
Application Report
SPRA705 – December 2000

1

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP
Jungki Min, Vishal Markandey Digital Signal Processing Solutions

ABSTRACT

This application report describes the implementation and optimization techniques of the
Joint Photographic Experts Group (JPEG), the still image compression standard on the
TMS320C6211. The TMS320C6211 is a low-cost and high-performance digital signal
processor (DSP) with 2-level caches, that utilizes the VelociTI™ very-long-instruction-
word (VLIW) architecture.

The TMS320C6211 has 64KB of L2 memory which is configurable for the combination of
cache and SRAM, and has 4 KB each of L1 instruction cache and L1 data cache.

This application report describes an overview of the JPEG standard and the optimization
techniques used in the TI JPEG encoder and decoder. Unlike on the TMS320C6201 with
relatively bigger internal memory, maximizing the cache ability is the key to boost the
overall performance on the TMS320C6211. Several optimization techniques and ideas
are used and they are described in the order of importance to the performance.

Keeping the L1 data cache from thrashing data, so that it utilizes the maximum capacity
and associativity, is of primary importance. The corresponding performance on various
levels of the L1 data cache usage has been tested and illustrated in this paper.Also
shown is how to avoid or reduce the L1 instruction cache thrashing by re-aligning critical
kernels inside the main loop.

This paper will provide pointers on how a developer can easily optimize existing
algorithms from the TMS320C6201 or implement completely new algorithms on the
TMS320C6211.

VelociTI is a trademark of Texas Instruments.

Contents
1 The JPEG (ISO DIS 10918) Standard... 2
2 Restrictions 3
3 eXpressDSP Algorithm Standard Compliancy ... 4
4 Encoder... 4

4.1 Description.. 4
4.2 Encoder API ... 5
4.3 Encoder Performance... 8

5 Decoder... 8
5.1 Description.. 8
5.2 Decoder API ... 10
5.3 Decoder Performance... 13

6 Optimization Techniques for the TMS320C6211 .. 13

SPRA705

2 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

6.1 Basic Understanding of the TMS320C6211 2-level Cache Architecture.............................. 14
6.2 Memory-mapped L2 Control Registers for Cache Operations... 14
6.3 Optimal Data Size for L1 Data Cache Operation... 15
6.4 Performance Issues on L2 Cache/SRAM Configuration.. 17
6.5 Code Alignment for the L1 Instruction Cache Operation ... 18
6.6 Efficient DMAs Maximizing Double Buffering Scheme .. 20
6.7 Performance-Critical Compiler Options... 21
6.8 General Optimization Techniques for the TMS320C6000 DSP Family................................ 22
6.9 Avoiding Undesired L2 Cache Corruption ... 22
6.10 Coherency .. 22

6.10.1 CPU Writes and DMA Reads Old Data... 23
6.10.2 DMA Writes, CPU Reads Old Data .. 25
6.10.3 Reordered CPU-DMA Writes.. 26

7 Results 27
8 Conclusion.. 29
9 References.. 30
Appendix A. Controlling L2 Cache and DMAs Using CSL APIs.. 31

Figures
Figure 1. Block Diagram for the Control Flow of the Encoder... 5
Figure 2. Block Diagram for the Control Flow of the Decoder... 9
Figure 3. L2 Cache and SRAM Configurations on C6211 .. 14
Figure 4. Code Alignment by Locating Two Kernels 4 KB Apart from Each Other 20
Figure 5. Example of ‘CPU Write and DMA Read’... 24
Figure 6. Example of ‘DMA Write and CPU Read’... 26
Figure 7. Example of ‘Reordered Writes’ .. 2 7

Tables
Table 1. JPEG Encoder Performance .. 8
Table 2. JPEG Decoder Performance .. 13
Table 3. Performance Analysis of the L1D Cache Efficiency ... 16
Table 4. Performance Analysis on Various L2 Cache Configurations... 18
Table 5. The Impact of ‘-mt’ Option on the JPEG Decoder Performance 21
Table 6. The C6211 JPEG Performance Over the C6201 JPEG Without CSL.............................. 28
Table 7. The C6211 JPEG Performance Over the C6201 JPEG with CSL.................................... 29

1 The JPEG (ISO DIS 10918) Standard

It is recommended that this application note be read with reference to the JPEG standards
document ISO DIS 10918.

This application note does not describe the JPEG compression standard. It describes
optimization ideas and techniques that were used to develop an efficient implementation of
JPEG on the C6211 VelociTI architecture with 2 level caches. Frequent references are made to
the standards document when referring to formats, tables, algorithms, mathematical expressions
and examples.

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 3

This particular implementation satisfies the following requirements in the ‘Baseline Process’ of
the JPEG standard as described in the document ISO DIS 10918-1 Requirements and
Guidelines .

• DCT-based, Sequential, 8-bit precision samples of image components (Y-Cb-Cr 4:4:4 /
4:2:2 / 4:2:0).

• 2 Quantization tables (one each for luma and chroma). Supports tables K1 and K2 in the
standards document.

• 2 DC, 2 AC tables (separate sets for luma and chroma). Supports tables K3, K4, K5 and K6
in the standards document.

• Non-interleaved scans, one complete image component per scan.

2 Restrictions

The implementation in its present form imposes some restrictions on the format of the bit-
stream. These can, however, be relaxed by appropriate changes in the main control logic. The
restrictions are stated with reference to the JPEG standards document ISO DIS 10918.

• The encoder expects the image data as three separate raster scanned components for
color images (i.e., non-interleaved Y-Cb-Cr) and one component for grayscale images.

• The decoder outputs the image as three separate raster scanned components in
contiguous memory (Y-Cb-Cr) for color images and only Y component for grayscale
images.

• Each scan contains a complete image component. A single image component is contained
in a scan.

• The implementation does not handle ‘restart intervals’.

• The decoder expects the first scan to start within the first DMA packet in the bit-stream.
At least following markers should be included in the first DMA packet.

– 0xFFD8: Start of Image

– 0xFFC0: Start of Frame (Baseline DCT)

– 0xFFDB: Define Quantization Table

– 0xFFDA: Start of Scan

The TI JPEG encoder outputs those markers within the first 590 bytes, so the decoder minimum
input DMA packet should be 590 bytes and the default is set to 640 bytes.

The TI JPEG decoder alone is not recommended to be used for decoding general JPEG images,
since it was originally designed only for working together with the TI JPEG encoder.

SPRA705

4 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

3 eXpressDSP Algorithm Standard Compliancy

The purpose of the eXpressDSP Algorithm Standard is to reduce the factors that prohibit an
algorithm to be easily integrated into a system without significant reengineering by the system
integrator [10] [11] [12]. All algorithms must comply with a generic resource management API,
called IALG, which is the core interface to meet the algorithm standard requirements.

This implementation of TI JPEG is fully eXpressDSP compliant.

4 Encoder

4.1 Description

The JPEG standard is a broad standard encompassing several compression and transmission
modes. In order to facilitate future expansion to other modes, this implementation has a very
modular construction. A single thread of control code handles all individual routines (kernels)
which are called multiple times as required by the application. This control code will always be in
‘C’ to facilitate changes in control architecture.

The encoding process consists of several data processing and transmission operations. The
encoder has to insert several headers (frame-header, scan-headers etc.) into the JPEG bit-
stream to facilitate decoding. The standard specifies that a JPEG file contains all the necessary
tables required for decoding. Hence, the encoder has to perform several auxiliary transmission
related functions in addition to image compression.

The control function jpgenc_ti() chronologically calls all the encoder component routines like
DCT, quantization, run-level encoding, variable length encoding etc., and performs data
translations between the encoder routines. It operates the required double buffering scheme for
DMA read-in of image component data from the external memory and DMA write-out of the
JPEG bitstream to the external memory. It takes care of parallelizing the DMA data transfers
with the core encoding kernels.

Figure 1 shows the block diagram for the control flow of the encoder in its present
implementation.

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 5

Ext. Mem

bitstream

Int.
Mem

Double
buffering

Ping IN

Pong IN

Ping OUT

Pong OUT

JPEG
Encoding

Reformat DCT DC encode

Quant and
RunLength AC VLC Byte stuff

raster scan data
TO 8x8 block

data

2D-Discrete
Cosine

Transform

Variable length
Encoding of DC

values

Quantization and
Run Length

Encoding of AC
coefficients

Attach 0x00 to
every 0xFF in the
JPEG bitstream

Variable Length
coding of

Run-Level pairs

 Figure 1. Block Diagram for the Control Flow of the Encoder

The driver should set up the parameters for the JPEG encoder by calling JPEG_ENC_TI_control()

and execute the encoder by calling JPEG_ENC_TI_encode() . The driver should specify the
configurations of the internal and external memories and set up the L2 cache operation and
initialize the DMA by calling the corresponding CSL functions.

4.2 Encoder API

The API wrapper is derived from template material provided in the TMS320 DSP Algorithm
Standard documentation. Knowledge of the algorithm standard is essential to understand the
API wrapper. A complete discussion on how to make the algorithm eXpressDSP compliant is

SPRA705

6 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

beyond the scope of this document, however the algorithm interface will be discussed as
knowledge of this ensures inter-operability of algorithms An algorithm is said to be eXpressDSP
compliant if it implements the IALG Interface and observes all the programming rules in the
algorithm standard. The core of the IALG interface is the IALG_Fxns structure type, in which a
number of function pointers are defined. Each eXpress DSP-compliant algorithm must define
and initialize a variable of type IALG_Fxns. In IALG_fxns, algAlloc(), algInit() and algFree() are
required, while other functions are optional.

typedef struct IALG_Fxns {

 Void *implementationId;

 Void (*algActivate)(IALG_Handle);

 Int (*algAlloc)(const IALG_Params *, struct IALG_Fxns **, IALG_MemRec *);

 Int (*algControl)(IALG_Handle, IALG_Cmd, IALG_Status *);

 Void (*algDeactivate)(IALG_Handle);

 Int (*algFree)(IALG_Handle, IALG_MemRec *);

 Int (*algInit)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const

 IALG_Params *);

 Void (*algMoved)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const

 IALG_Params *);

 Int (*algNumAlloc)(Void);

} IALG_Fxns;

The algorithm implements the algAlloc() function to inform the framework of its memory
requirements by filling the memTab structure. It also informs the framework whether there is a
parent object for this algorithm. Based on information it obtains by calling algAlloc(), the
framework then allocates the requested memory. AlgInit() initializes the instance persistent
memory requested in algAlloc(). After the framework has called algInit(), the instance of the
algorithm pointed to by handle is ready to be used.

To delete an instance of the algorithm pointed to by handle, the framework needs to call
algFree(). It is the responsibility of the algorithm to set the addresses and the size of each
memory block requested in algAlloc() such that the application can delete the instance object
without creating memory leaks.

The API for the JPEG Encoder is:

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 7

/*

 * ======== ijpegenc.h ========

 * IJPEGENC Interface Header

 */

#ifndef IJPEGENC_
#define IJPEGENC_

#include <std.h>

#include <xdas.h>

#include <ialg.h>
#include <ijpeg.h>

/*

 * ======== IJPEGENC_Handle ========

 * This handle is used to reference all JPEGENC instance objects

 */
typedef struct IJPEGENC_Obj *IJPEGENC_Handle;

/*

 * ======== IJPEGENC_Obj ========

 * This structure must be the first field of all JPEGENC instance objects
 */

typedef struct IJPEGENC_Obj {

 struct IJPEGENC_Fxns *fxns;

} IJPEGENC_Obj;

/*

 * ======== IJPEGENC_Params ========

 * This structure defines the creation parameters for all JPEGENC objects

 */

typedef struct IJPEGENC_Params {

 Int size; /* must be first field of all params structures */
 unsigned int sample_prec;

 unsigned int num_comps;

 unsigned int num_qtables;

 unsigned int interleaved;

 unsigned int format;
 unsigned int quality;

 unsigned int num_lines[3];

 unsigned int num_samples[3];

 unsigned int output_size;

} IJPEGENC_Params;

typedef IJPEGENC_Params IJPEGENC_Status;

/*

 * ======== IJPEGENC_PARAMS ========

 * Default parameter values for JPEGENC instance objects

 */
extern IJPEGENC_Params IJPEGENC_PARAMS;

SPRA705

8 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

/*
 * ======== IJPEGENC_Fxns ========
 * This structure defines all of the operations on JPEGENC objects

 */

typedef struct IJPEGENC_Fxns {

 IALG_Fxns ialg; /* IJPEGENC extends IALG */

 XDAS_Bool (*control)(IJPEGENC_Handle handle, IJPEG_Cmd cmd, IJPEGENC_Status
*status);
 XDAS_Int32 (*encode)(IJPEGENC_Handle handle, XDAS_Int8* in, XDAS_Int8* out);

} IJPEGENC_Fxns;

#endif /* IJPEGENC_ */

4.3 Encoder Performance

The application has been developed predominantly using C and serial assembly. . The DCT routine,
fdct_8x8(), is hand optimized and is from the C62x ImageLIB [6], which provides a collection of
high performance C-callable routines that can serve as key enablers for a wide range of image/video
processing applications. Table 1 tabulates the frame rates at various resolutions that can be
obtained with a 150 MHz C6211. However, it does not include routines for color-space conversions
or format conversions. Further performance optimizations are possible. The performance may vary
depending on the complexity of the images and the image formats like 4:2:0, 4:2:2, 4:4:4. Only 4:2:0
images are used for the encoder performance test. Those cycle counts reflects the DAT data
transfer functions of the CSL (Chip Support Library) version 1.20 [5] instead of user-defined DMA
functions. See section 4 for further JPEG Encoder performance data.

 Table 1. JPEG Encoder Performance

Image Resolution Performance

Width Height Cycles Clk/Blk Frm/s

128 128 128 420,997 1,096 356.30

256 256 256 1,504,753 980 99.68

CIF 352 288 2,307,620 971 65.00

VGA 640 480 6,605,576 917 22.71

SDTV 720 480 7,393,523 913 20.29

Note: All performance data is for 4:2:0 imagery.

5 Decoder

5.1 Description

The JPEG standard is a broad standard encompassing several compression and transmission
modes. In order to facilitate future expansion to other modes, this implementation has a very
modular construction. A single thread of control code handles all individual routines (kernels)
which are called multiple times as required by the application. This control code will always be in
‘C’ to facilitate changes in control architecture.

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 9

The control function jpgdec_ti() chronologically calls all the decoder component routines like
variable length decoding, run-level decoding, inverse quantization, IDCT etc., and performs data
translations between the decoder routines. It operates the required double buffering scheme for
DMA read-in of the JPEG bitstream from the external memory and DMA write-out of image data to
the external memory. It takes care of parallelizing the data transfers with the core decoding kernels.

Figure 2 shows the block diagram for the control flow of the decoder in its present
implementation.

Ext. Mem

bitstream

Int.
Mem

Double
buffering

Ping IN

Pong IN

Ping OUT

Pong OUT

JPEG
Decoding

JPG_byte_unstuff JPG_luma/chroma_vld

rld_dequant reformat

Remove 0x00 from every
0xFF00 data of the

input bitstream

Decodes the DC coefficients
followed by AC decoding

(run, level)

Decode DC coeffs
and run-length pairs

and inverse
quantization

8x8 block data TO
raster scan format

2D Inverse
Discrete Cosine

Transform

jpegidct

 Figure 2. Block Diagram for the Control Flow of the Decoder

SPRA705

10 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

The decoder is capable of providing limited number of error codes. It returns a positive integer
representing the number of output bytes when successful, or a negative integer when it
encounters errors in the JPEG bit-stream.

Positive integer: Number of bytes of output data.

1. SOI not Found

2. Not Baseline

3. Quant-table not found

4. SOS not found

5. Interleaved, not supported

5.2 Decoder API

The API wrapper is derived from template material provided in the TMS320 DSP Algorithm
Standard documentation. Knowledge of the algorithm standard is essential to understand the
API wrapper. Please see the algorithm standard documentation for details on the TMS320 DSP
Algorithm Standard. A complete discussion on how to make the algorithm eXpressDSP
compliant is beyond the scope of this document, however the algorithm interface will be
discussed as knowledge of this ensures inter-operability of algorithms. An algorithm is said to be
eXpress DSP compliant if it implements the IALG Interface and observes all the programming
rules in the algorithm standard. The core of the ALG interface is the IALG_Fxns structure type,
in which a number of function pointers are defined. Each eXpressDSP-compliant algorithm
must define and initialize a variable of type IALG_Fxns. In IALG_fxns, algAlloc(), algInit() and
algFree() are required, while other functions are optional.

typedef struct IALG_Fxns {

 Void *implementationId;

 Void (*algActivate)(IALG_Handle);

 Int (*algAlloc)(const IALG_Params *, struct IALG_Fxns **, IALG_MemRec *);

 Int (*algControl)(IALG_Handle, IALG_Cmd, IALG_Status *);

 Void (*algDeactivate)(IALG_Handle);

 Int (*algFree)(IALG_Handle, IALG_MemRec *);

 Int (*algInit)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const

 IALG_Params *);

 Void (*algMoved)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const

 IALG_Params *);

 Int (*algNumAlloc)(Void);

} IALG_Fxns;

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 11

The algorithm implements the algAlloc() function to inform the framework of its memory
requirements by filling the memTab structure. It also informs the framework whether there is a
parent object for this algorithm. Based on information it obtains by calling algAlloc(), the
framework then allocates the requested memory. AlgInit() initializes the instance persistent
memory requested in algAlloc(). After the framework has called algInit(), the instance of the
algorithm pointed to by handle is ready to be used.

To delete an instance of the algorithm pointed to by handle, the framework needs to call
algFree(). It is the algorithm’s responsibility to set the addresses and the size of each memory
block requested in algAlloc() such that the application can delete the instance object without
creating memory leaks.

The API for the JPEG Decoder is:

/*

 * ======== ijpegdec.h ========

 * IJPEGDEC Interface Header

 */

#ifndef IJPEGDEC_

#define IJPEGDEC_

#include <xdas.h>

#include <ialg.h>

#include <ijpeg.h>

/*

 * ======== IJPEGDEC_Handle ========

 * This handle is used to reference all JPEG_DEC instance objects

 */

typedef struct IJPEGDEC_Obj *IJPEGDEC_Handle;

/*

 * ======== IJPEGDEC_Obj ========

 * This structure must be the first field of all JPEG_DEC instance objects

 */

typedef struct IJPEGDEC_Obj {

 struct IJPEGDEC_Fxns *fxns;

SPRA705

12 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

} IJPEGDEC_Obj;

/*

 * ======== IJPEGDEC_Params ========

 * This structure defines the creation parameters for all JPEG_DEC objects

 */

typedef struct IJPEGDEC_Params {

 Int size; /* must be first field of all params structures */

} IJPEGDEC_Params;

/*

 * ======== IJPEGDEC_Status ========

* This structure defines the status parameters for all JPEG_DEC objects

*/

typedef struct IJPEGDEC_Status {

 Int size; /* must be first field of all params structures */

 unsigned int num_lines[3];

 unsigned int num_samples[3];

 unsigned int gray_FLAG;

 unsigned int outputSize;

} IJPEGDEC_Status;

/*

 * ======== IJPEGDEC_PARAMS ========

 * Default parameter values for JPEG_DEC instance objects

 */

extern IJPEGDEC_Params IJPEGDEC_PARAMS;

/*

 * ======== IJPEGDEC_Fxns ========

 * This structure defines all of the operations on JPEG_DEC objects

 */

typedef struct IJPEGDEC_Fxns {

 IALG_Fxns ialg; /* IJPEGDEC extends IALG */

 XDAS_Bool (*control)(IJPEGDEC_Handle handle, IJPEG_Cmd cmd, IJPEGDEC_Status
*status);

 XDAS_Int32 (*decode)(IJPEGDEC_Handle handle, XDAS_Int8 *in, XDAS_Int8 *out);

} IJPEGDEC_Fxns;

#endif /* IJPEGDEC_ */

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 13

5.3 Decoder Performance

The application has been developed predominantly using C and serial assembly. The functions
ac_vld_decode() and jpegidct() are hand optimized. The jpegidct() is a slight modification
from the one in ImageLIB [6]. The cycle counts do not include routines for color-space
conversions or format conversions. Further performance optimizations are possible. Table 2
tabulates the frame rates at various resolutions that can be obtained with a 150 MHz C6211.
However, it does not include routines for color-space conversions or format conversions. The
performance may vary depending on the complexity of the images and the image formats like
4:2:0, 4:2:2, 4:4:4. Only 4:2:0 images are used for the decoder performance test. Those cycle
counts reflects the DAT data transfer functions of the CSL (Chip Support Library) version 1.20
[5] instead of user-defined DMA functions. Please also see section 4 for further JPEG Decoder
performance data.

 Table 2. JPEG Decoder Performance

Image Resolution Performance

Width Height Cycles Clk/Blk Frm/s

128 128 128 422,762 1,101 354.81

256 256 256 1,416,647 922 105.88

CIF 352 288 2,122,491 893 70.67

VGA 640 480 5,843,410 812 25.67

SDTV 720 480 6,537,918 807 22.94

Note: All performance data is for 4:2:0 imagery.

6 Optimization Techniques for the TMS320C6211

Cache performance is of primary importance in achieving overall best performance on
theTMS320C6211, a 2-level cache high performance DSP. The TMS320C6211 has L1 data
cache (L1D), L1 Instruction cache (L1I) and L2 unified data and instruction SRAM/Cache.
Various methods are used to optimize each of the 3 separate caches above. Efficient use of the
DMA is another important issue to exclude extra overhead, when double buffering scheme is
used as in many DSP applications. The right compiler options can also make a significant
difference to the end performance.

Following are the optimization techniques utilized in this JPEG implementation and they will be
covered in the following sections in the order of importance.

• Choosing optimal sizes of the intermediate data buffers to fit into the L1 data cache.

• Configuring the L2 Cache/SRAM ratio.

• Code aligning to minimize the L1 instruction cache thrashing.

• Efficient use of DMAs.

• Choosing performance-critical compiler options.

SPRA705

14 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

• General optimization techniques for the TMS320C6000 DSP family.

There is possibility of L2 cache corruption because of the lack of coherency between L1/L2 and
the external memory. The last section details all the possible cases of corruption. The solution
for each case is described.

6.1 Basic Understanding of the TMS320C6211 2-level Cache Architecture

The TMS320C6211 DSP has two level cache, the L1 and the L2, while the TMS320C6201 has
flat memory structure that consists of 64KB data memory and 64KB program memory. The L1
cache is divided into 4KB L1I (Instruction cache) and 4KB L1D (Data cache).

The L1I always operates as a direct-mapped cache, and may not be memory mapped. Its line
size is 64 Bytes that correspond to 2 fetch packets in the TMS320C6000 family, which will
provide an amount of program pre-fetch on a miss to the L2/external memory. The throughput of
the L1I is a single cycle.

The L1D is a 2-way set associative data cache and accessed in a single cycle by the CPU and
its line size is 32 Bytes. This cache may not be disabled to operate as a memory mapped
SRAM. The L1D shall cache-access to all the L2 space and any external addresses identified as
cacheable by MAR registers. The L1D controller implements Least Recently Used (LRU)
algorithm to determine which line is to be replaced.

The L2, the second level of internal memory, is a unified 64KB data and instruction RAM/Cache.
The user may select portions of the L2, in ¼ L2 size increments, to be configured as SRAM for
either program or data segments. It operates maximum 4-ways in the full 64KB cache mode. 0
illustrates this associativity.

0x00000000

 4-way cache

0x00004000

 3-way cache

0x00008000

 2-way cache

0x0000C000

 1-way cache

 Figure 3. L2 Cache and SRAM Configurations on C6211

6.2 Memory-mapped L2 Control Registers for Cache Operations

The L2 controller provides several memory-mapped control registers and the CPU can access
those registers to configure the L2 operating mode. In order to eliminate a large number of
potential lockup conditions in the system, the L2 control registers are accessible as read-only
registers to I/O subsystem. Only the CPU can write-access the registers. Following are the L2
control registers:

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 15

L2CFG: controls the spilt between cache and SRAM. The three Least Significant Bits (L2MODE)
determine the combination of cache and SRAM.

L2 Mode Cache / SRAM Model
000 (reset value) 64K SRAM, D/I mixed
001 16K 1-way D/I cache, 48K SRAM
010 32K 1-way D/I cache, 32K SRAM
011 48K 1-way D/I cache, 16K SRAM
100 – 110 Reserved
111 64K 1-way D/I cache, 0K SRAM

WBAR / WWC : Write Back
WIBAR / WIWC : Write Back with Invalidate
IIBAR / IIWC : Invalidate instruction
FDBAR / FDWC : Flush data
L2CLEAN : Clean L2 cache space (not including L2 SRAM)
L2FLUSH : Flush L2 cache space (not including L2 SRAM)
MARn : Define the cache-ability of the external memory spaces

For more details, see the TMS320C6211 Product Specification revision 1.31[4].

It is not required to directly set those L2 control registers any more, by introducing the Chip
Support Library (CSL). The CSL is a set of application programming interfaces (APIs) used to
configure all on-chip peripherals for all the TMS320C6000 devices. Appendix A shows the
corresponding CSL API functions to manage the L2 program/data cache and the SRAM.

6.3 Optimal Data Size for L1 Data Cache Operation

It is important to limit the total amount of internal data buffers to exactly fit into the L1D data
cache for best performance. The L1D is a 2-way set associative data cache of total 4 KB. The
L1D controller implements Least Recently Used (LRU) algorithm to determine which line is to be
replaced.

In many data-oriented applications, a series of functions works like a conveyor belt system. A
data buffer is passed to a function as an input and then this function usually outputs a data
buffer. The output data buffer is passed to the next function as an input data buffer and so on.
The current version of JPEG works virtually in the same way except for some conditional
branches.

One-way of the 2 KB L1 data cache shall be used for caching the input buffer and the other 2KB
for caching the output buffer on the L2 SRAM. Data buffers bigger than 2KB will degrade the
performance by increasing the L1D cache thrashing.

SPRA705

16 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

JPEG requires an 8x8 block as the minimum amount of data unit for processing, which
corresponds to 64 bytes in 8-bit precision. As mentioned above, each way of the L1D is 2KB and
every input and output data buffer for every kernel must not be bigger than 2KB to avoid
unnecessary L1D cache thrashing. Maximum number of 8x8 blocks for each input and output
are 32 (32x8x8 = 2048 Bytes) for 8-bit precision, but some of the JPEG kernels (DCT/IDCT)
require that every 8-bit pixel expand to 16-bit precision. A total 16 of 8x8 blocks will thus
completely fill one way of the L1D cache
(16x8x8x2 = 2048 Bytes).

16 8x8 blocks corresponding to 2 KB (16x8x8x2 = 2048 Bytes), assuming the precision is 8 bit,
will virtually guarantee no cache thrashing, since it keeps input/output data buffers to or within 2
KB space of each L1D way for all the kernels. The current C6211 JPEG keeps all the buffers to
exactly 2 KB while the C6201 JPEG processes as many blocks as possible at a time to reduce
the overhead ratio of the control logic. Larger number of blocks per iteration always guarantees
better performance on the C6201, depending on the internal memory availability.This may not be
true, however, on the 2-level cache TMS320C6211DSP.

Making the data buffers either much smaller or bigger than 2 KB will degrade the performance.
Data buffers bigger than 2 KB cause more cache thrashing (cache miss). Data buffers smaller
than 2 KB may not introduce cache thrashing, but result in less cache efficiency. Smaller buffers
cause extra overhead to the main flow control routine by increasing the number of iterations

Table 3 shows the overall performance variation of the JPEG decoder for different levels of L1
data cache utilization. The same image of 128x128 resolution was used for all the different
setting simulations. The cycle counts are measured on the C6211 DSK. The number of blocks
means that N number of 8x8 blocks are processed during a single iteration of the major loop in
the JPEG decoder. As shown, 16 blocks per processing resulted the best performance
regardless of the L2 cache/SRAM configuration. The L1D has major impact on the C6211 JPEG
encoder and decoder performance. If the number of blocks is greater than 16, more internal
buffer space is required, which causes the L2 SRAM to exceed 16KB. That is why 24/32 blocks
data is based on 32KB cache space.

 Table 3. Performance Analysis of the L1D Cache Efficiency

L2 DecoderNum of
Blocks Cache/SRAM W H cycles Clk/Blk Frm/s

Performance
(%)

1 48/16 KB 128 128 841,766 2,192 178.20 50.2

2 48/16 KB 128 128 613,409 1,597 244.54 68.9

4 48/16 KB 128 128 495,977 1,292 302.43 85.2

8 48/16 KB 128 128 438,611 1,142 341.99 96.3

16 48/16 KB 128 128 422,471 1,100 355.05 100.0

16 32/32 KB 128 128 422,328 1,100 355.17 100.0

24 32/32 KB 128 128 430,864 1,122 348.14 98.1

32 32/32 KB 128 128 436,318 1,136 343.79 96.8

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 17

Processing only one block per iteration requires 16 times more looping than processing 16
blocks per iteration. This causes heavy looping overhead and a big portion of the L1D memory
space is not fully utilized, giving only half (50.2%) of the overall performance. Those applications
with very tight internal memory requirements should consider the trade-off between data size
and performance as shown in Table 3.

However, choosing internal buffers bigger than one way of L1 data cache size, 2KB is not
recommended. It causes performance degradation as well as occupying more L2 space. Table 3
shows almost no difference between a 32KB cache and a 48KB cache for 16 blocks per processing.
The slight difference is well within error range (0.03%). The same performance is because the single
tasking baseline JPEG is a relatively small application. The total code size of the JPEG decoder is
less than 26KB and is can fit within either 32KB or 48KB of the L2 cache. Large applications may
result in more performance difference according to the various L2 cache/SRAM configurations.

The current JPEG encoder utilized the same techniques used in the decoder.

6.4 Performance Issues on L2 Cache/SRAM Configuration

The C6201 JPEG implementation requires 41 KB of data memory for the encoder and 36 KB for the
decoder, which are within the 64KB limit of data memory, to maximize the performance. However,
on the C6211, more data memory reduces the L2 cache space and less cache space reduces the
associativity, which degrades the cache performance, hence the overall performance degrades.
Therefore, it is important for many C6211 applications to reduce the SRAM requirements to less
than 16 KB. That corresponds to one cache block of the L2 memory. The SRAM requirement of 16
KB or less gives 48 KB of L2 cache space and 3-way associativity. The associativity is as important
as the amount of the cache space itself, because more associativity means that the data or
instruction can be cached from more locations of the next level memory (external memory for the L2
cache) simultaneously. For example, 2-way associativity cache has to thrash the Lease Recently
Used (LRU) cached-data when the third data is cached, while 3-way associativity cache can still
cache the third data without thrashing any of the already cached data.

While the internal data and program memory requirement should be minimized from the view of
the L2 memory, the data memory requirement should be matched with the maximum utilization
of the L1 data cache. The major buffers in the internal memory should fit into the 4 KB, 2-way L1
data cache space to prevent undesired cache thrashing during repetitive kernel calls inside the
main loop.

Table 4 shows the performance variations according to the various L2 cache configurations for
several image resolutions. Assuming the performance of 48 KB cache / 16 KB SRAM as 100 %,
the average performance at 16 KB cache / 48 KB SRAM is less than 90 % for the encoder and
less than 95% for the decoder.

SPRA705

18 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

 Table 4. Performance Analysis on Various L2 Cache Configurations

Image Performance (%)

Resolution Encoder (Cache/SRAM) Decoder (Cache/SRAM)

W H 48/16 KB 32/32 KB 16/48 KB 48/16 KB 32/32 KB 16/48 KB

256 256 256 100 100 100 100 100 93

CIF 352 288 100 100 86 100 100 94

VGA 640 480 100 97 89 100 100 94

SDTV 720 480 100 97 90 100 100 94

To fit the requirement of the 16 KB L2 SRAM for the internal memory, the current C6211 JPEG
code was constructed such that the encoder requires 11 KB of internal SRAM space and the
decoder requires 14 KB. However, the actual usage of SRAM space is 16 KB for both the
encoder and decoder, since the L2 memory is divided into a multiple of 16 KB and only 48KB of
memory is used as L2 cache even though we use less SRAM than 16 KB. The 16 KB SRAM
space mainly includes the stack space plus additional blocks like .bss, .const or user-defined
table sections in the current implementation of the TI JPEG code.

6.5 Code Alignment for the L1 Instruction Cache Operation

The L1I is a one-way 4KB instruction cache on the L1 level of the memory hierarchy. Unlike data
caches which need at least 2-way associativity, instructions usually do not have to be written
back to the original memory location after processing and are very sequential. That is why multi-
way is not a critical issue for instruction caches.

Because the L1I cache is direct mapped, each address maps to a unique location within the
cache. The replacement scheme is straightforward and implemented by masking off the upper
20 bits of the requested address and mapping the lower 12 bits to the physical RAM address of
the cache. L1I address is organized as tag, set and offset. Tag is the upper 20 bits, set is the
next 6 bits, and offset is the lower 6 bits.

There will be virtually no instruction cache miss inside the major loop which takes most of the
total cycles, if all the critical kernels including corresponding main control code within the major
loop can fit into the 4 KB L1I cache.

The TI JPEG code is too large an application to fit into the 4KB L1I cache, so we could not take
the desired advantages by aligning instructions in an L1I friendly manner. For example, the code
sizes of the critical kernels inside the major loop of the JPEG decoder are:

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 19

JPG_luma_vld() 3A0h bytes

JPG_chroma_vld() 3A0h bytes

ac_vld_decode() 340h bytes

rld_dequant() 180h bytes

jpegidct() 540h bytes

reformat() 160h bytes

Total 12A0h bytes (4.66 KB)

The code size of all the kernels, 4.66 KB, plus the corresponding code size of the control logic
inside the major loop exceeded the 4KB capacity of the L1I. In addition, DAT_CopyXX() of the CSL
is included to transfer the processed data to the external memory. It occupies 0.5 ~ 1 KB of
memory. Therefore, at least a few kernels are expected to be partially thrashed from the L1I
cache during every iteration.

Our experiments showed that intentionally aligned codes slightly increased the total cycles counts,
less than 0.5%, compared to the cycle counts without intentional code alignment. This is because
non-aligned codes have less overlapped instructions in between the critical kernels above.

Another experiment resulted in slight improvement. Since JPG_luma_vld() is used only for
luminance processing and JPG_chroma_vld() only for chrominance processing and they are
guaranteed not to be used in combination in a single iteration, we aligned the other kernel codes
sequentially and placed JPG_luma_vld() and JPG_chroma_vld() exactly 4KB apart from each
other, which resulted in those two kernels overlapping in the 4 KB L1I range.

Figure 4 illustrates the code alignment explained above. Kernels A1 and A2 in the figure indicate
JPG_luma_vld() and JPG_chroma_vld() . Other kernels are illustrated as B, C and D. The
processing sequence is A1-B-C-D for luminance processing and A2-B-C-D for chrominance
processing. Before the alignment, kernels A1 and D are thrashed during every iteration of the
luminance processing, since they occupy the same portion of the L1 instruction cache. The
kernels A2 and D are not thrashed for chrominance processing.

After the code alignment, either order of iteration, A1-B-C-D or A2-B-C-D, does not affect the
efficiency of the L1I. This technique improved the performance by 0.5% for 128x128 image and
0.7% for CIF (352x288) image. Part of the control logic code can be cached in-between the
kernels, causing the overlapping and thrashing of the kernels, but both of the alignment methods
in Figure 4 have the same possibility of the overlapping. Thus, the alignment technique is still
applicable, regardless of the existence of control logic.

SPRA705

20 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

Kernel A1

Kernel A2

Kernel B

Kernel C

Kernel D Kernel A1

Kernel B

Kernel C

Kernel D

Kernel A2

4 KB

 Figure 4. Code Alignment by Locating Two Kernels 4 KB Apart from Each Other

The improvement of 0.5% may not be noticeable. However, considering the alignment was done
only on some of the kernels, we may get better results when the code alignment is applicable to
all of the critical kernels. It is advantageous that this improvement can be obtained simply by
aligning kernel codes to fit optimally within the L1 cache, without any coding effort.

Even though the current JPEG is not a good candidate for the code aligning technique, it may be
useful to apply the idea to other C6211 applications, since it may boost the performance without
any coding effort or extra complication.

6.6 Efficient DMAs Maximizing Double Buffering Scheme

Many DSP applications require Direct Memory Access (DMA) in the background, since DSPs
usually have limited amount of internal memory for both program and data, while enough
external memory space can be supported as needed. The TMS320C6211 has 64 KB of user-
configurable internal memory space. Even with this limited space, the JPEG encoder and
decoder uses only 16KB of the internal L2 memory each as SRAM because of the performance
issues related with L1 and L2 cache operation as mentioned earlier.

The TMS320C6000 family of VLIW DSPs has a separate DMA controller which controls data
transfers without imposing extra burden on the CPU. The TMS320C6201 has efficient DMA
functions with 4 channels. A new mechanism, EDMA, was added to TMS320C6211, to enhance
the existing C6201 DMA, including link capabilities and up to 16 channels.

The QDMA, or quick DMA, controller supports the same transfer modes as the EDMA
mechanism, however, it is quicker to submit. EDMA may be used for periodic real-time
peripheral servicing, but QDMA is very suitable for the JPEG implementation, since all the data
are transferred in blocks.

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 21

The QDMA controller supports various dimensionalities, 1D, 1D-to-2D, 2D-to-1D and 2D-to-2D
transfers. However, because the QDMA does not support 2D-to-2D DMA with separate pitches
for source and destination, it is important to reorganize, if needed, the buffers not to require such
DMAs. It will introduce possibly severe extra overhead to trigger 8 times of 1D DMAs as an
alternative of the 2D-to-2D DMA with separate pitches or trigger any type of DMA that is not
supported by the QDMA controller. The current JPEG utilizes the 1D DMA for the encoder
output and the decoder input to transfer the JPEG bitstreams. Also used are 2D-to-1D and 1D-
to-2D DMAs for the encoder input and the decoder output, where 2D means raster scan format
and 1D means reformatted form as a series of 8x8 blocks data for more efficient processing. A
double buffering scheme is used in the same way as in the JPEG implemented on
TMS320C6201 [3].

6.7 Performance-Critical Compiler Options

There are several performance-sensitive compiler options. First, you may want to choose the
maximum optimization level of compilation by setting ‘-o3’. ‘-g’ option is used for debugging and
testing purpose and adds 5~10 % overhead, so ‘-g’ or ‘-mg’ must be removed for the final
performance.

Another critical option is ‘-mt’, which assumes that certain aliasing techniques are not used. This
may boost up to 20~30 % of the overall performance depending on the applications. Table 5
shows the impact of the ‘-mt’ option in the total cycles of the JPEG decoder with a 128x128
image. The JPEG decoder achieved 13.4 % performance improvement by simply adding the
option ‘-mt’.

The JPEG decoder includes 2 hand-coded assembly kernels that consume 47 % of the overall
CPU cycles. Those hand-coded kernels are not affected by the compiler options. The actual
improvement for the ‘C’ kernels, therefore, is not 13.4 %, but 25.3 % (=13.4/53.0). The ‘C’
portion of the TMS320C6000 applications improve up to 30 % depending on the applications.

The option ‘-mt’ must be used extremely carefully because of the restrictive assumptions on the
aliasing of pointers. Those assumptions are described in detail in [7]. If any of the aliasing
techniques in [6] is used, ‘-ma’ must be used instead of ‘-mt’, which will add extra overhead. The
JPEG encoder and decoder are free from those assumptions, giving the best performance with
the ‘-mt’ compiler option.

 Table 5. The Impact of ‘-mt’ Option on the JPEG Decoder Performance

Compiler options W H Cycles Clk/Blk Frm/s Performance (%)

 ‘-o3 –ml0 –mt’ 128 128 420,209 1,094 356.97 113.4

 ‘-o3 –ml0 -ma’ 128 128 485,200 1,264 309.15 98.2

 ‘-o3 –ml0’ 128 128 476,337 1,240 314.90 100.0

SPRA705

22 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

6.8 General Optimization Techniques for the TMS320C6000 DSP Family

Double buffering frees the CPU from the heavy load of data transfers in many image and video
processing applications, utilizing the capability of the DMA or EDMA controller provided by the
TMS320C6000. The idea is to parallelize the CPU processing and the data transfer by the DMA
or EDMA controller with two same-sized buffers. On the input side of the DMA, one buffer is
used as an active buffer for data processing and the other is used as a passive buffer for data
transfer until the active buffer is emptied by the processing and the passive buffer is filled by the
DMA-in transfer from external memory. The two buffers are switched for the next run, and so on.
On the output side of the DMA, the active buffer is filled with the processed data by the CPU and
the passive buffer is emptied by the DMA-out transfer. The JPEG encoder and decoder adopt
double buffering at both ends of the application, input and output. All the data transfers are on
background except the pre-fetch of the first input DMA packet and the post-delivery of the last
output DMA packet.

The TMS320C6211 has 64 KB of internal memory space and it is recommended to use as many
L2 cache blocks as possible as explained in section 6.4. Since programs are usually sequential
and cached very well via the L1 instruction cache and the L2 cache, the code may be placed in
the external memory.

The buffers for double buffering scheme must be placed in the internal memory whether they are
in the stack or heap, because external to external DMAs are not only very slow but also
undesirable. In addition, there is a critical issue on the external coherency with the internal
memories, which is described in the following section. Other sections can be placed in the
external memory, but it is highly recommended to put the frequent user-defined tables in the
internal memory as long as the memory requirement allows, preferably within one block of 16KB
L2 memory.

6.9 Avoiding Undesired L2 Cache Corruption

Due to the multi-level memory hierarchy and the lack of coherency between the L2 memory and
the external memory on the TMS320C6211, it is not recommended to access external memory
locations directly and by DMA at the same time. This may cause CPU or DMA controller to
access old data in the external memory while new data is still in cache space.

6.10 Coherency

Coherency is maintained by tracking the state of lines in the L1D and L2. The coherency
between the data and instructions side was removed to simplify the architecture, which removes
significant hardware complexity and speed paths, at the cost of hardware supported self-
modifying code. Another hardware simplification is that external memory coherency is not
maintained with the L1D and L2. Since many applications including the JPEG implementation
does not cache instructions into the L1 data cache, the coherency between L1I and L1D is not a
usual problem for many applications. Self-modifying codes will be required for the rare
applications that cache instructions into the L1D. However, external coherency may affect
applications like JPEG.

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 23

There are three types of possible cache corruption caused by lack of the external coherency with
the internal L1/L2 memory. The DMA may read old data when the CPU writes to an external
memory location and the DMA reads the data, since the data written by the CPU stays in the
L1/L2 space instead of being actually written to the external memory location. The CPU may
read old data when the DMA writes first and then the CPU reads. Correctness is not guaranteed
when the CPU and the DMA write to the same external location, since the CPU write may not be
directly written to the memory location. Following examples illustrate these three cases in detail.

6.10.1 CPU Writes and DMA Reads Old Data

Following is a simple example code illustrating how the lack of external coherency can result in
corrupted data for the DMA data transfer.

 Val = *val_adrs; /* *val_adrs = 10 */

val_adrs = val + 10; / *val_adrs = 20 */

DMA from val_adrs to destination; /* transfer 20 to dest adrs */

The DMA in the code above must transfer the value ‘20’, it is not intending to transfer the value
‘10’. However, it is possible for the DMA to transfer ‘10’ if the pointer val_adrs is located in the
external memory where coherency is not maintained with the internal memory.

Figure 5 shows how the lack of external coherency can affect the correctness of the data written
by the CPU.

1. The CPU reads data from an external memory location. The data is cached into the L2
memory and then cached into the L1 data cache. Now the same data resides in 3
locations, the original location, the L2 cache and the L1 data cache. Coherency is
maintained between the L1D and the L2.

2. CPU processes the read data and writes to the original location. However, due to the
cache, the data is written to the L1D or L2 cache space and stays there, not directly going
to the original location.

3. DMA reads the original external location and the data is not updated yet due to the lack of
the external coherency.

SPRA705

24 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

CPU L1D L2

DMA

 Ext.
 Mem

1

2
3

4

 Figure 5. Example of ‘CPU Write and DMA Read’

To maintain the external coherency, the write back from the L2 location to the external location
should be done before the DMA reads the data. It will be guaranteed that the DMA reads correct
new data if the operation is in the order of ‘1-2-4-3’. The TMS320C6211 provides simple ways to
maintain the coherency by software. It maintains the coherency by write-back with invalidation to
the external location, cleaning the L2 cache (L2CLEAN), or flushing the L2 cache (L2FLUSH)
before the DMA accesses the external location to read. A set of memory-mapped registers is
provided to do these operations. Details are described in [4] and [5]. Below is the correct code
including the write back operation.

Val = *val_adrs; /* val = 10 */

val_adrs = val + 10; / val = 20 */

L2CLEAN = 0x01; OR CACHE_Clean(CACHE_L2, start_adrs, end_adrs);

DMA from val_adrs to destination; /* transfer 20 to destination address */

The first method is directly setting the memory-mapped register, L2CLEAN, to trigger cleaning
operation for the L2 cache [4] and the second method is using the CACHE_Clean() function
provided by the Chip Support Library (CSL) [5].

This type of cache corruption happened in the early stage of the JPEG encoder implementation.
The encoder output, i.e. the JPEG bitstream, was partially corrupted containing a few horizontal
lines in the output image. The lines usually corresponded to 64 pixels (bytes) and the locations
of the lines were almost random, but appeared to have a dependency on the previously
processed image.

Below is a part of the old driver file for the JPEG encoder.

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 25

int main()

{

 /*=== read Y/Cb/Cr from 3 separate input files ===*/

 infile = fopen("input_file", "rb");

 fread (external_input_adrs, sizeof(unsigned char), width*height, infile);

 fclose(infile);

 /*=== Set Init parameter values in JPG_params [STRUCT] ===*/

 jpg_params.var1 = 1; jpg_params.var2 = 2;

 /*=== Call the JPEG Encoder() ===*/

 ret_val = jpgenc_ti (jpg_params, external_input_adrs, external_output_adrs);

 /*=== Save the JPEG bitstream in output file ===*/

 outfile = fopen("output_file.jpg", "wb");

 ret_val = fwrite(external_output_adrs, sizeof(char), ret_val, outfile);

 fclose(outfile);

}

There was no coherency maintained between the L2 cache and the external memory, since the
encoder processing started right after the fread() operation. The fread() was performed by the CPU
and the CPU utilized the internal cache space, the L1D and the L2 cache. Thus, there were a few lines
left in the cache even when the fread() operation was finished. Some of the lines in the external
memory still had the previous image data when running multiple images, or bogus data when starting
from rebooting, since the new data was not updated from the internal cache memory yet. The DMA of
the JPEG encoder transferred the image data from the external memory to the internal data buffer,
while some of the lines were still bogus or previous data. This is why the corruption depended on the
previously processed images.

Flushing the L2 cache between the fread() operation and the encoder processing completely
prevented the corruption.

6.10.2 DMA Writes, CPU Reads Old Data

0 shows how the DMA reads old data due to lack of external coherency.

1. The CPU reads data from an external memory location. The data is cached into the L2 memory
and then cached into the L1 data cache. Now the same data resides in 3 locations, the original
location, the L2 cache and the L1 data cache. Coherency is maintained between the L1D and
the L2.

2. The DMA writes new data to the original external location and the data stays only in external
memory, not being updated to the internal cache space.

SPRA705

26 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

CPU L1D L2

DMA

 Ext.
 Mem

1

3
2

4

 Figure 6. Example of ‘DMA Write and CPU Read’

3. Now the CPU tries to read access the external location. The CPU looks for the data in the
cache first, the L1D or the L2 and finds the data is still valid and not corrupted, since the
DMA updated only the external location. The CPU reads the old data from the L2, not the
new data from the external location.

To maintain the coherency, the old data in the cache space must be invalidated right after the
DMA writes to the external location. The CPU accesses the new data for the next CPU read,
once the old data is invalidated, since the CPU cannot find the data until it reaches the external
location. The CPU brings the new data to the L2 cache and then to the L1D cache and finally to
the CPU. The order of ‘1-2-4-3’ is the correct operation and always guarantees that the CPU
reads the new data. Invalidation is the only solution for this case, since other L2 operations like
L2CLEAN/L2FLUSH write the cached data back to the external locations. There are two ways for
the invalidation again, setting memory-mapped registers [4] and using CSL [5].

IIBAR = start_address; IIWC = number of words to invalidate; /* direct setting */

OR

CACHE_Invalidate(CACHE_L1DALL, 0x00, 0x00); /* Chip Support Library */

6.10.3 Reordered CPU-DMA Writes

This case is less common than the former two cases, since the DMA or peripherals usually do
not have to overwrite the data written by the CPU. However, this may happen when the CPU
initializes a range of the external memory space and then the DMA writes to the range. Figure 7
shows how the reordering can occur.

1. The CPU initializes a range of the external memory, i.e. writes an initialization value to
the range. The initialization data stays in the L2 cache instead of going to the external
memory for some cache lines.

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 27

2. The DMA writes new data to the range of address.

3. The Initialization data is evicted to the external memory after the DMA write, which causes
the reordering of the writes. The initialization data overwrites the new data from the DMA.
The CPU will get the initialization value instead of the new data for the next read-access.

CPU L1D L2

DMA

 Ext.
 M em

1

1a
2

3a

 Figure 7. Example of ‘Reordered Writes’

To maintain external coherency, the initialization must be completed before the DMA accesses
the range of memory for write-transfer. All initialization data should be written to the external
memory before the DMA. It is the write-back operation to guarantee all the dirty cache lines in
the L1D/L2 are evicted to the external locations.

For all the three scenarios on cache corruption, the DMA represents any peripherals, which
access the data written by the CPU or provide data for the CPU. The coherency problem is
between the CPU and any peripheral, not just between the CPU and the DMA.

Different L2 configurations do not affect these scenarios, since the external coherency is not
maintained either with the L1D or the L2 space. Even when the L2 is used in SRAM only mode,
this coherency problem occurs between the L1D and the external memory. Cache clean and
cache flush can be used as alternatives of the write back for the first and the third scenarios, but
invalidation is the only solution for the second scenario.

7 Results

We have reviewed all possible optimization techniques on the TMS320C6211 except those
techniques covered in the C6201 JPEG application note [3]. As a result of the optimization effort,
Table 6 shows comparable performance to the C6211 JPEG encoder/decoder implementations
when using the user-designed DMA routines.

SPRA705

28 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

 Table 6. The C6211 JPEG Performance Over the C6201 JPEG Without CSL

Img Res. ENCODER
vs. 6201

(%)

DECODER
vs. 6201

(%)

W H Cycles Clk/Blk Frm/s cycles Clk/Blk Frm/s

128 128 128 392,885 1,023 382 89.5 400,647 1,043 374 94.5

256 256 256 1,416,884 922 106 90.6 1,384,283 901 108 90.7

CIF 352 288 2,176,496 916 69 88.5 2,077,660 874 72 89.7

VGA 640 480 6,289,602 874 24 89.5 5,773,518 802 26 89.2

SDTV 720 480 7,056,311 871 21 89.1 6,466,665 798 23 88.9

Note: All performance data is for 4:2:0 imagery.

Table 7 shows the performance when using the CSL-DMA routines, DAT_CopyXX() . The addition
of the CSL DMA (DAT) to the C6211 JPEG implementation introduced 2~4 % of extra overhead
depending on the image resolutions. The reasons are:

• The DAT DMA routines provided by the CSL are not as efficient as the user-defined DMA
routines. Since the DAT modules had to take care of all the c62x family, they have bigger
code sizes.

• The overhead of adding CSL to C6201 JPEG was within 1% while that of the C6211 JPEG
was 4~7 %. This is because the old user-defined DMA routines on the C6201 were written
in ‘C’ and not efficient.

• The addition of CSL slightly reduced the advantage of code alignment for the L1 instruction
cache.

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 29

 Table 7. The C6211 JPEG Performance Over the C6201 JPEG with CSL

Img Res. ENCODER DECODER

W H Cycles Clk/Blk Frm/s vs. 6201
(%)

cycles Clk/Blk Frm/s vs. 6201
(%)

128 128 128 420,997 1,096 356 83.5 422,762 1,101 355 88.0

256 256 256 1,504,753 980 100 86.2 1,416,647 922 106 87.7

CIF 352 288 1,504,753 971 65 84.3 2,122,491 893 71 87.1

VGA 640 480 6,605,576 917 23 86.0 5,843,410 812 26 87.5

SDTV 720 480 7,393,523 913 20 85.8 6,537,918 807 23 87.5

Note: All performance data is for 4:2:0 imagery.

8 Conclusion

All the optimization techniques have been reviewed to achieve the best performance on the
TMS320C6211, the high performance VLIW DSP with dual level cache. It has internal memory
of 4 KB each for L1D and L1I and 64 KB of unified L2 cache. The primary factor for the best
performance was the L1D optimization as well as optimization of L2 and L1I performance. Other
optimization techniques also have been reviewed including efficient use of DMAs and critical
compiler options, and a few more common optimization techniques on the TMS320C6000
family.

After all these techniques are integrated, the JPEG implemented on TMS320C6211 performed
up to 90 % without CSL and up to 88 % with CSL, compared to the performance of the
TMS320C6201, the high performance DSP with 64KB each of data and program memory. As
mentioned earlier, because of the L1D cache size, the performance of the C6211 JPEG can vary
depending on the image resolutions. Images with width dimension that is a multiple of 128
usually resulted in better performance than others, since both the encoder and the decoder have
limited internal buffers of size 2KB corresponding 128 x 8 pixels. The overall performance
achieved before adding Chip Support Library was around 89 ~ 90 % of the C6201 JPEG for the
common image formats like CIF, VGA and SDTV.

The optimization techniques introduced in this note can be applied to virtually any application on
the TMS320C6211.

SPRA705

30 Optimizing JPEG on the TMS320C6211 2-Level Cache DSP

9 References

1. International Standard DIS 10918-1 CCITT Recommendation T.81, Digital Compression and
Coding of Continuous-tone Still Images

2. JPEG STANDARDS by William B. Pennebaker and Joan L. Mitchell

3. Implementing JPEG on the TMS320C6x, application note

4. TMS320C6211 Product Specification, rev 1.31

5. TMS320C6000 Chip Support Library API Reference Guide

6. TMS320C62x IMGLIB User’s Guide

7. TMS320C6000 Optimizing C Compiler (SPRU 187E)

8. TMS320C6000 CPU and Instruction Set Reference Guide (SPRU 190)

9. TMS320C6000 Peripherals Reference Guide (SPRU 190)

10. The eXpressDSP Algorithm Standard (SPRA 581)

11. eXpressDSP Algorithm Standard Rules and Guidelines (SPRU 352)

12. eXpressDSP Algorithm Standard API Reference (SPRU 360)

http://www-s.ti.com/sc/techlit/spru187
http://www-s.ti.com/sc/techlit/spru190
http://www-s.ti.com/sc/techlit/spru190
http://www-s.ti.com/sc/techlit/spru352
http://www-s.ti.com/sc/techlit/spru360
http://www-s.ti.com/sc/techlit/spra581

SPRA705

Optimizing JPEG on the TMS320C6211 2-Level Cache DSP 31

Appendix A. Controlling L2 Cache and DMAs Using CSL APIs

This is a brief summary on CSL API functions used in the JPEG encoder and decoder
implementation. More details are found in [5].

L2 Cache APIs

CACHE_Clean: cleans a specific cache region

CACHE_EnableCaching: Enables caching for a specified block of address space

CACHE_Flush: Flushes a region of cache

CACHE_Invalidate: Invalidates a region of cache

CACHE_SetL2Mode: Sets L2 cache mode

DMA APIs (DAT APIs are architecture independent)

DAT_Close: Closes the DAT module

DAT_Copy: Copies a linear block of data from Src to Dst using DMA or EDMA hardware

DAT_Copy2D: Performs a 2-dimensional data copy using DMA or EDMA hardware

DAT_Fill: Fills a linear block of memory with the specified fill value using DMA or EDMA
hardware

DAT_Open: Opens the DAT module

DAT_Wait: Waits for a previous transfer to complete

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

	Abstract
	Contents
	Figures
	Tables
	1 The JPEG (ISO DIS 10918) Standard
	2 Restrictions
	2 3 4
	3 eXpressDSP Algorithm Standard Compliancy
	4 Encoder
	4.1 Description
	4.2 Encoder API
	4.3 Encoder Performance
	5.1 Description
	5.2 Decoder API
	5.3 Decoder Performance

	6 Optimization Techniques for the TMS320C6211
	6.1 Basic Understanding of the TMS320C6211 2-level Cache Architecture
	6.2 Memory-mapped L2 Control Registers for Cache Operations
	6.3 Optimal Data Size for L1 Data Cache Operation
	6.4 Performance Issues on L2 Cache/SRAM Configuration
	6.5 Code Alignment for the L1 Instruction Cache Operation
	6.6 Efficient DMAs Maximizing Double Buffering Scheme
	6.7 Performance-Critical Compiler Options
	6.8 General Optimization Techniques for the TMS320C6000 DSP Family
	6.9 Avoiding Undesired L2 Cache Corruption
	6.10 Coherency
	6.10.1 CPU Writes and DMA Reads Old Data
	6.10.2 DMA Writes, CPU Reads Old Data
	6.10.3 Reordered CPU- DMA Writes

	7 Results
	8 Conclusion
	9 References
	Appendix A: Controlling L2 Cache and DMAs Using CSL APIs
	IMPORTANT NOTICE

