
Application Report
SPRAAH0A – April 2007

1

EncodeDecode Demo for the DVEVM/DVSDK 1.2
Niclas Anderberg SDO Applications

ABSTRACT

The DaVinci Digital Video Evaluation Module (DVEVM) comes with demonstration applications
that illustrate the use of its software and hardware components. This document describes the
design of the “EncodeDecode” demo application. The EncodeDecode demo uses the Codec
Engine as well as video algorithms from Texas Instruments to first encode video data captured
using the VPSS front end, and then decode this video data to be displayed on the VPSS back
end peripheral of the DM6446.

Contents
1 Overview ..2
2 Application Design..3

2.1 Main Thread ..4
2.2 Control Thread...5
2.3 Video Thread ...6

2.3.1 Display Thread ..7
2.3.2 Capture Thread ...8
2.3.3 Video Thread Interaction ...9

3 Replacing the Encode and Decode Algorithms with Other Codecs...10
4 More Information...12

Figures
Figure 1. EncodeDecode Demo Architecture..2
Figure 2. EncodeDecode Demo Threads...3
Figure 3. Main Thread Flow ..4
Figure 4. Video Thread Initialization Flow...6
Figure 5. Video Thread Interactions...9

SPRAAH0A

2 EncodeDecode Demo for the DVEVM/DVSDK 1.2

1 Overview
The encodedecode demo shows how to encode and decode video using algorithms and the
Codec Engine from Texas Instruments on the DaVinci DM6446 DVEVM board. The video
algorithm used is H.264 and is implemented using the xDM interface (see Section 4 for
information reference). The H.264 encoder and decoder algorithms are packaged in a Codec
Server (loopbackCombo.x64P) managed by the Codec Engine and executed on the DaVinci
DSP core.

Figure 1. EncodeDecode Demo Architecture

The DaVinci ARM core runs the demos on the Linux operating system, and all peripherals are
controlled through Linux device drivers. The ARM displays a user interface on the OSD (On
Screen Display) and takes input from a remote control that allows users to send commands
through the EVM board’s IR interface. The DSP core runs the DSP/BIOS real time operating
system and performs algorithm processing.

For information on how to run the encodedecode demo including documentation on the
command-line parameters, see Section 4 on how to find the encodedecode.txt file.

SPRAAH0A

 EncodeDecode Demo for the DVEVM/DVSDK 1.2 3

2 Application Design
The application consists of four separate POSIX threads (pthreads): the main thread (main.c),
which eventually becomes the control thread (ctrl.c), the video thread (video.c), the capture
thread, and the display thread (display.c). The video, display, and capture threads are spawned
from the main thread before the main thread becomes the control thread. This means that 4
application threads are running in the demo process.

All threads except the original main/control thread are configured as preemptive and priority-
based scheduled (SCHED_FIFO). The video, capture, and display threads share the highest
priority, while the control thread has the lowest priority. For more on POSIX threads see Section
4.

Ctrl
Thread

Capture
Thread

OSD Video
Display

VPSS

Performance
data

Decoded
Video
frames

User
interface

MSP430
+ IR

User
commands

Main
Thread

Becomes

Display
Thread

Capture
Device

Captured
Video
frames

Video
Thread

Ctrl
Thread

Capture
Thread

OSD Video
Display

VPSS

Performance
data

Decoded
Video
frames

User
interface

MSP430
+ IR

User
commands

Main
Thread

Becomes

Display
Thread

Capture
Device

Captured
Video
frames

Video
Thread

Figure 2. EncodeDecode Demo Threads

The initialization and cleanup of the threads are synchronized using the provided Rendezvous
utility module, which is initialized early in the main thread. This module uses POSIX conditions to
synchronize thread execution. Each thread performs its initialization and signals the Rendezvous
object when completed. When all threads have finished initializing, all threads are unlocked
simultaneously and start executing their main loops. The same method is used for thread
cleanup. This way buffers that are shared between threads are not freed in one thread while still
being used in another.

SPRAAH0A

4 EncodeDecode Demo for the DVEVM/DVSDK 1.2

2.1 Main Thread

The job of the main thread is to perform necessary initialization tasks, to parse the command-line
parameters provided by the user when invoking the application, and to spawn the other threads
with parameters depending on the values of these command-line parameters.

1. Detect video standard ioctl(FBIO_GETSTD);

2. Parse command line arguments parseArgs();

3. Initialize Codec Engine run time CERuntime_init();

4. Start the Codec Engine trace logging TraceUtil_start();

5. Open Pause object Pause_open();

9. Create video thread pthread_create();

To control thread

10. Call control thread ctrlThrFxn();

6. Open Rendezvous objects Rendezvous_open();

7. Create display thread pthread_create();

8. Create capture thread pthread_create();

1. Detect video standard ioctl(FBIO_GETSTD);

2. Parse command line arguments parseArgs();

3. Initialize Codec Engine run time CERuntime_init();

4. Start the Codec Engine trace logging TraceUtil_start();

5. Open Pause object Pause_open();

9. Create video thread pthread_create();

To control thread

10. Call control thread ctrlThrFxn();

6. Open Rendezvous objects Rendezvous_open();

7. Create display thread pthread_create();

8. Create capture thread pthread_create();

Figure 3. Main Thread Flow

SPRAAH0A

 EncodeDecode Demo for the DVEVM/DVSDK 1.2 5

As Figure 3 shows, first the video standard chosen by switch 10 on S3 on the DVEVM board is
detected using the FBIO_GETSTD ioctl of the FBDev display device driver. The command-line
parameters passed are then parsed, and thread environment variables are set accordingly. The
Codec Engine and its TraceUtil module are initialized for trace logging (see Section 4 for
documents with more details). The Pause object for synchronizing processing pausing and the
Rendezvous object for synchronizing thread initialization and cleanup are opened, and the
display, capture, and video threads are created. Finally, the control thread’s main function
ctrlThrFxn() is called and the main thread becomes the control thread.

2.2 Control Thread

This thread is responsible for the user interface. It uses the utility library msp430lib to poll the
msp430 processor, which controls the IR interface on the DaVinci EVM board for commands.
Optionally, if the keyboard interface has been enabled from the command line, stdin is polled to
see if a command has been given from the command line in getKbdCommand(). Once a new
IR command is received or a command-line command is given, the command is identified and
the corresponding action is taken in keyAction(). Since the msp430 has to be polled for
whether a new key has been pressed or not, usleep() puts the thread to sleep for a while
before checking for another command.

The control thread also draws and updates the text and graphics on the OSD. On the DaVinci
platform the OSD window (accessible through /dev/fb/0) is in the foreground of the video
window (accessible through /dev/fb/3). The transparency of the OSD—that is, how much of
the video window is seen through the OSD—is set using the attributes window (accessible
through /dev/fb/2). In the attributes window the transparency of every pixel is represented by
a nibble (4 bits) and its value ranges from 0 (completely transparent) to 7 (no transparency). The
control thread uses the function setOsdTransparency() to set the transparency of the OSD
window. The demo defaults to a transparency of 5.

The control thread uses the simplewidget utility library to draw the buttons and render text on the
OSD. In addition to initializing the OSD device in osdInit() and creating and drawing the
static text and buttons on the OSD during initialization using uiCreate(), the control thread
also updates the dynamic text approximately once per second using drawDynamicData(). In
this function performance data (such as bit rates) is gathered from other threads and then
displayed on the OSD. Since this performance data is accessed from several threads it must be
protected using a mutex, and safe access to these variables is wrapped in inline functions in
encodedecode.h. The function getArmCpuLoad() calculates the ARM-side CPU load in
percent, and the Codec Engine call Engine_getCpuLoad() determines the DSP-side CPU
load. Other dynamically-displayed data are bit rates, video frames processed per second, and
time elapsed. The OSD window is double buffered, in that one display buffer is being displayed
while data is being rendered into another buffer called the work buffer. After the dynamic data
has been rendered into the work buffer, the work buffer is swapped for the display buffer using
the FBIOPAN_DISPLAY ioctl before the thread waits on the next vertical sync (29.97 Hz on
NTSC and 25 Hz on PAL) using the FBIO_WAITFORVSYNC ioctl.

SPRAAH0A

6 EncodeDecode Demo for the DVEVM/DVSDK 1.2

2.3 Video Thread

The video thread receives frame buffers from the capture thread and encodes them using a
video encoder algorithm. It then decodes the video buffers again before sending the buffers to
the display thread to be displayed on the display device (VPSS back end).

In order to get more reliable performance, and to avoid dropping frames when one or more
frames are demanding to encode and decode, a separate display thread is used to display the
frames. If the same thread is used for encoding, decoding and displaying the buffer, any frame
exceeding its real-time budget (33 ms for NTSC and 40 ms for PAL) is dropped. By decoupling
the encoding and decoding from the display using a number of display buffers (specified by
DISPLAY_BUFFERS), the video system can handle one or more consecutive frames that exceed
their budgets as long as the frames that follow are less expensive to allow the video thread to
recover. (An average of 33 ms for NTSC or 40 ms for PAL per frame is required.) The higher the
value of DISPLAY_BUFFERS, the more consecutive frames can exceed their budgets. However,
as a downside, increasing DISPLAY_BUFFERS also increases video latency as well as memory
requirements. The demo defaults to a DISPLAY_BUFFERS setting of 3. This allows for a few
consecutive expensive frames while keeping latency low.

1. Open Codec Engine Engine_open();

2. Create video decoder VIDDEC_create();

3. Create video encoder VIDENC_create();

To main loop

4. Allocate buffer for encoded data Memory_contigAlloc();

5. Allocate contiguous buffers for interacting with Memory_contigAlloc();
the display thread.

6. Allocate contiguous buffers for interacting with the Memory_contigAlloc();
capture thread and prime the capture thread with the buffers. FifoUtil_put();

1. Open Codec Engine Engine_open();

2. Create video decoder VIDDEC_create();

3. Create video encoder VIDENC_create();

To main loop

4. Allocate buffer for encoded data Memory_contigAlloc();

5. Allocate contiguous buffers for interacting with Memory_contigAlloc();
the display thread.

6. Allocate contiguous buffers for interacting with the Memory_contigAlloc();
capture thread and prime the capture thread with the buffers. FifoUtil_put();

Figure 4. Video Thread Initialization Flow

As Figure 4 shows, the video thread initialization is performed as follows:

1. A Codec Engine instance is created with Engine_open(). This returns a handle to use
when instantiating algorithm instances for this engine. All threads using the same engine
need a separate handle; access to the engine through this handle is not thread safe.

SPRAAH0A

 EncodeDecode Demo for the DVEVM/DVSDK 1.2 7

2. The video decoder is created by videoDecodeAlgCreate(). The encodedecode
demo supports decoding video using the H.264 algorithm. A codec instance is created
using the static parameters in the VIDDEC_create() call. Important! Currently due to a
bug in the H.264 encoder and decoder initialization, one cannot call
VIDDEC_control() or VIDENC_control() between creating the encoder and
decoder. The ALGO_INIT_WORKAROUND pre-processor variable is set, which hardcodes
the worst-case encoded buffer size. This value is normally obtained by asking the
decoder what its worst-case encoded buffer size is using the VIDDEC_control() call
with the XDM_GETBUFINFO command (code for this approach is shown but commented
out using #ifdef). Obtaining this value dynamically was sacrificed to allow the setting of
a bit rate for the encoder (see step 6 below) until the codec issue is resolved.

3. The video encoder is created by videoEncodeAlgCreate(). Currently the encode
demo supports encoding video using the H.264 algorithm. A codec instance is created
using the static parameters in the VIDENC_create() call. The targetFrameRate and
refFrameRate parameters are set depending on whether the demo is running on a PAL
or NTSC system. These settings are important for the algorithm to match the target bit
rate given on the command line correctly (the algorithm needs some concept of real
world time). If the user supplied a negative value as bit rate on the command line,
variable bit rate is chosen using the parameter rateControlPreset value
IVIDEO_NONE (as opposed to the constant bit rate setting of IVIDEO_LOW_DELAY). The
dynamic video encoder parameters are then set using the VIDENC_control() call with
the XDM_SETPARAMS command.

4. A contiguous buffer for the encoded data of the size returned by XDM_GETBUFINFO
above (but currently hardcoded as a workaround) is allocated using
Memory_contigAlloc().

5. A number of contiguous display buffers (set in DISPLAY_BUFFERS) are allocated using
Memory_contigAlloc(). These are used to exchange buffers with the display thread
as described above.

6. The capture thread is primed with CAP_BUFFERS number of buffers to be filled by the
capture thread. First contiguous buffers are allocated with Memory_contigAlloc(),
and then they are sent to the capture thread using FifoUtil_put(). The physical
addresses of the buffers are also translated, as the VPSS resizer module uses these and
not virtual addresses.

When the video thread has finished initializing, it synchronizes with the other threads using the
Rendezvous utility module. Because of this, only after the other threads have finished initializing
is the main loop of the video thread executed.

2.3.1 Display Thread

In order to decouple the processing from the displaying of the video frames, a separate display
thread is responsible for copying the decoded video buffer into the frame buffer of the FBDev
display device driver. (See Section 4 for links to documents with more details on the FBDev
interface.) This lets the decoded buffer be copied in parallel with the DSP processing. The thread
execution begins by initializing the FBDev display device driver in initDisplayDevice(). In

SPRAAH0A

8 EncodeDecode Demo for the DVEVM/DVSDK 1.2

this function the display resolution (D1) and bits per pixel (16) are set using the
FBIOPUT_VSCREENINFO ioctl, before the three (triple buffered display) buffers are made
available to the user space process from the Linux device driver using the mmap() call. The
buffers are initialized to black, since the video resolution might not be full D1 resolution and the
background of a smaller frame should be black. Next a Rszcopy job is created. The Rszcopy
module uses the VPSS resizer module on the DM6446 to copy an image from source to
destination without consuming CPU cycles.

When the display thread has finished initializing, it synchronizes with the other threads using the
Rendezvous utility module. Because of this, only after the other threads are finished initializing is
the main loop of the display thread executed.

2.3.2 Capture Thread

The demo gives the option of removing interlacing artifacts using the VPSS resizer module of the
DM6446 before encoding the data. To parallelize this artifact removal with the DSP processing
(both are blocking calls), a separate capture thread takes care of the interlacing artifact removal
before the captured buffer is encoded and decoded in the video thread.

First, because the Smooth module needs more vertical rows (defined by EXTRA_ROWS) than it
produces for interpolation purposes, the number of rows to capture is increased. This is not
possible if the resulting height is more than 480 on NTSC or 576 on PAL as these are the max
heights, but the top rows are normally not visible on a full D1 display (TV).

Then the video capture device is initialized by initCaptureDevice(). The video capture
device driver is a Video 4 Linux 2 (v4l2) device driver. (See Section 4 for documents with more
details.) In this function, the user-selected input connector (composite or s-video) is set using the
VIDIOC_S_INPUT ioctl, and the capabilities of the capture device are verified using the
VIDIOC_QUERYCAP ioctl.

Next the video standard (NTSC or PAL) is auto-detected from the capture device and verified
against the display video standard selected on the Linux kernel command line. The format is set
to D1 resolution, and the capture device is told to join the two interlaced fields into a frame
(V4L2_FIELD_INTERLACED) using the ioctl VIDIOC_S_FMT. Then the capture device driver is
told to crop the D1 formatted picture to the resolution given by the user on the command line
using the VIDIOC_S_CROP ioctl.

Next three video capture buffers are allocated inside the capture device driver using the
VIDIOC_REQBUFS ioctl, and these buffers are mapped to the user space application process
using mmap(). Finally the capturing of frames in the capture device driver is started using the
VIDIOC_STREAMON ioctl.

Depending on whether the user has selected to remove interlacing artifacts from the captured
frame buffer or not, a Smooth or Rszcopy job is created. The Smooth module removes
interlacing artifacts using the VPSS resizer module, while the Rszcopy job merely copies the
buffer without any alterations, but using the same peripheral.

SPRAAH0A

 EncodeDecode Demo for the DVEVM/DVSDK 1.2 9

2.3.3 Video Thread Interaction

Figure 5 shows the interaction of the video, capture, and display thread main loops (after the
threads have been released by the Rendezvous object) while processing a video frame.

Display thread primed
with decoded buffer

Video Display

Displayed
buffer to encode to

Copy decoded buffer
to display frame buffer
using VPSS resizer

Decoded buffer for display

End of main loop

Start of main loop

Get raw buffer
from capture device

Encode captured buffer

Decode encoded video buffer

Encode captured buffer

Decode encoded video buffer

Return raw buffer
to capture device

Flip working
buffer and wait
for vertical sync

Capture

Start of priming

Optionally remove
interlacing artifacts.

Captured buffer for encoding

Buffer returned

Buffer returned

Captured buffer for encoding

Get raw buffer
from capture device

Optionally remove
interlacing artifacts.

Return raw buffer
to capture device

Display thread primed
with decoded buffer

Video Display

Displayed
buffer to encode to

Copy decoded buffer
to display frame buffer
using VPSS resizer

Decoded buffer for display

End of main loop

Start of main loop

Get raw buffer
from capture device

Encode captured buffer

Decode encoded video buffer

Encode captured buffer

Decode encoded video buffer

Return raw buffer
to capture device

Flip working
buffer and wait
for vertical sync

Capture

Start of priming

Optionally remove
interlacing artifacts.

Captured buffer for encoding

Buffer returned

Buffer returned

Captured buffer for encoding

Get raw buffer
from capture device

Optionally remove
interlacing artifacts.

Return raw buffer
to capture device

Figure 5. Video Thread Interactions

SPRAAH0A

10 EncodeDecode Demo for the DVEVM/DVSDK 1.2

Before the main loop starts, the display thread is primed with video buffers. This ensures that all
display buffers are owned by the display thread when the main loop starts. As a result, the DSP
processing can be done in parallel with the copy to the display frame buffer, and the system can
recover from occasional expensive frames (see Section 2.3). The frames are encoded and
subsequently decoded into the display buffers and are then sent to the display thread using
FifoUtil_put().The priming of the display thread is synchronized using a Rendezvous
object.

The capture thread main loop starts by dequeuing a captured frame buffer from the capture
device using the VIDIOC_DQBUF ioctl, and a destination buffer is received from the video thread
using FifoUtil_get(). The captured frame buffer is then optionally (depending on command-
line parameters) processed to remove interlacing artifacts in the destination buffer before being
sent to the video thread for encoding. The capture thread then returns the captured video buffer
to the capture device driver using the VIDIOC_QBUF ioctl. Having the removal of interlacing
artifacts using the VPSS resizer module on the DM6446 in a separate thread allows this
operation to be done in parallel with DSP encode and decode video processing.

The video thread receives a frame buffer from the capture thread and a display buffer from the
display thread using FifoUtil_get(). The captured frame buffer is encoded on the DSP
using the VIDENC_process() call, and then it is returned to the capture thread using the
FifoUtil_put() call. The newly encoded buffer is then decoded on the DSP using the
VIDDEC_process() call, and the resulting decoded buffer is sent to the display thread using
FifoUtil_put() to be displayed on the video display (VPSS back end).

The display thread receives the decoded raw buffer using FifoUtil_get() and copies it to the
FBDev display device driver frame buffer using the VPSS resizer module and the
Rszcopy_execute() call. When the display thread has finished copying the buffer, it makes
the new frame buffer the new display buffer on the next vertical sync using the
FBIOPAN_DISPLAY ioctl. It then waits on the next vertical sync using the FBIO_WAITFORVSYNC
ioctl. Note that while the display thread is doing this, the video thread is free to encode and
decode the next frame, leaving both the ARM and DSP cores fully utilized.

3 Replacing the Encode and Decode Algorithms with Other Codecs
This section shows how to replace the encoder and decoder algorithms used by the
encodedecode demo (h.264). The example shows how to replace these algorithms with the
example copy codecs shipped as examples with the Codec Engine. These copy codecs
essentially do a copy of the data and no real processing, but could just as well have been real
algorithms. From an application point of view, all codecs of a VISA class are essentially treated
the same no matter the complexity of the algorithm.

First the encodedecode.cfg file needs to be edited. This file contains the configuration of the
Codec Engine for the encodedecode demo. First the copy codec packages needs to be pulled in
and made available using the following statements:

var VIDDEC_COPY = xdc.useModule('codecs.viddec_copy.VIDDEC_COPY');
var VIDENC_COPY = xdc.useModule('codecs.videnc_copy.VIDENC_COPY');

SPRAAH0A

 EncodeDecode Demo for the DVEVM/DVSDK 1.2 11

The declarations of the H264ENC and H264DEC variables should be removed, since these
algorithms will not be used anymore. Next, we need to describe our codec server (demoEngine):

var demoEngine = Engine.create("encodedecode", [
 {name: "videnc_copy", mod: VIDENC_COPY, local: false},
 {name: "viddec_copy", mod: VIDDEC_COPY, local: false}
]);

Again, the lines for h264enc and h264dec should be removed from this array, since these
algorithms will not be used anymore.

Finally, the Codec Engine needs to be told where to find the file containing this codec server by
changing the demoEngine.server assignment to:

demoEngine.server = "./all.x64P";

The codec server file that contains copy codecs for all 8 VISA classes (all.x64P) can be found at
codec_engine_1_02/examples/servers/all_codecs, and should be copied to the directory on your
target file system where your demos reside (typically /opt/dvevm).

Now the Makefile needs to be edited to add the search path to these copy algorithm packages in
order for the configuration tool to find them. Find the line where the XDC_PATH variable is set
and append the following to the list of package search paths:

$(CE_INSTALL_DIR)/examples

This adds the Codec Engine examples (where the copy codecs reside) to the package search
path, and the configuration tool can find the copy codec packages when the configuration step is
executed.

Since the names of the codecs have changed from "h264enc" to "videnc_copy", and from
"h264dec" to "viddec_copy", the video.c file of the demo needs to be changed to reflect this. In
video.c, find the line where the VIDENC_create() Codec Engine call is made, and modify this
line so it reads as follows:

hEncode = VIDENC_create(hEngine, "videnc_copy", ¶ms);

Note: Because the video encode copy codec doesn't support the XDM_SETPARAMS control call,
this call needs to be commented out.

In video.c, find the line where the VIDDEC_create() Codec Engine call is made, and modify
this line so it reads as follows:

hDecode = VIDDEC_create(hEngine, "viddec_copy", ¶ms);

Now recompile the encodedecode demo using "make" and install it to the target file system
using "make install" before running this altered encodedecode demo.

Your altered encodedecode demo will capture raw video and display raw video, since the copy
codecs merely do a copy and no compression or decompression. Essentially, the image you
captured should be shown on the display with little to no degradation in quality.

SPRAAH0A

12 EncodeDecode Demo for the DVEVM/DVSDK 1.2

4 More Information
For more information, see the following documentation:
• Encode Demo for the DVEVM/DVSDK 1.2 (SPRAA96A)
• Decode Demo for the DVEVM/DVSDK 1.2 (SPRAAG9A)
• EncodeDecode Demo readme file.

$(DVEVM_INSTALL_DIR)\demos\encodedecode\encodedecode.txt.
Contains information on how to invoke the demo from the command line.

• Decode Demo readme file. $(DVEVM_INSTALL_DIR)\demos\decode\decode.txt.
• Encode Demo readme file. $(DVEVM_INSTALL_DIR)\demos\encode\encode.txt.

DVEVM Product
• DVEVM Getting Started Guide (SPRUE66). Hardware and software overview, including how

to run demos, install software, and build the demos.
• DaVinci System Level Benchmarking Measurements (SPRAAF6)

Codec Engine
• Codec Engine Application Developer's Guide (SPRUE67A)
• Codec Engine API Reference

$(DVEVM_INSTALL_DIR)\codec_engine_1_02\docs\html\index.html

Codec Servers
• Codec Servers Data Sheets: Encode, Decode, and Loopback (Encode/Decode)

$(DVEVM_INSTALL_DIR)\codec_servers_1_00\docs\data_sheets

Linux Device Drivers
• Linux Device Drivers 3rd Edition, J. Corbet & A. Rubini [ISBN 0-596-00590-3].
• Open Sound System (OSS) website. http://www.opensound.com
• Video for Linux 2 (v4l2) website. http://www.thedirks.org/v4l2
• FBdev website. http://linux-fbdev.sourceforge.net

POSIX Threads
• Programming with POSIX Threads, David R. Butenhof [ISBN 0201633922].

http://www.opensound.com/
http://www.thedirks.org/v4l2
http://linux-fbdev.sourceforge.net/

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
 Video & Imaging www.ti.com/video
 Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/lpw
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	EncodeDecode Demo for the DVEVM/DVSDK 1.2
	1 Overview
	2 Application Design
	2.1 Main Thread
	2.2 Control Thread
	2.3 Video Thread
	2.3.1 Display Thread
	2.3.2 Capture Thread
	2.3.3 Video Thread Interaction

	3 Replacing the Encode and Decode Algorithms with Other Codecs
	4 More Information

