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ABSTRACT
The image-scaling operation is one of the most commonly used video and imaging
processing functions. The resizer hardware module in the DaVinci™ video processing
subsystem (VPSS) provides the scaling capability in hardware, therefore, off-loading
the system for other processing tasks. To achieve good video quality while maintaining
good overall system performance, a better understanding of the hardware and the
algorithm behind it is necessary.

This application report intends to help application developers better understand the
resizer. First, several commonly used image-scaling algorithms are discussed and
compared, including bi-linear and by-cubic interpolation, and the polyphase filtering
algorithm. Second, an overview of the resizer hardware is given. This includes block
diagram, features, and restrictions with the main focus on the algorithms behind the
hardware. Third, several aspects of the resizer programming are discussed in detail,
including constant input output sizing, calculation of filter coefficients, and register
programming pitfalls. The Linux™ driver for resizer is then described, followed by
several usage examples.

This application report contains project code that can be downloaded from these links.
http://www-s.ti.com/sc/techlit/sprc381.gz and http://www-s.ti.com/sc/techlit/sprc382.gz.
The example files attached are created in Linux and are to be extracted, built and
executed in Linux. Please use tar -xzf file_name to uncompress the archives in Linux.
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The VPSS resizer is essentially a hardware implemented polyphase filter for image scaling operation; it
can scale from X to 4X.

The resizer can operate on either interleaved Y/Cb/Cr 4:2:2 data or separated single color plane, for
example, gray scale data, separated RGB 8:8:8 data or planar Y/Cb/Cr data.

From X to X, the resizer uses 4-phase 7-tap polyphase filter architecture. From X to 4X, the resizer uses
8-phase 4-tap polyphase filter architecture. The choice of the filter type is done automatically by hardware
based on the scaling ratio and cannot be changed by software.

The resizer operates in two stages: the horizontal stage and the vertical stage. After horizontal processing,
intermediate data are stored in a line buffer before vertical processing. The line buffer must store 4 lines of
data for scaling ration between X to 4X and 7 lines of data for scaling ration between X and X. Due to this
requirement and the size of the line buffer, for X to X scaling, the maximum output line size cannot be
more than 640 pixels per line; for X to 4X scaling, the output size cannot be more than 1280 pixels. This is
true for both interleaved 16-bit per pixel Y/Cb/Cr 4:2:2 data and 8-bit per pixel planar data.

To understand the operation of the resizer, we first take a look at the algorithm behind it. The basics of
scaling are covered in textbooks on multi-rate systems, and it is out of the scope of this application report,
which only illustrates principles.

There are several commonly used algorithms for image scaling.
• Bi-linear interpolation
• Bi-cubic interpolation
• Nyquist low-pass filtering

For upscaling, any of the three methods above can be used. For downscaling, to avoid the aliasing effect,
data is usually low-pass filtered before down-sampled.

DaVinci is a trademark of Texas Instruments.
Linux is a trademark of Linux Torvalds in the U.S. and other countries.
MontaVista is a registered trademark of MontaVista Software, Inc.
All other trademarks are the property of their respective owners.
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2.1 Bi-Linear Interpolation
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2.2 Bi-Cubic Interpolation
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Bi-linear interpolation uses the two nearest pixels from the input image to interpolate the missing pixel in
the output image. This is usually used for upscaling. Figure 1 shows an example of bi-linear interpolation.

Figure 1. Bi-Linear Interpolation

If we look at the bi-linear interpolation from a filter point of view, the impulse response function of the filter
is shown in Figure 2.

Figure 2. Impulse Response of Bi-Linear Interpolation

Figure 3. Amplitude Spectra of Bilinear Interpolation Kernel

For downscaling, due to the aliasing effects, only the low-pass filtering method normally is used. Bi-linear
and bi-cubic interpolation methods normally are used for upscaling.

Bi-cubic interpolation uses four neighboring pixels in the input image to interpolate the missing pixels in
the output image.

Figure 4. Bi-Cubic Interpolation
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2.3 Low-Pass Filtering
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In Equation 2, is the bi-cubic interpolation kernel. There is a family of bi-cubic interpolation kernels. One of
the most commonly used is designed by Keys in [1], as shown below.

The impulse response and the amplitude spectra of bi-cubic interpolation is shown in Figure 5 and
Figure 6.

Figure 5. Impulse Response of Bi-Cubic Interpolation

Figure 6. Amplitude Spectra of the of the Keys Bi-Cubic Interpolation Kernel

According to signal processing theories, data must be low-pass filtered before up-sampled or
down-sampled. This is to remove the aliasing effect caused by the re-sampling process. The requirement
for the low-pass filter (LPF) depends on the scaling factor, which is discussed in detail below. The most
commonly used computational efficient implementation of the LPF is the polyphase architecture. In
addition, both bi-linear and bi-cubic interpolations can be implemented as a low-pass filter.
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2.3.1 Down-Sampling by M
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For down-sampling by a ratio of M where M > 1 and M is an integer, the spectrum of the original signal is
repeated by a period of fs/M because the sampling frequency becomes fs/M. If the original signal has a
bandwidth of fs/2, as shown in Figure 7, the down-sampled signal has a bandwidth of fs/2M. Without
proper filtering, the down-sampled signal has a serious aliasing effect as shown in Figure 8. The aliasing
effect can be removed by applying a low-pass filter to the original signal to remove the high-frequency
portion of the spectrum that causes the aliasing. The cut-off frequency of the filter must be fs/2M, as
shown in Figure 9, Figure 10 and Figure 11.

Figure 7. Spectrum of the Original Signal

Figure 8. Spectrum of the x Down-Sampled Signal Without LPF

Figure 9. Apply LPF Before Down-Sampling

Figure 10. Spectrum of the LPF and the Original Signal
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2.3.2 Up-Sampling by N
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Figure 11. Spectrum of the x Down-Sampled Signal With Low-Pass Filtering Before Down-Sampling

For up-sampling (digital zoom) by a ratio of N where N > 1 and N is an integer, the spectrum of the
original signal is repeated by a period of fs. If the original signal has a bandwidth of fs, as shown in
Figure 12, without proper filtering, the up-sampled signal has a serious aliasing effect as shown in
Figure 13. The aliasing effect can be removed by applying a low-pass filter to the up-sampled signal to
remove the high frequency portion of the spectrum that causes the aliasing. The cut-off frequency of the
filter must be fs/2, as shown in Figure 14, Figure 15 and Figure 16.

Figure 12. Spectrum of the Original Signal

Figure 13. Spectrum of the 2x Up-Sampled Signal Without LPF

Figure 14. Apply LPF After Up-Sampling
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Figure 15. The Spectrum of the Up-Sampled Signal and the LPF

Figure 16. Spectrum of the 2x Up-Sampled Signal With Low-Pass Filtering

To avoid aliasing in more general cases in which the re-sampling factor is a rational N/M rather than an
integer, low-pass filter must be applied to the up-sampled data before they are down-sampled, as shown
in Figure 17 below.

Figure 17. Re-Sampling by N/M With Low-Pass Filtering

The low-pass filter has a DC gain of N and a cut-off frequency of fs/2max(N, M).
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2.3.4 Poly-Phase Architecture for LPF Implementation
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To reduce the number of computations required for the re-sampling process, the polyphase filter
architecture has been widely used. Figure 18 shows the polyphase filter architecture for M/N re-sampling
operation.

Figure 18. Poly-Phase Filter Architecture for M/N Re-Sampling

In Figure 18, H(z) is the z-transform of the impulse response of the LPF.

Where L is the length of the FIR filter. H(z) also can be re-written as:

Where

Where Lm = L/N, assuming L is a multiple of N. If not, zeros are padded to the coefficients to make L a
multiple of N.
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3 Overview of the Resizer Hardware and Algorithm

3.1 Block Diagram

Read

Buffer

Memory

(VPSS)

Preview

Engine/

CCDC

SDRAM/

DDRAM
Line Buffer

Resizer

Register

Settings
Write

Buffer

Memory

(VPSS)

Dma Clock

Configuration Bus/

MMR Clock

and Interface
SDRAM/

DDRAM

www.ti.com Overview of the Resizer Hardware and Algorithm

Basically, this means h(n) is divided h(n) into n-phases, as shown in Table 1:

Table 1. Polyphase Filter Coefficients

Original filter coefficients: h(0), h(1), h(2), h(3), …… h(L-1)
Phase-0: h(0) h(N) h(2N) … h(Lm(–1))
Phase-1: h(1) h(N+1) h(2N+1) … h(Lm(–1)+1)
Phase-2: h(2) h(N+2) h(2N+1) … h(Lm(–1)+2)
Phase-2: h(3) h(N+3) h(2N+3) … h(Lm(–1)+3)
. .
. .
. .
Phase-–1: h(–1) h(2N-1) h(3N-1) … h(Lm(–1)+3)

The 1:N up-sampling basically inserts N–1 zeros between each neighboring samples. This means only
one of the N phases of the filter is used to calculate the output sample before down-sampling because the
other N–1 phases all output zero due to the up-sampling. In addition, because the M:1 down-sampling
drops N-1 samples in every M sample, only every Mth output sample needs to be calculated. Altogether,
significant amount of computations can be saved.

The resizer module performs either up-sampling or down-sampling on image/video data. The input source
can be either the preview engine/CCDC or SDRAM/DDRAM, and the output is sent to the
SDRAM/DDRAM. Figure 19 shows the high level block diagram of the resizer module.

Figure 19. Resizer Block Diagram
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Figure 20. Resizer Processing Flow

The resizer module performs horizontal resizing, then vertical resizing. In between, there is an optional
horizontal luma edge enhancement filter. Processing flow and data precision at each stage are shown in
Figure 20. The line buffer is functionally either 3 lines of 1280 pixels x 16-bit or 6 lines of 640 pixels x
16-bit, depending on the vertical resizing being 4-tap or 7-tap mode. This puts the limitation on the
maximum output size of either 1280 pixels for 4-tap filter or 640 pixels for 7-tap filter.

The resizer module can accept input image/video data from either the Previewer/CCDC or the external
DDRAM. The output of the resizer module is sent to the DDRAM. The resizer module is programmed via
its registers that are accessible by the ARM-9 processor. The following features are supported by the
resizer module.
• Input from either the Previewer/CCDC (on-the-fly processing) or from external SDRAM/DDRAM.
• Support for x - 4x sampling with sampling ratio equals to 256/N, where N ranges from 64 to 1024.

– Bi-cubic interpolation (4-tap horizontal, 4-tap vertical) can be implemented with the programmable
filter coefficients

– 4-tap 8 phases of the filter coefficients are supported for sampling rate ½x– 4x
– 7-tap 4 phases of the filter coefficients are supported for sampling rate x- x
– Optionally select bi-linear interpolation for the chrominance components for up-sampling .
– Can be performed on-the-fly if the input source is the Previewer/CCDC.

• Support for resizing either YUV 422 packed data (16-bits) or color separate data (assumed to be 8-bit
data) that is contiguous. The input source for the color separate data should be the external DDRAM

• Independently programmable resizing factors for the horizontal and vertical directions.
• Optional programmable luminance sharpening after the horizontal resizing and before the vertical

resizing step.
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3.3 Restrictions

3.4 The Resizing Algorithm for Luminance Data
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• The resizer does not support output size of more than 1280 pixels/line for resizing ratio between ½x –
4x; or more than 640 pixels/line for resizing ratio between ¼x – ½x. For Y/Cb/Cr 4:2:2 data, this is due
to the size limitation of the line buffer, which is 7680 bytes. Due to hardware implementation, this
restriction also holds for 8-bit planar data from DDR memory.

• For input from Previewer/CCDC, the throughput of the horizontal stage cannot exceed resizer_clock/2
Mpixels/second. For example, if the resizer_clock = 150 MHz, the throughput is less than 75
Mpixels/second. This implies that no up-scaling can be achieved for input that has a pixel clock of 75
MHz.

• The resizer does not support input format other than Y/Cb/Cr 4:2:2 interleaved or color separated 8-bit
planar data.

• When the input data is color separate, the source can only be SDRAM/DDRAM and cannot be the
Previewer/CCDC.

• When the input source is the preview engine, the maximum input width cannot be greater than 1280
due to the preview engine’s maximum output width restriction of 1280.

• The number of bytes per output line written to DDRAM must be a multiple of 16 bytes when vertical
upsizing is performed.

• The resizer hardware does not perform edge interpolation. For horizontal resizing, several pixels at
each edge are cropped. For vertical resizing, several lines at each edge are cropped. The relationship
of input, output size, and the resizing ratio is discussed in detail below.

The resizer module has the ability to up-sample or down-sample image data with independent resizing
factors in the horizontal and vertical directions (HRSZ and VRSZ). Because the same re-sampling
algorithm is applied in both the horizontal and vertical directions, for the rest this section, the horizontal
direction is used in describing the re-sampling algorithm, and RSZ is used to refer to the resizing factor.

The RSZ parameters can range from 64 to 1024, which gives a re-sampling range of x to 4x (256/RSZ).
There are 32 programmable coefficients available for the horizontal direction and another 32
programmable coefficients for the vertical direction. The 32 programmable coefficients are arranged as
either 4-taps & 8-phases for the resizing range of x ~ 4x (RSZ = 64 ~ 512) or 7-taps & 4-phases for a
resizing range of x ~ x (RSZ = 513 ~ 1024).

Please note the following two important facts about the resizer:
• The filter type (4-phase or 8-phase) is not software programmable. It is solely determined by

HARDWARE based on the value of the RSZ.
• The horizontal and vertical stages are totally INDEPENDENT with different RSZ factors and different

coefficients. Hence, horizontal filter can be 4-phase and vertical filter can be 8-phase and vise visa.
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Figure 21 shows the arrangement of the 32 filter coefficients. Each tap is arranged in a S10Q8 format
(signed value of 10-bits with 8 of them being the fraction).

Figure 21. Arrangement of Filter Coefficients
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Due to the nature of the convolution operation that is used in filtering, the polyphase filter coefficients
stored in registers must be in the inversed order, as shown in Table 2, for a 4-tap 8 phase filter.

Table 2. Storage of Polyphase Filter Coefficients

Phase-0: h(24) h(16) h(8) h(0)
Phase-1: h(25) h(17) h(9) h(1)
Phase-2: h(26) h(17) h(10) h(2)
Phase-3: h(27) h(19) h(11) h(3)
Phase-4: h(28) h(20) h(12) h(4)
Phase-5: h(29) h(21) h(13) h(5)
Phase-6: h(29) h(22) h(14) h(6)
Phase-7: h(31) h(23) h(15) h(7)

Basically for phase-0, h(24) is stored in location 0, h(16) is stored in location 1, and so on.

As described above, the re-sampling factor is 256/RSZ. With RSZ ranges from 64 ~ 1024, this gives a
re-sampling range of x ~ 4x. Based on our previous discussion on re-sampling using polyphase filter, this
would ideally require a 256-phase filter with a cut-off frequency of 1/max(256, RSZ).

For re-sampling range in x ~ 4x, up-sampling or interpolation is performed only to 1/8 pixel resolution.
Further, re-sampling is done using the nearest neighbor method. Similarly, for re-sampling range between
x ~ x, up-sampling or interpolation is performed only to pixel resolution. Further, re-sampling is done using
the nearest neighbor method. This basically implies a two-stage implementation, as shown in the following
in Figure 22 and described in Table 3. To simplify the discussion below, it is assumed that the 8-phase
filter is used. The same principle readily applied to the 4-phase filter.

Figure 22. Resizing Stage 1: Up-Sampling to 1/8 Pixel Location

Each fractional pixel location corresponds to a different phase of the filter, as described in Table 3:

Table 3. Pixel Locations vs. Phases
Pixel Location Phase

0 0
1/8 1
2/8 2
3/8 3
4/8 4
5/8 5
6/8 6
7/8 7
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x(n) = pixel_start + phase_start / 8 + n * step_size (7)

p(n) = round (x(n) * 8 + 0.5) /8 (8)
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3.5 The Resizing Algorithm for Chrominance Data
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The second stage produces output samples based on the value of its nearest neighbor at 1/8 resolution
pixel locations. The location of Nth output sample is determined by Equation 7:

Where:

step_size = RSZ/256

pixel_start identifies the location of the first pixel.

phase_start identifies the location of the phase (0 – 7).

Therefore, the location of its nearest neighbor is determined by rounding x(n) to the closest 1/8 pixel
location.

Figure 23. Resizing Stage 2: Interpolation to RSZ/256 Pixel Location

The above description portrays only an algorithmic view of the resizer for easy understanding. Actual
hardware implementation varies in certain aspects. Refer to the TMS320DM644x DMSoC Video
Processing Front End (VPFE) User's Guide (SPRUE38) for more details.

The resizer offers two possible operations for processing of chrominance data (chroma), which is 2:1
down-sampled with respect to luminance data (luma):
1. Filtering with luma for down-sampling, or
2. Bi-linear interpolation for up-sampling

Because this feature is software programmable, hardware does not automatically switch between case 1
and 2 based on the value of RSZ. It is the application’s responsibility to ensure the correct operation is
applied.

For case 1, filtering with luma, the same filter is applied to both luma and chroma data. Because the input
format is 4:2:2, Cb and Cr data are up-sampled (duplicated) before the filter is applied, as shown below:

Original data (4:2:2):

cb0:y0:cr0:y1:cb1:y2:cr1:y3:cb2:y4:cr2:y5
Chroma up-sampled (4:4:4):

cb0:cr0:y0:cb0:cr0:y1:cb1:cr1:y2:cb1:cr1:y3:cb2:cr2:y4:cb2:cr2:y5
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Chroma Output Location

Y Inputs
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Upsampled Chroma

Chroma Output Location

Chroma Inputs

C[i] f C[i+1]

C_out[j] = (1-f)*c[i] + f*c[i+1]

www.ti.com Overview of the Resizer Hardware and Algorithm

Figure 24. Filter With Luma

However, to output 4:2:2 data, only chroma data at even pixel locations are filtered and output.

For case 2, bi-linear interpolation, Equation 1 is used, as shown below:

Figure 25. Bilinear Interpolation

In Figure 25, the weighting factor f is determined by the distance between the center location of the output
pixel and the nearest chroma pixel to its left. The center location of the output pixel is p(n) + n_tap/2,
where n_tap is either 4 or 7 and p(n) is calculated by Equation 8.
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3.6 The Edge Enhancement Algorithm

GAIN

Hpgain

Slope =

SLOP

CORE

|HPF(Y)|

4 Programming the Resizer

4.1 Consistent Input and Output Sizing

iw = (32 * sph + (ow -1) * hrsz + 16) >> 8 + 7

ih = (32 *spv + (oh - 1) * vrsz + 16) >> 8 + 4 (9)

iw = (64 * sph + (ow - 1) * hrsz + 32) >> 8 + 7

ih = (64 * spv + (oh - 1) * vrsz + 32) >> 8 + 7 (10)

Programming the Resizer www.ti.com

Edge enhancement can be optionally applied to the horizontally resized luminance component before the
output of the horizontal stage is sent to the line memories and the vertical stage. Either a 3-tap or a 5-tap
horizontal high-pass filter can be selected to use in the luminance enhancement as shown below. If the
edge enhancement is selected, the two left-most and two right-most pixels in each line are not output to
the line memories and the vertical stage. The output width specified in the OUT_SIZE register is the final
output width, up to 1280 when vertical 4-tap mode is used, and up to 640 pixels when the vertical 7-tap
mode is used. When the edge enhancement is enabled, the horizontal resizer output width =
OUT_SIZE.horz + 4.

The edge-enhancement algorithm is as follows.
• HPF(Y) = Y convolved with { [–0.5, 1, –0.5] or [–0.25, –0.5, 1.5, –0.5, –0.25] }
• Saturate HPF(Y) between –256 and +255
• hpgain = ( |HPF(Y)| – CORE ) * SLOP
• Saturate hpgain between 0 and GAIN
• Y’ = Y + (HPF(Y) * hpgain + 8) >> 4
• Saturate Y’ between 0 and 255

Basically, the high pass gain is computed by mapping the absolute value of high passed luma with the
following curve as shown in Figure 26.

Figure 26. High Pass Gain as a Function of Absolute High Passed Luma

One of the major pitfalls in resizer programming is consistent input and output size with regard to the
value of RSZ, for both horizontal and vertical directions. Inconsistent values can cause the hardware to
hang indefinitely and require a VPSS reset to get it back to default state. Because this also resets all
VPSS modules, it is clearly not a desirable solution. To ensure consistent sizing, the input and output size
and the RSZ should satisfy the equations below:

For 4-tap filters:

For 7-tap filters:
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Where iw and ih are input width and height, ow and oh are output width and height respectively; hrsz and
vrsz are horizontal and vertical resizing factors; sph and spv are horizontal and vertical starting phases.

WARNING
Equation 9 and Equation 10 must be satisfied for the resizer to
work properly. iw and ih values greater or smaller than required by
the equations may hang the hardware.

Equation 9 and Equation 10 are given in the user’s guide. In most situations, the application knows the
input and output size rather than the value of RSZ, therefore it makes sense to calculate the RSZ value
based on the input and output size instead, as shown below:

For 4-tap filters:

For 7-tap filters:

in_width and the in_height are original width and height for the input image. The constant and the sph/spv
terms are ignored because they won’t affect the size calculation.

CAUTION
The key here is that once hrsz and vrsz values are calculated using
Equation 11 and Equation 12, they must be applied to Equation 9 and
Equation 10 to calculate the iw and ih value that are to be programmed into the
resizer register IN_SIZE.horz and IN_SIZE.vert fields, respectively.

For horizontal processing only, the hardware was implemented in a way such that 7-tap filter was used for
both 4-tap and 7-tap cases. This requires 3 additional pixels for the horizontal 4-tap filter case, therefore
the +7 term for iw calculation in Equation 9. However, the values of these 3 additional pixels are not used
in the calculation since those taps are zeroed, thus the true input width can be iw-3. This is why the – 4 is
used instead of -7 in Equation 11.
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4.2 Calculate the Resizer Filter Coefficients
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Based on our previous discussions, for the re-sampling ratio of N/R, the low-pass filter has a DC gain of N
and a cut-off frequency of

. Where N is fixed at 4 or 8 and R is a rational number RSZ*N/256.
• For up-sampling, because N > R, the cut-off frequency is hence always or π/4 or π/8.

– For the case of down-sampling between 1/4x - 1/2x, R = RSZ/64 and RSZ = 1024 - 513
– For the case of down-sampling between 1/2x - 1x, R = RSZ/32 and RSZ = 512 - 255

One common method is to apply a fixed length window to the impulse response of the ideal low-pass filter.

Here is the process to calculate the filter coefficients:

First, the cut-off frequency fc is calculated by using Equation 13 or Equation 14.

For up-sampling:

For down-sampling:

Then the impulse response of the ideal low pass filter is calculated by:

And the window coefficients are calculated by using one of the equations below:

Where L = 33/29 for Blackman and Hann windows and 32/28 for hamming windows.

Note: Although it is natural to think the window length is 32 or 28, the actual window length can be
bigger than that. For example, for Hann and Blackman window, since w(0) = w(L-1) = 0, the
window length can be up to 34 and 30, respectively. Odd length is preferred, however,
because the output can then be better aligned for integer pixel locations.

The interleaved and non-normalized coefficients are then calculated:

coef_interleaved(n) - h(n)w(n)

The coefficients are then partitioned into phases in accordance to Figure 15 and converted to 10Q8
format, which is 10-bit data with 8 fractional bit. For each phase, the gain is then normalized to 256.

Understanding the DaVinci Resizer18 SPRAAI7B–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI7B


( )

3 53 2
s s 1 0 s 1

2 2

1 53 2
s s 4 s 2 1 s 2

2 2

0 s 2

u s

ì

- + £ £
ï

ï

ï
= - + - + £ £í

ï

ï >

ï

î (19)

( ) ( )

( ) ( )

( ) ( )

( ) ( )

n
α =

8

0 = u 1n

1 = u Where 0,1, ,7n

2 = u 1-αn

3 = u 2 -αn

f

f n

f

f

a +

a = K

(20)

4.3 Linux Utility That Calculates the Resizer Filter Coefficients

-h | --help print this message
-i | --insize input image size (eg. 720x240, -1 for ignore)
-o | --outsize output image size (eg. 352x288)
-r | --rsz resizing factor: hrs x vrsz(eq. 512x512, -1 for ignore)
-j | --sph horizontal starting phase (0:7) [4]
-k | --spv vertizonal starting phase (0:7) [4]
-w | --window window type (HANN | [BLACKMAN] | TRIANGLAR | RECTANGULAR)
-z | --horz_filter horizontal filter type (BICUBIC | BILINEAR | [LOWPASS])
-f | --vert_filter vertical fulter type (BICUBIC | BILINER | [LOWPASS])
-n | --filename file name for custom window coefficients
-p | --print_param print out the complete resizer driver parameter settings
-s | --in_pitch input image line pitch in bytes
-y | --out_pitch output image line pitch in bytes
-t | --hstart horizontal starting pixel #[0]
-v | --vstart vertical starting line #[0]
-c | --cblin enable bi-linear interpolation for horizontal chroma processing
-g | --grayscale input image is 8-bit grayscale
-x | --pixel_format onput pixel format ([UYVY | YUYV)
-a | --no_array output data without array headers, can be used to generate multiple sets of coefficients.

www.ti.com Programming the Resizer

For up-sampling, bi-cubic interpolation also can be used, which is shown in Equation 19.

For each phase n, the coefficients are calculated as follows:

A Linux utility called calccoeff is provided to help users with the coefficients calculation. The usage
information is show in Figure 27. The utility is provided together with the resizer driver examples in the
application report.

At the shell prompt, type calccoeff –h to get the usage information of this utility:

Figure 27. Usage Information of the calccoeff Utility
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The utility is very powerful and can provide a range of different parameters based on the input arguments.
The following shows a few examples of data generated by this utility.
• Example 1: from D1 → CIF

./calccoef –i720x240 –o352x288 > coefs_720x240_to_352x288.h

Example 1. calccoef Usage - D1 → CIF

/* input image pixels/line = 720 */
/* output image pixels/line = 352 */
/* horizontal starting phase = 0 */
/* horizontal filter type = LOWPASS */
/* window type = BLACKMAN */
/* hrsz = 520 */

/*horizontal resizing filter coefficients: */
const short horz_coefs[] =
{

-1,
19,
110,
110,
19,
-1,
0,
………

};
/* input image # lines = 240 */
/* output image # lines = 288 */
/* vertical starting phase = 0 */
/* vertical filter type = LOWPASS */
/* window type = BLACKMAN */
/* vrsz = 210 */

/*vertical resizing filter coefficients: */
const short vert_coefs[] =
{

0,
256,
0,
0,
-6,
246,
16,
0,
…

};
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The generated header file can be directly included in the application c source file that uses the resizer.
• Example 2: from VGA → D1 with complete resizer driver configuration parameter

./calccoef –i 640x480 –o 720x480 –s 1280 -p > coefs_640x480_to_720x480.h

Here is part of the output file:

Example 2. calccoef Usage - VGA->D1 With Complete Resizer Sriver Parameters

/* vertical window type = BLACKMAN */
/* vertical filter type = LOWPASS */
/* vrsz = 256 */

static rsz_params_t resizer_params = {
640, /* in_hsize */
483, /* in_vsize */
1280, /* in_pitch */
RSZ_INTYPE_YCBCR422_16BIT, /* inptyp */
0, /* vert_starting_pixel */
0, /* horz_starting_pixel */
1, /* cbilin */
RSZ_PIX_FMT_YUYV, /* pix_fmt */
720, /* out_hsize */
480, /* out_vsize */
1440, /* out_pitch */
0, /* hstph */
0, /* vstph */

/*horizontal resizing filter coefficients: */
{

. . .

},

/*vertical resizing filter coefficients: */
{

256,
0,
0,
0,
256,
0,
0,
0,
256,
0,
0,
0,
256,
0,
0,
0,
. . .

},
{

RSZ_YENH_DISABLE,
}

};

SPRAAI7B–July 2008 Understanding the DaVinci Resizer 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI7B


Programming the Resizer www.ti.com

In the preceding two examples, the comments input image pixels/line and input image # lines may show
slightly different input horizontal and vertical sizes than what is input. These are meant for values to be
programmed in the IN_SIZE registers discussed in the next section. These values, together with the
values for output sizes, shall be passed to the resizer driver as part of the parameters to ensure good
output quality for given input and output sizes, and the filter coefficients generated by the utility.

Another interesting point worth discussion is that in Example 2, the vertical scaling is 480->480 or 1:1. The
utility recognized this and generated a set of coefficients that duplicates the input exactly or an all-pass
filter.
• Example 3: from VGA → QVGA with exact 2:1 down-scaling

./calccoef –r 512x512 -o320x240 –s1280 –p > coefs_VGA_to_QVGA.h

Example 3. calccoef Usage - VGA → QVGA With Exact 2:1 Scaling

/* horizontal window type = BLACKMAN */
/* horizontal filter type = LOWPASS */
/* hrsz = 512 */

/* vertical window type = BLACKMAN */
/* vertical filter type = LOWPASS */
/* vrsz = 512 */

static rsz_params_t resizer_params = {
642, /* in_hsize */
482, /* in_vsize */
1280, /* in_pitch */
RSZ_INTYPE_YCBCR422_16BIT, /* inptyp */
0, /* vert_starting_pixel */
0, /* horz_starting_pixel */
0, /* cbilin */
RSZ_PIX_FMT_YUYV, /* pix_fmt */
320, /* out_hsize */
240, /* out_vsize */
640, /* out_pitch */
0, /* hstph */
0, /* vstph */

/*horizontal resizing filter coefficients: */
{

. . .

},

/*vertical resizing filter coefficients: */
{

. . .

},
{

RSZ_YENH_DISABLE,
}
};

Not surprisingly, the horizontal and vertical filter coefficients are the same. However, 3 additional pixels in
each line and several additional lines in the input image are needed for exactly 2:1 down-scaling as the
resizer does not perform edge interpolation. The number 3 comes from 483-480 for lines and 646-640-3
for pixels/line. The additional 3 in the horizontal size calculation comes from the fact that the resizer needs
additional 3 more inputs/line but does not really use them.

Understanding the DaVinci Resizer22 SPRAAI7B–July 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI7B


www.ti.com Programming the Resizer

• Example 4: from D1->720 p using bi-cubic interpolation
./calccoef –i20x480 –o1280x720 –zBICUBIC –fBICUBIC > coefs_D1_to_720p.h

Here is part of the output file:

Example 4. calccoef Usage - VGA → QVGA With Exact 2:1 Scaling

/* input image pixels/line = 720 */
/* output image pixels/line = 1280 */
/* horizontal starting phase = 0 */
/* horizontal filter type = BICUBIC */
/* hrsz = 143 */

/*horizontal resizing filter coefficients: */
const short horz_coefs[] =
{

0,
256,
0,
0,
-11,
245,
23,
-1,
-17,
220,
58,
-5,
-18,
184,
100,
-10,
. . .

};
/* input image # lines = 480 */
/* output image # lines = 720 */
/* vertical starting phase = 0 */
/* vertical filter type = BICUBIC */
/* vrsz = 169 */

/*vertical resizing filter coefficients: */
const short vert_coefs[] =
{

. . .
};

Again, not surprisingly, the horizontal and vertical filter coefficients are the same, since bi-cubic
interpolation always uses the same coefficients. Please note that bi-cubic interpolation is only intended for
up-sampling.
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4.4 Programming the Resizer Registers
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The complete description of each register and field is not provided here. The focus is given instead to
details of certain aspects of the register configuration that are error prone and therefore requires special
attention.

The resizer register map is shown in Table 4.

Table 4. Resizer Register Map
Address Register Description

0x01C7:0C00 PID Peripheral revision and class information
0x01C7:0C04 PCR Peripheral control register
0x01C7:0C08 RSZ_CNT Resizer control bits
0x01C7:0C0C OUT_SIZE Output width and height after resizing
0x01C7:0C10 IN_START Input starting information
0x01C7:0C10 IN_SIZE Input width and height before resizing
0x01C7:0C18 SDR_INADD Input SDRAM address
0x01C7:0C1C SDR_INOFF SDRAM offset for the input line
0x01C7:0C20 SDR_OUTADD Output SDRAM address
0x01C7:0C24 SDR_OUTOFF SDRAM offset for the output line
0x01C7:0C28 HFILT10 Horizontal filter coefficients 1 and 0
0x01C7:0C2C HFILT32 Horizontal filter coefficients 3 and 2
0x01C7:0C30 HFILT54 Horizontal filter coefficients 5 and 4
0x01C7:0C34 HFILT76 Horizontal filter coefficients 7 and 6
0x01C7:0C38 HFILT98 Horizontal filter coefficients 9 and 8
0x01C7:0C3C HFILT1110 Horizontal filter coefficients 11 and 10
0x01C7:0C40 HFILT1312 Horizontal filter coefficients 13 and 12
0x01C7:0C44 HFILT1514 Horizontal filter coefficients 15 and 14
0x01C7:0C48 HFILT1716 Horizontal filter coefficients 17 and 16
0x01C7:0C4C HFILT1918 Horizontal filter coefficients 19 and 18
0x01C7:0C50 HFILT2120 Horizontal filter coefficients 21 and 20
0x01C7:0C54 HFILT2322 Horizontal filter coefficients 23 and 22
0x01C7:0C58 HFILT2524 Horizontal filter coefficients 25 and 24
0x01C7:0C5C HFILT2726 Horizontal filter coefficients 27 and 26
0x01C7:0C60 HFILT2928 Horizontal filter coefficients 29 and 28
0x01C7:0C64 HFILT3130 Horizontal filter coefficients 31 and 30
0x01C7:0C68 VFILT10 Vertical filter coefficients 1 and 0
0x01C7:0C6C VFILT32 Vertical filter coefficients 3 and 2
0x01C7:0C70 VFILT54 Vertical filter coefficients 5 and 4
0x01C7:0C74 VFILT76 Vertical filter coefficients 7 and 6
0x01C7:0C78 VFILT98 Vertical filter coefficients 9 and 8
0x01C7:0C7C VFILT1110 Vertical filter coefficients 11 and 10
0x01C7:0C80 VFILT1312 Vertical filter coefficients 13 and 12
0x01C7:0C84 VFILT1514 Vertical filter coefficients 15 and 14
0x01C7:0C88 VFILT1716 Vertical filter coefficients 17 and 16
0x01C7:0C8C VFILT1918 Vertical filter coefficients 19 and 18
0x01C7:0C90 VFILT2120 Vertical filter coefficients 21 and 20
0x01C7:0C94 VFILT2322 Vertical filter coefficients 23 and 22
0x01C7:0C98 VFILT2524 Vertical filter coefficients 25 and 24
0x01C7:0C9C VFILT2726 Vertical filter coefficients 27 and 26
0x01C7:0CA0 VFILT2928 Vertical filter coefficients 29 and 28
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4.4.1 PCR Register

4.4.2 RSZ_CNT Register

4.4.3 Memory Address and Offset Registers

4.4.4 VPSS PCR and SDR_REQ_EXP Registers
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Table 4. Resizer Register Map (continued)
Address Register Description

0x01C7:0CA4 VFILT3130 Vertical filter coefficients 31 and 30
0x01C7:0CA8 YENH Luminance enhancer

The resizer can be configured to get data from either the Preview Engine/CCDC or from DDR memory
directly. Regardless of the source, the resizer always works in one-shot mode, i.e., the processing must
be enabled every time. As a result, the PCR.enable bit must be enabled for every frame.

The PCR.busy bit signals the completion of processing of current frame data. However, it does NOT
indicate that all data is readily available in the output buffer. In fact, some of the data may still be in the
resizer write buffer waiting to be written to DDR. Therefore, one cannot simply pull the PCR.busy bit to
determine whether the output data is ready. The only reliable indication for this purpose is the resizer
interrupt.

To ensure the quality of the output, the RSZ_CNT.cbilin bit needs to be configured depending on the value
of RSZ_CNT.hrsz. As discussed in Section 3.5, in case of up-sampling, this bit should be set to 1 to
enable bi-linear interpolation for horizontal chroma data processing; in case of down-sampling, on the
other hand, this bit should be set to 0 so that chroma is low-pass filtered with luma.

The RSZ_CNT.hrsz and RSZ_CNT.vrsz value MUST be set based on the input and output size according
to the equations in Section 4.1. Correct settings are critical for the hardware to work properly.

The SDR_INADD and SDR_OUTADD specify the address of the input and output buffer in DDR memory.
These addresses must be 32-byte aligned or the 5-LSBs are zeroed.

For image buffers that are not 32-bytes aligned, uses can use the IN_START_horz filed to indicate the
correct starting point of processing. For example, if the buffer is at location 0x8700c00c. 0x8700c000 is to
be programmed into SDR_INADD, and IN_START.horz = (0xc>>1) if pixel size is 2 bytes/pixel, for
Y/Cb/Cr 4:2:2 input, or IN_START.horz=0xc for 8-bit planner input.

The SDR_INOFF and SDR_OUTOFF specify the bye offset of each line for the input and output image
buffers, respectively. This line offset is commonly referred to as line pitch or stride for 2-D image buffers.
Both SDR_INOFF and SDR_OUTOFF MUST be multiples of 32-byte and the 5-LSBs are zeroed.

The resizer hardware is designed in such a way that its operation is regulated by the input rate, without
regard to the status of its write buffer. This is not a problem when the input is coming from the CCDC or
previewer, when the data rate has already been regulated and restricted. However, when input data is
coming from DDR memory, the input data rate can be as high as 400 Mbytes/second, putting a huge
pressure on the system DDR bandwidth. This also can cause overflow of its write buffer, where processed
data is temporarily stored before being written to DDR memory, especially for the case of up-scaling.

To alleviate this problem, the input rate must be reduced significantly. The SDR_REQ_EXP register is
there solely for this purpose.

SDR_REQ_EXP register can be used to insert delays between consecutive read requests from resizer,
preview engine, and the histogram module. For resizer, the field is SDR_REQ_EXP.RESZ_EXP, and the
value ranges from 0 – 0X3FF, where 0 is no delay and 0x3FF is maximum delay. The actual delay is
SDR_REQ_EXP.RESZ_EXP*32 cycles. The maximum clock is 200 MHz if the device is running full-speed
at 600 MHz.
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5 The Resizer Driver

5.1 Overview of the Resizer Driver

Top Layer

OS centric. implements functions such as: open(), close(),

ioctl(), mmap(), init_module(), cleanup_mpdule(), etc.

Middle Layer

Transition layer between logic channel and actual hardware,

Bottom Layer

Hardware centric, handle the configuration of the actual

hardware
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When overflow occurs in the resizer write buffer memory, one or more of the four
VPSS_PCR.RSZx_WBL_O (x = 1,2,3,4) fields are set to indicate this condition. These fields can be
cleared by writing a 1 to them.

The resizer driver is a Linux character driver. It works for MontaVista® Linux 2.6.10 platform. The resizer
driver is a loadable module, which can be loaded/unloaded at run-time. The resizer gets its major number
from the kernel at run-time.

Here is a list of features that the resizer driver supports.
• Y/CbCr 4:2:2 color interleaved data input
• 8-bit planar or grayscale data input.
• Input from DDRAM
• Both application-allocated and resizer driver allocated buffers, as long as they are physically

contiguous, as required by hardware.
• Multiple open/access

Here are the features that the driver does not support:
• On-the-fly mode, which gets data from preview engine or CCDC directly.
• Multi-passing operations for resizing ratio greater than 4x or less than x, or for output size greater than

1280 ( >x scaling) or 640 ( < x scaling). The multi-passing operations are supported at the application
level. Please refer to application example on multi-passing.

The reizer driver has a multi-layer architecture to abstract the top layer from the actual resizer hardware.
This is to support multiple application users opening multiple logical channels that use the same resizer
hardware underneath.

Figure 28 shows the 3-layer architecture.

Figure 28. 3-Layer Architecture of the RSZ Module

Top layer: This layer handles all OS level driver API implementations and operations associated with logic
channel. This layer should be OS centric and hardware agnostic.

Bottom layer: This layer is responsible for the actual configuration of the resizer hardware through writing
to the resizer MMRs. It should be OS agnostic and hardware centric.

Middle layer: This layer is mainly responsible for the transition between logic channel and physical
hardware. It also handles the ISR.
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5.2 The Resizer Driver API
www.ti.com The Resizer Driver

At top level, the resizer driver implements the usual Linux driver APIs, namely open, close, mmap and
ioctl. It does not implement read and write, however, to avoid the need to implement memory copy
between user and kernel space.

Please refer to the documentation that is released with the product for a complete description of the
resizer driver API.

All the resizer-specific APIs are defined in the davinci_resizer.h header file, including ioctls and
parameters.

Here is the list of all resizer specific ioctls:
• RSZ_REQBUF: request buffer(s) to be allocated by driver
• RSZ_QUERYBUF: query the physical memory of driver allocated buffer
• RSZ_S_PARAM: set resizer parameters for a logic channel
• RSZ_G_PARAM: get resizer parameters for a logic channel
• RSZ_RESIZE: perform the resizer operation
• RSZ_G_STATUS: query the status of the resizer
• RSZ_S_PRIORITY: set the priority of the logic channel
• RSZ_S_PRIORITY: set the priority of the logic channel
• RSZ_S_EXP: set the delays inserted between consecutive resizer reads from DDR

Here is the definition for the rsz_reqbufs structure passed as the parameter of the RSZ_REQBUFS ioctl.
This provides information on the type of buffers, size of buffers and number of buffers to be allocated
typedef struct rsz_reqbufs
{

int buf_type; // buffer type: RSZ_BUF_IN/RSZ_BUF/OUT
int size; // size of the buffer in bytes
int count; // # of buffers to be allocated

}rsz_reqbufs_t;

Here is the definition of the resizer parameter structure used in the RSZ_S_PARAM and RSZ_G_PARAM
ioctls:
typedef struct rsz_params
{

int in_hsize; // input frame horizontal size
int in_vsize; // input frame vertical size
int in_pitch; // offset between two rows of input frame
int inptyp; // for determining 16-bit or 8-bit data
int vert_starting_pixel; // for specifying vertical starting pixel in input
int horz_starting_pixel; // for specifying horizontal starting pixel in input
int cbilin; // # defined, filter with luma or bi-linear interpolation
int pix_fmt; // # defined, UYVY or YUYV
int out_hsize; // output frame horizontal size
int out_vsize; // output frame vertical size
int out_pitch; // offset between two rows of output frame
int hstph; // for specifying horizontal starting phase
int vstph; // for specifying vertical starting phase
short hfilt_coeffs[32]; // horizontal filter coefficients
short vfilt_coeffs[32]; // vertical filter coefficients
rsz_yenh_t yenh_params; // luma edge enhancement parameters

}rsz_params_t;
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6 Programming Examples

6.1 Resize Using Only One Field

Programming Examples www.ti.com

These parameters are closely mapped to the underneath resizer memory mapped registers.

Here is the definition of the rsz_buffer structure and the rsz_resize structure used in the RSZ_RESIZE
ioctl:
typedef struct rsz_buffer
{

int index; // input buffer descriptor
int buf_type; // output buffer descriptor
int offset; // physical address of buffer
int size; // size of buffer

}rsz_buffer_t;

typedef struct rsz_resize
{

rsz_buffer_t in_buf; // input buffer descriptor
rsz_buffer_t out_buf; // output buffer descriptor

}rsz_resize_t;

The index field in the rsz_buffer structure indicates which buffer to use when it is allocated by the resizer
driver using the RSZ_REQBUFS ioctl. In this case, the offset field is ignored by the driver. If a buffer was
allocated outside of the resizer driver, for example, by the V4L2 capture driver, then this field should be -1
and the offset field should be the physical address for the buffer.

Several examples are provided with this application report to illustrate the usage of the resizer driver.
These examples run on the DM644x DVEVM.

This example shows how to resize using only one of the fields of the input. This scenario can typically be
found in applications that do not implement an input de-interlacing module but need the input to be
progressive, for example, video conferencing or video phone. The typical target resolution is CIF
(352×288) or QVGA (320×240).

The name of the example application is:

resize_one_field_fixed

Type:

resize_one_field_fixed –h displays the usage of this application:

Options:
-s | --svideo Use s-video instead of composite video input
-c | --count Number of frames to run the demo [-1(forever)]
-r | --resolution Output resolution [720x480]
-h | --help Print this message

The input resolution is fixed at 720×240, which uses only the top field of the input. The output resolution
can be configured using the –r option. The default is 720×480. When an output resolution other than
720×480 is selected, the output picture is centered on the display. The –s option selects the s-video input
connector, rather than the default composite input connector.

Usage example:

resize_one_field_fixed –s –r 352x288

This converts the input to CIF resolution. The input is from the s-video connector.

Source code for this example is in the resize_one_field_fixed.c file. The coefficients are pre-calculated and
stored in the coefs.h file.
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6.2 Continuous Zoom-In and Zoom-Out Example

6.3 Pass-Through Example

7 References

www.ti.com References

This example shows how the resizer can be dynamically configured for different input and output
resolutions. When the application starts, it zooms out continuously from 720×480 to 186×124 and then
zooms in continuously from 186×124 back to 720×480. It then repeats this zoom-out and zoom-in
sequence again and again. When zoom-in, the portion of the input image is always centered. This
example basically utilizes the full scaling range of the resizer from ¼x – 4x.

The name of the example application is:

resize_zoom

Type:

resize_zoom –h displays the usage of this application:

Options:
-s | --svideo Use s-video instead of composite video input
-c | --count Number of frames to run the demo [-1(forever)]
-h | --help Print this message

The source code is in resize_zoom.c file. The coefficients are pre-calculated and stored in the
coefs_zoom_in.h and coefs_zoom_out.h files.

Usage example:

resize_zoom -s

This example shows how to use the resizer for pass-through, or no-scaling operation. This is useful when
either the horizontal or the vertical input and output resolutions are the same, For example: from 720×240
→ 720×480 or from 720×480 → 640 → 480.

This case needs special treatment because the resizer hardware typically requires more input pixels/lines
to generate the same number of output pixels/lines. For example, it normally requires at least 724 input
pixels to generate 720 output pixels in a 1x scaling operation. However, the extra pixels or lines may not
be readily available in the input image.

This example shows how to set up the coefficients and the resizer registers to trick the hardware to
perform the pass-through operation. The input width is set to be width+7, the input height is set to be
height+4, as required by the hardware. The output width and height are width and height respectively.
Both horizontal and vertical filter coefficients are set to be: 256, 0, 0, 0 for each phase.

The source code is in the resize_passthrough.c file. The usage is the same as the previous resize_zoom
example.

1. Robert G. Keys Cubic Convolution Interpolation for Digital Image Processing, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-29, No. 6, December 1981, p. 1155.

2. TMS320DM644x DMSoC Video Processing Front End (VPFE) User's Guide (Rev. A), SPRUE38
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