
• Trampolines are disabled. All code needs to be within a 21-bit boundary.
• .cinit and .pinit cannot be placed in the partial image.

The partial image must be located in shared memory so all the cores can access it, and
it should contain all code (.bios, .text, and any custom code sections) except for
.hwi_vec. It should also contain the constant data (.sysinit and .const) needed by the
SYS/BIOS code in the same location. The image is placed in a fixed location, with which
the final applications will link.

Because the SYS/BIOS code contains data references (.far and .bss sections), these
sections need to be placed in the same memory location in non-shared memory by the
different applications that will link with this partial image. ELF Format requires that the
.neardata and .rodata sections be placed in the same section as .bss. For this to work
correctly, each core must have a non-shared memory section at the same address
location. For the C64xx and C66xx multicore devices, these sections must be placed in
the local L2 of each core.

7.4 Device Boot
As discussed in Section 6, there may be one or more projects and resulting .out files
used in software development for a single device depending on the mix of shared and
unique sections. Regardless of the number of .out files created, a single boot table
should be generated for the final image to be loaded in the end system.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 36 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

TI has several utilities to help with the creation of the single boot table. Figure 12 shows
an example of how these utilities can be used to build a single boot table from three
separate executable files.
Figure 12 Boot Table Merge

Once a single boot table is created, it can be used to load the entire DSP image. As
mentioned previously, there is a single global memory map, which allows for a
straightforward boot loading process. All sections are loaded as defined by their global
address.

The boot sequence is controlled by one core. After device reset, Core 0 is responsible
for releasing all cores from reset after the boot image is loaded into the device. With a
single boot table, Core 0 is able to load any memory on the device and the user does not
need to take any special care for the multiple cores other than to ensure that code is
loaded correctly in the memory map to all cores' start addresses (which is configurable).

Details about the bootloader are available in TI user guides SPRUEA7,
TMS320TCI648x DSP Bootloader [5] and SPRUG24, TMS320C6474 DSP
Bootloader [6], and SPRUGY5, Bootloader for KeyStone Devices User's Guide [7].

7.5 Multicore Application Deployment (MAD) Utilities
Tools for deploying applications on Multicore devices are supplied with the Multicore
Software Development Kit (MCSDK) Version 2.x. See the MAD Utilities User's Guide
for details about how to leverage these tools to deploy applications. The MAD Utilities
are stored in the following folder:

<MCSDK_INSTALL_DIR>\mcsdk_2_xx_xx_xx\tools\boot_loader\mad-utils

7.5.1 The MAD Utilities
The MAD Utilities provide a set of tools for use at both build and run time for
deploying an application.

• Build Time Utilities
– Static Linker — For linking the applications and dependent dynamic shared

objects (DSO)
– Prelink Tool — For binding segments in an ELF file to virtual addresses
– MAP Tool — Multicore Application Prelinker (MAP) tool to assign virtual

address to segments for multicore applications

Hex6x

Hex6x

Hex6x
Core0.out
Core0.rmd

Core1.out

Core1.rmd

Core2.out

Core2.rmd

Core0.btbl

Core1.btbl

Core2.btbl

MERGEBTBL
DSPCode.btbl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 37 of 52
Submit Documentation Feedback

www.ti.com

• Runtime Utilities
– Intermediate Bootloader — provides the functionality of downloading the

ROM file system image to the device's shared external memory (DDR)
– Mad Loader — provides the functionality of starting an application on a

given core

For additional information about the MAD Utilities, see the MAD Tools User's Guide.

7.5.2 Multicore Deployment Example
The Image Processing example supplied with the MCSDK utilizes the MAD tools for
Multicore deployment. This example is supplied in the following folder:

<MCSDK_INSTALL_DIR>\mcsdk_2_xx_xx_xx\demos\image_processing

For additional information about the Image Processing Example, see the MCSDK
Image Processing Demonstration Guide.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 38 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

8 System Debug
The Texas Instruments C64xx and C66xx devices offer hardware support for
visualization of the program and data flow through the device. Much of the hardware
is built into the core, with system events used to extend the visibility through the rest of
the chip. Events also serve as synchronization points between cores and the system,
allowing for all activity to be “stitched together” in one timeline.

8.1 Debug and Tooling Categories
There are hardware and software tools available during runtime that can be used to
debug a specific problem. Given that different problems can arise during different
phases of system development, the debug and tooling resources available are described
in several categories. The four scenarios are shown in Table 3.

While the characteristics described in Table 3 are not unique to multicore devices,
having multiple cores, accelerators, and a large number of endpoints means that there
is a lot of activity within the device. As such, it is important to use the emulation and
instrumentation capabilities as much as possible to ease the complexity of debugging
realtime problems in the development, test, and field environments. The following
sections outline the system software instrumentation required to generate trace
captures and logs for a particular problem.

Table 3 Debug and Tooling Categories

Resident Configuration Debug Configuration

Emulation Hardware

• Configured at start-up and always
available for non-intrusive debug

• Resources may be steered by
application or external host, based on
system events that are available
within the application (e.g. no code
modification required)

• May be intrusive to the system
software, depending on when
configuration occurs (startup vs.
runtime), but performance is not
changed when leveraged for
diagnostics

• Used as needed for system bring-up
issues

• Resources must be traded off to look at
points of interest

• May be intrusive to the system
performance, depending on the
resources used to investigate a
problem

• May require multiple runs of the
software to collect all needed
information

Software
Instrumentation

• Code must be built with hooks to
prevent the need to re-compile for
diagnostic purposes

• Hooks leveraged during runtime either
by software (through host
interaction) or through Code
Composer Studio (CCS) commands

• Host tools/processor can analyze data
offline while system is running

• May be intrusive to the software
performance, but performance is not
changed when leveraged for
diagnostics as it is always present

• Code must be re-compiled to include
additional diagnostic capability

• Hooks enabled during compile-time
and re-loaded onto target

• Host tools/processor can analyze data
offline while system is running

• May be intrusive to the software
performance and may modify system
behavior slightly, depending on the
resources used

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 39 of 52
Submit Documentation Feedback

www.ti.com

8.2 Trace Logs
Fundamentally, the code running on each of the cores must be instrumented and the
available hardware emulation logic configured to generate a trace of the software and
data flow of the device execution. This process supports debugging any problems found
during development or after deployment of the system. Trace logs can be enabled all
the time or just during debug sessions, and can include any of the following data items:

• API call log: The target software incorporates logging functionality to record all
API calls of interest. API calls can be recorded in memory with an ID, timestamp,
and any parameters of interest.

• Statistics log: Chip-level statistics can be captured periodically to provide a
picture of the activity through the SCR switch fabric over time. Statistics include
bus monitors, event counters, and any other data of interest. This is typically
resident in the system, although different/additional statistics may be optionally
captured during debug.

• DMA transaction log: DMA transfers of interest can trigger a statistics capture,
including timer values, chip registers, and data tables. This is typically resident in
the system, although different/additional events and transactions may be
optionally captured during debug.

• Core trace log: Core advanced emulation trigger (AET) can trace system events
of interest, correlated to the CPU time. This is typically resident in the system,
although different system events may be traced during debug. Also, PC trace may
be added to the trace log. If data trace is desired during debug, it requires
disabling the event trace.

• Other events/data can be recorded in a log buffer, as desired, by the CPU or
DMA. The usage here is entirely customer-specific.

Historical information can then be used to construct a standalone test case using the
same control and data flows that reproduce a scenario in the lab for further analysis.

8.2.1 API Call Log
The API call log is based on software instrumentation within the target software.
Multiple logs may be correlated with respect to time either on the same core or across
cores. The API call log is recorded by software directly into device memory.

Each of the API records will be accompanied by a timestamp to allow correlation with
other transaction logs. The content of the logs may be useful in understanding both the
call flow as well as details about the processed information at various times during
execution.

8.2.2 Statistics Log
The statistics log consists of chip statistics taken at regular intervals that give a
high-level picture of the device activity. The DDR, receive accelerator (RAC), and
antenna interface (AIF) modules all have built-in statistics registers to keep track of bus
activity. These statistics can be captured at regular intervals to record the activity to
those modules during each time window. The log can then be used to give a high-level
view of the data flow through the SCR switch fabric during each time window.

Statistics recorded by software in memory can also be recorded in the statistics log.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 40 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

In addition to the statistics values, a chip time value must also be recorded to allow
correlation with other transaction logs.

There is some flexibility in the statistics to be captured by the system, so the
configuration of the statistics capture is left to the application. The required format is
for the log to contain a time value following by the statistics of interest. Multiple logs
are possible, provided each holds a time value to allow correlation with the others.

NOTE—For C66x generation devices, the Statistics Log can also be captured via System
Trace. See ‘‘System Trace’’ on page 50 for more information. System Trace is not
implemented on the C64x+ generation of devices.

8.2.3 DMA Transaction Log
Given the amount of data traffic that is handled within the SCR switch fabric by the
EDMA controller, it is useful to record when certain DMA transactions take place.
EDMA channels can be configured to trigger a secondary DMA channel to record
statistics related to its activity: an identifier and reference time. Each DMA channel of
interest can have a transaction log in which the transfer identifier, time of transfer, and
any relevant information surrounding the transfer can be recorded. The number of
transaction logs is flexible, and is limited only by the number of EDMA channels that
can be dedicated to performing the recording.

The time value recorded with each entry should have a relationship to the time value
used in the other transaction logs to allow correlation with other chip activity.

8.2.4 Event Log
The event logs are provided by each core through their event trace capability. Event
trace allows system events to be traced along with the CPU activity so that the device
activity in relation to the processing being performed within the CPUs can be
understood. The trace data output from each of the cores can be captured off-chip
through an emulator or on-chip in the embedded trace buffers. Event logs do add
additional visibility to the state of the processor over time, but also use additional
free-running hardware and could be a power consumption concern in a deployed
system. During development, however, the event trace can be used in conjunction with
the other transaction logs for greater visibility.

The event log allows the recording of PC discontinuities, the execute/stall status for
each CPU cycle, and up to eight system events (user programmable). In order to
correlate the event traces of multiple cores with one another, and with the other
transaction logs, one of the eight system events must be a time event common to the
other logs.

8.2.5 Customer Data Log
Additional instrumentation of the application software is possible and should follow
the guidelines outlined for the other transaction logs to record a timestamp with each
entry to allow correlation to other chip activity. The contents of each entry can be
anything meaningful in the customer system.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 41 of 52
Submit Documentation Feedback

www.ti.com

8.2.6 Correlation of Trace Logs
As mentioned in Section 8.2, a common system time event needs to be used to correlate
the multiple trace logs collected by the system to build a complete view of the program
and data flow on the chip. All API, statistics, DMA, and data logs must include a count
value that corresponds to the window in time for which the log data was collected. The
recording of the time value may be different depending on the type of log it is, but
provided that the counts are taken from the same base and with a common period or
relationship, the logs can be merged together.

The count is recorded as described in Table 4.

In Table 4, the time intervals are shown as an integer (x or y) times a common period p.
The integer multiples should all be integer multiples of one another (for example, there
could be four statistics log windows for every DMA transaction log window).

For the API call log, the time value itself is recorded with each API call. Because the log
recording is under CPU software control rather than DMA control, recording a
window marker would require an interrupt and does not provide any additional
information because the window can be determined by the count value divided by the
window period, p.

The Statistics log gets a timestamp recorded in memory. Every x × p UMTS (universal
mobile telecommunications system) cycles in time an event is asserted to the DMA to
capture the time value and all statistics of interest. In addition, the statistics registers
must be cleared to begin collecting over the next time window because the statistics
represent events during the current window. The time value recorded along with the
statistics data serves as the start time of the next window.

The DMA transaction log is similar to the API call log in that the time is recorded with
each transaction or multiple chained transactions of interest. The time value is
captured by a DMA channel that is chained to the transfer(s) of interest along with
information necessary to identify the transaction(s). As with the API call log, the
window to which the transaction records belong can be determined by dividing the
value recorded by the period, p.

Table 4 Event Log Time Markers

Log Time Event(s) Recorded Relationship to Log Data

API Call System time With each API call Reflection of the point at which the call was made

Statistics System time
(at interval x × p)

At time of statistics collection The end of the time window for which the statistics
are valid

DMA Transaction System time After each DMA transaction of interest Reflection of the point at which the DMA transfer took
place

Event System time interval (y × p) marker Within the event stream Marker at each time window boundary

Program Counter With each event recorded Reflection of the PC value at the time of arrival of the
event to the core

Data System time With each data record Customer defined

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 42 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

The Event log contains UMTS timing markers and CPU program counter (PC)
markers. The UMTS time interval marker is used to correlate the event log to the other
logs and serves to distinguish the collection windows. The time value represents the
beginning of the time window. The CPU PC value is recorded with each time event and
can be used to indicate the processing activity occurring during each time window. It
may provide insight as to what caused some of the information collected in the other
logs.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 43 of 52
Submit Documentation Feedback

www.ti.com

The customer data log is customer-defined, but should map to one or more of the above
definitions. Examples of correlating different logs are shown in Table 5 and Table 6.

Table 5 Trace Log Correlation

CPU 0 DMA Log System Trace

Cycle Event Entry Data Entry Event

10000 GLOBAL_TIME 0 GLOBAL_TIME = 10020 0 GLOBAL_TIME = 10080

10203 DMA_INT 0 ValueX 0 Transaction log

11150 EMAC_INT 0 ValueY 1 GLOBAL_TIME = 10110

11601 DMA_INT 1 GLOBAL_TIME = 10108 1 Transaction log

1 ValueX 2 GLOBAL_TIME = 10220

1 ValueY 2 Transaction log

3 GLOBAL_TIME = 10280

3 Transaction log

4 GLOBAL_TIME = 10340

4 Transaction log

5 GLOBAL_TIME = 10400

5 Transaction log

6 GLOBAL_TIME = 10488

6 Transaction log

12000 GLOBAL_TIME 2 GLOBAL_TIME = 12096 7 GLOBAL_TIME = 12060

12706 DMA_INT 2 ValueX 7 Transaction log

13033 EMAC_INT 2 ValueY 8 GLOBAL_TIME = 12120

13901 GPINT 3 GLOBAL_TIME = 13330 8 Transaction log

3 ValueX 9 GLOBAL_TIME = 12180

3 ValueY 9 Transaction log

10 GLOBAL_TIME = 12240

10 Transaction log

11 GLOBAL_TIME = 12300

11 Transaction log

12 GLOBAL_TIME = 12360

12 Transaction log

14000 GLOBAL_TIME 4 GLOBAL_TIME = 14100 13 GLOBAL_TIME = 14120

15006 DMA_INT 4 ValueX 13 Transaction log

15063 EMAC_INT 4 ValueY 14 GLOBAL_TIME = 14180

5 GLOBAL_TIME = 14200 14 Transaction log

5 ValueX 15 GLOBAL_TIME = 14240

5 ValueY 15 Transaction log

16 GLOBAL_TIME = 14300

16 Transaction log

17 GLOBAL_TIME = 14360

17 Transaction log

18 GLOBAL_TIME = 14420

18 Transaction log

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 44 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

As described in the preceding sections, the trace logs can be correlated with one another
using common time events. The core event trace has a PC value with each event, and
the GLOBAL_TIME is the marker that is common to the other trace logs. The DMA
log is recorded with every GLOBAL_EVENT (or multiple), and the UMTS Time
recorded with the log entry shows which window in time. The timestamp recorded with
each API call in the call log is the actual time.

With the core event traces, each entry in the logs is referenced to the PC value of the
core that is performing the trace function. Given that each core can stall independently
of the others, the logs need to be correlated to one another using common time
markers. The Global_TIME shown for each log is the same and matches that used for
correlation to other trace logs.

Table 6 Core Event Trace Correlation

CPU 0 CPU 1 CPU 2

Cycle Event Cycle Event Cycle Event

10161 SEM_INT 10115 DMA_INT

10000 GLOBAL_TIME 13001 GLOBAL_TIME 11061 GLOBAL_TIME

10203 DMA_INT 13070 DMA_INT

11150 EMAC_INT 13404 GPINT

11601 DMA_INT

12000 GLOBAL_TIME 15001 GLOBAL_TIME 13044 GLOBAL_TIME

12706 DMA_INT 15390 DMA_INT 13910 DMA_INT

13033 EMAC_INT 16012 DMA_INT

13901 GPINT

14000 GLOBAL_TIME 16804 GLOBAL_TIME 15036 GLOBAL_TIME

15006 DMA_INT 17506 DMA_INT 16690 DMA_INT

15063 EMAC_INT 18029 DMA_INT

16000 GLOBAL_TIME 19001 GLOBAL_TIME 17876 GLOBAL_TIME

16079 DMA_INT 19740 DMA_INT 18101 DMA_INT

20406 DMA_INT

20485 GLOBAL_TIME

20496 DMA_INT

20500 GPINT

21028 DMA_INT

22008 GLOBAL_TIME

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 45 of 52
Submit Documentation Feedback

www.ti.com

Using the above information it is possible to build summaries per time window of the
device operation, as shown in Table 7. This information provides details into the
activity on each core as well as the system loading through the device interfaces and
important events from user-defined sources.

Similar trace and debug capability is integrated in the Data Visualization Tool (DVT)
which works for the multicore C64x+ and KeyStone families of devices.

DVT has following capabilities:
• Graphical view of the execution of the tasks in different cores
• Graphical view of the synchronized execution of tasks in all the cores of the SoC
• Graphical view of the CPU loading for each of the cores
• Storing of logs in external memory for offline processing (generating graphs)

DVT uses mechanisms similar to those described previously. The method of capturing
the timing information of the task execution is by instrumenting the Entry and Exit
points in the task/code block with a function to capture the local core’s current time.

In addition to a timestamp, DVT records a 32-bit Tag field that contains the CPU ID,
process ID, process type, and location information, as follows:

• CPU ID: In this example, CPU ID specifies the core ID for a C6670 device,
ranging from (cores) 0-3.

• Process ID: For the task to be profiled, this ID can be mapped to a string of the
task name to display in DVT.

Table 7 Time Window Trace Log Summary

Time Window 0

Start UMTS Time 0

Core 0 Event Trace Core 1 Event Trace Core 2 Event Trace

10000 TIME_EVENT 11500 TIME_EVENT 14350 TIME_EVENT

10203 DMA_INT0 11620 DMA_INT3 14440 DMA_INT6

11150 DMA_INT1 12110 DMA_INT4 14550 DMA_INT7

11601 DMA_INT2 12230 DMA_INT5 14590 DMA_INT6

12950 DMA_INT3 14620 DMA_INT6

12970 DMA_INT4 14680 DMA_INT6

12970 DMA_INT5

Statistics Summary

Interface % Utilization % Reads % Writes

DDR2 17.6 79.3 20.7

RAC (cfg) 3.1 5.0 95.0

RAC (data) 26.8 22.9 77.1

AIF 86.4 50.9 49.1

General Stats

User Stat 1 8493

User Stat 2 26337

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 46 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

• Location: Debug instrumentation location; for example, the start of task, end of
task, or intermediate position in the task.

There are standard macros defined in DVT that can be placed in the code as per the
general guidelines described above. For example:

void function()
{

/*variable initializations*/
LTEDEMO_DBG_TIME_STAMP_SWI_START(LTEDEMO_DBG_ID_SWI_SOFT_SYM);

/* body of code
*/

LTEDEMO_DBG_TIME_STAMP_SWI_END(LTEDEMO_DBG_ID_SWI_SOFT_SYM);
}

In the above example, LTEDEMO_DBG_ID_SWI_SOFT_SYM is an ID.

LTEDEMO_DBG_TIME_STAMP_SWI_START is a macro, defined as follows:
#define LTEDEMO_DBG_TIME_STAMP_SWI_START(id) \
LTEDEMO_DBG_TIME_STAMP(LTEDEMO_DBG_PROC_SWI, LTEDEMO_DBG_LOC_START, id)

Unique IDs are defined for each task being instrumented. Different macros could be
used according to where the macro is placed inside the code block.

All this information (CPU ID, Process ID, Location) is OR’d bitwise to get the 32-bit
tag information. DVT stores the 32-bit tag information and the corresponding time
read from the TSCL register of the core. This information can be dumped in standard
CCS DAT file format which is used by the tool to generate the graphs.

The timestamp that DVT captures is based on the local TSCL register associated with
each core. Therefore, the data collected from each core is not synchronized with the
other cores. A BIOS interrupt task with a different process ID is used for
synchronization. Reference time is recorded on each core when the interrupt is
received. Each time entry from a given core will be adjusted by a specific formula to
achieve synchronization. For more information about this formula, see the online help
supplied with the DVT installation.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 47 of 52
Submit Documentation Feedback

www.ti.com

The examples in Figure 13, Figure 14, and Figure 15 show the graphical information
generated for each of the different scenarios.

Figure 13 Execution Related to Cores

Figure 13 shows the activity on three cores, as follows:
• The x-axis is time (in microseconds).
• The activity on each core is represented by a unique color; for example, Core 0

activity is visualized in red.
• The length of time that the color across the “0” line is red indicates the time

intervals that the CPU is active; that is, a task is being executed on that core.
Otherwise, it is in Idle state.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 48 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

Figure 14 Execution Related to Tasks

Figure 14 shows activity in terms of tasks at the SoC level in different cores, as follows:
• The x-axis shows time in microseconds. The y-axis lists different tasks.
• Consider a single task. It would have different colors across it, representing the

active state of the task on the corresponding CPU core. For example, from time
t1 to t2, the task was executed on Core 0 (green); from t2 to t3, it was executed on
both Core 0 and Core 1(black); and from t3 to t4, it was executed on Core 1 (red).

• Small lines are also visible in the graph, which represent either interrupts or
points of interest in the task execution.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 49 of 52
Submit Documentation Feedback

www.ti.com

Figure 15 CPU Load Graph

Figure 15 shows the CPU load plotted using a line graph:
• The x-axis is the number of subframes. The y-axis is the CPU percentage load. For

example, subframe 10, Core 0 was 40 percent loaded, Core 1 was 30 percent
loaded, and Core 2 was 30 percent loaded.

• The CPU load information is obtained for each of the cores separately. In a given
MIPS (Million Instructions per Second) window, the idle time of a core is
calculated. The active time is determined by subtracting the idle time from the
MIPS window. This gives the CPU load information for a given core.

DVT comes under the System Analyzer which is installed by default with CCS. See the
CCS help for more information about DVT and System Analyzer.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 50 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

8.3 System Trace
System Trace is a technology for gathering system-level execution data with limited or
no intrusiveness to the application. System Trace was initially deployed on the C66xx
generation of multicore devices and is not available on previous generations (C64xx).
With System Trace, the statistics traditionally captured by instrumented code can now
be captured automatically using the logic built into the SoC without consuming
precious system resources.

System Trace provides the ability to capture messages on-chip and pass them to an
external emulator or store them in an on-chip embedded trace buffer. Each message
that is output via System Trace is allocated a system-level timestamp, which enables
synchronization across the entire system. System Trace provides the ability to generate
two types of messages: Hardware and Software.

8.3.1 Hardware Messages
Each device that supports System Trace has a set of statistics counters called Common
Platform Tracers (CP Tracers). The CP Tracers are located on slave interfaces on the
device, such as the DDR interface. The statistics counters can be configured to measure
access statistics over a specified time. When that time expires, the measured statistics
are automatically output in the System Trace stream. The captured data can then be
used to visualize these measurements throughout the execution of the application to
locate processing bottlenecks. The data captured here is similar to what is available in
the Statistics Log, but without the need for code instrumentation or the consumption
of CPU cycles to capture the data.

8.3.2 Software Messages
Software messages are STM messages that are generated through software execution.

These functions give printf-like capabilities without the intrusiveness that a
traditional printf requires. In addition, each message is given a system-level
timestamp, which allows users to instrument their code for debug purposes and view
cycle-accurate logs. The flexibility of the software messages enables users to visualize
their application in many ways. Simple examples might be generating a cycle accurate,
multicore thread execution graph, or diagnosing error conditions to determine where
messages are being lost between the cores.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

SPRAB27B—August 2012 Multicore Programming Guide Page 51 of 52
Submit Documentation Feedback

www.ti.com

9 Summary
In this paper, three programming models for use in real-time multicore applications
are described, and a methodology to analyze and partition application software for a
multicore environment is introduced. In addition, features of the Texas Instruments
KeyStone family of TCI66xx and C66xx multicore processors used for data transfer,
communication, resource sharing, memory management and debug are explained.

TI TCI66xx and C66xx processors offer a high level of performance through efficient
memory architectures, coordinated resource sharing, and sophisticated
communication techniques. To facilitate customers achieving full performance from
these parts, TI has included hardware in the devices to allow the cores to both execute
with minimal overhead and to easily interact with each other through signaling and
arbitration. These devices also contain hardware that provides trace and debug
visibility into the multicore system.

There are tools available like System Analyzer which uses those hardware capabilities
and can allow customers to debug at the SoC level in the multicore environment.

TI’s multicore architectures deliver excellent cost/performance and
power/performance ratios for customers who require maximum performance in small
footprints with low power requirements. As the leader in many applications that
require high-performance products, TI is committed to multicore technology with a
robust roadmap of products.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?

Page 52 of 52 Multicore Programming Guide SPRAB27B—August 2012
Submit Documentation Feedback

www.ti.com

10 References
See the following documents for additional information regarding this application
note.

1 Ankit Jain, Ravi Shankar. Software Decomposition for Multicore Architectures, Dept. of
Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL, 33431.
Internet.
http://www.csi.fau.edu/download/attachments/327/Software_Decomposition_for_
Multicore_Architectures.pdf?version=1

2 TI user guide SPRUGR9, KeyStone Architecture Multicore Navigator User Guide
http://www.ti.com/lit/pdf/sprugr9

3 TI user guide SPRUGW0, TMS320C66x CorePac User Guide
http://www.ti.com/lit/pdf/sprugw0

4 TI user guide SPRUGW7, Multicore Shared Memory Controller (MSMC) User Guide
http://www.ti.com/lit/pdf/sprugw7

5 TI user guide SPRUEA7, TMS320TCI648x DSP Bootloader
http://www.ti.com/lit/pdf/spruea7

6 TI user guide SPRUG24, TMS320C6474 DSP Bootloader
http://www.ti.com/lit/pdf/sprug24

7 TI user guide SPRUGY5, Bootloader User Guide for KeyStone Devices
http://www.ti.com/lit/pdf/sprugy5

8 TI user documentation, MCSDK 2.1 Addendum
http://processors.wiki.ti.com/index.php/BIOS-MCSDK_2.1_Addendum

9 OpenMP Specification
http://openmp.org/wp/openmp-specifications/

http://www.ti.com/lit/pdf/spruea7
http://www.ti.com/lit/pdf/sprug24
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?
http://www.csi.fau.edu/download/attachments/327/Software_Decomposition_for_Multicore_Architectures.pdf?version=1
http://www.ti.com/lit/pdf/sprugy5
http://www.ti.com/lit/pdf/SPRUGW0
http://www.ti.com/lit/pdf/SPRUGW7
http://www.ti.com/lit/pdf/SPRUGR9
http://processors.wiki.ti.com/index.php/BIOS-MCSDK_2.1_Addendum
http://openmp.org/wp/openmp-specifications/

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Titlepage
	1 Introduction
	2 Mapping an Application to a Multicore Processor
	2.1 Parallel Processing Models
	2.1.1 Master/Slave Model
	2.1.2 Data Flow Model
	2.1.3 OpenMP Model
	2.1.3.1 Features
	2.1.3.2 Implementation

	2.2 Identifying a Parallel Task Implementation
	2.2.1 Partitioning
	2.2.2 Communication
	2.2.3 Combining
	2.2.4 Mapping
	2.2.5 Identifying and Modifying the Code for OpenMP-based Parallelization

	3 Inter-Processor Communication
	3.1 Data Movement
	3.1.1 Shared Memory
	3.1.2 Dedicated Memories
	3.1.3 Transitioned Memory
	3.1.4 Data Movement in OpenMP

	3.2 Multicore Navigator Data Movement
	3.3 Notification and Synchronization
	3.3.1 Direct Signaling
	3.3.2 Indirect Signaling
	3.3.3 Atomic Arbitration
	3.3.4 Synchronization in OpenMP

	3.4 Multicore Navigator Notification Methods
	3.4.1 Non-blocking Polling
	3.4.2 Blocking Polling
	3.4.3 Interrupt-based Notification
	3.4.4 Delayed (Staggered) Interrupt Notification
	3.4.5 QoS-based Notification

	4 Data Transfer Engines
	4.1 Packet DMA
	4.2 EDMA
	4.3 Ethernet
	4.4 RapidIO
	4.5 Antenna Interface
	4.6 PCI Express
	4.7 HyperLink

	5 Shared Resource Management
	5.1 Global Flags
	5.2 OS Semaphores
	5.3 Hardware Semaphores
	5.4 Direct Signaling

	6 Memory Management
	6.1 CPU View of the Device
	6.2 Cache and Prefetch Considerations
	6.3 Shared Code Program Memory Placement
	6.3.1 Using the Same Address for Different Code In Shared Memory
	6.3.2 Using a Different Address for the Same Code In Shared Memory

	6.4 Peripheral Drivers
	6.5 Data Memory Placement and Access

	7 DSP Code and Data Images
	7.1 Single Image
	7.2 Multiple Images
	7.3 Multiple Images with Shared Code and Data
	7.4 Device Boot
	7.5 Multicore Application Deployment (MAD) Utilities
	7.5.1 The MAD Utilities
	7.5.2 Multicore Deployment Example

	8 System Debug
	8.1 Debug and Tooling Categories
	8.2 Trace Logs
	8.2.1 API Call Log
	8.2.2 Statistics Log
	8.2.3 DMA Transaction Log
	8.2.4 Event Log
	8.2.5 Customer Data Log
	8.2.6 Correlation of Trace Logs

	8.3 System Trace
	8.3.1 Hardware Messages
	8.3.2 Software Messages

	9 Summary
	10 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (These settings apply to all documents created for posting on ti.com. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

