
Application Report 
SPRA950 - October 2003 

 
 

Adapting the SPRA904 Motion Detection Application 
Report to the DM642 EVM 

Adit Sahasrabudhe Technical Staff DSP Applications – Waltham, MA 
 

ABSTRACT 

This application report describes the modifications that needed to be made to the 
multichannel motion detection system described in application report, A Multichannel Motion 
Detection System Using eXpressDSP RF5 NVDK Adaptation (literature number SPRA904) 
to port it to the DM642 EVM system. Project collateral discussed in this application report 
can be downloaded from the following URL: http://www.ti.com/lit/zip/SPRA950. 

 
 

Contents 
1 NVDK DM642 EVM: Overall Considerations ............................................................................... 1 

1.1 Video Ports ............................................................................................................................. 1 
1.2 256KB Internal SRAM ............................................................................................................. 1 

2 Modifications for Video Ports ...................................................................................................... 2 
2.1 FVID Device Driver ................................................................................................................. 2 
2.2 Changing to YCrCb Output ..................................................................................................... 4 

3 Modifications for Less Internal SRAM ........................................................................................ 6 
3.1 Using ISRAM Effectively ......................................................................................................... 6 

3.1.1 Small Cache Issue ...................................................................................................... 6 
3.1.2 Moving Sections to SDRAM ........................................................................................ 7 

 

1 NVDK DM642 EVM: Overall Considerations 

1.1 Video Ports 
One of the distinguishing features of the DM642 are the video ports. The video ports allow the 
DSP to directly interface with video encoders/decoders without using an FPGA, and more 
importantly, without taking bandwidth away from the EMIF. With this in mind, we need to be able 
to correctly program the video ports to capture an image of CIF size (352x240) and display a full 
D1 resolution image (720x480). To do this, we use the device driver provided in the Driver 
Development Kit (DDK) version 1.1. Also, the video ports make it very easy to output BT.656 
format data, so we change the output format to composite YCrCb, instead of VGA RGB. 

 
1.2 256KB Internal SRAM 

A very important consideration when changing from the NVDK (C6416 DSP) to the DM642 EVM 
is the change in the amount of available internal memory. The 6416 has 1MB of internal 
memory. This allowed us to be very liberal with its usage, putting almost all needed buffers and 
BIOS objects there. With the DM642, we now have 256KB of internal memory, so we need to be 
aware of what buffers and objects we place internally. This way we can maximize the utility of 
internal memory. 

 
Trademarks are the property of their respective owners. 

 
1 

http://www.ti.com/lit/zip/SPRA950


SPRA950 

2 Adapting the SPRA904 Motion Detection Application Report to the DM642 EVM 

 

 

… 
EVMDM642_vCapParamsChan.segId = EXTERNALHEAP; 
EVMDM642_vCapParamsSAA7115.hI2C = EVMDM642_I2C_hI2C; 

 
 

capChan = FVID_create(”/VP0CAPTURE/A/0”, 
IOM_INPUT, &status, (Ptr)&EVMDM642_vCapParamsChan, NULL); 

 
FVID_control(capChan, VPORT_CMD_EDC_BASE+EDC_CONFIG, (Ptr)&EVMDM642_vCapPa- 
ramsSAA7115); 
… 

 

2 Modifications for Video Ports 
 
2.1 FVID Device Driver 

Before adding code to interface the video ports with the video encoder/decoders, we must 
remove remnants of the video driver from the NVDK. Ateme (the maker of the NVDK) provides a 
set of libraries and API calls for configuring the EMIF to capture video from the FPGA on the 
NVDK. Therefore, the Ateme Graphics Library (agl_c64.lib and iekc64_d.lib) included in the 
linker command file, needs to be removed. In addition, any #include that references Ateme 
Graphics Libraries (agl.h and iekc64.h) must be removed from thrCapture.c, thrDisplay.c, and 
thrProcess.c. For driver-specific calls, the following needs to be removed: 
• 

thrCapture.c: 

• 
The functions openInput() and getInputFrame() 
thrDisplay.c: 
The functions openDisplay() and putOutputFrame() 

Drivers for the video ports have been developed and are available as a part of the DDK. The 
driver API for the video port is named FVID. The following calls need to be added: 

 
NOTE: The structures EVMDM642_vCapParamsChan_EMBEDDED and 
EVMDM642_vDisParamsChan are available in source files that need to be added to your 
project. These files are available in the folder 
\\CCS_INSTALL\boards\evmdm642\examples\video\driver\settings. Choose the source file 
corresponding to the format you are using. The example provided uses the files 
evmdm642_vcapparams360x240.c and evmdm642_vdisparamsNTSC.c. 
• 

thrCapture.c: 
− In the function thrCaptureInit() 

 

There is no longer a need to perform a scaling of teh input image to CIF because the SAA7115 
Decoder performs that functionality. The parameters required to do this are shown in the source 
file mentioned in the NOTE above. A piece of this code is shown next: 



SPRA950 

Adapting the SPRA904 Motion Detection Application Report to the DM642 EVM 3 

 

 

FVID_control(capChan, VPORT_CMD_START, NULL); 

… 
EVMDM642_vDisParamsChan.segId = EXTERNALHEAP; 

EVMDM642_vDisParamsSAA7105.hI2C = EVMDM642_I2C_hI2C; 

disChan = FVID_create(”/VP2DISPLAY”, IOM_OUTPUT, 
&status, (Ptr)&EVMDM642_vDisParamsChan, NULL); 

 
FVID_control(disChan, VPORT_CMD_EDC_BASE+EDC_CONFIG, 

(Ptr)&EVMDM642_vDisParamsSAA7105); 
… 

 

 

− In the function thrCaptureStartup() 

− In the function thrCaptureRun() 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• thrDisplay.c: 

− In the function thrDisplayInit() 

− In the function thrDisplayStartup() 

 FVID_control(disChan, VPORT_CMD_START, NULL); 

... 
SAA7115_ConfParams EVMDM642_vCapParamsSAA7115 = { 

SAA7115_MODE_NTSC720, 
SAA7115_MODE_USER, 
SAA7115_AFMT_COMPOSITE, 
TRUE, 
TRUE, 
INV, 
LINE_SZ, 
NUM_LINES*2, 
TRUE, 

 
}; 

… 
//convert 422 to 420 
inBuf[Y] = capFrameBuf−>frame.iFrm.y1; 
inBuf[CR] = capFrameBuf−>frame.iFrm.cr1; 
inBuf[CB] = capFrameBuf−>frame.iFrm.cb1; 

 
outBuf[Y] = scombufCap−>bufYCRCB[Y]; 
outBuf[CR] = scombufCap−>bufYCRCB[CR]; 
outBuf[CB] = scombufCap−>bufYCRCB[CB]; 

 
yuv422to420(inBuf, outBuf, PROCF_WIDTH, CAPF_HEIGHT, CAPF_WIDTH); 

 
… 
FVID_exchange(capChan, &capFrameBuf); //Passes full buffer, receives empty 



SPRA950 

4 Adapting the SPRA904 Motion Detection Application Report to the DM642 EVM 

 

 

… 
//Convert 420 to 422 
inBuf[Y] = scombufDisp−>bufYCRCB[Y]; 
inBuf[CR] = scombufDisp−>bufYCRCB[CR]; 
inBuf[CB] = scombufDisp−>bufYCRCB[CB]; 

 
outBuf[Y] = disFrameBuf−>frame.iFrm.y1; 
outBuf[CR] = disFrameBuf−>frame.iFrm.cr1; 
outBuf[CB] = disFrameBuf−>frame.iFrm.cb1; 

 
yuv420to422(inBuf, outBuf, PROCF_WIDTH, CAPF_HEIGHT, CAPF_WIDTH); 

 
… 
FVID_exchange(disChan, &disFrameBuf); //Passes full buffer, receives empty 

//Execute all passthrough channels 
for (chanNum = 0; chanNum < NUMPASSCHANS; chanNum++) { 

 
//Simply place the buffers from Cap to Dis 
DAT_copy2d(DAT_1D2D, scombufCap−>bufYCRCB[Y],scombufDisp−>bufYCRCB[Y], 

PROCF_WIDTH, PROCF_HEIGHT,OPF_WIDTH); 
DAT_copy2d(DAT_1D2D, scombufCap−>bufYCRCB[CR],scombufDisp−>bufYCRCB[CR], 

PROCF_WIDTH >> 1, PROCF_HEIGHT >> 1, OPF_WIDTH >> 1); 
prevCbId = DAT_copy2d(DAT_1D2D, scombufCap−>bufYCRCB[CB],scombufDisp−>bufYCRCB[CB], 

PROCF_WIDTH >> 1, PROCF_HEIGHT >> 1, OPF_WIDTH >> 1); 

 
DAT_wait(prevCbId); 

} 

 

− In the function thrDisplayRun() 

 
2.2 Changing to YCrCb Output 

In the original application, the output display type was RGB. This was changed to YCrCb since it 
is the more common type used in applications and because the video ports can easily interface 
in that format. To transition from RGB to YCrCb, we first removed the YUVtoRGB cell in each 
channel. When this cell is removed, the pass-through channel now becomes an empty channel 
with no cells, and any cell registration or channel open calls that are made for channel 1 need to 
be removed. Then, the functions yuv422to420() and yuv420to422() were added to the Capture 
and Display threads, respectively. These functions are supplied with source code contained 
within the Capture and Display thread source files. 

To execute the channel, simply pass the buffer from Capture to Display without any modification: 
 

A few other buffer passing schemes need to change. Originally, only the buffers being passed 
from cell to cell had Y, Cr, and Cb components. The last buffer passed from the process thread 
to the display thread was a single RGB buffer. Now, even that last buffer requires Y, Cr, and Cb 
components. In addition, this buffer needs to have offsets for each buffer, depending on where 
we want to place the channel. Assuming the same channel placement scheme as in SPRA904, 
the buffer offsets are added to appThreads.h and are as follows: 



SPRA950 

Adapting the SPRA904 Motion Detection Application Report to the DM642 EVM 5 

 

 

typedef struct placementBuff { 
Char *y; 
Char *cr; 
Char *cb; 

} placementBuff; 
 

enum PIXELCOMPONENTS{ 
Y = 0, 
CR, 
CB, 
TOTALCOMPONENTS //total types 

}; 

// Assign correct offset values to buffers 
thrProcess.OutputBuff.y = scombufDisp−>bufYCRCB[Y] + Q2_Y_OFFSET; 
thrProcess.OutputBuff.cr = scombufDisp−>bufYCRCB[CR] + Q2_CR_OFFSET; 
thrProcess.OutputBuff.cb = scombufDisp−>bufYCRCB[CB] + Q2_CB_OFFSET; 

 
ICC_setBuf(chan−>cellSet[CHDIFFCELLDIFF].outputIcc[0], &thrProcess.OutputBuff, 0); 

 

 

These offsets are passed into each channel before their execution via the same call to 
ICC_setBuf(). The only difference is that now we use a dummy structure to hold the appropriate 
addresses. This structure is located in appThreads.h: 

 

Then, before the call to ICC_setBuf() we set the correct values. For example, for the DIFF 
channel: 

 

We need a provision for providing each cell with its correct line pitch. The line pitch is the 
number of bytes from the start of one line in a transfer to the start of the next line. For cell to cell 
communication, the line pitch is simply the width of the processing frame, but for the last cell in a 
channel, the line pitch is the width of the output frame. 

Using each cells environment variable, we can pass in the correct value for line pitch. Before 
each channel is executed, we assign the value in the following manner. Again, the DIFF channel 
is used as an example: 

Q1_CR_OFFSET 
Q2_CR_OFFSET 
Q3_CR_OFFSET 
Q4_CR_OFFSET 

#define Q1_CB_OFFSET 
#define Q2_CB_OFFSET 
#define Q3_CB_OFFSET 
#define Q4_CB_OFFSET 

0 
(Q2_Y_OFFSET >> 1) 
(((OPF_WIDTH >> 1) * (OPF_HEIGHT >> 1)) >> 1) 
Q3_CR_OFFSET + (OPF_WIDTH >> 2) 

#define Q1_CR_OFFSET 
#define Q2_CR_OFFSET 
#define Q3_CR_OFFSET 
#define Q4_CR_OFFSET 

// Quadrant offsets according to Cartesian coordinates − one for each Y, CR, and CB 
#define Q1_Y_OFFSET 0 
#define Q2_Y_OFFSET (OPF_WIDTH >> 1) 
#define Q3_Y_OFFSET ((OPF_WIDTH * OPF_HEIGHT) >> 1) 
#define Q4_Y_OFFSET ((OPF_WIDTH * OPF_HEIGHT >> 1) + (OPF_WIDTH >> 1)) 



SPRA950 

6 Adapting the SPRA904 Motion Detection Application Report to the DM642 EVM 

 

 

// Point output data to intermediate buffers 
yOutData = yOutBuff; 
crOutData = crOutBuff; 
cbOutData = cbOutBuff; 

// Send data to output buffer 
DAT_copy2d(DAT_1D2D, yOutBuff, outData[0], PROCF_WIDTH, PROCF_HEIGHT,line- 
Pitch); 
DAT_copy2d(DAT_1D2D, crOutBuff, outData[1], PROCF_WIDTH>>1, 

PROCF_HEIGHT>>1, linePitch>>1); 
finalOutId = DAT_copy2d(DAT_1D2D, cbOutBuff, outData[2], PROCF_WIDTH>>1, 

PROCF_HEIGHT>>1,linePitch>>1); 
 

DAT_wait(finalOutId); 

... 
SAA7105_ConfParams EVMDM642_vDisParamsSAA7105 = { 

SAA7105_AFMT_SVIDEO, //use for s-video output 
// SAA7105_AFMT_COMPOSITE, //use for composite output 
SAA7105_MODE_NTSC720, 
SAA7105_IFMT_YCBCR422_INTERLACED, 
TRUE, 
FALSE, 
INV 

 
}; 

 

 
 

Then, within the cell itself, we use a set of intermediate buffers for the output data: 

 

These buffers are filled in a one dimensional fashion, not worrying about line pitch (same as in 
SPRA904). Once all of the processing is finished, we do a DAT_copy2d to send the data to the 
correct output buffer using the line pitch: 

 

This takes care of appropriate buffer passing for YCrCb display. 
 

In displaying YCrCb data, we have a choice of using s-video or composite output. This selection 
can be done easily using the display parameters source file mentioned in Section 2.1. At the 
bottom of the file, we make a modification to the EVMDM642_vDisParamsSAA7105 structure: 

// Assign correct offset values to buffers 
thrProcess.OutputBuff.y = scombufDisp−>bufYCRCB[Y] + Q2_Y_OFFSET; 
thrProcess.OutputBuff.cr = scombufDisp−>bufYCRCB[CR] + Q2_CR_OFFSET; 
thrProcess.OutputBuff.cb = scombufDisp−>bufYCRCB[CB] + Q2_CB_OFFSET; 

thrProcess.diffEnv−>linePitch = OPF_WIDTH; 

ICC_setBuf(chan−>cellSet[CHDIFFCELLDIFF].outputIcc[0], 
&thrProcess.OutputBuff, 0); 

 
UTL_stsStart( stsExeTimeChDiff ); 
rc = CHAN_execute( &thrProcess.diffChans[ chanNum ], NULL ); 



SPRA950 

Adapting the SPRA904 Motion Detection Application Report to the DM642 EVM 7 

 

 

//Update Reference Frame if necessary 
if (thrProcess.diffEnv−>SetReference == TRUE) 
{ 

CACHE_wbInvL2(scombufCap−>bufYCRCB[Y], CAPF_SIZE_IN_PIXELS, CACHE_WAIT); 
CACHE_wbInvL2(scombufCap−>bufYCRCB[CR], CAPF_SIZE_IN_PIXELS>>2, CACHE_WAIT); 
CACHE_wbInvL2(scombufCap−>bufYCRCB[CB], CAPF_SIZE_IN_PIXELS>>2, CACHE_WAIT); 

 
prevYId = DAT_copy2d(DAT_2D1D, (Void *) scombufCap−>bufYCRCB[Y], (Void *) prevY, 

PROCF_WIDTH, PROCF_HEIGHT, PROCF_WIDTH); 
prevCrId = DAT_copy2d(DAT_2D1D, (Void *) scombufCap−>bufYCRCB[CR], (Void *) prevCr, 

PROCF_WIDTH>>1, PROCF_HEIGHT>>1, PROCF_WIDTH>>1); 
prevCbId = DAT_copy2d(DAT_2D1D, (Void *) scombufCap−>bufYCRCB[CB], (Void *) prevCb, 

PROCF_WIDTH>>1, PROCF_HEIGHT>>1, PROCF_WIDTH>>1); 

 
CACHE_invL2(prevY, CAPF_SIZE_IN_PIXELS, CACHE_WAIT); 
CACHE_invL2(prevCr, CAPF_SIZE_IN_PIXELS>>2, CACHE_WAIT); 
CACHE_invL2(prevCb, CAPF_SIZE_IN_PIXELS>>2, CACHE_WAIT); 

 
thrProcess.diffEnv−>SetReference = FALSE; 

} 

 

3 Modifications for Less Internal SRAM 
 

3.1 Using ISRAM Effectively 

With the more limited amount of space in Internal SRAM, we want to make sure we maximize its 
utility. Therefore, we allocate that space for a few important tasks. 

First, we make 128KB of ISRAM cache. This allows us to utilize more of a caching architecture 
to handle data manipulation. In the rest of the 128KB, we want to allocate some space for 
buffers we designate and other space for an Internal Heap used by some RF5 objects. The 
buffers we want to be stored internally are the intermediate processing buffers. This ensures that 
the processor intensive algorithms are run out of fast internal memory. The ONLY buffers we 
keep internal then are intYBuf, intCrBuf, and intCbBuf which are declared in thrProcess.c. The 
rest of the ISRAM can be allocated to heap space. 

 
3.1.1 Small Cache Issue 

There is a small cache coherency problem when updating the reference frame via GEL. The 
following code calls to the CACHE API resolve this issue: 

 

3.1.2 Moving Sections to SDRAM 

Previously, almost all of the BIOS sections in the CDB file are placed into ISRAM. However, we 
now need to place ALL of those objects into SDRAM. Note, the size of the SDRAM needs to be 
changed for the DM642 EVM since we have 32MB instead of 256MB. Going through ALL of the 
properties of the various tabs in the CDB file ensures that the sections have been placed 
properly. 

All compiler sections should also be placed into SDRAM. With the utilization of cache, running 
code from external memory is acceptable, while leaving space internally for our processing 
buffers. 



SPRA950 

8 Adapting the SPRA904 Motion Detection Application Report to the DM642 EVM 

 

 

 



IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Application Report
	ABSTRACT
	Contents

	1 NVDK DM642 EVM: Overall Considerations
	1.1 Video Ports
	1.2 256KB Internal SRAM

	2 Modifications for Video Ports
	2.1 FVID Device Driver
	•
	•
	•

	2.2 Changing to YCrCb Output

	3 Modifications for Less Internal SRAM
	3.1 Using ISRAM Effectively
	3.1.1 Small Cache Issue
	3.1.2 Moving Sections to SDRAM



