
Application Report
SPRA595

Digital Signal Processing Solutions September 1999

TMS320C6000 McBSP: I2S Interface
Todd Hiers / Rebecca Ma Digital Signal Processing Solutions

Abstract
This document describes how to use the multichannel buffered serial port (McBSP) in the
Texas Instruments (TI) TMS320C6000 digital signal processors (DSP) to interface with
devices that conform to the Inter-IC Sound (I2S) specification. I2S is a protocol for
transmitting two channels of digital audio data over a single serial connection.

The flexible McBSP in the TMS320C6000 supports the I2S specification by simple setup
of the serial control registers. The McBSP is capable of generating all of the necessary
clocking signals to act as the I2S master. The McBSP is also capable of receiving the
clocking signals to be the I2S slave. The dual-phase transmit/receive mode of the McBSP
is easy to configure for transmitting the left and right audio channels.

To make processing the audio data easier, it can be deinterleaved after reception or
reinterleaved before transmission automatically by the DMA controller. Using
autoincrementing and indexing with the proper index increment values, the DMA will fill or
draw from separate left and right channel buffers for reception or transmission.

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 2

Contents

Design Problem...3

Overview ...3

McBSP Setup ..4
Master Mode ..5
Slave Mode ..7

Receiving/Transmitting I2S Data...9

Conclusion ..11

Sample C Functions ..11

References..19

Figures
Figure 1. I2S Timing Specification...3
Figure 2. I2S Modes of Operation ..4
Figure 3. Pin Control Register (PCR)..5
Figure 4. Receive Control Register (RCR) ..6
Figure 5. Transmit Control Register (XCR) ...6
Figure 6. Sample Rate Generator Register (SRGR) ..7
Figure 7. Receive Control Register (RCR) ..8
Figure 8. Transmit Control Register (XCR) ...8
Figure 9. Pin Control Register (PCR)..8
Figure 10. DMA Sorting ...10

Tables
Table 1. Bit-Field Values for Pin Control Register...5
Table 2. Bit-Field Values for Receive/Transmit Control Register...6
Table 3. Bit-Field Values for McBSP Registers ..7
Table 4. Bit-Field Values for McBSP Registers ..9

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 3

Design Problem
How can the multi-channel buffered serial port (McBSP) in a TMS320C6000 digital signal
processor be used for transmitting audio data in I2S format?

Overview
The Inter-IC Sound (I2S) serial interconnect format is a popular standard for the
exchange of stereo digital samples between two devices on a printed circuit board. The
multi-channel serial port (McBSP) on the TMS320C6000 family of digital signal
processors is flexible enough to talk to most devices supporting the I2S standard.

The I2S bus is a three-wire connection that exclusively handles two time-multiplexed data
channels. Other information such as sub-coding and control are transferred separately.
The three lines are the bit clock (SCK), the word select line (WS), and the serial data line
(SD). The master device on the bus is responsible for generating appropriate SCK and
WS signals, and the transmitting device (which may or may not be the master device)
places the appropriate serial data on the bus. Data is transmitted MSB first, alternating
left and right channel data words, with left channel data on the bus while WS is low and
right channel data on the bus while the WS line is high. Figure 1 shows a timing diagram
of bus data.

The I2S specification is flexible enough that receivers and transmitters need not agree on
a word size. Since data is transmitted MSB first and each new word is indicated by a
transition in WS, the slave device can determine the appropriate word size by the
master’s signals on the fly. However, when using the 'C6000 as the slave device, this
automatic word size detection is not possible.

Figure 1. I2S Timing Specification

LSB (n)MSB (n)LSB (n-1)

Word n-1
Right Channel

Word n
Left Channel

Word n+1
Right Channel

MSB (n+1)

SCK

WS

SD

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 4

McBSP Setup
The McBSP conforms to the I2S interface by using the frame syncronization signal (FSX
or FSR) as the WS signal, the bit clock (CLKX, CLKR, or CLKS) as SCK, and the data
pins (DR and DX) as the SD line. The actual signals used depend the DSP’s role as
master or slave and its role as transmitter or receiver. Only one device on the I2S bus can
be the master, since the master is responsible for generating the clocking signals. The
McBSP can be both a transmitter and receiver simultaneously, allowing for continuous
data exchange. This capability is possible when the I2S device is similarly capable of
simultaneous reception and transmission. In this setup, there are two SD lines, both of
which are clocked by SCK and WS. One SD line handles the data transfer from the DSP
to the I2S device, while the other handles data from the I2S device to the DSP. Figure 2
illustrates the different possible configurations of I2S operation. The bottom
configurations in Figure 2, which are supersets of the ones above, are described in this
application report.

Figure 2. I2S Modes of Operation

I2S Device
(Receiver)

Slave

DSP
(Transmitter)

Master

SCK CLKX

WS FSX

SD DX

I2S Device
(Transmitter)

Slave

DSP
(Receiver)

Master

SCK CLKX

WS FSX

SD DR

I2S Device
(Receiver)

Master

DSP
(Transmitter)

Slave

SCK CLKR

WS FSR

SD DX

I2S Device
(Transmitter)

Master

DSP
(Receiver)

Slave

SCK CLKR

WS FSR

SD DR

I2S Device
(Transmitter/

Receiver)

Slave

DSP
(Receiver/

Transmitter)

Master

SCK CLKX

WS FSX

SD DR

I2S Device
(Transmitter/

Receiver)

Master

DSP
(Receiver/

Transmitter)

Slave

SCK CLKR

WS FSR

SD DR

SD DX SD DX

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 5

Master Mode

Pin Control Register (PCR)

As the I2S master device, the DSP generates the serial clock (SCK) and word select
(WS) signals. CLKX and CLKR are configured as output pins and are used as the serial
clock. FSX and FSR are also configured as output pins so that either may be used as the
WS signal. The frame synchronization polarity bits (FSXP/FSRP) in PCR determine if the
frame begins with left channel data or right channel data. The FSXP and FSRP bits
should have the same value. Table 1 and Figure 3 show the Pin Control Register settings
for I2S master mode.

Figure 3. Pin Control Register (PCR)

31 16
0x0000

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

rsv XIOEN RIOEN FSXM FSRM CLKXM CLKRM rsv CLKS_STAT DX_STAT DR_STAT FSXP FSRP CLKXP CLKRP

Table 1. Bit-Field Values for Pin Control Register

Register
[bit-field #]

Bit-field
Name

Value
(in binary)

Function

PCR[11] FSXM 1 FSX is output pin

PCR[10] FSRM 1 FSR is output pin

PCR[9] CLKXM 1 CLKX is output pin

PCR[8] CLKRM 1 CLKR is output pin

PCR[1] CLKXP 0 Data is clocked out on the rising edge of SCK

PCR[0] CLKRP 0 Data is sampled in on the falling edge of SCK

Receive/Transmit Control Register

The McBSP is set to dual-phase frame mode by setting the appropriate bits (R/XPHASE)
in the receive/transmit control registers (R/XCR). One phase is for left-channel data, and
the other is for right-channel data. The data word length is set to the appropriate value for
both phases (R/XWDLEN1/2 in R/XCR). The number of words in each phase of the
frame is set to 1 (R/XFRLEN1/2 in R/XCR = 0). New data words begin one SCK cycle
after a change in the WS line (R/XDATDLY in R/XCR = 1). Figure 4 and 5 and Table 2
show the Receive/Transmit Control Register settings with 32-bit data.

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 6

Figure 4. Receive Control Register (RCR)

31 30 24 23 21 20 19 18 17 16
1 000 101 00 1 1

RPHASE RFRLEN2 RWDLEN2 RCOMPAND RFIG RDATDLY

15 14 8 7 5 4 0
0 000 101 0

reserved RFRLEN1 RWDLEN1 Reserved

Figure 5. Transmit Control Register (XCR)

31 30 24 23 21 20 19 18 17 16
1 000 101 00 1 1

XPHASE XFRLEN2 XWDLEN2 XCOMPAND XFIG XDATDLY

15 14 8 7 5 4 0
0 000 101 0

reserved XFRLEN1 XWDLEN1 Reserved

Table 2. Bit-Field Values for Receive/Transmit Control Register

Register
[bit-field #]

Bit-field
Name

Value
(in binary)

Function

RCR[31] RPHASE 1 Dual Phase Receive

RCR[7-5] RWDLEN1 101 32 bits Receive Word Length (Phase 1)

RCR[23-21] RWDLEN2 101 32 bits Receive Word Length (Phase 2)

RCR[14-8] RFRLEN1 0 1 word Receive Frame Length (Phase 1)

RCR[30-24] RFRLEN2 0 1 word Receive Frame Length (Phase 2)

XCR[31] XPHASE 1 Dual Phase Transmit

XCR[7-5] XWDLEN1 101 32 bits Transmit Word Length (Phase 1)

XCR[23-21] XWDLEN2 101 32 bits Transmit Word Length (Phase 2)

XCR[14-8] XFRLEN1 0 1 word Transmit Frame Length (Phase 1)

XCR[30-24] XFRLEN2 0 1 word Transmit Frame Length (Phase 2)

Sample Rate Generator Register (SRGR)

The frame sync signal is configured by setting the frame width field (FWID), the frame
period field (FPER), and the frame synchronization bit (FSGM) in the sample rate
generator register (SRGR). The FSGM bit forces the frame sync to be generated based
on the serial clock regardless of the availability of data in DXR. In this mode, a new frame
sync is generated every FPER + 1 serial clock cycles, and the signal is held active (either
indicating a left or right channel word depending on the polarity bit) for FWID + 1 serial
clock cycles. In this way, it is possible to create waveforms with various periods and duty
cycles on the FSX pin.

For I2S, the frame period must be twice the word length, and the frame width must be the
word length. Therefore, FPER in SRGR should be set to (2 * word length – 1), and FWID
in SRGR should be set to (word length – 1). This allows the FSX pin to be the WS line for
transmission/reception of left and right channel data, as the WS line is held low for one
word length, then high for one word length.

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 7

Finally, since the clock signals are generated by the McBSP, the serial clock must be set
to an appropriate speed. The device being interfaced to determines the maximum speed
at which the serial clock can run. Although other setups are possible, the most practical
setup is to have the CPU clock derive the serial clock, with an appropriate divide-down
factor. Alternatively, CLKS can be generated from an external oscillator that runs at a
multiple of the sampling frequency. For example, if 48KHz sampling is desired and the
left and right channels contain a single 32-bit word, CLKS can be driven by a 3.072MHz
(32 x 2 x 48KHz) oscillator. The sample rate generator clock divider (CLKGDV) field of
SRGR must be chosen such that (CPU clock frequency) / (2 * word length * (CLKGDV +
1)) is less than or equal to the I2S device’s maximum sampling/output frequency.

Figures 6 and Table 3 show the SRGR settings for I2S master mode with the serial clock
as the CPU clock divided by 71.

Figure 6. Sample Rate Generator Register (SRGR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 0 1 1 63

GSYNC CLKSP CLKSM FSGM FPER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
31 70

FWID CLKGDV

Table 3. Bit-Field Values for McBSP Registers

Register
[bit-field #]

Bit-field
Name

Value
(in binary)

Function

SRGR[28] FSGM 1 Frame Sync generated by sample rate generator

SRGR[27-16] FPER 111111 (63) 64 Cycle Frame Period

SRGR[15-8] FWID 11111 (31) 32 Cycle Frame Active Duration

SRGR[7-0] CLKGDV 1000110 (70) CLKX = CPU clock divided by 71

Slave Mode

I2S slave mode is simpler to implement than master mode because the slave is not
responsible for generating any frame or clock signals. The McBSP must simply accept
the incoming clock and frame sync signals generated by the master device. In this case
the CLKX, CLKR, FSX, and FSR pins are configured as input pins (which is the default
setting). Clearing bits CLKXM, CLKRM, FSXM, and FSRM in PCR will set those pins as
inputs.

The R/XCR settings are the same as for master mode, since the same data scheme is
implemented. The SRGR does not need to be set up since external clocks and frames
are provided. Dual-phase mode with one word per phase and the appropriate word size
should be specified by setting the appropriate fields in R/XCR. Specifically, set
R/XPHASE to 1, R/XFRLEN1/2 to 0, and R/XWDLEN1/2 to the appropriate value for the
chosen word size.

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 8

Since the WS signal is understood by the McBSP as a frame sync signal and not a true
word select signal, it must know the data word size ahead of time. If the McBSP is not
properly set up with the correct word size, incorrect data will be sent and received. For
this reason the McBSP does not conform 100% to the I2S specification for slave devices.
However, as long as the data word size is correct, the McBSP will function properly in
slave mode.

Figures 7 through 9 and Table 4 show the McBSP register settings for I2S slave mode
with 32 bit data.

Figure 7. Receive Control Register (RCR)

31 30 24 23 21 20 19 18 17 16
1 000 101 00 0 1

RPHASE RFRLEN2 RWDLEN2 RCOMPAND RFIG RDATDLY

15 14 8 7 5 4 0
0 000 101 0

reserved RFRLEN1 RWDLEN1 Reserved

Figure 8. Transmit Control Register (XCR)

31 30 24 23 21 20 19 18 17 16
1 000 101 00 0 1

XPHASE XFRLEN2 XWDLEN2 XCOMPAND XFIG XDATDLY

15 14 8 7 5 4 0
0 000 101 0

reserved XFRLEN1 XWDLEN1 Reserved

Figure 9. Pin Control Register (PCR)

31 16
0x0000

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

rsv XIOEN RIOEN FSXM FSRM CLKXM CLKRM rsv CLKS_STAT DX_STAT DR_STAT FSXP FSRP CLKXP CLKRP

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 9

Table 4. Bit-Field Values for McBSP Registers

Register
[bit-field #]

Bit-field
Name

Value
(in binary)

Function

RCR[31] RPHASE 1 Dual Phase Receive

RCR[7-5] RWDLEN1 101 32 bits Receive Word Length (Phase 1)

RCR[23-21] RWDLEN2 101 32 bits Receive Word Length (Phase 2)

RCR[14-8] RFRLEN1 0 1 word Receive Frame Length (Phase 1)

RCR[30-24] RFRLEN2 0 1 word Receive Frame Length (Phase 2)

XCR[31] XPHASE 1 Dual Phase Transmit

XCR[7-5] XWDLEN1 101 32 bits Transmit Word Length (Phase 1)

XCR[23-21] XWDLEN2 101 32 bits Transmit Word Length (Phase 2)

XCR[14-8] XFRLEN1 0 1 word Transmit Frame Length (Phase 1)

XCR[30-24] XFRLEN2 0 1 word Transmit Frame Length (Phase 2)

PCR[11] FSXM 0 FSX is input pin

PCR[10] FSRM 0 FSR is input pin

PCR[9] CLKXM 0 CLKX is input pin

PCR[8] CLKRM 0 CLKR is input pin

Receiving/Transmitting I2S Data
The I2S serial format transmits interleaved data by alternating between left and right
channel data. Once the McBSP is properly set up to handle I2S serial format, the DSP
must also be programmed to effectively handle the interleaved data. Since most DSP
algorithms expect continuous non-interleaved data, the received data must be sorted into
left and right data buffers before processing can occur, and then the data must be re-
interleaved before it can be transmitted.

You can set up a DMA channel to service the serial port and sort the data. By using
properly set up index registers to do the destination autoincrement, the DMA sorts the
received data into two separate buffers in memory. Similarly, by using index registers to
do the source autoincrement, the DMA automatically re-interleaves data from two
memory buffers for transmission. DMA split mode operation is possible, with some
restrictions.

To do this sorting, the DMA must be set up to do the required transfer as two-word
frames for the left and right channel data. The autoincrement of the source/destination
register is set to use an index register that has the appropriate element and frame
increment values set. The following formulas compute the element and frame index:

§ B = Buffer size (total number of elements in each buffer)
§ S = Element size in bytes

q ELEMENT INDEX = B x S
q FRAME INDEX = S – (B x S)

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 10

The element index is the difference in memory locations (in bytes) of the right channel
buffer and the left channel buffer. The frame index is the data word size (in bytes) minus
the difference in buffer memory locations. Note that this result should be a negative
number. With this setup, the first element of the DMA frame goes into the first buffer.
Then, the destination increments by the difference between the buffers, so the second
element goes into the same relative position in the second buffer. The destination register
then increments by the word size minus the memory location difference (a negative
number), pointing it to the next relative location in the first buffer. The next frame can then
be received and sorted as the previous one. Figure 10 shows how DMA sorting works. In
Figure 10, the element size S = 4 bytes, and the buffer size B = 0x400 elements in each
buffer. The element index is B x S = 400h x 4 = 1000h. The frame index is S – (B x S) =

The DMA autoinitialization feature allows continuous data transfer. To enable DMA
autoinitialization, write START=11b in the channel’s primary control register, and set the
corresponding DMA global count reload register and the DMA global address register to
the desired reload values. If you want to modify the reload register values before the
next DMA autoinitialization, set TCINT=1 in the channel’s primary control register and
LAST IE=1 in the channels’ secondary control register to enable last frame condition
interrupt. Upon receiving the DMA channel last frame condition, the interrupt service
routine can modify the reload register values before the next autoinitialization. This
feature is especially useful when the buffer size is smaller than the amount of I2S data
received. You can reuse the same buffer space for different data blocks simply by setting
the DMA global address register to the beginning of the buffer address.

This same setup works for the source autoincrement as well, allowing the automatic re-
interleaving of data for transmission. Split mode may be used to allow one DMA channel
to do both sorting and unsorting only if the difference between the receive left and right
buffers’ memory locations is the same as the difference between the transmit left and
right buffers’ memory locations. This restriction is because the same index register must
be used for both. See the TMS320C6000 DMA Example Applications application report
for details and examples on how to set up the DMA for sorting.

Figure 10. DMA Sorting

0x80000000

0x80000004

0x80000008

0x8000000C

0x80001000

0x80001004

0x80001008

0x8000100C

Left Channel
Buffer

Right Channel
Buffer

Data 1 (L)

Data 2 (R)

Data 3 (L)

Data 4 (R)

DMA Index Register

-0xFFC 0x1000

Frame Index Element Index

Frame 1

Frame 2

+0x1000

-0xFFC

+0x1000

Memory Address DMA Data

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 11

Conclusion
The Multichannel Buffered Serial Port on the TMS320C6000 Digital Signal Processor is
flexible enough to interface to devices that conform to the Inter-IC Sound specification.
The DSP is capable of being either the master or the slave device on the I2S bus. Proper
configuration of the McBSP is simple for both master and slave modes, and the DMA
controller can be configured to handle data deinterleaving and reinterleaving
automatically.

Sample C Functions
This C code shows how to set up the McBSP and DMA to interface to an I2S device,
specifically a Crystal CS4226 Surround Sound Codec. Since both the CS4226 and the
McBSP can act as either master or slave, the code allows for either configuration. The
'C6000 McBSP’s role is controlled by use of preprocessor defines. By default, the McBSP
is the master and the CS4226 is the slave, but defining SLAVE causes the McBSP to be
the slave and the CS4226 to be the master.

In this code, McBSP 0 simultaneously receives and transmits audio data in I2S format.
McBSP 1 interfaces to the CS4226’s control port to program the device. DMA channel 0
in split mode services the data transfer to and from McBSP 0.

The mcbsp.c file sets up the serial ports and DMA channel, and dma_int.c provides the
necessary interrupt service routines. The mcbsp.c file also periodically copies the receive
buffer to the transmit buffer to keep continuous data flow through the serial port.
Although no digital signal processing is done on the data, the code indicates where any
DSP algorithms operate. The net effect of the code is that the I2S data fed into McBSP 0
is received in, sorted, unsorted, and then transmitted out a short while later.

/***/
/* mcbsp.c */
/***/

#include <mcbsp.h>
#include <dma.h>
#include <time.h>
#include <stdlib.h>

/* Definitions */
#define MEM_SRC 0x80000000
#define MEM_DST 0x80001000

/* Uncomment the following for C6000 as I2S slave */
//#define SLAVE

/* Global variables */
int RECV_done = 0;
int XMIT_done = 0;
int DMA_done[4] = {0, 0, 0, 0};

/* Prototypes */
extern void set_interrupts(void);
void config_serial(void);
void start_cs4226(void);

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 12

void start_sp_dma(void);

void
start_sp_dma(void)
{
unsigned int dma_pri_ctrl = 0;
unsigned int dma_sec_ctrl = 0;
unsigned int dma_src_addr = 0;
unsigned int dma_dst_addr = 0;
unsigned int dma_tcnt = 0;
unsigned int dma_index = 0;

 /* Clear completion flag */
 DMA_done[0] = 0;

 /* Reset DMA Control Registers */
 /* use DMA Ch0 to service McBSP */
 dma_reset();
 DMA_RSYNC_CLR(0);
 DMA_WSYNC_CLR(0);
 dma_reset();

 /* Set up DMA Channel to perform a block transfer of */
 /* XFER_SIZE elements */
 /* from MEM_SRC to McBSP */
 /* Set up DMA Primary Control Register */

 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARC, DST_RELOAD,DST_RELOAD_SZ);
 LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARB, SRC_RELOAD,SRC_RELOAD_SZ);
 LOAD_FIELD(&dma_pri_ctrl, DMA_DMA_PRI , PRI , 1);
 LOAD_FIELD(&dma_pri_ctrl, SEN_XEVT0 , WSYNC , WSYNC_SZ);
 LOAD_FIELD(&dma_pri_ctrl, SEN_REVT0 , RSYNC , RSYNC_SZ);
 LOAD_FIELD(&dma_pri_ctrl, DMA_SPLIT_GARA , SPLIT , SPLIT_SZ);
 LOAD_FIELD(&dma_pri_ctrl, DMA_ESIZE32 , ESIZE , ESIZE_SZ);
 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INDX, DST_DIR , DST_DIR_SZ);
 LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INDX, SRC_DIR , SRC_DIR_SZ);
 SET_BIT(&dma_pri_ctrl,EMOD); /* Halt DMA with emu halt */
 SET_BIT(&dma_pri_ctrl,TCINT); /* Allow Ch to interrupt CPU */

 /* Set up DMA Secondary Control Register */
 LOAD_FIELD(&dma_sec_ctrl, DMAC_BLOCK_COND, DMAC_EN , DMAC_EN_SZ);
 SET_BIT(&dma_sec_ctrl, BLOCK_IE);

 /* Set up DMA Tranfer Count Register */
 LOAD_FIELD(&dma_tcnt, 0x100 , FRAME_COUNT , FRAME_COUNT_SZ);
 LOAD_FIELD(&dma_tcnt, 2 , ELEMENT_COUNT, ELEMENT_COUNT_SZ);

 /* Set up DMA Index Register */
 LOAD_FIELD(&dma_index, -0x7FC , FRAME_INDEX , FRAME_INDEX_SZ);
 LOAD_FIELD(&dma_index, 0x800 , ELEMENT_INDEX, ELEMENT_INDEX_SZ);

 /* Set up Source and Destination Address Registers */
 dma_src_addr = (unsigned int)MEM_SRC;

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 13

 dma_dst_addr = (unsigned int)MEM_DST;

 DMA_GADDR_A = (unsigned int)MCBSP_DRR_ADDR(0);
 DMA_GADDR_B = (unsigned int)MEM_SRC;
 DMA_GADDR_C = (unsigned int)MEM_DST;
 DMA_GCR_A = dma_tcnt;
 DMA_GNDX_A = dma_index;

 /* Store DMA Control registers */
 dma_init(0,
 dma_pri_ctrl,
 dma_sec_ctrl,
 dma_src_addr,
 dma_dst_addr,
 dma_tcnt);

 /* Start DMA Transfer */
 DMA_AUTO_START(0);
 DMA_RSYNC_CLR(0);
 DMA_WSYNC_CLR(0);

} /* end start_sp_dma */

void
config_serial(void)
{
unsigned int spcr = 0;
unsigned int rcr = 0;
unsigned int xcr = 0;
unsigned int srgr = 0;
unsigned int mcr = 0;
unsigned int rcer = 0;
unsigned int xcer = 0;
unsigned int pcr = 0;

 /* Set up Pin Control Register */
#ifndef SLAVE
 LOAD_FIELD(&pcr, FSYNC_MODE_INT , FSXM , 1);
 LOAD_FIELD(&pcr, FSYNC_MODE_INT , FSRM , 1);
 LOAD_FIELD(&pcr, CLK_MODE_INT , CLKXM, 1);
 LOAD_FIELD(&pcr, CLK_MODE_INT , CLKRM, 1);
#else
 LOAD_FIELD(&pcr, FSYNC_MODE_EXT , FSXM , 1);
 LOAD_FIELD(&pcr, FSYNC_MODE_EXT , FSRM , 1);
 LOAD_FIELD(&pcr, CLK_MODE_EXT , CLKXM, 1);
 LOAD_FIELD(&pcr, CLK_MODE_EXT , CLKRM, 1);
#endif
 LOAD_FIELD(&pcr, FSYNC_POL_HIGH , FSXP , 1);
 LOAD_FIELD(&pcr, FSYNC_POL_HIGH , FSRP , 1);
 LOAD_FIELD(&pcr, CLKX_POL_RISING , CLKXP, 1);
 LOAD_FIELD(&pcr, CLKR_POL_FALLING, CLKRP, 1);

 /* Set up Receive Control Register */
 LOAD_FIELD(&rcr, DUAL_PHASE , RPHASE, 1);
 LOAD_FIELD(&rcr, FRAME_IGNORE , RFIG , 1);
 LOAD_FIELD(&rcr, DATA_DELAY1 , RDATDLY, RDATDLY_SZ);
 LOAD_FIELD(&rcr, 0 , RFRLEN1, RFRLEN1_SZ);

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 14

 LOAD_FIELD(&rcr, 0 , RFRLEN2, RFRLEN2_SZ);
 LOAD_FIELD(&rcr, WORD_LENGTH_32 , RWDLEN1, RWDLEN1_SZ);
 LOAD_FIELD(&rcr, WORD_LENGTH_32 , RWDLEN2, RWDLEN2_SZ);
 LOAD_FIELD(&rcr, NO_COMPAND_MSB_1ST , RCOMPAND, RCOMPAND_SZ);

 /* Set up Transmit Control Register */
 LOAD_FIELD(&xcr, DUAL_PHASE , XPHASE, 1);
 LOAD_FIELD(&xcr, FRAME_IGNORE , XFIG , 1);
 LOAD_FIELD(&xcr, DATA_DELAY1 , XDATDLY, XDATDLY_SZ);
 LOAD_FIELD(&xcr, 0 , XFRLEN1, XFRLEN1_SZ);
 LOAD_FIELD(&xcr, 0 , XFRLEN2, XFRLEN2_SZ);
 LOAD_FIELD(&xcr, WORD_LENGTH_32 , XWDLEN1, XWDLEN1_SZ);
 LOAD_FIELD(&xcr, WORD_LENGTH_32 , XWDLEN2, XWDLEN2_SZ);
 LOAD_FIELD(&xcr, NO_COMPAND_MSB_1ST, XCOMPAND, XCOMPAND_SZ);

 /* Set up Sample Rate Generator Register */
#ifndef SLAVE
 SET_BIT(&srgr, CLKSM); /* CLKG derived from CPU clock*/
 LOAD_FIELD(&srgr, FSX_FSG, FSGM, 1);
 LOAD_FIELD(&srgr, 70, CLKGDV, CLKGDV_SZ);
 LOAD_FIELD(&srgr, 63, FPER, FPER_SZ);
 LOAD_FIELD(&srgr, 31, FWID, FWID_SZ);
#endif
 /* Store McBSP 0 registers */
 mcbsp_init(0, spcr, rcr, xcr, srgr, mcr, rcer, xcer, pcr);

 /* Bring McBSP out of reset */
 MCBSP_SAMPLE_RATE_ENABLE(0); /* Start Sample Rate Generator */
 MCBSP_FRAME_SYNC_ENABLE(0); /* Enable Frame Sync pulse */

} /* End config_serial */

void start_cs4226(void)
{
unsigned int spcr = 0;
unsigned int rcr = 0;
unsigned int xcr = 0;
unsigned int srgr = 0;
unsigned int mcr = 0;
unsigned int rcer = 0;
unsigned int xcer = 0;
unsigned int pcr = 0;
clock_t ctemp;

 /* Set up Pin Control Register */
 LOAD_FIELD(&pcr, FSYNC_MODE_INT , FSXM , 1);
 LOAD_FIELD(&pcr, FSYNC_MODE_INT , FSRM , 1);
 LOAD_FIELD(&pcr, CLK_MODE_INT , CLKXM, 1);
 LOAD_FIELD(&pcr, CLK_MODE_INT , CLKRM, 1);
 LOAD_FIELD(&pcr, FSYNC_POL_LOW , FSXP , 1);
 LOAD_FIELD(&pcr, FSYNC_POL_LOW , FSRP , 1);
 LOAD_FIELD(&pcr, CLKX_POL_FALLING , CLKXP, 1);
 LOAD_FIELD(&pcr, CLKR_POL_RISING, CLKRP, 1);

 /* Set up Receive Control Register */
 LOAD_FIELD(&rcr, SINGLE_PHASE , RPHASE, 1);
 LOAD_FIELD(&rcr, FRAME_IGNORE , RFIG , 1);

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 15

 LOAD_FIELD(&rcr, DATA_DELAY1 , RDATDLY, RDATDLY_SZ);
 LOAD_FIELD(&rcr, 0 , RFRLEN1, RFRLEN1_SZ);
 LOAD_FIELD(&rcr, WORD_LENGTH_24 , RWDLEN1, RWDLEN1_SZ);
 LOAD_FIELD(&rcr, NO_COMPAND_MSB_1ST , RCOMPAND, RCOMPAND_SZ);

 /* Set up Transmit Control Register */
 LOAD_FIELD(&xcr, SINGLE_PHASE , XPHASE, 1);
 LOAD_FIELD(&xcr, FRAME_IGNORE , XFIG , 1);
 LOAD_FIELD(&xcr, DATA_DELAY1 , XDATDLY, XDATDLY_SZ);
 LOAD_FIELD(&xcr, 0 , XFRLEN1, XFRLEN1_SZ);
 LOAD_FIELD(&xcr, WORD_LENGTH_24 , XWDLEN1, XWDLEN1_SZ);
 LOAD_FIELD(&xcr, NO_COMPAND_MSB_1ST, XCOMPAND, XCOMPAND_SZ);

 /* Set up Serial Port Control Register */
 LOAD_FIELD(&spcr, INTM_RDY , XINTM, XINTM_SZ);
 LOAD_FIELD(&spcr, INTM_RDY , RINTM, RINTM_SZ);
 LOAD_FIELD(&spcr, 2, CLKSTP, 1);

 /* Set up Sample Rate Generator Register */
 SET_BIT(&srgr, CLKSM); /* CLKG derived from CPU clock*/
 LOAD_FIELD(&srgr, FSX_DXR_TO_XSR, FSGM, 1);
 LOAD_FIELD(&srgr, 70, CLKGDV, CLKGDV_SZ);

 /* Store McBSP 1 registers */
 mcbsp_init(1, spcr, rcr, xcr, srgr, mcr, rcer, xcer, pcr);

 /* Bring McBSP out of reset */
 MCBSP_SAMPLE_RATE_ENABLE(1); /* Start Sample Rate Generator */
 MCBSP_FRAME_SYNC_ENABLE(1); /* Enable Frame Sync pulse */
 MCBSP_ENABLE(1, MCBSP_RX); /* Bring Receive out of reset */
 MCBSP_ENABLE(1, MCBSP_TX); /* Bring Transmit out of reset */

 /* Program CS4226 registers */

 XMIT_done=0; /* wait for McBSP to initialize */
 while(!XMIT_done);

#ifndef SLAVE
 XMIT_done=0; /* Clock is PLL driven by LRCK at 1 Fs, CLKOUT = 1 Fs */
 MCBSP1_DXR = 0x200162;
#else
 XMIT_done=0; /* Clock is ext oscillator, CLKOUT = 1 Fs */
 MCBSP1_DXR = 0x200160;
#endif
 while(!XMIT_done);

 XMIT_done=0; /* Mute all DACs but 1 & 2 (stereo pair 1) */
 MCBSP1_DXR = 0x2003FC;
 while(!XMIT_done);

 XMIT_done=0; /* No DAC attenuation */
 MCBSP1_DXR = 0x200400;
 while(!XMIT_done);
 XMIT_done=0; /* No DAC attenuation */
 MCBSP1_DXR = 0x200500;
 while(!XMIT_done);
 XMIT_done=0; /* No DAC attenuation */

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 16

 MCBSP1_DXR = 0x200600;
 while(!XMIT_done);
 XMIT_done=0; /* No DAC attenuation */
 MCBSP1_DXR = 0x200700;
 while(!XMIT_done);
 XMIT_done=0; /* No DAC attenuation */
 MCBSP1_DXR = 0x200800;
 while(!XMIT_done);
 XMIT_done=0; /* No DAC attenuation */
 MCBSP1_DXR = 0x200900;
 while(!XMIT_done);

#ifndef SLAVE
 XMIT_done=0; /* C4226 is slave, I2S format, 64 bit clocks per Fs */
 MCBSP1_DXR = 0x200ECC;
#else
 XMIT_done=0; /* C4226 is Master, I2S format, 64 bit clocks per Fs */
 MCBSP1_DXR = 0x200EEC;
#endif
 while(!XMIT_done);

 XMIT_done=0; /* Pull device out of reset */
 MCBSP1_DXR = 0x200200;
 while(!XMIT_done);

 /* Wait 90ms for PLL to lock onto the LRCK (FSX) */
 ctemp=clock();
 while(clock() < ctemp + 90);

} /* End start_cs4226 */

/* McBSP verification test code. */
void
main (void)
{
int i;

 set_interrupts();
 start_sp_dma();
 config_serial();
 start_cs4226();

 MCBSP_ENABLE(0, MCBSP_RX); /* Bring Receive out of reset */
 MCBSP_ENABLE(0, MCBSP_TX); /* Bring Transmit out of reset */

 while(1){

/* Set up DMA reload registers for the next block */
 DMA_GADDR_B = (unsigned int)MEM_SRC + 0x400;
 DMA_GADDR_C = (unsigned int)MEM_DST + 0x400;

/* Wait for current block to finish */
 while(!DMA_done[0]);
 DMA_done[0]=0;

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 17

 /* Transfer the recently completed block from the input buffer */
 /* to the output buffer. Here is where any algorithms to do DSP*/
 /* on the data would go. */
 for (i = 0; i < 0x100; i++){
 *(int *) (MEM_SRC + 4*i) =

*(int *) (MEM_DST + 4*i);

 *(int *) (MEM_SRC + 4*i + 0x800) =
*(int *) (MEM_DST + 4*i + 0x800);

 }

/* Set up DMA reload registers for the next block */
 DMA_GADDR_B = (unsigned int)MEM_SRC;
 DMA_GADDR_C = (unsigned int)MEM_DST;

/* Wait for current block to finish */
 while(!DMA_done[0]);
 DMA_done[0]=0;

 /* Transfer the recently completed block from the input buffer */
 /* to the output buffer. Here is where any algorithms to do DSP*/
 /* on the data would go. */
 for (i = 0; i < 0x100; i++){
 *(int *) (MEM_SRC + 4*i + 0x400) =

*(int *) (MEM_DST + 4*i + 0x400);

 *(int *) (MEM_SRC + 4*i + 0xC00) =
*(int *) (MEM_DST + 4*i + 0xC00);

 }

 }

} /* end main */

/***/
/* dma_int.c */
/***/

#include <intr.h>
#include <dma.h>

/* Global variables */
extern int DMA_done[4];
extern int RECV_done;
extern int XMIT_done;

/* Prototypes */
interrupt void DMA_Ch0_ISR(void);
interrupt void RINT_ISR(void);
interrupt void XINT_ISR(void);
void set_interrupts(void);

/* DMA Ch0 ISR used to clear block condition and flag when the */
/* transfer has completed. */
interrupt void
DMA_Ch0_ISR(void)
{

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 18

unsigned int sec_ctrl = 0x50000;

 sec_ctrl = REG_READ(DMA0_SECONDARY_CTRL_ADDR);
 if (GET_BIT(&sec_ctrl, BLOCK_COND)){
 DMA_done[0] = 1;
 RESET_BIT(&sec_ctrl, BLOCK_COND);
 }
 REG_WRITE(DMA0_SECONDARY_CTRL_ADDR, sec_ctrl);

} /* End DMA_Ch0_ISR */

interrupt void
XINT_ISR(void)
{

XMIT_done=1;

}

interrupt void
RINT_ISR(void)
{

RECV_done=1;

}
/* Routine to enable DMA and Timer interrupt service routines */
void
set_interrupts(void)
{
 intr_init();
 intr_map(CPU_INT8, ISN_DMA_INT0);
 intr_hook(DMA_Ch0_ISR, CPU_INT8);
 intr_map(CPU_INT11, ISN_XINT1);
 intr_hook(XINT_ISR, CPU_INT11);
 intr_map(CPU_INT12, ISN_RINT1);
 intr_hook(RINT_ISR, CPU_INT12);

 INTR_GLOBAL_ENABLE();
 INTR_ENABLE(CPU_INT_NMI);
 INTR_ENABLE(CPU_INT8);
 INTR_ENABLE(CPU_INT11);
 INTR_ENABLE(CPU_INT12);

} /* End set_interrupts */

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 19

References
TMS320C6201 Digital Signal Processor data sheet, Texas Instruments, SPRS051C,

March 1998.

TMS320C6201/C6701 Peripherals Reference Guide, Texas Instruments, SPRU190B,
March 1998.

TMS320C6000 Peripheral Support Library Programmer’s Reference, Texas Instruments,
SPRU273B, July 1998.

TMS320C6000 DMA Example Applications Application Report, Texas Instruments,
SPRA529.

TI is a trademark of Texas Instruments Incorporated.

 Other brands and names are the property of their respective owners

http://www-s.ti.com/sc/techlit/sprs051
http://www-s.ti.com/sc/techlit/spru190
http://ww-s.ti.com/sc/techlit/spru273
http://ww-s.ti.com/sc/techlit/spra529

Application Report
SPRA595

TMS320C6000 McBSP I2S Interface 20

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright  1999 Texas Instruments Incorporated

.

	Abstract
	Contents
	Figures
	Tables
	Design Problem
	Overview
	McBSP Setup
	Master Mode
	Pin Control Register (PCR)
	Receive/Transmit Control Register
	Sample Rate Generator Register (SRGR)

	Slave Mode

	Receiving/Transmitting I2S Data
	Conclusion
	Sample C Functions
	References
	IMPORTANT NOTICE

