
SPRAAD7 – July 2006
Submit Documentation Feedback

Fast Development with DaVinci On Screen Display (OSD) 1

Trademarks .. 2
1 Background.. 2
2 Putting it All Together ... 4
3 Conclusion ... 4
Appendix A OSD Demo .. 5
Appendix B BMP to RGB565 Conversion Code .. 10

Application Report
SPRAAD7 – July 2006

Fast Development with DaVinci On Screen Display (OSD)
Juan Gonzales Digital Customer Applications Team

ABSTRACT

While On Screen Display (OSD) functionality became prevalent as a cheaper
alternative to using buttons/knobs to control television settings, in today’s society, it
seems like everyday a new gadget comes out which uses OSDs.
Imagine a video phone or set-top application for a minute; both of these applications
require video overlaid with some graphics OSD, and may require some blending
between video and a graphic (or OSD) plane. In order to come up with what the final
screen will look like, engineers often go through several iterations of resizing video
windows and rearranging graphic blocks. Each of these iterations comes at the cost of
two precious resources: time and money. Now imagine you can draw your graphics in
almost any open source or commercially available graphics program and quickly drop
your new graphics (or OSD) into the screen to test how it would look before writing a
single line of code, allowing you to quickly change your graphics and test how it looks
quickly until you have it just right. You do not have to imagine anymore, DaVinci makes
this a reality.
This application report will show how easy and fast it can be to test/implement your
OSD ideas on Texas Instrument’s DaVinci™ platform using a standard open source
graphics editor (i.e. GIMP), and the power of the Linux operating system.
This application report contains a tar file that can be downloaded from
http://www.ti.com/lit/zip/SPRAAD7.

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/lit/zip/SPRAAD7

2 Fast Development with DaVinci On Screen Display (OSD) SPRAAD7 – July 2006
Submit Documentation Feedback

www.ti.com

Background

Trademarks
DaVinci is a trademark of Texas Instruments.

1 Background
This section provides necessary background for understanding how the DaVinci platform makes OSD
development so easy and fast.
It is important to understand that Texas Instrument’s DaVinci platform consists of more than just a family
of processors, such as TMS320DM6443 and TMS320DM6446; it also includes world-class development
tools, software and support. A combination of these components makes DaVinci a faster development
platform for efficient and compelling video (and audio) applications.

1.1 About DaVinci OSD
This section focuses on the OSD capabilities of the TMS320DM6443 and TMS320DM6446 processors as
these are the DaVinci family processors that are currently available. These processors support a
background window color, two video windows, two OSD windows, and a cursor window, in order of
ascending priority as shown in Figure 1.

/d ev/fb /1 YCb Cr 4: 2: 2

/d ev/fb /3 YCb Cr 4: 2: 2

/d ev/fb /0 RGB 16

/d ev/fb /2 attrib u te

Figure 1. TMS320DM6443/TMS320DM6446 OSD Hierarchy

One unique aspect of the second OSD window (OSDWIN1) is that it can be configured as an attribute
window to control the blending (i.e., transparency) between the video windows and the first OSD window
(OSDWIN0). Since this “alpha” blending function is the most common use of OSDWIN1, this application
report focuses on the configuration where the first OSD window (OSDWIN0) is used to display OSD
graphics, and the second OSD window (OSDWIN1) is used as an attribute window to control blending.
The OSD windows are configured to accept either RGB565 or bitmap data. Often, RGB, bitmap, and raw
data formats are used interchangeably in the technology industry. These formats are essentially the same
if they use the same number of bits per pixel. In DaVinci processors, this is not the case, and thus they
provide the option to configure OSD for either RGB565 or bitmap. When the OSD window is configured to
receive bitmap data, it uses a color lookup table (CLUT) with a total of 256 entries. This means the
maximum color depth of a bitmap pixel is 8-bits (4-bit, 2-bit, and 1-bit color depths are also supported).
When the OSD window is configured to receive RGB565 data, CLUT is not required as RGB data from
external memory is converted to YCbCr in hardware prior to reaching OSD; RGB565 uses 16-bit per pixel
and therefore, can represent 64K colors. Both windows can be configured to accept bitmap data
simultaneously; however, only one OSD window can be configured to accept RGB565 data at a time.
Therefore, if the second OSD window is used as an attribute window as suggested above, it is preferable
to use RGB565 mode on the first OSD window, primarily because it has access to 16-bits (64K colors).

w 1
v id eo

ow 1

Curs o r

Video W in do

Video W indow 0 v
id eo

(b itm ap)
OSD W in d

OSD W indow 0
(bitm ap)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

SPRAAD7 – July 2006
Submit Documentation Feedback

Fast Development with DaVinci On Screen Display (OSD) 3

www.ti.com

1.2 About Linux, Drivers and Video

Background

Linux has two predominant driver architectures, block drivers and character drivers. Block drivers allow out
of order access and can be mounted into the file-system. These include drivers for hard disk drives,
external RAM, and compact flash devices just to name a few. Character drivers are read as streams in a
FIFO order (e.g. drivers for sound and video). As one can probably guess, OSD functionality is provided
by character (video display) drivers.
Another feature of Linux is that character devices can be used in a similar manner to accessing files. This
means you can open, read, write, and close these devices just like files. From the Linux command prompt,
you can copy (cp), display (cat), and pipe (>>) data to/from another file. This powerful feature allows data
to be placed into the OSD window without writing a single line of code.
The DaVinci platform provides access to the video hardware primarily using two Linux drivers, the V4L2
capture driver, and the FBDev display driver.
• Video For Linux 2 (V4L2) is a standard, second generation Linux video input driver, which fixed a

number of design bugs of the first version.
• FBDev is a standard Linux video output driver used to map the frame buffer of a display device, such

as DaVinci processors, into user space.
The focus of this application report is on the Linux frame buffer display device (i.e., FBDev driver) because
it contains the OSD features. The frame buffer device provides an abstraction for the display hardware. It
represents the video output hardware (DaVinci OSD in this case) as a frame buffer device, thus allowing
application software to access graphics hardware by “just writing to a buffer”. As mentioned above, the
output device buffer is accessed via a special file-like node, usually located in the /dev directory. In this
case, the path you are interested in for changing the DaVinci OSD is /dev/fb/0. Using this path, you
can modify the display through a well defined interface which includes file-like operations (i.e.,open, read,
write, close) and device specific commands (ioctls to query/set information about the hardware).
For those new to Linux, they should familiarize themselves with the following copy command below:
cp - copy (e.g. >cp osd.r16 /dev/fb/0 -- copies osd.r16 file to /dev/fb/0 device)

1.3 About Graphics Editors
All popular graphic/image editors in the market today use the file extension to determine the proper codec
required to decode a file for viewing or editing. There are many widely accepted industry file extensions
such a jpg, jpeg, bmp, gif, tiff, and png, which represent their corresponding image formats. All these
image formats require some header information to describe the image attributes required by that particular
format. The image attributes include items such as height, width, and bits per pixel (bpp). Using the file
extension, the graphics utilities can correctly parse the header file as well as the image contents.
As you have learned, TMS320DM6443/TMS320DM6446 processors support two formats of input into their
OSD frame buffers with RGB being the most appealing since it provides a greater number of colors. Since
RGB data represents raw uncompressed data, there is no additional header information for an image
editor to decode. Unfortunately though, there are many flavors of RGB formats, such as RGB24 (8:8:8),
RGB16 (5:6:5), and RGB15 (5:5:5). Without some type of header information to tell the image editor the
proper format of the data, the editor can only guess. For this reason, most editors do not support RGB
files, and the few that do, use “.rgb” file extension to represent only the most common RGB type, (e.g.
RGB24). Since the DM6443/6 OSD frame buffer uses RGB16 (5:6:5), there is a disconnect between the
hardware and the available graphic editors.
Fortunately, the uncompressed BMP file format available in most editors is essentially some header
information followed by bitmap data. Furthermore, bitmap data format and RGB data format are essentially
the same so long as you have the same number of bits per pixel. Therefore, it is chosen as the preferred
file format for the fast OSD development procedure listed in the next section. To convert from 24-bit BMP
(most common) to RGB16 (5:6:5) format -- which is expected by the OSD frame buffer -- a small C
program was written and is included in the .tar.gz file accompanying this application note and is also listed
in Appendix B.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

4 Fast Development with DaVinci On Screen Display (OSD) SPRAAD7 – July 2006
Submit Documentation Feedback

www.ti.com

Putting it All Together

2 Putting it All Together
So now that you are armed with this knowledge, how do you go about placing graphics into the
TMS320DM6443/TMS320DM6446 OSD window without writing a single line of code? As you learned in
Section 1.2, by writing a single command at the Linux prompt (>cp osd.r16 /dev/fb/0), you can copy the
contents of osd.r16 file into OSD frame buffer, thus displaying it. Where does osd.r16 file come from? This
file contains the image you want to display as your OSD; therefore after designing your OSD in a graphics
editor such as GIMP, this file is generated by running the small conversion utility provided in the
accompanying tar.gz file. But what format should be used to save the file created in GIMP? As you have
learned, in Section 1.3, the preferred format used here is BMP.
To summarize the process:
1. Create/revise OSD design in your favorite graphics editor (e.g GIMP) and save in BMP format.
2. Run the small program provided in the accompanying tar.gz file to convert to RGB565 format.
>./bmpToRgb16 mysod.bmp (this will generate osd.r16 file)

3. Place the converted file into OSD frame buffer to view results
> cp osd.r16 /dev/fb/0

4. Repeat steps 1 thru 3 until you are satisfied with the final design. Save the osd.r16 file to be loaded by
application source code.

It should be mentioned that the attribute window should not be set to 100% video (all zeros), as this
blending level does not allow for OSD graphics to be displayed. For an example on how to run a demo
that encompasses the ideas presented in this document on the DaVinci DVEVM, please refer to
Appendix A.

3 Conclusion

It is relatively simple to design your OSD graphics on the DaVinci platform. Literally, draw OSD graphics in
almost any open source or commercially available graphics program. Quickly drop them onto the screen
to test how it looks before writing a single line of code, thus allowing you to quickly change and test until it
is just right. This is just one example of how the DaVinci platform can help reduce your time to market and
development costs.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

SPRAAD7 – July 2006
Submit Documentation Feedback

Fast Development with DaVinci On Screen Display (OSD) 5

www.ti.com

Appendix A

Appendix A OSD Demo

The demo described here executes on the TMDXEVM6446 digital video evaluation module
(DVEVM) shown in Figure A-1. Although not required, this demo uses a VMware Red Hat
Enterprise Linux (RHEL) virtual machine image as the Host. To avoid additional configuration steps,
this setup also connects DVEVM to REHL host using router, to take advantage of router’s DHCP
server capabilities. The following sections cover steps on setting up and running the demo.

A.1 Setting up Demo

Figure A-1. TMDXEVM6446, DVEVM

1. Set the dip switches in the red block in the center of the DVEVM to the following pattern: 1011111110
(switch #2 and #10 off, all others on). See Figure A-1.

2. Use a serial terminal connection to the DVEVM in 115200 baud 8-–1 configuration. You may either use
minicom within the VMware image by typing:
host # minicom
or terminal emulator such as hyperterminal or terra term in Windows.

3. Cycle power to the DVEVM board. Press any key at the beginning of the u-boot startup sequence
(while it is counting down) to interrupt the boot sequence and enter u-boot command mode. If you do
not enter the u-boot command after power-cycling the board, check the dipswitch settings listed in step
1) as well as your serial terminal settings from step 2).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

6 Fast Development with DaVinci On Screen Display (OSD) SPRAAD7 – July 2006
Submit Documentation Feedback

www.ti.com

Setting up Demo

4. Check that there is a Linux kernel in the board’s nor flash at location 0x02050000 using the
‘imls’ command in u-boot.
u-boot # imls
You should see output similar to the one shown in Figure A-2.

Figure A-2. Output as a Result of Invoking u-boot 'imis' Command

5. Set bootcmd environment variable (see Figure A-3).
u-boot # setenv bootcmd bootm 0x2050000

6. Set serverip environment variable using host IP address (see Figure A-3)
u-boot # setenv serverip 192.168.1.103.

Note: 192.168.1.103 should be substituted by the correct IP address of the host VMware REHL
image. To get the IP address, use the following Linux command in the host terminal
host # /sbin/ifconfig eth0 .

7. Set bootargs environment variable (see Figure A-3):
u-boot#setenv bootargs ‘setenv bootargs console=ttyS0,115200n8
noinitrd ip=dhcp root=/dev/nfs
nfsroot=$(serverip):/home/user/workdir/filesys mem=120M’.

Note: The above command should be entered in one line. If you are using a PAL system, the
above command should also include the following statement:
video=dm64xxfb:output=pal.

8. Save u-boot environment variables (see Figure A-3)
u-boot # saveenv.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

SPRAAD7 – July 2006
Submit Documentation Feedback

Fast Development with DaVinci On Screen Display (OSD) 7

www.ti.com

Setting up Demo

Figure A-3. Setting the u-boot Environment Variables

9. Reboot DVEVM and Login as “root” (there is no password).
10. On the host, place the accompanying tar.gz file under ‘/home/user/workdir/filesys/’. This is the

directory that will be NFS mounted per u-boot configuration (see Figure A-3) and thus visible to
DVEVM.

11. Extract demo files by running ‘tar’ Linux command
host #: tar -xzvf demo2.tar.gz
This will create a directory named ‘demo2’.

12. Change to ‘demo2’ directory.
host # cd demo2
The contents of this directory include

-bmpToRgb16 (executable binary of BMP to RGB conversion utility)
-bmpToPgb16.c (source code of conversion utility)
-MakeFile (Makefile for ease of rebuilding conversion utility)
-osd.r24 (GIMP generated graphics file passed in to utility)
-osd.r16 (file generated by conversion utility)
-allosd.attr (attribute blending data that allows only OSD visibility)
-allvid.attr (attribute blending data that allows only video visibility)
-halfhalf.attr (blending data that allows both video and OSD to be seen)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

8 Fast Development with DaVinci On Screen Display (OSD) SPRAAD7 – July 2006
Submit Documentation Feedback

www.ti.com

Running the Demo

A.2 Running the Demo
1. On the host terminal, change to the Demo 2 directory

host # cd /home/user/seminar/demo2.
2. Launch gimp (a Linux paint tool) in the host computer.

host # gimp.
3. Draw a picture within gimp.
 Press ctrl-n or select file->new… to create a new picture.
 Select a resolution of 720x480 if you are configured for NTSC output and 720x576 if you are

configured for PAL output. Keep the default type of RGB (as opposed to grayscale)
 Press ctrl-s or clicking the > in the top left corner of the image and selecting file->save as…
 From the “determine file type” pulldown selection, select BMP (bitmap).
 Though not required, it will add clarity to save your image with the extension “.r24”.

Figure A-4. Drawing a Picture in GIMP

4. Convert your newly saved RGB 24 image to RGB 16 using bmpToRgb16 for instance, if you saved
your image as “osd.r24”
host # ./bmpToRgb16 osd.r24 720 480 for an NTSC system, or
host # ./bmpToRgb16 osd.r24 720 576 for a PAL system.

Note: The output file will be saved as “osd.r16”.

5. Copy the osd.r16 file into the OSD node using the cp command:
DVEVM # cp osd.r16 /dev/fb/0.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

SPRAAD7 – July 2006
Submit Documentation Feedback

Fast Development with DaVinci On Screen Display (OSD) 9

www.ti.com

Running the Demo

Note: If nothing is displayed, it is probably because the attribute window, which controls
blending of video and OSD, is configured for 100% video. The next steps will deal with
this.

6. In this step, the blending will be adjusted. If desired, a different program that displays video can be run
on the background. There are demos that ship with DEVEM that can be used. This will allow user to
see blending effect of OSD as well. To adjust the blending, copy one of the provided attribute window
opacity files into the OSD attribute window device.
DVEVM # cp halfhalf.attr /dev/fb/2/
DVEVM # cp allosd.attr /dev/fb/2
DVEVM #cp allvid.attr /dev/fb/2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

10 Fast Development with DaVinci On Screen Display (OSD) SPRAAD7 – July 2006
Submit Documentation Feedback

www.ti.com

Appendix B

Appendix B BMP to RGB565 Conversion Code

#include <stdio.h>

#define RGB16(red, green, blue) (((red >> 3) << 11) | ((green >> 2) << 5) | (blue >> 3))
#define MAX_OSD_WIDTH 720 // Max Davinci OSD width
#define MAX_OSD_HEIGHT 576 // Max Davinci OSD height (for PAL support)
#define MAX_OSD_SIZE MAX_OSD_WIDTH*MAX_OSD_HEIGHT
#define NTSC_OSD_WIDTH 720
#define NTSC_OSD_HEIGHT 480

int main(int argc, char *argv[])
{

short osdData[MAX_OSD_SIZE];
FILE *rgb24file;
FILE *rgb16file;
char red, green, blue;
long fileSize;
int x, y;
int width=NTSC_OSD_WIDTH, height=NTSC_OSD_HEIGHT; //Default values

if (argc < 2)
{

printf("Usage: %s filename [width][height]\n", argv[0]);
return -1;

}
else if ((argc > 2) && (argc != 4))
{

printf("Must specify both width and height or neither\n");
printf("Usage: %s filename [width][height]\n", argv[0]);
return -1;

}
else if ((argc == 4) && (atoi(argv[2]) > MAX_OSD_WIDTH))
{

printf("width cannot exceed %d pixels\n", MAX_OSD_WIDTH);
return -1;

}
else if ((argc==4) && (atoi(argv[3]) > MAX_OSD_HEIGHT))
{

printf("height cannot exceed %d pixels\n", MAX_OSD_HEIGHT);
return -1;

}
else if (argc==4)
{

//Valid width and Height were entered; therefore override defaults
width = atoi(argv[2]);
height = atoi(argv[3]);

}

printf("Preparing to convert %s (%d x %d)....\n", argv[1], width, height);

// Open file in read-binary mode
rgb24file = fopen(argv[1], "rb");

if (rgb24file == NULL)
{

printf("could not find file %s \n", argv[1]);
return -1;

}

// Get size of file

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

SPRAAD7 – July 2006
Submit Documentation Feedback

Fast Development with DaVinci On Screen Display (OSD) 11

www.ti.com

Appendix B

fseek(rgb24file, 0, SEEK_END);
fileSize = ftell(rgb24file);
fseek(rgb24file, 0, SEEK_SET);
printf("size %d\n", fileSize);

//Skip BMP header information
fseek(rgb24file, 54, SEEK_SET);
fileSize = fileSize - 54;

//Ensure file size does not exceed Max supported OSD size
if (fileSize > (MAX_OSD_SIZE*3))
{

printf("This file is too large, maximum supported size is 720x576x3\n");
}
else if (((fileSize % 3) !=0)|| (fileSize != (width*height*3)))
{

printf("this file does not have the size expected \n");
}
else
{

for(x=0; x < (width*height); ++x)
{

fread(&blue, sizeof(char), 1, rgb24file);
fread(&green, sizeof(char), 1, rgb24file);
fread(&red, sizeof(char), 1, rgb24file);

osdData[x] = RGB16(red, green, blue);
}

// Open file in read-binary mode
rgb16file = fopen("osd.r16", "wb");
for (y= height -1; y >=0; --y)
{

for (x=0; x < width; ++x)
{

fwrite(&osdData[(width*y) + x], sizeof(short), 1, rgb16file);
}

}
fclose(rgb16file);

}

fclose(rgb24file);
return;

}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAD7
http://www.ti.com/

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	Trademarks
	1 Background
	1.1 About DaVinci OSD
	Figure 1. TMS320DM6443/TMS320DM6446 OSD Hierarchy

	1.2 About Linux, Drivers and Video
	1.3 About Graphics Editors

	2 Putting it All Together
	3 Conclusion
	Appendix A OSD Demo
	A.1 Setting up Demo
	Figure A-1. TMDXEVM6446, DVEVM
	Figure A-2. Output as a Result of Invoking u-boot 'imis' Command
	u-boot#setenv bootargs ‘setenv bootargs console=ttyS0,115200n8 noinitrd ip=dhcp root=/dev/nfs nfsroot=$(serverip):/home/user/workdir/filesys mem=120M’.
	Figure A-3. Setting the u-boot Environment Variables

	A.2 Running the Demo
	Figure A-4. Drawing a Picture in GIMP

	Appendix B BMP to RGB565 Conversion Code

