
SPRAAG0E– March 2012
Submit Documentation Feedback

Using the TMS320DM643x Bootloader 1

Copyright © 2012, Texas Instruments Incorporated

Daniel Allred

Application Report
SPRAAG0E– March 2012

Using the TMS320DM643x Bootloader

ABSTRACT

This document describes the functionality of the DM643x ROM bootloader software. Please note that the
ROM bootloader requires use of Application Image Script (AIS) as the primary data format for loading
code/data. AIS is a Texas Instruments, Inc. proprietary data format that is explained in detail in Section 3
of this document.
Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/SPRAAG0.

Contents
1 Introduction .. 3
2 Boot Mode Description ... 4
3 Application Image Script .. 21
4 Booting Operating Systems (Linux®/ DSP/BIOS™,etc.) ... 31
5 ROM Bootloader RAM Memory Requirements and Code/Data Placement ... 32
6 ROM Bootloader Cache Considerations .. 32
7 AIS Generation Tool, genAIS... 32
8 Sample AIS Boot Images ... 34
9 Debugging Boot Failures ... 42
10 Determining On-Chip Bootloader Version .. 42
11 Calculating CRC .. 43
12 References... 43
Appendix A Calculating the CRC ... 44

List of Figures
1 Signal Connections for I2C EEPROM Boot Mode ... 12
2 SPI Transfer With CLKSTP = 11 and CLKXP = 0 ... 15
3 24x8 Bit SPI EEPROM Read Timing ... 20
4 DM643x 24x8 Bit Address SPI Boot .. 20
5 Basic Structure of Application Image Script ... 21
6 Structure of SET Command ... 22
7 Valid SET Command Data Types .. 23
8 Structure of GET Command .. 24
9 Structure of Section Load Command ... 24
10 Structure of Section Fill Command .. 25
11 Structure of Jump Command ... 25
12 Structure of Jump_Close Command .. 26
13 Structure of Enable CRC/Disable CRC Commands .. 27
14 Structure of Request CRC Command .. 28
15 Structure of Function Execute Command .. 29
16 UART AIS Boot Image ... 40

List of Tables

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E
http://www.ti.com/lit/zip/SPRAAG0

Copyright © 2012, Texas Instruments Incorporated

www.ti.com

1 Terms and Abbreviations ... 3
2 Non-Fastboot Modes (FASTBOOT = 0) ... 5
3 Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b) ... 6
4 User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b, 011b, 100b, or 101b) 7
5 PLL Multiplier Selection (PLLMS[2:0]) in User-Select Multiplier Fastboot Modes (FASTBOOT = 1;

AEM[2:0] = 000b, 011b, 100b, or 101b) ... 7
6 PLL Multiplier Based on Value AEM and PLLMS[2:0] Pins .. 8
7 PLL1 and PLL2 Multiplier Ranges .. 9
8 PLLC1 Clock Frequency Ranges ... 9
9 PLLC2 Clock Frequency Ranges ... 9
10 CPU Frequency During FASTBOOT .. 9
11 I2C EEPROM Layout for PCI Autoinitialization Data .. 11
12 I2C Timing Register Settings .. 13
13 SPI Master Clock Frequencies for FASTBOOT = 1 ... 14
14 SPI Master Boot Modes ... 15
15 SPI 16x8 EEPROM-to-DSP McBSP0 Connection ... 15
16 Supported NAND Device Types ... 16
17 UART Connection Attributes for Boot ... 17
18 SPI EEPROM and DSP Pin Connections for 24 Bit SPI Mode .. 20
19 AIS Version 2.0 Supported Opcodes ... 21
20 Numeric Formats That Can Be Used in SET Command .. 22
21 Valid SET Command Data Types .. 23
22 Valid SET Command Data Types Field Descriptions ... 23
23 Pre-Defined ROM Functions .. 29
24 Sample Function Execute Command ... 29
25 DM643x Program Options .. 33
26 EMIFA ROM Fast Boot AIS Boot Image Example ... 35
27 I2C AIS Boot Image Example ... 36
28 AIS Image in I2C EEPROM Memory .. 37
29 SPI AIS Boot Image Example .. 37
30 AIS Image in SPI EEPROM Memory ... 38
31 NAND Boot AIS Boot Image Example .. 40
32 Debugging Boot Failures .. 42

2 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Introduction www.ti.com

1 Introduction
The ROM bootloader resides in the ROM of the device beginning at ROM address 0x00100000. The ROM
boot loader (RBL) implements methods for booting in the listed modes. It reads the contents of the
BOOTCFG register to determine boot mode and performs appropriate commands to effect boot of device.
If an improper boot mode is chosen or if for some reason an error is detected during boot from a slave
device, the RBL communicates this through UART as default boot device.
When booting in master mode, the boot loader reads the boot information from the slave device as and
when required. When booting in slave mode, the boot loader depends on the master device to feed the
boot information as and when required. Please note that for all boot modes, the ROM bootloader disables
the watchdog timer for a duration of boot. All applications MUST avoid configuring the watchdog timer
during the boot process. (No AIS commands or code should change this during boot). Figure 16 shows a
list of terms and abbreviations used in this application report
• Emulation boot
• HPI
• PCI (DSP as slave)
• EMIFA ROM direct boot
• EMIFA ROM fast boot with AIS
• EMIFA ROM fast boot without AIS
• NAND
• I2C (DSP as master)
• SPI 16×8 (DSP as master, 16 bits of address per SPI operation, supporting upto 64Kx8 devices)
• SPI 24×8 (DSP as master, 24 bits of address transmitted per SPI operation supporting upto 16Mx8

devices)
• UART (DSP as slave), no flow control
• UART (DSP as slave), with flow control
• VLYNQ (DSP as slave)

Table 1. Terms and Abbreviations
Term Description

Bootloader SW/Code for ROM DM643x Bootloader
AIS Application Image Script
BL Boot Loader (referring to the bootloader in this text)
DSP Digital Signal Processor (referring to DM643x in this text)
EMIF External Memory Interface
GPIO General-Purpose Input/Output
HPI Host Port Interface
I2C Inter Integrated Circuit
NAND Inverted AND Gate Not AND
OFD Object File Display
OS Op-Code Synchronization
PCI Peripheral Component Interconnect
POS Ping Op-Code Synchronization
ROM Read Only Memory
SPI Serial Peripheral Interface
SRGR Sample Rate Generator Control Register
UART Universal Asynchronous Receiver/Transmitter

DSP/BIOS is a trademark of Texas Instruments.
Linux is a registered trademark of Linux Torvalds in the U.S. and/or other countries.
Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.
All other trademarks are the property of their respective owners.

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 3
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

2 Boot Mode Description
The selection of the following boot modes depend upon the status of boot device pins. The status of these
pins is captured on the rising edge of device POR reset into the BOOTCFG register. The bootloader reads
the contents of the BOOTCFG register and branches to the appropriate code to implement the selected
boot.
The boot modes are grouped into three categories — Non-Fastboot Modes, Fixed-Multiplier Fastboot
Modes, and User-Select Multiplier Fastboot Modes.
• Non-Fastboot Modes (FASTBOOT = 0): The device operates in default phased-locked loop (PLL)

bypass mode during boot. The Non-Fastboot bootmodes are shown in Table 2.
• Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b): The bootloader code speeds

up the device during boot according to the fixed PLL multipliers. The Fixed-Multiplier Fastboot
bootmodes are shown in Table 3.
NOTE:The PLLMS[2:0] configurations have no effect on the Fixed-Multiplier Fastboot Modes, as these
pins function as AEAW[2:0] to select the EMIFA address width when AEM[2:0] = 001b.

• User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b,011b,100b,101b): The
bootloader code speeds up the device during boot. The PLL multiplier is selected by the user via the
PLLMS[2:0] pins. The User-Select Multiplier Fastboot bootmodes are shown in Table 4.

If an invalid boot mode is specified, the bootloader writes an error code to the ERR field of the
BOOTCMPLT register and then defaults to UART boot for all non-host boot modes (for example, I2C,
SPI).
Boot device pins must be configured to one of the valid modes. A description of each valid mode is given
in subsequent sections.
All other modes not shown in these tables are reserved and invalid settings.

4 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

Table 2. Non-Fastboot Modes (FASTBOOT = 0)

DEVICE BOOT AND
CONFIGURATION PINS

BOOT
DESCRIPTION (1)

DM643x DMP
(Master/Slave)

PLLC1 CLOCK SETTING AT BOOT
DSPBOOTADDR

(DEFAULT) (1)
BOOTMODE[3:0]

PCIEN PLL

MODE (2)
CLKDIV1 DOMAIN

(SYSCLK1 DIVIDER)
DEVICE

FREQUENCY
(SYSCLK1)

0000 0 or 1 No Boot (Emulation
Boot) Master Bypass /1 CLKIN 0x0010 0000

0001 0 or 1 Reserved – – – – –

0010
0 HPI Boot Slave Bypass /1 CLKIN 0x0010 0000

1 Reserved – – – – –

0011 0 or 1 Reserved – – – – –

0100

0 or 1
EMIFA ROM Direct
Boot
[PLL Bypass Mode]

Master

Bypass

/1

CLKIN

0x4200 000

0101

0 or 1

I2C Boot
[STANDARD
MODE](3)

Master

Bypass

/1

CLKIN

0x0010 0000

0110 0 or 1 16-bit SPI Boot
[McBSP0] Master Bypass /1 CLKIN 0x0010 0000

0111 0 or 1 NAND Flash Boot Master Bypass /1 CLKIN 0x0010 0000

1000

0 or 1
UART Boot without
Hardware Flow
Control [UART0]

Master

Bypass

/1

CLKIN

0x0010 0000

1001 0 or 1 Reserved – – – – –

1010 0 or 1 VLYNQ Boot Slave Bypass /1 CLKIN 0x0010 0000

1011 0 or 1 Reserved – – – – –

1100 0 or 1 Reserved – – – – –

1101 0 or 1 Reserved – – – – –

1110

0 or 1
UART Boot with
Hardware Flow
Control [UART0]

Master

Bypass

/1

CLKIN

0x0010 0000

1111 0 or 1 24-bit SPI Boot
(McBSP0 + GP[97]) Master Bypass /1 CLKIN 0x0010 0000

(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000 (i.e., all boot modes except the EMIFA ROM Direct Boot,
BOOTMODE[3:0] = 0100, FASTBOOT = 0), the bootloader code disables all C64x+ cache (L2, L1P, and L1D) so that upon exit
from the bootloader code, all C64x+ memories are configured as all RAM. If cache use is required, the application code must
explicitly enable the cache.

(2) The PLL MODE for Non-Fastboot Modes is fixed as shown in this table; therefore, the PLLMS[2:0] configuration pins have no
effect on the PLL MODE.

(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is
not available for MXI/CLKIN frequencies less than 21 MHz.

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 5
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

Table 3. Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b)

DEVICE BOOT AND
CONFIGURATION PINS

BOOT
DESCRIPTION (1)

DM643x DMP
(Master/Slave)

PLLC1 CLOCK SETTING AT BOOT
DSPBOOTADDR

(DEFAULT) (1)
BOOTMODE[3:0]

PCIEN PLL

MODE (2)
CLKDIV1 DOMAIN

(SYSCLK1
DIVIDER)

DEVICE
FREQUENCY
(SYSCLK1)

0000 0 or 1 No Boot (Emulation
Boot) Master Bypass /1 CLKIN 0x0010 0000

0001

0 HPI Boot with PLL
Multiplier x27 at boot Slave x27 /2 CLKIN x27 / 2 0x0010 0000

1 Reserved – – – – –

0010

0 HPI Boot with PLL
Multiplier x20 at boot Slave x20 /2 CLKIN x20 / 2 0x0010 0000

1 Reserved – – – – –

0011

0 HPI Boot with PLL
Multiplier x15 at boot Slave x15 /2 CLKIN x15 / 2 0x0010 0000

1 Reserved – – – – –

0100

0 or 1

EMIFA ROM
FASTBOOT
with Application
Image Script (AIS)

Master

x20

/2

CLKIN x20 / 2

0x0010 000

0101 0 or 1 I2C Boot
[FAST MODE](3) Master x20 /2 CLKIN x20 / 2 0x0010 0000

0110 0 or 1 16-bit SPI Boot
[McBSP0] Master x20 /2 CLKIN x20 / 2 0x0010 0000

0111 0 or 1 NAND Flash Boot Master x20 /2 CLKIN x20 / 2 0x0010 0000

1000

0 or 1
UART Boot without
Hardware Flow
Control [UART0]

Master

x20

/2

CLKIN x20 / 2

0x0010 0000

1001

0 or 1

EMIFA ROM
FASTBOOT
without AIS

Master

x20

/2

CLKIN x20 / 2

0x0010 0000

1010 0 or 1 VLYNQ Boot Slave x20 /2 CLKIN x20 / 2 0x0010 0000

1011 0 or 1 Reserved – – – – –

1100 0 or 1 Reserved – – – – –

1101 0 or 1 Reserved – – – – –

1110

0 or 1
UART Boot with
Hardware Flow
Control [UART0]

Master

x20

/2

CLKIN x20 / 2

0x0010 0000

1111 0 or 1 24-bit SPI Boot
(McBSP0 + GP[97]) Master x20 /2 CLKIN x20 / 2 0x0010 0000

(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000, the bootloader code disables all C64x+ cache (L2, L1P, and
L1D) so that upon exit from the bootloader code, all C64x+ memories are configured as all RAM. If cache use is required, the
application code must explicitly enable the cache.

(2) The PLL MODE for Fixed-Multiplier Fastboot Modes is fixed as shown in this table; therefore, the PLLMS[2:0] configuration pins
have no effect on the PLL MODE.

(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is
not available for MXI/CLKIN frequencies less than 21 MHz.

6 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

Table 4. User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b, 011b, 100b, or
101b)

DEVICE BOOT AND
CONFIGURATION PINS

BOOT
DESCRIPTION (1)

DM643x DMP
(Master/Slave)

PLLC1 CLOCK SETTING AT BOOT
DSPBOOTADDR

(DEFAULT) (1)
BOOTMODE[3:0]

PCIEN PLL

MODE (2)
CLKDIV1 DOMAIN

(SYSCLK1
DIVIDER)

DEVICE
FREQUENCY
(SYSCLK1)

0000 0 or 1 No Boot (Emulation
Boot) Master Bypass /1 CLKIN 0x0010 0000

0001

0 Reserved – – – – –

1 PCI Boot without
Auto Initialization Slave Table 5 /2 Table 5 0x0010 0000

0010

0 HPI Boot Slave Table 5 /2 Table 5 0x0010 0000

1 PCI Boot with Auto
Initialization Slave Table 5 /2 Table 5 0x0010 0000

0011 0 or 1 Reserved – – – – –

0100

0 or 1
EMIFA ROM
FASTBOOT
with AIS

Master

Table 5

/2

Table 5

0x0010 0000

0101 0 or 1 I2C Boot
[FAST MODE](3) Master Table 5 /2 Table 5 0x0010 0000

0110 0 or 1 16-bit SPI Boot
[McBSP0] Master Table 5 /2 Table 5 0x0010 0000

0111 0 or 1 NAND Flash Boot Master Table 5 /2 Table 5 0x0010 0000

1000

0 or 1
UART Boot without
Hardware Flow
Control [UART0]

Master

Table 5

/2

Table 5

0x0010 0000

1001

0 or 1

EMIFA ROM
FASTBOOT
without AIS

Master

Table 5

/2

Table 5

–

1010 0 or 1 VLYNQ Boot Slave x20 /2 CLKIN x20 / 2 0x0010 0000

1011 0 or 1 Reserved – – – – –

1100 0 or 1 Reserved – – – – –

1101 0 or 1 Reserved – – – – –

1110

0 or 1
UART Boot with
Hardware Flow
Control [UART0]

Master

Table 5

/2

Table 5

0x0010 0000

1111 0 or 1 24-bit SPI Boot
(McBSP0 + GP[97]) Master x20 /2 CLKIN x20 / 2 0x0010 0000

(1) For all boot modes that default to DSPBOOTADDR = 0x0010 0000, the bootloader code disables all C64x+ cache (L2, L1P, and
L1D) so that upon exit from the bootloader code, all C64x+ memories are configured as all RAM. If cache use is required, the
application code must explicitly enable the cache.

(2) Any supported PLL MODE is available. [See Table 5 for supported DM643x PLL MODE options].
(3) I2C Boot (BOOTMODE[3:0] = 0101b) is only available if the MXI/CLKIN frequency is between 21 MHz to 30 MHz. I2C Boot is

not available for MXI/CLKIN frequencies less than 21 MHz.

Table 5. PLL Multiplier Selection (PLLMS[2:0]) in User-Select Multiplier Fastboot Modes
(FASTBOOT = 1; AEM[2:0] = 000b, 011b, 100b, or 101b)

DEVICE BOOT AND
CONFIGURATION PINS PLLC1 CLOCK SETTING AT BOOT

CLKDIV1 DOMAIN

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 7
Submit Documentation Feedback

PLLMS[2:0] PLL MODE (SYSCLK1 DIVIDER) DEVICE FREQUENCY (SYSCLK1)
000 x20 /2 CLKIN x20 / 2
001 x15 /2 CLKIN x15 / 2
010 x16 /2 CLKIN x16 / 2
011 x18 /2 CLKIN x18 / 2
100 x22 /2 CLKIN x22 / 2
101 x25 /2 CLKIN x25 / 2
110 x27 /2 CLKIN x27 / 2
111 x30 /2 CLKIN x30 / 2

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

2.1 Boot Requirements, Constraints, and Default Settings
Please make note of the following requirements:
• FASTBOOT is required for all PCI boot modes.
• Bootloader only supports 16-bit address width for I2C EEPROMs.
• For PCI boot with auto-initialization, an I2C EEPROM must be connected to I2C of the device.
• Please note that all boot timings are optimized for a 27 MHZ input clock frequency.
• I2C, SPI, UART, NAND, and EMIFA FASTBOOT (BOOTMODE[3:0]=0100b) requires data for boot to

be stored in AIS Format. AIS is a Texas Instruments, Inc proprietary format for boot images. A detailed
description of AIS is given in Section 3 of this document. Any formats used for HOST modes such as
HPI and PCI is solely at the discretion of the user.

• When FASTBOOT is selected, the bootloader configures the PLL. The value of the PLL multiplier
depends on the status of the AEM and PLLMS[2:0] pins latched at reset into the BOOTCFG register.
This document bases all timing calculations assuming a 27 MHZ input clock to the device. For more
detailed information and presentation of a wider range of operating frequencies for FASTBOOT, see
the device-specific data sheet.

• The ROM bootloader does not support any NAND devices which specifically require the toggle of chip
select signal for operation.

• For NAND boot, the NAND device must be connected to EMIFA CS2.
• The bootloader disables CACHE during the boot process, regardless of boot mode chosen. The only

boot mode exception is, direct EMIF boot, in which the boot loader is not invoked; therefore, CACHE is
in power on the default state.

• The bootloader supports SPI EEPROMS with data arrangement x8 bits for all SPI-boot modes.
Becasue the bootloader only provides enough clocks to retrieve 8 bits of data, it cannot support
devices with x16 bit data arrangement.

2.2 FASTBOOT Mode

With the exception of emulation bootmode (BOOTMODE[3:0]==0000b), when FASTBOOT option is
selected, the bootloader software programs the PLL. The PLL multiplier used depends on the value of the
AEM and PLLMS[2:0] pins latched at reset. The bootloader reads the value of these pins as latched into
the BOOTCFG register at device POR reset and selects PLL multiplier according to Table 6. For more
detailed description of these settings and associated timings, see the device-specific data sheet.

Table 6. PLL Multiplier Based on Value AEM and PLLMS[2:0] Pins

FASTBOOT AEM PLLMS[2:0] PLLM
1 001 N/A If ((BOOTMODE[3:0] == 0001) && (PCIEN==0)) Then PLLM = 26 (CLKIN × 27)

 If ((BOOTMODE[3:0]==0011) && (PCIEN==0)) Then PLLM=14 (CLKIN × 15)
 PLLM = 19 (CLKIN × 20) for all other values of BOOTMODE[3:0], PCIEN

1 != 001 000 PLLM = 19 (CLKIN × 20) for all values of BOOTMODE[3:0], PCIEN
 001 PLLM = 14 (CLKIN × 15) for all values of BOOTMODE[3:0], PCIEN
 010 PLLM = 15 (CLKIN × 16) for all values of BOOTMODE[3:0], PCIEN
 011 PLLM = 17 (CLKIN × 18) for all values of BOOTMODE[3:0], PCIEN
 100 PLLM = 21 (CLKIN × 22) for all values of BOOTMODE[3:0], PCIEN
 101 PLLM = 24 (CLKIN × 25) for all values of BOOTMODE[3:0], PCIEN
 110 PLLM = 26 (CLKIN × 27) for all values of BOOTMODE[3:0], PCIEN
 111 PLLM = 29 (CLKIN × 30) for all values of BOOTMODE[3:0], PCIEN

Note that the bootloader does not generate an error condition for invalid selections of the PLL multiplier.
Therefore, care must be taken to ensure that the selected PLL multiplier does not exceed the timing
constraints and operating frequency for boot peripheral or the PLL. Please see the following tables for
constraints on PLL multipliers and clock frequencies. For more detailed information on these
requirements, see the device-specific data sheet.

8 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

Table 7. PLL1 and PLL2 Multiplier Ranges
PLL Multiplier (PLLM) MIN MAX

PLL1 Multiplier x14 x30
PLL2 Multiplier x14 x32

Table 8. PLLC1 Clock Frequency Ranges
Clock Signal Name MIN MAX UNIT

SYSCLK1 (CLKDIV1 Domain)

(1) MXI/CLKIN input clock is used for both PLL controllers (PLLC1 and PLLC2).

Table 9. PLLC2 Clock Frequency Ranges
Clock Signal Name MIN MAX UNIT

MXI/CLKIN(1) 20 30 MHz

PLLOUT
At 1.2-V CVDD 400 900 MHz
At 1.05-V CVDD 400 666 MHz

PLL2_SYSCLK1 (to DDR2 PHY) 333 MHz
PLL2_SYSCLK2 (to VPBE) 54 MHz

(1) MXI/CLKIN input clock is used for both PLL controllers (PLLC1 and PLLC2).

2.2.1 CPU Frequency With FASTBOOT Options

The boot loader software uses a fixed PLL divider of 1 (divide by 2), for deriving CPU clock. Assuming an
input oscillator frequency of 27 MHz, Table 10 lists the resulting CPU frequencies based on the PLLM
values selected by FASTBOOT options.

Table 10. CPU Frequency During FASTBOOT

PLLM CPU Frequency (MHz)
19 270
14 202.5
15 216
17 243
21 297
24 337.5
26 364.5
29 405

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 9
Submit Documentation Feedback

MXI/CLKIN 20 30(1) MHz
At 1.2-V CVDD PLLOUT 400 600 MHz
At 1.05-V CVDD 400 520 MHz
-600 devices 600 MHz
-500 devices 500 MHz
-400 devices 400 MHz
-300 devices 300 MHz

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

2.3 Emulation Boot (BOOTMODE[3:0] = 0000b, FASTBOOT = 0 or 1)
In this boot mode, the ROM boot loader software executes a software loop. The emulation software has
responsibility for performing any code download and controlling the device. All FASTBOOT options are
ignored for this boot mode. The PLL operates in bypass mode, yielding a CPU timing of 27 MHZ.

2.4 HPI Boot (BOOTMODE[3:0] = 0001b or 0010b, or 0011b, PCIEN = 0, FASTBOOT = 0 or

1)
In HPI-boot mode, the device bootloader hardware module branches to the start of the ROM bootloader
software. Then, the ROM bootloader code performs the following sequence:
1. When FASTBOOT = 1, the bootloader programs the PLL based on PLL multiplier settings latched at

reset, as discussed in Table 6.
2. Configures any HPI register that may be required.
3. Clears the DSP Boot Address Register (DSPBOOTADDR). Clears boot error code field

(BOOTCMPLT.ERR) and boot complete bit (BOOTCMPLT.BC) in the Boot Complete Register
(BOOTCMPLT).

4. Posts HINT to the HOST device, signaling that the DSP is awake and ready for code download.
5. Enters a software loop waiting for non-zero value in the BOOTCMPLT.BC register.
6. When download of application is complete, the HOST writes the application start address into the

DSPBOOTADDR register and then sets the boot complete bit in BOOTCMPLT register.
7. Once BOOTCMPLT.BC has been set by HOST, the ROM bootloader software branches to the address

set by HOST in DSPBOOTADDR.

2.5 PCI Boot

DM643x supports the PCI boot with DSP as PCI slave only. The bootloader implements the PCI boot with
and without auto-initialization. When the PCI boot with auto-initialization is selected, the bootloader
expects auto-init data to be stored in I2C EEPROM connected to I2C of the device. Please note that
although the bootloader attempts boot when FASTBOOT mode is not enabled, this is NOT the
recommended mode for the PCI boot. Please enable FASTBOOT with any PCI-boot mode to ensure PCI
timing meets requirements.

2.5.1 PCI Boot With No Auto-Initialization

In PCI-boot mode with no auto-initialization, the ROM bootloader performs the following steps:
1. Bootloader configures PLL using the PLL multiplier selected based on the value of AEM and

PLLMS[2;0] according to Table 6. (Please note that if FASTBOOT is not selected, the bootloader still
attempts to complete boot. However, the PCI operating frequency may not meet minimal PCI
requirements of 33 MHZ).

2. Clears the DSPBOOTADDR and BOOTCMPLT register fields.
3. When boot mode = 0001b, the ROM bootloader sets PCI CONFIG_DONE bit in the PCI Configuration

Done Register (PCICFGDONE) and the PCI Slave Control Register (PCISLVCNTL) to 1. When boot
mode = 0010b, PCI auto-init mode is enabled and the ROM bootloader programs the PCI wrapper
registers setting CONFIG_DONE = 1 after this is complete.

4. The bootloader then enters a software loop polling for BOOTCMPLT.BC. Once boot complete is
detected, the ROM bootloader software branches to the address set by the HOST in DSPBOOTADDR
register.

When FASTOOT mode is selected along with the PCI boot, as the first step, the ROM bootloader software
configures the PLL prior to clearing DSPBOOTADDR and BOOTCMPLT registers.

10 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

2.5.2 PCI With Auto-Initialization
When auto-initialization is used, the PCI configuration registers are programmed by the on-chip ROM Boot
Loader (RBL) with the values stored in an I2C EEPROM connected to the I2C interface of the device.
PCI I2C EEPROM auto-initialization is enabled when BOOTMODE[3:0] = 0010b, PCIEN = 1, and
FASTBOOT = 1. If auto-initialization is not enabled, the PCI configuration registers are left with their
default values and the I2C EEPROM is not accessed for PCI configuration purposes. The function of the
BOOTMODE[3:0], PCIEN, and FASTBOOT pins is fully described in the device data manual, refer to that
document for more details.
When auto-initialization is enabled, the CONFIG_DONE bit in the configuration done register
(PCICFGDONE) takes a default value of 0. This prevents the PCI from responding to any requests. When
auto-initialization is completed, the RBL sets the CONFIG_DONE bit to 1 to allow the PCI to respond to
requests.

2.5.2.1 I2C EEPROM Memory Map

The on-chip ROM Bootloader requires big-endian format for the data stored in the I2C EEPROM. Byte
addresses 400h through 41Bh of the I2C EEPROM are reserved for auto-initialization of PCI configuration
registers. The remaining locations are not used for auto-initialization and can be used for storing other
data. Table 11 summarizes the I2C EEPROM memory layout, as required for PCI auto-initialization.
The data as stored in I2C EEPROM must begin at I2C EEPROM address 0×400 and is formatted as
shown in Table 11.

Table 11. I2C EEPROM Layout for PCI Autoinitialization Data
Byte Address Contents

0x400 Vendor ID [15:8]
0x401 Vendor ID [7:0]
0x402 Device ID [15:8]
0x403 Device ID [7:0]
0x404 Class code [7:0]
0x405 Revision ID [7:0]
0x406 Class code [23:16]
0x407 Class code [15:8]
0x408 Subsystem vendor ID [15:8]
0x409 Subsystem vendor ID [7:0]
0x40a Subsystem ID [15:8]
0x40b Subsystem ID [7:0]
0x40c Max_Latency
0x40d Min_Grant
0x40e Reserved (use 0x00)
0x40f Reserved (use 0x00)
0x410 Reserved (use 0x00)
0x411 Reserved (use 0x00)
0x412 Reserved (use 0x00)
0x413 Reserved (use 0x00)
0x414 Reserved (use 0x00)
0x415 Reserved (use 0x00)
0x416 Reserved (use 0x00)
0x417 Reserved (use 0x00)
0x418 Reserved (use 0x00)
0x419 Reserved (use 0x00)
0x41a Byte Checksum
0x41b Reserved (must use 0xAA)

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 11
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

The PCI initialization data is expected to be stored in BIG-ENDIAN format.

2.5.2.2 I2C EEPROM Checksum for Autoinitialization Data

The PCI configuration data contained in the I2C EEPROM is checked against a checksum. The
configuration data is treated as an array of bytes, starting from the lowest I2C address (400h) to the
highest (419h), for a total of 26 bytes.
Byte Checksum = AAh XOR Byte0(400h) XOR Byte1(401h)… XOR Byte25(419h)
If the I2C EEPROM is not accessed for PCI configuration purposes (that is, PCI_EEAI = 0 at reset), then
the checksum is not performed. If the checksum fails, the on-chip ROM bootloader defaults to the UART
boot and it does not set the CONFIG_DONE bit in the configuration done register (PCICFGDONE).

2.5.2.3 DSP I2C EEPROM Interface

For PCI auto-initialization, the DSP supports I2C EEPROMs or devices operating as I2C slaves with the
following features:
• The memory device complies with Philips I2C Bus Specification v 2.1
• The memory device uses two bytes for internal addressing; that is, the read/write bit followed by two

bytes for addressing
• The memory device has the capability to autoincrement its internal address counter such that the

contents of the memory device can be read sequentially
During PCI auto-initialization, the DSP acts as the master and the I2C EEPROM acts as the slave.
Figure 1 shows the minimum connection required between the DSP and one I2C EEPROM. The required
pull-ups must be placed on SDA and SCL to ensure that the I2C EEPROM interface works correctly. The
slave address of the I2C EEPROM slave address must be set to 50h.

Low
Low
Low

High

Slave
address = 000b

If present

Figure 1. Signal Connections for I2C EEPROM Boot Mode

Some I2C EEPROMs have a write-protect (WP) feature that prevents unauthorized writes to memory. This
feature is not needed for auto-initialization because the DSP will only read data from the I2C EEPROM.
The write protect feature can be enabled or disabled.
For detailed information on the I2C, see the TMS320DM643x DMP Inter-Integrated Circuit (I2C) Peripheral
User's Guide (SPRU991).

2.6 EMIFA ROM Direct Boot (BOOTMODE[3:0] = 0100b, FASTBOOT = 0)
EMIFA direct boot does not require intervention from the ROM bootloader software. The DSP hardware
boot module causes direct branch to start of EMIFA memory at address 0×42000000.

2.7 EMIFA ROM Fast Boot Without AIS (BOOTMODE[3:0] = = 1001b, FASTBOOT == 1)

In this boot mode, the ROM bootloader configures the PLL based on values of AEM and PLLMS[2:0] pins
latched at reset. Then, it branches directly to address 0×42000000. This boot mode effectively operates
the same as EMIFA direct boot (BOOTMODE[3:0]==0100b, FASTBOOT==0), with exception that the PLL
is now configured. This enables faster EMIF clock to speed boot from an external device.

12 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

Pull-up
I2C EEPROM

A2
A1

SCL
A0

SDA

WP

SCL
SDA

Device

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRU991
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

2.8 EMIFA ROM Fast Boot With AIS (BOOTMODE[3:0] = 0100b, FASTBOOT = 1)
During EMIFA FAST ROM boot mode the DSP hardware boot module transfers control to the ROM
bootloader software. This boot mode operates differently than the EMIFA direct boot. The ROM bootloader
controls the boot process, first programming the PLL to operate at faster CPU speeds, then reading
code/data starting at EMIFA address 0×42000000. The data stored in the FLASH/ROM must be in AIS
format. A description of AIS is given in Section 3 of this document. The AIS boot image consists of AIS
commands and data necessary to load the application code into the DSP memory. Using the AIS format,
eliminates requirement for user defined secondary boot loader to load code. The ROM bootloader
processes AIS commands from the EMIFA ROM until an AIS JUMP_CLOSE instruction is encountered.
The JUMP_CLOSE instruction contains the application code start address. This command signals that the
application has been fully loaded and all AIS commands have been processed for the boot. The ROM
bootloader clears its internal state and then branches to the start of the application code. EMIF
FASTBOOT sequence:
1. Programs the PLL using the PLL multiplier selected by the value of the AEM and PLLMS[2:0] pins as

shown in Table 6.
2. Reads the value of the 8_16 pin as latched into the BOOTCFG register and sets the EMIF data width

accordingly.
3. Fetches the AIS data from the external memory and processes the AIS commands until the

JUMP_CLOSE command is encountered.
4. Branches to the application start address given in the JUMP CLOSE command.

2.9 I2C Master Mode Boot (BOOTMODE[3:0] = 0101b, FASTBOOT = 0 or 1)

The DM643x supports the I2C boot with DSP as I2C master only. The DSP hardware boot module
transfers control to the ROM bootloader software at device reset. The ROM bootloader configures the I2C
peripheral device, and begins read of data from the I2C EEPROM. The data stored in the I2C EEPROM is
expected to be in AIS format. The first 32 bits are ignored by the bootloader; this location is currently
reserved. The second 32 bit word must contain the AIS magic number. The remaining data in the I2C
EEPROM must be in AIS format. Please refer to Section 3 for details of AIS. Boot sequence for I2C is as
follows:
1. When FASTBOOT = 1, bootloader programs PLL using PLL miltiplier selected by values of AEM and

PLLMS[2:0] as seen in Table 6.
2. Configures I2C for master mode with slave address register set to 0x50, and own address register set

to 0×29.
3. Processes each AIS command until JUMP CLOSE command is encountered.
4. Branches to application start address
5. If an error occurs during the I2C boot process, the bootloader writes an error condition in the ERR field

of the BOOTCMPLT register. Then, it attempts to perform boot through UART.

2.9.1 I2C Master Boot Timing

The bootloader sets the following values for I2C clock pre-scale and clock low hold/clock high hold
registers:

 Table 12. I2C Timing Register Settings

FASTBOOT Register Value
0 IPSC

ICCLKH
ICLKL

0x2
0x2D
0x2D

1 IPSC
ICCLKH
ICCLKL

0x2
0x8
0x8

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 13
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

The frequency of the I2C master clock is derived by:

I2C master clock frequency = I2C peripheral clock frequency

(IPSC + 1)* λ (ICCLKL + D)+ (ICCLKH + D)λϑ

For DM643x , the I2C input clock is directly derived from CLKIN. The value of the quantity represented by
"D" is determined by the IPSC value (IPSC > 1, D = 5, IPSC = 1, D = 6, IPSC = 0, D = 7). For purposes of
determining the I2C master clock used for boot, D = 5, since the boot loader software always programs a
value of 2 for IPSC. Assuming an input oscillator frequency of 27 MHz, the settings for IPSC< ICLKH,
ICCLKL, in Table 12 yields the following I2C master clock frequencies:
FASTBOOT == 1
I2C Master clock ~ 310 Khz
FASTBOOT == 0
I2C Master clock ~87 Khz

Please note that the input clock for the I2C module bypasses the PLL, therefore any FASTBOOT option
settings using AEM and PLLMS[2:0] and subsequent PLLM selection has no effect on the frequency of the
I2C master clock.

2.10 SPI 16x8 Master Mode Boot (BOOTMODE[3:0] = 0110b, FASTBOOT = 0 or 1)

SPI 16x8 boot is implemented by configuring MCBSP0 of the device to operate in SPI mode. This mode
supports SPI EEPROMS that require 16 bits of address and fetch/receive 8 bits of data. Sixteen bits of
address allows boot from SPI devices with sizes upto 64Kx8. The bootloader only supports DSP as SPI
master for this boot mode. The bootloader software configures MCBSP0 for SPI mode with 32 bit data
transmit/receive. The SPI read command and 16 bit address are packed into the upper 3 bytes of the 32-
bit word. The fourth empty byte provides the clock cycles needed to retrieve 8 bits of data out from the
SPI EEPROM. The boot flow is as follows:
1. If FASTBOOT is enabled, the bootloader programs PLL using PLLM value selected according to

Table 6.
2. The bootloader then reads AIS formatted boot image from EEPROM.
3. When last AIS command is encountered (JUMP CLOSE command) the bootloader branches to

application entry address given in the command.

2.10.1 SPI 16x8 Master Boot Timing

The SPI master clock frequency is derived from the internal clock provided to the MCBSP0. The
peripheral clock is derived by a fixed divide of 1/6 the CPU clock. The master clock is then further divided
by the value of the CLKGDV field of the MCBSP's SRGR. The bootloader software fixes the CLKGDV at a
value of 0x2. This provides a divide down ratio of 1/3 of the MCBSP input clock. Table 13 shows the
derived master clock frequency based on the possible PLLM values.

Table 13. SPI Master Clock Frequencies for FASTBOOT = 1

PLLM PLLOUT (MHz) CPU (MHz) MCBSP (MHz) SPI Master (MHz)
19 540 270 45 15
14 404 202 33.7 11
15 432 216 36 12
17 486 243 40.5 13.5
21 594 297 49.5 16.5
24 675 337 56 18.7
26 729 364 60.7 20.2
29 810 405 67.5 22.5

14 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

Please note that the timings given in the table are based on 27 Mhz input clock frequency. Please check
the device-specific datasheet and the datasheet for the your SPI EEPROM to determine proper timiing
and frequency range.

2.10.2 SPI 16x8 Master Boot Signal Polarity

MCBSP0 is configured for SPI Master boot with the following modes selected:

Table 14. SPI Master Boot Modes
Register Value

PCR Field Values Set
FSXM = 1, FSRP = 1, CLKXM = 0, FSXP = 1

SPCR Field Values Set
CLKSTP = 3, (11b)

RCR Field Values Set
RDATDLY = 1

XCR Field Value Set
XDATDLY = 1

With these modes selected, the SPI master clock polarity is inactive high, and a MCBSP begins data
transfer one-half clock cycle prior to first rising edge of clock amd samples input data on the rising edge of
the clock. This operation supports SPI EEPROMS that sample data on rising edge of clock, and send data
out on falling edge of clock.

CLKX/SCK

DX or DR/MOSI
(From Master)

DX or DR/MISO
(From Slave)

FSX/SS

Figure 2. SPI Transfer With CLKSTP = 11 and CLKXP = 0

For further details on how the MCBSP operates when in SPI mode, please refer to the TMS320C6000
Multi-Channel Buffered Serial Port User's Guide (SPRU580).

2.10.3 Connecting SPI EEPROM for SPI 16x8 Boot
To enable boot from 16x8 SPI EPPROM, the EEPROM should be connected to McbSP0 pins in
accordacne with Table 15

Table 15. SPI 16x8 EEPROM-to-DSP McBSP0 Connection

SPI EEPROM McBSP0

Sn FSX0
C CLKX0
D DX0
Q DR0

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 15
Submit Documentation Feedback

 B7 B6 B5 B4 B3 B2 B1 B0

B7 B6 B5 B4 B3 B2 B1 B0

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRU580
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

2.11 NAND Flash Boot (BOOTMODE[3:0] = 0111b, FASTBOOT = 0 or 1)
NAND flash boot is fully supported on Rev 1.30 of the device. For Rev 1.0 and Rev 1.20, this boot mode
was supported through secondary boot only. On Rev 1.30 of the device, the bootloader supports boot
using AIS image script stored in NAND starting at Block 1 or above. The bootlaoder searchs for the AIS
magic number in the first 32 bits of the of the page 0 of the block. If the magic number is not found, it
continues searching through all of the NAND blocks until the last block is searched. If the magic number is
not found it will abort the boot. The bootloader code skips bad blocks. A bad block is indicated when the
bootloader detects the value 0xBADDBADD in starting in byte offset 0x4 in the NAND block spare memory
area. When a bad block is detected, the bootloader skips this block and proceeds to the next block. The
bootloader also performs 1 bit ECC correction when errors are detected in data read from the block. The
bootloader uses the hardware ECC calculation provided by the DMP's EMIF module to detect and correct
ECC errors.
On Rev 1.0 and Rev 1.20 of the device, there is a race condition in the polling for NAND ready in the
ROM bootloader that prevents successful boot from NAND. Therefore, this boot mode is not fully
supported in ROM. Workaround for this problem is to boot from any of the other supported boot methods,
such as I2C or SPI, and allow a secondary bootloader to load code from NAND Flash. A sample
secondary boot loader and the code needed to Flash the secondary code to I2C or SPI is given in the
attachment to this document. A list of devices supported by the secondary NAND boot is given in
Table 16. Please note that the secondary bootloader does not support any NAND devices that specifically
require toggle of chip select signal for operation. The NAND device used for boot must be connected to
EMIFA CS2.

 Table 16. Supported NAND Device Types

Device ID Page Size Total Memory Size
0×E3 512+16 4 MB
0×E5 512+16 4 MB
0×E6 512+16 8 MB
0×39 512+16 8 MB
0×6B 512+16 8 MB
0×73 512+16 16 MB
0×33 512+16 16 MB
0×75 512+16 32 MB
0×35 512+16 32 MB
0×43 512+16 16 MB
0×45 512+16 32 MB
0×53 512+16 16 MB
0×55 512+16 32 MB
0×76 512+16 64 MB
0×36 512+16 64 MB
0×79 512+16 128 MB
0×71 512+16 256 MB
0×46 512+16 64 MB
0×56 512+16 64 MB
0×74 512+16 128 MB
0×F1 2048+64 128 MB
0×A1 2048+64 128 MB
0xAA 2048+64 256 MB
0×DA 2048+64 256 MB
0×AC 2048+64 512 MB
0×DC 2048+64 512 MB
0×B1 2048+64 128 MB
0×C1 2048+64 128 MB

16 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012

Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

The secondary bootloader expects the data in NAND to be in AIS format. Please note that AIS data is
considered to be a serial stream, therefore, all AIS data must be contained in contiguous pages/blocks
within the Flash. Currently, the secondary bootloader makes no attempt to bypass bad blocks. Once it has
determined location for the start of AIS data, it assumes that the remaining data is in contiguous ‘good’
blocks of memory. The secondary bootloader does perform 1 bit error correction, when ECC 1 bit error is
detected. The bootloader begins the search of AIS data from block 1 of the memory and searches all of
the remaining blocks to find the AIS magic number. Block 0 is reserved for use of the application.

2.12 UART Boot (BOOTMODE[3:0] = 1000b, 1110b, FASTBOOT = 0 or 1)

UART boot differs from the other boot modes in that the bootloader software performs some
communication with the HOST during the boot process. The bootloader performs the following sequence
when UART boot is selected.
1. When FASTBOOT = 1, the bootloader programs the PLL using the PLL mulitplier selected according to

Table 6.
2. Bootloader configures UART registers as required by chosen mode.
3. Bootloader sends message BOOTME through the serial interface to the HOST.
4. Bootloader waits response from the HOST in the form of the AIS magic number. The bootloader will

continually loop, waiting for response.
5. When response is received from HOST< the bootloader processes AIS commands as read from the

serial interface until a JUMP CLOSE command is encountered.
6. When JUMP CLOSE command is read, the bootlaoder sends message, DONE, to the HOST and then

branches to the application start address.
Please note that the AIS commands are expected to be in ASCII representation, hence to send the AIS
magic word , 0x41504954, the character sequence "41","50","49","54", is expected to be recieved by the
bootloader. A sample AIS stream for UART boot is given in Section 3.

2.12.1 UART Boot Timing

Operationally, UART boot via BOOTMODES[3:0]==1000b and 1110b are essentially the same. The
difference is in the management of data flow. When BOOTMODE[3:0] = 1000b, UART boot is executed
without use of hardware flow control. UART BOOTMODE[3:0]=1110b is selected, then the UART is
configured to use the hardware flow control module. In both modes the UART FIFO is enabled, and is set
for the maximum FIFO size of 14.
The bootloader software does not use auto-baud detect. The UART clock divide registers are set for a
total divide down value of 15. With a 27 MHZ input clock, this yields an approximate baud rate of 115 kbps
(kilobits per second). The input clock supplied to the UART bypasses the PLL, therefore this baud rate is
unaffected by PLL configuration and advantage can be taken of the FASTBOOT modes for faster CPU
clock. The required connection settings for UART boot are given in Table 17

Table 17. UART Connection Attributes for Boot

Attribute Value

Baud Rate 115 kbps
Data Bits 8
Stop Bits 1

Parity None

Flow Control Hardware flow control (BOOTMODE[3:0} ==1110b),
or none (BOOTMODE[3:0] == 1000b)

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 17
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

2.13 VLYNQ Boot (BOOTMODE[3:0]=1010b, FASTBOOT = 0 or 1)
The ROM bootloader supports boot via VLYNQ with DSP as VLYNQ slave. The bootloader ensures that
VLYNQ is enabled and then polls for BOOTCMPLT.CMPLT flag in the BOOTCMPLT register to indicate
that the download of application by VLYNQ Host is complete. The bootloader will then branch to the start
address in DSPBOOTADDR as written by the VLYNQ Host. The boot process for VLYNQ then is as
follows:
1. If FASTBOOT is enabled bootloader configures PLL according using appropriate PLL multiplier.
2. Bootloader makes sure VLYNQ is enabled.
3. Bootloader executes empty loop polling for BOOTCMPLT.CMPLT flag.
4. VLYNQ Host downloads application to DSP.
5. VLYNQ Host writes application start address to DSPBOOTADDR register.
6. VLYNQ Host writes 1 to BOOTMCPLT.CMPLT register flag.
7. Bootloader detects BOOTCMPLT.CMPLT and branches to start address in DSPBOOTADDR.

2.13.1 VLYNQ Boot Timing

There are two independent clocks that should be considered when configuring the DSP for boot from
VLYNQ. There are 1) the VLYNQ clock (data clock) and 2) the internal VLYNQ module clock. Because the
DSP is acting as VLYNQ slave for purposes of boot, the VLYNQ clock (data clock) will be provided
externally by a VLYNQ master. This is the clock that determines the VLYNQ data rate. The VLYNQ clock
frequency should be determined by the system requirements and is independent of the internal VLYNQ
module clock frequency.

The internal VLYNQ module clock is provided by the clock module within the DSP and is affected by
CLKIN/PLLOUT depending on PLL mode. When PLL is in bypass mode, the internal VLYNQ module
clock is derived from CLKIN and has value CLKIN/6. When any of the FASTBOOT options are chosen,
then PLL is no longer in bypass mode, and internal VLYNQ module clock timing is derived from PLLOUT,
and has value SYSCLK1/6 (SYSCLK1 is CPU clock). The internal VLYNQ module clock should not
exceed 99 Mhz. So care should be taken when choosing PLL multipliers for FASTBOOT option that the
value of SYSCLK1 does not exceed 594 Mhz, keeping internal VLYNQ module clock at or below the rated
operating frequency of 99Mhz. Again, the 99Mhz limitation is on internal VLYNQ module clock ONLY and
has no effect on the external VLYNQ clock (data clock) provided by the VLYNQ Master.

2.14 SPI 24×8 Master Mode Boot (BOOTMODE[3:0]=1111b, FASTBOOT = 0 or 1)

This bootmode supports SPI EEPROMs that require 24 bits of address and transfer 8 bits of data per
read/write cycle. Twenty-four bits of address allows support of SPI EEPROMS with size upto 16Mx8. As in
SPI 16-bit mode, data stored in the SPI EEPROM is expected to be formatted as a valid AIS image and
follows the same boot flow:

1. If FASTBOOT is enabled, bootloader configures PLL
2. The bootloader then reads AIS formatted boot image from EEPROM.
3. When last AIS command is encountered (JUMP CLOSE command) the bootloader branches to

application entry address given in the command.
To enable communication with SPI EEPROMs that require 24 bits of address, the McBSP is configured
differently for 24 bit SPI Master mode boot, than in 16x8 Master mode. The McBSP has a native limitation
of 32 bits for transmit/receive when operating in SPI mode. To effectively address SPI EEPROMs
requiring 24 bits of address, 40 bits are actually needed; 8 bits of command + 24 bits of address + 8 bits
to clock data in/out of the EEPROM. So in SPI 24x8 Master boot, a GPIO pin is used as chip select signal,
instead of FSX0 which is normally connected for this purpose. When using this boot mode the FSX0 pin
should not be connected and is unused. McBSP0 is then configured to transmit/receive 8 bit data. Please
note that chip select is assumed inactive high for this boot mode. The 40 bits needed to communicate with
the SPI device are transmitted in separate bytes. The transmit sequence from the DSP to EEPROM is:

1. Assert GPIO (drive GPIO high initially before McBSP0 is released to avoid premature chip select
toggle).

18 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012

Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

2. De-assert GPIO (driving chip select low).
3. Transfer 8 bits of SPI command.
4. Transfer SPI addres bits [23:16].
5. Transfer SPI address bits [5:8].
6. Transfer SPI addres bits [7:0].
7. Send 8 dummy bits to enable clock out of data from EEPROM.
8. Bootloader reads 8 bits from DR0.
9. Assert GPIO (drive chip select high).

2.14.1 SPI 24x8 Master Boot Timings

Timings for SPI 24x8 Master Boot is determined by system PLL settings and McBSP0 divide down clock.
These are described in detail in Section 2.10.1

2.14.2 SPI 24x8 Boot Signal Polarity

The McBSP SPI mode settings for 24x8 mode are the same as for 16x8 SPI Master mode, CLKSTP =
11b, CLKXP = 0. In this mode, data is transmitted from DSP one-half cycle prior to rising edge of clock
and received on rising edge of clock. This operational mode is compatible with SPI EEPROMS which
sample data in on rising edge of clock and clock data out on the falling edge.

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 19
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Boot Mode Description www.ti.com

The read timings for the 24-bit SPI mode are given below. Figure 3 shows example 24x8 bit SPI EEPROM
read timing.

0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 32 33 34 35 36 37 38 39

C

D

Q

MSB

Figure 3. 24x8 Bit SPI EEPROM Read Timing

Figure 4 shows how the DM643x 24x8 bit SPI boot works. Table 18 shows the pin connection between
the DM643x and the 24x8 SPI EEPROM.

Sn/GP97

C/CLKX0

FSX0

D/DX0

Q/DR0

Figure 4. DM643x 24x8 Bit Address SPI Boot

2.14.3 Connecting SPI EEPROM for SPI 24x8 Boot

For 24×8 bit SPI mode, the McBSP0 pins must be connected to the SPI EEPROM according to Table 18

Table 18. SPI EEPROM and DSP Pin Connections for 24 Bit SPI Mode

SPI EEPROM DSP Comment
Sn GPIO97 Connects GPIO97 to chip select of SPI EEPROM
C CLKX0 Connects CLKX0 to clock of SPI EEPROM
D DX0 Connects DX0 to data in of SPI EEPROM
Q DR0 Connects DR0 to data out of SPI EEPROM
- FSX0 Leave uncconected, this signal is not used

20 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

Instruction 24-Bit Address

23 22 21 3 2 1 0

MSB

High Impedance

Data
Data Out 1 Out 2

7 6 5 4 3 2 1 0 7

S

8b
Instruct

 A[23:16] A[15:8] A[7:0]

8b D1 8b D2 8b D3 8b D4 8b Dn

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

oadto

Optional Data

Command Op-Code

3 Application Image Script
The bootloader accepts boot information in the form of a script, called application image script (AIS).
Application image script is a Texas Instruments, Inc. proprietary application image transfer format. This
script is a binary file consisting of a script header followed by various commands that can be interpreted
and executed by the boot loader. Each command contains an op-code, followed by optional additional
data required to execute the op-code. The bootloader currently supports AIS version 1.99; all commands
and data are assumed to be 32 bits in width.
The AIS starts a header that consists of a magic word (0×41504954); the header is then followed by a
series of commands as shown in Figure 5. Each command consists of an op-code followed by optional
additional data. All AIS command streams are terminated with a JUMP_CLOSE command which causes
transfer of control to the loaded application code and terminates execution of the ROM bootloader.

Magic Number
(0x41504954)

Command1

Command2

JUMP_CLOSE

Command

Total Number of
Sections to Load

Total Number of

Bytes of Code/Data
to Load

Figure 5. Basic Structure of Application Image Script

The bootloader only accepts data in AIS format for all modes except HPI ad PCI. The following sections
define each command with appropriate op-code, structure and placement in AIS. Table 19 lists the various
opcodes that are supported by AIS 1.0.

Table 19. AIS Version 2.0 Supported Opcodes

Opcode Value

Section Load 0×58535901
Request CRC 0×58535902
Enable CRC 0×58535903
Disable CRC 0×58535904

Jump 0×58535905
Jump_Close 0×58535906

Set 0×58535907
Start Over 0×58535908
Reserved 0×58535909

Section Fill 0×5853590A
Get 0×5853590C

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 21
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

MAGIC - 041504954

SET Command

More SET Commands

...

Other Commands

...

SET Op-Code

Optional Data

...

0x58535907

<TYPE>

<ADDRESS>

<DATA>

<SLEEP>

Table 19. AIS Version 2.0 Supported Opcodes (continued)
Opcode Value

Function Execute 0x5853590D

3.1 SET Command

The SET command is a simple mechanism that enables you to write 8-bit, 16-bit or 32-bit data to any
address in DSP address space. One of the arguments to this command implements a delay after the
memory write happens. This can be used for memory mapped register write to take effect. Set commands
may be used to configure various peripherals of the DSP. This includes PLL and EMIF at minimum and
can configure more peripherals if required.
When DSP comes up from reset, the PLL is in bypass mode. As a result, the CPU is clocked at the same
frequency as connected crystal/CLK IN, which is generally very low. This results in slow communication
and high boot time. Selecting FASTBOOT mitigates this by programming the PLL with a slightly higher
multiplier of 0×C, but this does not change default EMIF wait states, etc. In order to reduce boot time, the
PLL and EMIF registers can be re-configured at the very beginning of the boot process using a series of
SET commands. For this reason, all SET commands for configuring EMIF and setting PLL should be
placed at the beginning of the AIS boot image as shown in Figure 6.

Figure 6. Structure of SET Command

Each set command consists of SET (0×58535907) op-code, followed by four words of additional data as
shown. SET command entries in AIS can be explained using the following representation:
<Address> = <Data><Type>::<Sleep>

The above command instructs bootloader to write <Data> to address <Address> in DSP address space
and then sleep for <Sleep> * CPU clocks. The data-type field <Type> decides whether <Data> should
be written as 8 bit (B), 16-bit (S) or 32-bit (I)All other fields can be in any numeric format as described
in Table 20.

Table 20. Numeric Formats That Can Be Used in SET Command

Name Format Example 1 Example 2 Example 3
Hexadecimal 1 0[xX][0-9a-fA-F]+ 0×1234abCD 0×1000 0×5a
Octal 0[0-7]+ 02215125715 010000 0132

22 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

The data-type field <Type> determines the size of the data item such as 8-bit (B), 16-bit (S) or 32-bit (l).
Data-type also can be a field or bits. This allows the setting of a particular range of bits within the data at
the specified address. For field and bits data-types, the <Type> field also encodes the start and stop bit
positions that define the field to be modified. Table 21 gives a full list of the data-types that can be used.

Table 21. Valid SET Command Data Types

Data Type Value
8 bit 1
16 bits 2
32 bits 3
Field (1-32 bits) 4
Bits(1-32 bits) 5

The field and bits data-types are handled similarly by the bootloader. The difference between these types
are that with a specifier of field, the bootloader performs a read/modify write operation at the given
address. The bits data type results in a read of the address, followed by a write of the new value to the
address. The <Type> specification is a 32-bit word that contains fields for data type (shown above), start
bit, and stop bit. The start bit and stop bit fields are required only if a data-type of field(3) or (bits(4) is
used. These fields delimit the number of bits that are affected by the instruction. Table 19 shows the
encoding of the 32 bit <Type>.

3.1.1 Valid SET Command Data Types

Figure 7. Valid SET Command Data Types

31 24 23 16

15 8 7 0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 22. Valid SET Command Data Types Field Descriptions

Bit Field Value Description
31-24 Reserved 0 Reserved
23-16 Stop Bit Stop bit (for bits and fields data type) last bit position in word that delimits field
15-8 Start Bit Start bit (for bits and fields data type) first bit position in word for start of field
7-0 Data Type Data Type (1,2,3,4,5), specifies type of data to write

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 23
Submit Documentation Feedback

Data Type

Stop Bit

Start Bit

Reserved

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

MAGIC - 0x41504954

GET Command

Other Commands

GET Op-Code

Data
...

MAGIC - 0x41504954

SET Commands

SL Commands

More SL Commands

...

Other Commands

...

SECTION_LOAD Op-Code

Data

...

0x58535901

<ADDRESS>

<SIZE>

<DATA>
...

3.2 Get Command
The GET command enables fetch of a value stored at any read accessible DSP memory address. The
GET command has the same format as the SET command described in Section 3.1, with the exception
that delay is not required. All data formatting rules described in the SET command are valid for the GET
command. The GET command always transmits full 32 bits even if relevant data is only 8- or 16-bits wide.
Data is zero-filled and right-justified (for example, MSBs are zero for all data that is less than 32 bits in
length). Figure 8 shows the structure of the GET command.

...

Figure 8. Structure of GET Command

3.3 Section Load Command
Section load command is used to load a chunk of code/data to DSP memory. All initialized sections of
application are loaded to DSP memory using Section Load commands. These commands are placed after
all SET commands in AIS. Figure 9 shows the structure of the section load command.

Figure 9. Structure of Section Load Command

Each section load command consists of SECTION_LOAD (0×58535901) op-code, followed by section’s
start address, size, and contents.

24 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

0x5853590C

<TYPE>

<ADDRESS>

<DATA>
<SLEEP>

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

MAGIC - 0x41504954

SET Commands

SL/SF Commands

JMP Commands

More SL/SF Commands

...

Other Commands

...

SECTION_FILL Op-Code

Data

...

0x5853590A

<ADDRESS>

<SIZE>

<TYPE>

<PATTERN>

MAGIC - 0x41504954

SET Commands

SL/SF Commands

JMP Commands

More S
.
L..
/S..

F.Commands

Other Commands
...

Jump Op-Code

Data

...

0x58535905

<ADDRESS>

3.4 Section Fill Command
Section fill command is used when a particular section is to be filled with a specific pattern. For example, a
section that contains all zeros can be initialized with the section fill command. These commands can be
placed anywhere where a regular section load command can occur. Figure 10 shows the structure of the
section fill command.

Figure 10. Structure of Section Fill Command

Each section fill command consists of SECTION_FILL (0×5853590A) op-code, followed by section’s start
address, size, pattern-type (8/16/32 bit), and pattern to be filled.

3.5 Jump Command

This command instructs the DSP to jump to start address of earlier loaded application. It consists of JUMP
(0×58535905) op-code, followed by the jump address. Figure 11 shows the structure of the jump
command.

Figure 11. Structure of Jump Command

This command is used to implement bootloader 2. To achieve this, bootloader 2 is loaded through the
section load and section fill commands. Once this is done a jump command is issued to start execution
from the start address of bootloader2. Once bootloader2 execution is over, normal AIS interpretation and
execution continues.

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 25
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

Data

...

JUMP_CLOSE Op-Code

MAGIC - 0x41504954

SET Commands

SL/SF Commands

JNC Commands

0x58535906

<ADDRESS>

3.6 Jump_Close Command
This command is used at the end of the boot process to start execution of the loaded application. it
instructs the DSP to terminate the boot process and jump to start address of loaded application. Figure 12
shows the structure of the Jump_Close command.

Figure 12. Structure of Jump_Close Command

This command is be placed at the end of AIS, after all other commands. It consists of JUMP_CLOSE
(0×58535906) op-code, followed by the start address of the application where the boot loader should
jump. In addition to the application entry point address, two words, the 1) total number of sections that
should have been loaded during boot, and 2) the total number of bytes which should have been loaded
during boot are placed as the last two words of the image.

3.7 CRC Options

There is a possibility of an error in communication when the DSP is booting up. Execution of a corrupted
application image may result in instability or malfunction. In order to avoid such problems, AIS supports
opcodes to verify the validity of data loaded through section load/section fill commands. A proprietary 32-
bit CRC computation algorithm is used for verification. The CRC options are implemented by invoking the
AIS generation tool with the appropriate option. The tool inserts the CRC enable and CRC requests
commands necessary to implement each of the following options:
No CRC— CRC computation is disabled and there is no way to detect or correct any error.

Single CRC— Single CRC is computed for all the sections. Verification is done at the end, just before
Jump N Close command. In case of error, all the sections are loaded again; CRC is recalculated
and re-verified again at the end.

Section-Wise CRC— CRC is computed for each section. Verification is done at the end of each section
and attempt to reload the section is made in case of error.

3.7.1 Enable/Disable CRC Commands

These commands are used to enable/disable computation of the CRC for sections loaded through section
load/section fill commands. Figure 13 shows the structure of the enable CRC/disable CRC commands.

26 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

0x58535903

0x58535904

(No optional data)

(No optional data)

Figure 13. Structure of Enable CRC/Disable CRC Commands

These commands consist of only a single ENABLE_CRC (0×58535903) or DISABLE_CRC (0×58535904)
op-code. There is no additional data required.

3.7.2 Request CRC Command

This command is used to request and validate the current value of the CRC computed by the DSP. Using
this command requires that the enable CRC command be issued earlier in AIS. This command consists of
the REQUEST_CRC (0×58535902) op-code, followed by the expected CRC value and seek-value; the
CRC of loaded/filled section(s) are compared with the expected CRC value. If the CRC is correct, seek-
value is ignored and execution continues to next command.
A mismatch in the CRC indicates that the data loaded to the DSP memory using earlier section
load/section fill commands is corrupted. AIS has to be re-executed from the last known error-free point to
load the data again. In order to locate that point, a seek-value is made available as part of the request
CRC command. This value is to be interpreted as a negative number and should be added to the current
address in AIS. On doing this, the address points to the last error-free point in AIS; execution should be
continued as normal from this updated address.
In case of CRC error, the host should indicate the same to the DSP using the start-over command
described in Section 3.7.3. After doing that, it should add the seek-value to the AIS address pointer and
start executing AIS from that point onwards.
On receiving the start-over command, the DSP knows that the CRC error has occurred. It resets its CRC
computation and becomes ready to accept more commands from the host.

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 27
Submit Documentation Feedback

MAGIC - 0x41504954

BT Commands

CRC Commands

SL/SF Commands

JNC Commands

ENABLE_CRC Op-Code

Optional Data

...

MAGIC - 0x41504954

BT Commands

CRC Commands

SL/SF Commands

JNC Commands

DISABLE_CRC Op-Code

Optional Data

...

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

Figure 14 shows the structure of the request CRC command.

Figure 14. Structure of Request CRC Command

For a single CRC option, this command appears only once in AIS, after the last section load/section fill
command. The seek value is interpreted as a negative number, which when added to the current offset in
AIS, makes offset point to the start of the first section load/section fill command as shown in Figure 14.
For section-wise CRC option, this command appears after each section load/section fill commands. The
seek value is interpreted as a negative number, which when added to the current offset in AIS, makes
offset point to the start of the previous section load/section fill command as shown in Figure 14.

3.7.3 Start-Over Command

The start-over command consists of a STARTOVER (0×58535908) op-code with no additional data. This
instructs the bootloader to reset its computed CRC value to 0. This command is normally issued by host
on its own when it detects a CRC mismatch for slave modes. For master modes, this is taken care of by
the bootloader state machine.

28 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

<SEEK>

<CRC> Optional Data

...

JNC Command

0x58535902 REQUEST_CRC Op-Code REQ CRC Command

More SL/SF Commands

...

First SL/SF Command

ENA CRC Command

BT Commands

MAGIC - 0X41504954

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

3.8 Function Execute Command
Figure 15 shows the structure of the function execute command.

Figure 15. Structure of Function Execute Command

The function execute command allows execution of pre-defined functions that are present in the
bootloader ROM code. For the DM643x , the following functions have been pre-defined to enable
configurability of the PLL, DDR memory controller, and EMIFA, during the boot process. Please note that
the PLL configuration using this command overwrites any PLL configuration that is performed by the
bootloader when the FASTBOOT option is selected. Table 23 shows an example pre-defined ROM
functions.

Table 23. Pre-Defined ROM Functions

Function

Index

Number of
Arguments

Description

PLL Config 0 3 Programs PLL
EMIFA Config 1 5 Programs EMIF control registers
DDR Config 2 9 Programs DDR PLL and DDR memory controller sets the DDR

control registers

When creating the command sequence for the function execute command, the upper 16 bits of the word
immediately following the command opcode contains the number of arguments required by the function,
and the lower 16 bits must contain the function index.

3.8.1 PLL Config Function

The PLL config function enables re-programming of the PLL beyond what is selectable by the FASTBOOT
option. The PLL config function requires three arguments and they must be given in the order shown:
1. PLL multiplier
2. PLL divide 1 (divide down for CPU/system clock)
3. Oscillator source (0-internal , 1 - external)
Table 24 shows an example function execute command for PLL config.

Table 24. Sample Function Execute Command

AIS Data Description

0x5853590D Function Execute Opcode
0x00030000 3 arguments, Function index = 0
0x00000019 PLLM = 0x19
0x00000001 PLLDIV1 (CPU/Sysclk) = 1, divide of 2
0x00000000 Internal oscillator

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 29
Submit Documentation Feedback

Arg n

. . .

Arg 0 Other Commands
. . .

Index No Args Optional Data
. . .

More Set Commands
. . .

0x5853590D Func Exec Op-Code Set Command

Magic - 0x41504954

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Application Image Script www.ti.com

30 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Booting Operating Systems (Linux®/ DSP/BIOS™,etc.) www.ti.com

3.8.2 EMIFA Config Function
The five arguments for the EMIFA config function are given in the following order:
1. AB1CR control register value
2. AB2CR control register value
3. AB3CR control register value
4. AB4CR control register value
5. NANDFCR control register value
Please note that this function does not override the AEM and AEAW pin settings that are latched at device
reset.

3.8.3 DDR Config Function

The DDR memory controller config function requires nine arguments. The arguments must be given in the
order shown:
1. DDR PLLM value (sets PLLM field of PLLM register of PLL2)
2. DDR CLK divide down (sets RATIO field of PLLDIV1 register of PLL2)
3. Video processing back end (VPBE) CLK divde down (sets RATIO field of PLLDIV2 register of PLL2)
4. DDR clock source (0-internal, 1-external) (sets CLKMODE field of PLLCTL register of PLL2)
5. DDR control register value (sets DDRPHYCR of DDR2 Memory Controller)
6. Synchronous dynamic random access memory (SDRAM) config register value (sets SDBCR register of

DDR2 Memory Controller)
7. SDRAM timer 0 register value (sets SDTIMR register of DDR2 Memory Controller)
8. SDRAM timer 1 register value (sets SDTIMR2 register of DDR2 Memory Controller)
9. SDRAM refresh control register value (sets SDRCR register of DDR2 Memory Controller)
The DDR memory controller config function, programs the DRR PLL and then configures the DDR
memeory controller using the register settings given in the function execute command. It performs a single
write/read to the start of the DDR memory controller space to confirm the DDR memory controller
operation.

4 Booting Operating Systems (Linux®/ DSP/BIOS™,etc.)

The ROM bootloader operates independent of boot modes provided by specific operating systems. The
boot-startup code for any operating system must be in a format in compliance with the ROM bootmodes
described in the previous sections. The ROM bootloader views all operating system start-up code no
different than any other application code. Therefore, if the operating system requires any specialized
formats to boot the preponderance of its code, this must be done via secondary boot. The secondary
bootloader for the operating system must be presented in the appropriate format for the ROM bootloader
to properly load its code. After loading the operating system boot code (secondary boot, if necessary), the
ROM bootloader branches to the operating system startup/boot-up. If a secondary bootloader was
required, the secondary bootloader then completes the download of the rest of the operating system and
begins execution.
Please note for this scenario, only the secondary bootloader MUST follow the appropriate ROM
bootloader protocol for the boot mode chosen. The rest of the operating system code/data can be in any
format required for the secondary boot to complete load of the system.
For example, if using universal boot for the uCLinux operating system, only the code for u-boot itself would
need to be in AIS format, if booting from SPI/I2C, Fast EMIF, etc. The remaining code/data for the
uCLinux operating system would be in the compressed format expected by u-boot. u-boot would then
uncompress and load the remainder of the uCLinux code to DSP memory.

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 31
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

ROM Bootloader RAM Memory Requirements and Code/Data Placement www.ti.com

5 ROM Bootloader RAM Memory Requirements and Code/Data Placement
The ROM bootloader uses a small amount of RAM in the internal memory space of the device for stack
and temporary buffer/data storage space. Memory is allocated in the first lower 20 K bytes of the L1D
(data) CACHE for this purpose. Applications MUST NOT link any initialized code/data sections into this
area of memory. Doing so may result in overwriting of essential data used by the bootloader to effect boot;
this causes boot to fail. Un-initialized sections such as the compiler generated sections , .bss, and .far,
can be allocated to this area, since these are not populated until after the boot process is complete and
the application starts to run. Also, note that the bootloader uses CPU writes to copy downloaded
code/data to memory. Becasue of this, the bootlaoder cannot directly load code into the L1P program
space. The application must actively populate this space once it has been downloaded.

6 ROM Bootloader Cache Considerations

The ROM bootloader disables all cache for L2 RAM and L1 RAM (both L1 Data and L1 Program) during
the boot process. If cache is enabled during the boot process via AIS commands, then be aware that the
bootloader code disables cache once again after the application code is fully loaded and prior to the
branch to application start. Therefore, the application code must explicitly enable cache, if cache use is
required. The application cannot assume cache is in default power on state, especially if cache was
enabled during boot. The bootloader does not restore cache registers to their power on defaults; it simply
disables the cache upon exit.

7 AIS Generation Tool, genAIS

The genAIS.pl script is a Perl script that converts a linked executable for the DM643x to the appropriate
format for the given boot mode and data or memory widths. The genAIS script is a command line tool and
may be invoked as part of a larger script or Make file. The current version of genAIS was developed using
Active Perl V5.8.6. A simple invocation of the genAIS script includes the name of the application
executable file, the name of the AIS output file, the type of the output file, the boot mode, and the data or
address and memory width of the device where the image is stored.
For example:
genAIS.pl –i MyApplication.out –o MyApplication.ais –bootmode spi –otype ascii –addrsz 16
This invocation would produce a converted ASCII AIS file formatted for the SPI boot. The AIS generation
tool can produce either an ASCII, binary, plain text, or asm output file. The asm output file contains the
AIS image in the form of assembly .word directives. This assembly file may then be assembled/linked and
passed to the Hex Conversion Utility for use with an EEPROM burner. A list of available options for the
genAIS tool is shown in Table 25.
A simple invocation of the DM643x includes the name of the application executable file, the name of the
AIS output file, the type of the output file, the boot mode, and the data or address/memory width of the
device where the image is stored.
For example:
genAIS.pl –i MyApplication.out –o MyApplication.ais –bootmode spi –otype ascii –addrsz 16
This invocation would produce a converted ASCII AIS file formated for the SPI boot. The AIS generation
tool can produce either an ASCII, binary, plain text, or asm output file. The asm output file contains the
AIS image in the form of assembly .word directives. This assembly file may then be assembled/linked and
passed to the Hex Conversion Utility for use with an EEPROM burner. A list of available options for the
DM643x tool is shown in Table 25.

32 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

AIS Generation Tool, genAIS www.ti.com

Table 25. DM643x Program Options
Option Description

-i filename Specifies input executable file
-o filename Specifies name of the AIS output file
-x filename Specifies name of XML output from the OFD tool (ofd6x)
-crc N (N = 0,1,2) Selects CRC generation:

N = 0 - no CRC generation
N = 1 - CRC generated for each section load
N = 2 - single CRC generated for entire load

-bootmode N (N=i2c, spi, uart. nand, raw) Specifies boot mode for which conversion is to be generated:
Please note that raw generates an AIS image that is mode independent

-otype N (N=ascii, binary, txt, asm) Specifies content format for AIS output
-memwidth N (N=8,16,24) Specifies memory/address width for external memories associated with the I2C

and SPI bootmodes. Please note that the memory width of 16 bits is the only valid
memory type for the I2C for the DM643x and C6423/C6421 devices.

-datawidth N (N=8,16) Specifies NOR flash data access width for the EMIF FASTBOOT option. Please
note that selecting this option is NOT a substitute for setting the proper EMIF
8_16-bit pin on the device when booting from EMIF.

-cfg Specifies the name of an optional configuration file that contains a sequence of
set or function execute commands to be included at the beginning of the AIS
output file.

-addrsz SPI EEPROM addres width in bits, i.e., 16, 24

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 33
Submit Documentation Feedback

WARNING
Please note that the genAIS tool has a dependency on the OFD
utility (ofd6x,ofd6x.exe) that is provided with the TMS320C6000
Code Generation Tools Installation Instructions (SPRU237). The
genAIS utility currently requires ofd6x v6.1.0A06333 or above.
genAIS uses the Perl system() function to invoke the OFD utility.
Some verions of the Windows®NT and Windows95 operating
systems, may not suppport use of the system() function. In this
situation, the OFD utility must be run prior to invoking genAIS and
the resulting XML file must be specified as an input on the genAIS
command line. The options shown below in invoking the OFD
utility are optimal for usage with genAIS, and represent the minimal
set required. Therefore, it is recommended to use this set of
options when invoking the OFD.
for example,
ofd6x -x --obj_display=none,header,optheader,sections,symbols
myApp.out -o myApp.xml
genAIS -i myApp.out -x myApp.xml -o myAIS.txt -bootmode uart -
otype txt
(For more information about the OFD, please refer to TMS320C6000
Assembly Language Tools User's Guide, SPRU186).

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E
http://www.ti.com/lit/pdf/SPRU186

Copyright © 2012, Texas Instruments Incorporated

Sample AIS Boot Images www.ti.com

8 Sample AIS Boot Images
AIS data streams are required for fast EMIFA, SPI, I2C, NAND Flash, and UART-boot modes. A sample
AIS stream for each of these modes is presented in this section. The AIS boot images in this section were
created using a single tool called, DM643x . The DM643x is a Perl script that converts an application
linked executable file to an AIS boot image file for the bootmode selected. DM643x is discussed in the
next section. All boot images generated in this section use the same sample assembly source shown in
Example 1.

Example 1. Sample Source Code for AIS Examples

34 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

*B5,B4
4
1,B4,B4
B4,*A4

2
*A4,A3
4
2,A3,A3
A3,*A5
2
loop
5

.L2

.D1T2

.D1T1

.L1
.D1T1

S1

.D2T2 LDW
NOP
ADD
STW
NOP
LDW
NOP
ADD
STW
NOP
B .
NOP

MVKL .S1 _a,A3
MVKL .S1 _c,A5
MVKL .S1 _b,A4
MVKH .S1 _a,A3
MVK .S2 6,B4
STW .D1T2 B4,*A3
MVKH .S1 _c,A5
MV .L2X A3,B5
MVKH .S1 _b,A4

||

||

||
loop:

Start:

.word 0xC

.text

.global Start

0xA
0xB

_a,_b,_c
"myData"

.global

.sect

.word

.word
_a
_b
_c

;=======================================
; Sample Assembly Source File
; a = 6;
; while(1) {
; b = a + 1;
; c = b + 2;
; }
;
;=======================================

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Sample AIS Boot Images www.ti.com

8.1 AIS Boot Image for EMIFA ROM Boot
The first 8-bit byte in the FLASH/ROM accessed via EMIFA MUST contain the EEPROM size. Valid
values are 0×00 → 8 bit, 0×01 → 16 bit. The next three bytes are reserved. The first valid AIS word
begins on the next 32-bit word boundary. This word MUST contain the AIS magic word, 0×41504954. Any
valid AIS command may appear after the magic word. Table 20 shows the sample data stream for a 16-bit
FLASH, using the sample source included at the start of this section

Table 26. EMIFA ROM Fast Boot AIS Boot Image Example

Data Explanation

0x00000001 First byte of word specifies external memory data width
0x41504954 AIS Magic Number
0x58535903 Enable CRC Command
0x58535901 Section Load Command
0x10800000 Section Load Address
0x00000040 Section Size in Bytes
0x01802028 Start of Raw Section Data
0x02802428
0x02002228
0x01884069
0x0200032A
0x020C0277
0x02884068
0x028C1FDB
0x02084068

0x6C6E10CD
0x10442641
0x003C2C6E
0x45B06C6E
0x2C6E00B4
0x8C6E008A
0xEFC08000 End of Raw Section Data
0x58535902 Request CRC Command
0x0E85A97B Expected CRC Value
0xFFFFFFA8 Negative Pointer to Last Valid Command in Stream
0x58535901 Section Load Command
0x10800040 Section Load Address
0x0000000C Section Size in Bytes
0x0000000A Start of Section Raw Data
0x0000000B
0x0000000C End of Section Raw Data
0x58535902 Request CRC Command
0x8434A250 Expected CRC Value

0xFFFFFFDC Negative Pointer to Last Valid Command in Stream
0x58535906 Jump Close Command
0x10800000 Application Entry Point Address
0x00000002 Total number of sections that should have been loaded
0x0000004C Total number of bytes that should have been loaded

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 35
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Sample AIS Boot Images www.ti.com

8.2 AIS Boot Image for I2C Boot
The first 32-bit word on the AIS header for the I2C-boot mode is reserved and is ignored by the
bootloader. The second 32-bit word MUST contain the AIS magic number. A sample AIS image for I2C is
shown in Table 26.

Table 27. I2C AIS Boot Image Example
Data Explanation

0x00000002 Reserved for DM643x – boot loader ignores
0x41504954 AIS Magic Number
0x58535903 Enable CRC Command
0x58535901 Section Load Command
0x10800000 Section Load Address
0x00000040 Section Size in Bytes
0x01802028 Start Section Raw Data
0x02802428
0x02002228
0x01884069
0x02884068
0x028C1FDB
0x02084068

0x6C6E10CD
0x10442641
0x003C2C6E
0x45B06C6E
0x2C6E00B4
0x8C6E008A
0xEFC08000 End Section Raw Data
0x58535902 Request CRC Command
0x0E85A97B Expected CRC Value
0xFFFFFFA8 Negative Pointer to Last Valid Command
0x58535901 Section Load Command
0x10800040 Section Load Address
0x0000000C Section Size in Bytes
0x0000000A Start of Section RAW Data
0x0000000B
0x0000000C End Section Raw Data
0x58535902 Request CRC Value
0x8434A250 Expected CRC Value
0xFFFFFFDC Negative Pointer to Last Valid Command
0x58535906 Jump Close Command
0x10800000 Application Entry Point Address
0x00000002 Total number of sections that should have been loaded
0x0000004C Total number of bytes that should have been loaded

36 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Sample AIS Boot Images www.ti.com

Table 28 details the expected byte arrangement of the AIS boot image in the I2C EEPROM.

Table 28. AIS Image in I2C EEPROM Memory

Byte
Address

Byte0

Byte1

Byte2

Byte3

32-Bit AIS Data

Explanation

0x0000 0x02 0x00 0x00 0x00 0x00000002 First byte contains address size
in bytes – IGNORED by
bootloader for this device

0x0004 0x54 0x49 0x50 0x41 0x41504954 AIS Magic Word
0x0008 0x03 0x59 0x53 0x58 0x58535903 Enable CRC Command
0x000C 0x01 0x59 0x53 0x58 0x58535901 Section Load Command
0x0010 0x00 0x00 0x80 0x10 0x10800000 Section Load Address
0x0014 0x40 0x00 0x00 0x00 0x00000040 Section Size in Bytes
0x001C 0x28 0x20 0x80 0x01 0x01802028 Start Section Raw Data
0x0020 0x28 0x24 0x80 0x02 0x02802428

0x0024 0x28 0x22 0x00 0x02 0x02002228

0x0028 0x69 0x40 0x88 0x01 0x01884069

0x008C 0x58535906 JUMP CLOSE Command
0x0090 0x10800000 Application Entry Point Address
0x0094 0x00000002 Total Number of Sections
0x0098 0x0000004C Total Number of Bytes

8.3 AIS Boot Image for SPI Boot
The AIS boot image for SPI is exactly the same as I2C with the exception that the first 32-bit word in the
AIS image must contain the address width of the the SPI EEPROM expressed in bytes. The byte
containing the address width MUST be located at address 0 of the EEPROM. This address width byte is
included for internal use of the bootloader.

Table 29. SPI AIS Boot Image Example

Data Explanation

0x00000002 EEPROM Address Width in Bytes - Please note this value will be 0x00000003 in
case of 24 Bit SPI

0x41504954 AIS Magic Number
0x58535903 Request CRC Command
0x58535901 Section Load Command
0x10800000 Section Load Address
0x00000040 Section Size in Bytes
0x01802028 Start Section Raw Data
0x02802428
0x02002228
0x01884069
0x0200032A
0x020C0277
0x02884068
0x028C1FDB
0x02084068

0x6C6E10CD
0x10442641
0x003C2C6E
0x45B06C6E
0x2C6E00B4

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 37
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Sample AIS Boot Images www.ti.com

Table 29. SPI AIS Boot Image Example (continued)
Data Explanation

0x8C6E008A
0xEFC08000 End Section Raw Data
0x58535902 Request CRC Command
0x0E85A97B Expected CRC Value
0xFFFFFFA8 Negative Pointer to Last Valid Command
0x58535901 Section Load Command “myData section”
0x10800040 Section Load Address
0x0000000C Section Size in Bytes
0x0000000A Start Section Raw Data
0x0000000B
0x0000000C End Section Raw Data
0x58535902 Request CRC Command
0x8434A250 Expected CRC Value

0xFFFFFFDC Negative Pointer to Last Valid Command
0x58535906 Jump Close Command
0x10800000 Application Entry Point Address
0x00000002 Total number of sections that should have been loaded
0x0000004C Total number of bytes that should have been loaded

Please note that the byte ordering of data stored in the EEPROM should be as follows using the AIS data
from Table 28 as an example.

Table 30. AIS Image in SPI EEPROM Memory

Byte
Address

Byte0

Byte1

Byte2

Byte3

32-Bit AIS Data

Explanation

0x0000 0x02 0x00 0x00 0x00 0x00000002 First byte contains address size
in bytes

0x0004 0x54 0x49 0x50 0x41 0x41504954 AIS Magic Word
0x0008 0x03 0x59 0x53 0x58 0x58535903 Enable CRC Command
0x000C 0x01 0x59 0x53 0x58 0x58535901 Section Load Command
0x0010 0x00 0x00 0x80 0x10 0x10800000 Section Load Address
0x0014 0x40 0x00 0x00 0x00 0x00000040 Section Size in Bytes
0x001C 0x28 0x20 0x80 0x01 0x01802028 Start Section Raw Data
0x0020 0x28 0x24 0x80 0x02 0x02802428

0x0024 0x28 0x22 0x00 0x02 0x02002228

0x0028 0x69 0x40 0x88 0x01 0x01884069

0x008C 0x58535906 JUMP CLOSE Command
0x0090 0x10800000 Application Entry Point Address
0x0094 0x00000002 Total Number of Sections
0x0098 0x0000004C Total Number of Bytes

8.4 AIS Boot Image for UART Boot
UART-boot mode differs from the previous modes in that some communication is carried out between the
DSP and HOST in addition to transfer of AIS commands. The DSP UART acts as slave in the boot
process. But, to alert the HOST that the DSP is alive and ready to receive, it sends the initial message
BOOT ME to the HOST. As acknowledgment, the HOST then begins sending the AIS boot image,
beginning with the AIS magic number. The AIS data is sent as ASCII text. The bootloader software
converts to the equivalent hexadecimal constant.

38 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012

Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Sample AIS Boot Images www.ti.com

The bootloader continues to process AIS commands transmitted by the HOST until the JUMP CLOSE
command is encountered. After the JUMP CLOSE command is received, the bootloader sends the
message DONE to the HOST. This signals the HOST that boot has successfully completed.

DSP HOST
SENDS → “BOOT ME” →

 ← “41” ← SENDS first byte of AIS Magic #
 ← “50” ← SENDS second byte of AIS Magic #
 ← “49” ← SENDS third byte of AIS Magic #
 ← “54” ← SENDS last byte of AIS Magic #
 ← “58” ← SENDS first byte of AIS command
 ← “53” ← SENDS second byte of AIS command
 ← “59” ← SENDS third byte of AIS command
 ← “03” ← SENDS last byte of AIS command
 ← HOST continues to SEND commands and

data until JUMP CLOSE command is issued
 ← “58” ← SENDS first byte of JUMP CLOSE
 ← “53” ← SENDS second byte of JUMP CLOSE
 ← “59” ← SENDS third byte of JUMP CLOSE
 ← “06” ← SENDS last byte of JUMP CLOSE
 ← “10” ← SENDS first byte of entry point address
 ← “80” ← SENDS second byte of entry point address
 ← “00” ← SENDS third byte of entry point address
 ← “00” ← SENDS last byte of entry point address
 ← “00” ← SENDS first bye of section count
 ← “00” ← SENDS second byte of section count
 ← “00” ← SENDS third byte of section count
 ← “02” ← SENDS last byte of section count
 ← “00” ← SENDS first byte of byte count
 ← “00” ← SENDS second byte of byte count
 ← “00” ← SENDS third byte of byte count
 ← “4C” ← SENDS last byte of byte count
SENDS → “ DONE” →

At this point, the boot process is complete and the bootloader branches to the application start address. If
an error occurs, for example a CRC error, the bootloader issues a message CORRUPT to the host and
places an error condition in the ERR field of the BOOTCMPLT register. It then re-attempts boot.
The AIS boot image for UART is an ASCII string with no spaces or carriage returns between elements
(see Figure 16).

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 39
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Sample AIS Boot Images www.ti.com

Figure 16. UART AIS Boot Image

8.5 AIS Boot Image for NAND Boot
AIS boot image for NAND boot is very similar to all the others seen so far, with exceptions for three words
that define the starting block and number of pages where AIS image is stored. Since this is not known
until the data is actually written to the NAND device, it is your responsibility to fill in these three fields in
the AIS data. The DM643x tool leaves space for these in Table 31 generated as place holders for real
values to be encoded later, when image is finally written to the NAND.

Table 31. NAND Boot AIS Boot Image Example

Data Explanation

0x41504954 AIS magic number
0x00000000 Place holder reserved for number of pages over which image spans
0x00000000 Place holder for block where image starts
0x00000000 Place holder for page where image starts
0x58535903 Enable CRC command
0x58535901 Section load command
0x10800000 Section load address
0x00000040 Section size in bytes
0x01802028 Start of section raw data
0x02802428
0x02002228
0x01884069
0x0200032A
0x020C0277
0x02884068
0x028C1FDB
0x02084068

0x6C6E10CD
0x10442641
0x003C2C6E
0x45B06C6E
0x2C6E00B4
0x2C6E00B4
0xEFC08000 End of section raw data
0x58535902 Request CRC command
0x0E85A97B Expected CRC value
0xFFFFFFA8 Negative pointer to last valid command
0x58535901 Section load command
0x10800040 Section load address

40 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

415049545853590358535901108000000000004001802028028024280200222801884069020
0032A020C027702884068028C1FDB020840686C6E10CD10442641003C2C6E45B06C6E2
C6E00B48C6E008AEFC08000585359020E85A97BFFFFFFA858535901108000400000000
C0000000A0000000B0000000C585359028434A250FFFFFFDC58535906108000000000000
20000004C

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Sample AIS Boot Images www.ti.com

Table 31. NAND Boot AIS Boot Image Example (continued)
Data Explanation

0x0000000C Section size in bytes
0x0000000A Start section raw data
0x0000000B
0x0000000C End section raw data
0x58535902 Request CRC command
0x8434A250 Expected CRC value
0xFFFFFFDC Negative pointer to last valid command
0x58535906 JUMP CLOSE command
0x10800000 Application entry point address
0x00000002 Total number of sections that should have been loaded
0x0000004C Total number of sections that should have been loaded

8.6 Configuration Data File

By using the –cfg option, a sequence of set or function execute commands can be included at the
beginning of the AIS output data file. This allows the option to configure the DDR memory controller,
EMIF, or PLL to enable proper boot from/to external memories. The commands in this file precede any
other AIS data that is generated. Please note that the data in the configuration file is not parsed by the
genAIS tool; it is simply passed directly through to the output file. Care must be taken to ensure that a
correct data sequence appears in the file. A sample configuration file that calls the ROMed configuration
functions for the PLL, EMIF, and DDR memory controller is shown below.
0x5853590D # Function Execute Command
0x00030000 # Selects PLL configuration function, with 3 arguments
0x00000015 # PLLM value
0x00000000 # PLLDIV 0
0x00000000 # Clock source
0x5853590D # Function Execute Command
0x00050001 # Selects EMIFA configuration, with 5 arguments
0x3FFFFFFC # AB1CR control register mask
0x3FFFFFFC # AB2CR control register mask
0x3FFFFFFC # AB3CR control register mask
0x3FFFFFFC # AB4CR control register mask
0x00000000 # NANDFCR control register mask
0x5853590D # Function Execute Command
0x00090002 # Selects DDR memory configuration, with 9 arguments
0x00000017 # DDR PLLM
0x00000001 # DDR CLLK DIV
0x0000000B # VPBE CLK DIV
0x00000000 # PLL SRC
0x50006405 # DDR Control register mask
0x00138822 # SDRAM Config register mask
0x16492148 # SDRAM Timer 0 register mask
0x000CC702 # SDRAM Timer 1 register mask
0x000004EF # SDRAM Refresh control register mask

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 41
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Debugging Boot Failures www.ti.com

9 Debugging Boot Failures
When the device fails to boot as expected, some helpful information may be gleaned from the ERR field of
the BOOTCMPLT register. If you can connect via JTAG to the chip and read this register, then Table 32
may help you determine the cause of the failure.

Table 32. Debugging Boot Failures

Value Name Description
0x1 ERR_UNKNOWN_COMMAND An invalid AIS command was received
0x2 ERR_BAD_MAGIC_NUMBER The AIS magic number was not detected in UART boot mode
0x3 ERR_TRANSMIT_SYNC Not used
0x4 ERR_BAD_CRC Getting PCI Autoinit data failed, or exceeded maximum CRC

failure in AIS parsing
0x5 ERR_INVALID_ADDRESS_SIZE Invalid specified address width in first word of SPI master boot
0x6 ERR_UNSUPPORTED_BOOTMODE The various boot pin configurations are invalid
0x7 ERR_TIMEOUT_WAITING_FOR_HOST Timeout occurred in sending or receiving data (UART, PCI,

UHPI modes)
0x8 ERR_TIMEOUT_I2C_BUS_BUSY Timeout waiting for bus becoming free in I2C master boot
0x9 ERR_TIMEOUT_MCBSP_SPI_RECEIVE Receive timeout in SPI master boot mode
0xA ERR_NAND_ACCESS_TIMEOUT NAND device detection failure/timeout
0xB ERR_RECEPTION_ERR Various reception errors in UART, I2C master, and PCI modes
0xC ERR_BAD_FUNCTION_PTR Undefined function pointer call in ROM boot loader
0xD ERR_PLL_LOCKUP PLL configuration failed
0xE ERR_CFG_FUNCTION_CALL Invalid function index or argument count for AIS function execute

command

10 Determining On-Chip Bootloader Version
The bootloader version can be found by reading the ROM location 0×00101A00. More than one ROM
version is extant at this time. ROM version 0×27B2A120 supports EMIFA direct ROM boot only. No other
boot mode should be selected, when using this version. FASTBOOT option is also NOT supported by that
ROM version. ROM versions 0×00010200, 0×00010300, and 0x00010400 support all the features
delineated within this document, including FASTBOOT.

42 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

Calculating CRC www.ti.com

11 Calculating CRC
The on-chip bootloader uses a 32-bit CRC. Code for calculating the CRC is given in the Appendix A. The
CRC as calculated for the on-chip bootloader requires three calls to the BL_updateCrc function. The first
call is made sending the section load address as the data word. The second call uses the section size in
bytes as the data word. The third call sends the actual section data, calculating a CRC across all the data
elements in the section. So the final CRC is a combination of the CRC’s calculated for section address,
section size and section data. A sample set of calls to the function to create the expected CRC value is
shown below:

unsigned int crc;
unsigned int sectionAddr;
unsigned int sectionSize;
unsigned int *sectionData;
crc = BL_updateCRC(§ionAddr, 4, 0);
crc = BL_updateCRC(§ionSize, 4, crc);
crc = BL_updateCRC(sectionData, sectionSize, crc);

The last calculated crc value should be written as the expected CRC for the REQUEST_CRC command. If
calculating a single CRC for the entire application load, simply pass each successive crc value into the
subsequent calls to BL_updateCRC.

typedef struct {
unsigned int sectionAddr;
unsigned int sectionSize;
unsigned int *sectionData;
} SectionDatObj;
SectionDataObj mySections[10];
unsigned int crc;
crc = 0;
for(i=0;i<10;i++) {
crc = BL_updateCRC(&(mySections[i].sectionAddr), 4, crc);
crc = BL_updateCRC(&(mySections[i].sectionSize), 4, crc);
crc = BL_updateCRC(mySections[i].sectionData, mySections[i].sectionSize, crc);
}

12 References

• TMS320C6000 Multi-Channel Buffered Serial Port User's Guide (SPRU580)
• TMS320C6000 Code Generation Tools Installation Instructions (SPRU237)
• TMS320C6000 Assembly Language Tools User's Guide, SPRU186)

SPRAAG0E– March 2012 Using the TMS320DM643x Bootloader 43
Submit Documentation Feedback

http://www.ti.com/
http://www.ti.com/lit/pdf/SPRU580
http://www.ti.com/lit/pdf/SPRU186
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

Copyright © 2012, Texas Instruments Incorporated

www.ti.com

Appendix A Calculating the CRC

The CRC calculated to process the REQUEST_CRC command is based on the following algorithm, where
data_ptr points to the first data element in the current section, section_size is the size of the section
expressed in 8-bit bytes, and crc is current CRC value.
unsigned int updateCRC(unsigned int *data_ptr, unsigned int section_size, unsigned int crc) {
unsigned int n, crc_poly = 0x04C11DB7; /* CRC -
32 */ unsigned int msb_bit; unsigned int residue_value; int bits; for(n = 0; n <

(section_size>>2); n++) { bits = 32; while(--
bits >= 0) { msb_bit = crc & 0x80000000; crc = (crc << 1) ^ ((*data_ptr >> bits) & 1); if (
msb_bit) crc = crc ^ crc_poly; } data_ptr ++; } switch(section_size & 3) { case 0: break; case
1: residue_value = (*data_ptr & 0xFF) ; bits = 8; break; case 2: residue_value = (*data_ptr &
0xFFFF) ; bits = 16; break; case 3: residue_value = (*data_ptr & 0xFFFFFF) ; bits = 24; break; }
if(section_size & 3) { while(--
bits >= 0) { msb_bit = crc & 0x80000000; crc = (crc << 1) ^ ((residue_value >> bits) & 1); if
(msb_bit) crc = crc ^ crc_poly; } } return(crc); }

44 Using the TMS320DM643x Bootloader SPRAAG0E– March 2012
Submit Documentation Feedback

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAG0E

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	1 Introduction
	Table 1. Terms and Abbreviations

	2 Boot Mode Description
	Table 2. Non-Fastboot Modes (FASTBOOT = 0)
	Table 3. Fixed-Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 001b)
	Table 4. User-Select Multiplier Fastboot Modes (FASTBOOT = 1, AEM[2:0] = 000b, 011b, 100b, or 101b)
	Table 5. PLL Multiplier Selection (PLLMS[2:0]) in User-Select Multiplier Fastboot Modes (FASTBOOT = 1; AEM[2:0] = 000b, 011b, 100b, or 101b)
	2.2 FASTBOOT Mode
	Table 6. PLL Multiplier Based on Value AEM and PLLMS[2:0] Pins
	Table 7. PLL1 and PLL2 Multiplier Ranges
	Table 8. PLLC1 Clock Frequency Ranges
	Table 9. PLLC2 Clock Frequency Ranges
	2.2.1 CPU Frequency With FASTBOOT Options
	Table 10. CPU Frequency During FASTBOOT

	2.3 Emulation Boot (BOOTMODE[3:0] = 0000b, FASTBOOT = 0 or 1)
	2.4 HPI Boot (BOOTMODE[3:0] = 0001b or 0010b, or 0011b, PCIEN = 0, FASTBOOT = 0 or 1)
	2.5 PCI Boot
	2.5.1 PCI Boot With No Auto-Initialization
	2.5.2 PCI With Auto-Initialization
	2.5.2.1 I2C EEPROM Memory Map

	Table 11. I2C EEPROM Layout for PCI Autoinitialization Data
	2.5.2.2 I2C EEPROM Checksum for Autoinitialization Data
	2.5.2.3 DSP I2C EEPROM Interface

	Figure 1. Signal Connections for I2C EEPROM Boot Mode

	2.6 EMIFA ROM Direct Boot (BOOTMODE[3:0] = 0100b, FASTBOOT = 0)
	2.7 EMIFA ROM Fast Boot Without AIS (BOOTMODE[3:0] = = 1001b, FASTBOOT == 1)
	2.8 EMIFA ROM Fast Boot With AIS (BOOTMODE[3:0] = 0100b, FASTBOOT = 1)
	2.9 I2C Master Mode Boot (BOOTMODE[3:0] = 0101b, FASTBOOT = 0 or 1)
	2.9.1 I2C Master Boot Timing

	2.10 SPI 16x8 Master Mode Boot (BOOTMODE[3:0] = 0110b, FASTBOOT = 0 or 1)
	2.10.1 SPI 16x8 Master Boot Timing
	Table 13. SPI Master Clock Frequencies for FASTBOOT = 1
	2.10.2 SPI 16x8 Master Boot Signal Polarity
	Table 14. SPI Master Boot Modes
	Figure 2. SPI Transfer With CLKSTP = 11 and CLKXP = 0
	2.10.3 Connecting SPI EEPROM for SPI 16x8 Boot
	Table 15. SPI 16x8 EEPROM-to-DSP McBSP0 Connection

	2.11 NAND Flash Boot (BOOTMODE[3:0] = 0111b, FASTBOOT = 0 or 1)
	2.12 UART Boot (BOOTMODE[3:0] = 1000b, 1110b, FASTBOOT = 0 or 1)
	2.12.1 UART Boot Timing
	Table 17. UART Connection Attributes for Boot

	2.13 VLYNQ Boot (BOOTMODE[3:0]=1010b, FASTBOOT = 0 or 1)
	2.13.1 VLYNQ Boot Timing

	2.14 SPI 24×8 Master Mode Boot (BOOTMODE[3:0]=1111b, FASTBOOT = 0 or 1)
	2.14.1 SPI 24x8 Master Boot Timings
	2.14.2 SPI 24x8 Boot Signal Polarity
	Figure 3. 24x8 Bit SPI EEPROM Read Timing
	Figure 4. DM643x 24x8 Bit Address SPI Boot
	Table 18. SPI EEPROM and DSP Pin Connections for 24 Bit SPI Mode

	3 Application Image Script
	Figure 5. Basic Structure of Application Image Script
	Table 19. AIS Version 2.0 Supported Opcodes
	Table 19. AIS Version 2.0 Supported Opcodes (continued)
	Figure 6. Structure of SET Command
	Table 20. Numeric Formats That Can Be Used in SET Command
	Table 21. Valid SET Command Data Types
	3.1.1 Valid SET Command Data Types
	Table 22. Valid SET Command Data Types Field Descriptions
	3.2 Get Command

	...
	Figure 8. Structure of GET Command
	Figure 9. Structure of Section Load Command
	Figure 10. Structure of Section Fill Command
	3.5 Jump Command
	Figure 11. Structure of Jump Command

	3.6 Jump_Close Command
	Figure 12. Structure of Jump_Close Command

	3.7 CRC Options
	3.7.1 Enable/Disable CRC Commands
	Figure 13. Structure of Enable CRC/Disable CRC Commands
	3.7.2 Request CRC Command
	Figure 14. Structure of Request CRC Command
	3.7.3 Start-Over Command

	3.8 Function Execute Command
	Figure 15. Structure of Function Execute Command
	Table 23. Pre-Defined ROM Functions
	3.8.1 PLL Config Function
	Table 24. Sample Function Execute Command
	3.8.2 EMIFA Config Function
	3.8.3 DDR Config Function

	4 Booting Operating Systems (Linux®/ DSP/BIOS™,etc.)
	5 ROM Bootloader RAM Memory Requirements and Code/Data Placement
	6 ROM Bootloader Cache Considerations
	7 AIS Generation Tool, genAIS
	Table 25. DM643x Program Options

	8 Sample AIS Boot Images
	Example 1. Sample Source Code for AIS Examples
	Table 26. EMIFA ROM Fast Boot AIS Boot Image Example
	8.2 AIS Boot Image for I2C Boot
	Table 27. I2C AIS Boot Image Example
	Table 28. AIS Image in I2C EEPROM Memory
	Table 29. SPI AIS Boot Image Example
	Table 29. SPI AIS Boot Image Example (continued)
	Table 30. AIS Image in SPI EEPROM Memory
	Figure 16. UART AIS Boot Image
	Table 31. NAND Boot AIS Boot Image Example
	Table 31. NAND Boot AIS Boot Image Example (continued)

	8.6 Configuration Data File

	9 Debugging Boot Failures
	Table 32. Debugging Boot Failures

	10 Determining On-Chip Bootloader Version
	11 Calculating CRC
	12 References
	Appendix A Calculating the CRC
	IMPORTANT NOTICE

