{? TEXAS Application Report
INSTRUMENTS SPRA5658 - February 2000

GSM Enhanced Full Rate Speech Coder: Multichannel
TMS320C62x Implementation

Min Wang C6000 Applications
Xiangdong Fu

ABSTRACT
This document provides a detailed description of the implementation of the GSM enhanced
full rate (EFR) speech encoder and decoder (codec) on the Texas Instruments (TIO)
TMS320C62x digital signal processor (DSP). Topics include program structure, code writing
rules, data/program memory requirement, and performance evaluation. Issues on multichan-
nel implementation and interrupts are also addressed.

Contents
1 INtrodUCHION . 2
2 Multichannel System 2
3 Algorithm DeESCIIPtON L e e e
3.1 ENCOOEr SIrUCIUIE ...t e e e e e e e e e e e e
3.2 DeCoder StUCIUIE . ..ottt e e e e e e e e e
3.3 MaIN PrOgram . .o e
4 Coding GUIdEIINES ...
4.1 Variable, Array, and Pointer Nameso i e e
4.2 Math Operations
4.3 Tables and FUNCHIONS e e e e e e e 5
A4 INEITUPL [SSUBS . . e e e
4.4.1 Interrupts atthe Frame Boundary i
4.4.2 Interrupts at the Submodule Boundary i
5 MeEMOrY ReQUITEMENTS ... et e
5.1 Memory for Context Dataiiuiii
5.2 Memory for Tables
5.3 Memory for Local Variables and Arrayst e
5.4 Program MeMOIYttt
6 Performance ResuUlts
T REIEIBNCES . .
List of Figures
Figure 1. File Tree of the GSM EFR Speech Coder Software Package EI
List of Tables
Table 1. EFR Encoder Context Data Structure (EFR_Sta Encoder)
Table 2. EFR Decoder Context Data Structure (EFR_Sta_Decoder),
Table 3. List of GSM-EFR Tables
Table 4. Program and Data Memory Requirements of the GSM-EFR

Table 5. Performance Estimation of GSM-EFR With C62x DSP Compiler Version 3.00

Tl is a trademark of Texas Instruments Incorporated.

{'f TEXAS
SPRA5658B INSTRUMENTS

1 Introduction

This document provides a detailed description of the implementation of the GSM enhanced full
rate (EFR) speech encoder and decoder (codec) on the TMS320C62x DSP. Issues on
multichannel implementation and interrupts are also addressed.

The EFR speech codec is defined by the European Telecommunications Standards Institute
(ETSI) specifications GSM 06.51, 06.60, 06.61, 06.62, and 06.82. A reference C program is
provided in GSM 06.53, along with a set of testing sequences. The code implemented on the
C62x is fully bit compatible with the reference code on all testing sequences.

The GSM EFR speech codec uses the algebraic code excited linear prediction (ACELP)
algorithm, which is an analysis-by-synthesis algorithm and belongs to the class of speech coding
algorithms known as code excited linear prediction (CELP). Therefore, the speech decoder is
primarily a subset of the speech encoder.

For every 20-ms speech frame, the EFR encoder extracts 57 parameters, as well as VAD
information. These parameters include short-term (LP) parameters, adaptive excitation (LAG)
parameters, and algebraic code excitation (CODE) parameters.

Each speech frame is equally divided into four subframes. Except for LP parameters, which are
extracted once per frame and therefore are frame parameters, the parameters are all subframe
parameters. These parameters are quantized into 244 bits, resulting in a transmission rate of
12.2 kbits/s. In the EFR decoder, the quantized parameters are decoded and a synthetic
excitation is generated by adding the adaptive and innovative codevectors scaled by their
respective gains. The synthetic excitation is then filtered through the LP synthesis filter to
generate the synthetic speech waveform, which is processed by a so-called post-filter to further
improve the speech quality.

Refer to ETSI specification GSM 06.60 [1] for a detailed description of GSM EFR vocoder.

2 Multichannel System

The multichannel system can run more than one algorithm at the same time. Any algorithm
compliant with the eXpressDSP[Algorithm Standard[5][6][7][8][9] is capable of multichannel
processing. An XDAIS compliant algorithm requires three functional modules; initialization,
freeing and kernel. The kernel module performs the algorithm processing while the initialization
and freeing module initializes and frees the algorithm context data[2].

The XDAIS application programming interface (API) for the initialization is defined as

Int (*algInit)(IALG_Handle, const IALG_MemRec *, IALG_Handle, const
IALG_Params *);

The XDAIS application programming interface (API) for freeing is defined as

| Int (*algFree)(IALG_Handle, const IALG_MemRec *); |

where the first parameter of type IALG_Handle is a pointer that contains the current context data
memory location. During framework initialization, the framework calls the algorithm initialization
functions. All the initialization functions perform the same tasks: initialize context data and store
to the desired memory location. After the initialization function is completed, the system
repeatedly calls an algorithm(s) until all the frames have been processed.

eXpressDSP is a trademark of Texas Instruments Incorporated.

2 GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation

{9 TEXAS
INSTRUMENTS SPRA5658B

3.1

The system may need to call the algFree() function to free the algorithm instance after all
processing is done.

The APIs for the called algorithm, encoder and decoder, is defined as

extern DAIS_Int8 EFRE_TI_encode(IEFRENC_Handle handle, DAIS_Int16* in,
DAIS_Uint16* out);

extern DAIS_Int8 EFRD_TI_decode(IEFRDEC_Handle handle, DAIS_Uint6* in,
DAIS_Int16 out(]);

where handle points to the start address of the context data which contains the start address of
the constant tables of the algorithm. The pointers in and out point to the input and output data.
Since XDAIS does not specify standard API's for algorithm processing, these two APls are
algorithm specific.

Algorithm Description

The complete speech codec is implemented in mixed C and TMS320C2x assembler. Each basic
math operation defined in basic_op2.c either is replaced by its corresponding TMS320C62x
intrinsic or is static inlined. All of the 32-bit functions in oper_32b.c are expressed in intrinsics
and are static inlined.

The codec is multichannel enabled. After processing one frame of one channel, the codec can
process one frame of another channel. Additional effort is required to make the codec
interruptible within a frame processing to allow the decoder higher priority than the encoder
and/or to timely deliver the parameters to the next stage of the whole process.

Features, including voice activity detection (VAD), discontinuous transmission (DTX), error
concealment, and comfort noise generation are implemented.

TI's implementation of this algorithm is fully bit-compatible with the bit-exact Reference C code,
version 5.1.0 (GSM 06.53) on all testing sequences.

Both encoder input and decoder output are 13-bit PCM values.

The interface is a 244-bit stream to the preliminary channel coding stage.

Encoder Structure
The GSM EFR speech encoder is divided into five submodules:

e Submodule 1 contains pre-processing, the LPC analysis, and LPC to LSP conversion,
including Autocorr(), Lag_window(), Levinson(), and Az_lIsp().

e Submodule 2 calls Q_plsf _5() to conduct LSP quantization.

* Submodule 3 generates the interpolated LPC parameters, computes weighted speech, and
finds the open-loop pitch, including Int_Ipcs(), Int_lpc(), Weight_Ai(), Residu(), Syn_filt(), and
Pitch_ol().

* Submodule 4 performs the adaptive codebook search, calling Pitch_fr6(), Enc_lag6(),
Pred_It_6(), Convolve(), G_pitch() and g_gain_pitch().

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation 3

{'? TEXAS

SPRA5658B INSTRUMENTS

3.2

3.3

4.1

* Submodule 5 performs the innovative codebook search and filter memory update, calling
code_10i40_35bits(), G_code(), g_gain_code(), and Syn_filt().

Submodules 1 through 3 are for frame processing and should be done once per frame.

Submodules 4 and 5 are for subframe processing and should be repeated four times per frame.

Decoder Structure

The GSM EFR speech decoder is divided into two submodules.

* Submodule 1 deals with frame parameter recovering, which should be done once per frame.

* Submodule 2 contains subframe parameter recovering, speech synthesizing, and
post-filtering. Submodule 2 should be repeated four times per frame.

Main Program

Figure 1 shows the file tree of the GSM EFR speech codec software package.

main code COMmMON ---=-=======-=-- functions
I I I
| [----- encoder [------ intrinsics, inlined mé
| | tables & constant
| [----- decoder
|
[----- test --------- enc
|---- dec
[---- run_evm

Figure 1. File Tree of the GSM EFR Speech Coder Software Package

The code directory contains the codec.c file that is the top file of the whole codec; the linker
command file, codeclnk.cmd; the make file, makefile; and the simulator initialization file,
siminit.cmd.

The common directory contains the include files, *.h; the table files, *.tab; and the source files (in
*.c or *.asm) common to both the encoder and decoder.

The encoder directory contains the encoder top file, encoder.c, and the include files, *.h, that are
only used in the encoder. The program follows the structure of the encoder described above.
The files specific to one submodule are stored in the corresponding subdirectory.

The decoder directory contains all of the files used in the decoder only.

The test directory contains some test files to run the encoder and the decoder, with a simulator
or an EVM (evaluation module).

Coding Guidelines

This program is a mixed C and assembly implementation.

Variable, Array, and Pointer Names

We use the same name conventions for variables, arrays, and pointers as in the reference C
code.

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation

{9 TEXAS
INSTRUMENTS SPRA5658B

4.2

4.3

4.4

44.1

Math Operations

All math operations defined in basicop2.c and oper_32b.c in the reference C program are
replaced by TMS320C62x intrinsics, if possible. In addition to the usage of intrinsics, basic
operations div_s and negate and all the math functions defined in oper_32b.c are inlined. Their
expressions in intrinsics or inlined versions reside in basic_op.h and oper_32b.h, respectively.
For a description and usage of TMS320C62x intrinsics, see the TMS320C62x/67x

Programmer’s Guide (SPRU198]) [10].

Tables and Functions

The names of tables are the same as in the reference C program, except for a few tables named
tin the reference C program. To eliminate ambiguity and help the memory management of and
accessibility to these tables, a unique name is provided for each of these tables. For example,
the table used in function Inv_sqrt is renamed t_inv_sqrt. See for the names of all of the tables
in this codec.

The functions are sorted in the following three categories based on their functionality in the
vocoder: encoder, decoder, and common functions.

e All of the functions belonging to the encoder only are located in the encoder directory.
e All of the functions belonging to the decoder only are located in the decoder directory.

e All the functions used by both the encoder and the decoder are placed in the common
directory.

* Each function is either in C or assembly. The name of a function closely matches its name in
the reference C program. For a function named * in the reference C program:

— Ifitisin C, the function is named *.c in this implementation.

— Ifitis in hand-optimized assembly, the function is named *_ho.asm in this
implementation.

Interrupt Issues

The codec is multichannel enabled in the sense that, after the process of one frame of one
channel, the code can process one frame of another channel. That is, the codec is interruptible
at the frame process boundary. Additional study is required to make the codec interruptible
within a frame process.

Interrupts at the Frame Boundary

To ensure access to the correct memory of each channel, the static variables and arrays with
values that must be kept from one frame to the next are sorted into one of the two structures,
EFR_Sta Encoder (for the encoder) and EFR_Sta_Decoder (for the decoder). Both of these two
structures are defined in EFR_StaMem.h. The static variables and arrays of the codec of each
channel are initialized with the standard IALG initialization functions efrelnit() and efrdinit(),
respectively.

To start an encoding process of a channel, the API is

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation 5

http://www-s.ti.com/sc/techlit/spru198

{'? TEXAS

SPRA5658B INSTRUMENTS

4.4.2

5.1

6

DAIS_Int8 EFRE_TI_encode(IEFRENC_Handle handle,DAIS_Int16* in,
DAIS_UInt8* out)

where the pointer handle denotes the start address of the context memory block that contains
the structure defined as EFR_Sta_ Encoder of that particular channel, the pointer in points to the
start address of the input speech buffer of the frame to be processed, and the pointer out points
to the start address of the encoded bit stream buffer.

Similarly, to start a decoding process of a channel, the APl is

DAIS_Int8 EFRD_TI_decode(IEFRDEC_Handle handle,DAIS_UInt8* in,
DAIS_Int16* out)

where the pointer handle denotes the start address of the context memory block that contains
the structure defined as EFR_Sta_Decoder of that particular channel, the pointer in points to the
start address of the input bit stream buffer, and the pointer out points to the start address of the
synthesized speech buffer.

Interrupts at the Submodule Boundary

You can interrupt the codec anywhere other than software pipelined loops. (Of course, you can
even choose not to interrupt the codec until the end of a frame process as long as the overall
system design requirement is met.) If interrupts are necessary, we suggest that, in general,
interrupts occur in certain places, like the end of each submodule, so that the increases in data
memory and cycle counts are kept minimal.

Memory Requirements

The data memory is divided into three groups:

e Context data
e Tables
e Local variables and arrays

Memory for Context Data

The context data are the static variables and arrays with values that must be kept from one
frame to the next. and summarize the encoder/decoder context data names and their sizes.
The context data for the GSM EFR codec are sorted into one of the two structures,
EFR_Sta_Encoder and EFR_Sta_Decoder.

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation

{9 TEXAS
INSTRUMENTS SPRA5658B

Table 1. EFR Encoder Context Data Structure (EFR_Sta_Encoder)

Array Size (Bytes)
gain_code_old_tx 56
Isp_old 20
Isp_old_q 20
Isf_old_tx 140
Isp_old_q 20
Isf_ p_CN 20
L_sacf 108
L_savO 144
mem_err 20
mem_syn 20
mem_wO0 20
old A 24
old_CN_mem_tx 12
old_exc 308
old_speech 480
old_wsp 286
past_qua_en 8
past r2_q 20
pred 8
pre_pro 12
rvad 18
static_vad 24
Total 1780

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation 7

{'.f TEXAS

SPRA565B INSTRUMENTS
Table 2. EFR Decoder Context Data Structure (EFR_Sta_Decoder)

Array Size (Bytes)

gain_code_old_rx 56

gbuf 10

Isp_old_dec 20

Isf_old_rx 140

Isf_new_CN 20

Isf_old_ CN 20

Isf_p_CN_dec 20

mem_syn_dec 20

mem_syn_pst 20

old_exc _dec 308

past_qua_en_dec 8

past_r2_q_dec 20

past_Isf_q 20

pred_dec 8

pbuf 10

Total 700

5.2 Memory for Tables

8

Table 3 summarizes the tables in the source code. Tables common to both encoder and decoder
take 8298 bytes of data memory. If you run encoder only, 9668 bytes of data memory are
required for the tables. If you run decoder only, 8670 bytes of data memory are required. If you
run both encoder and decoder on the same C62x chip, 9914 bytes of data memory are required.
Notice that the memory for tables is independent of the number of channels running on the chip.

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation

{9 TEXAS
INSTRUMENTS SPRA5658B

Table 3. List of GSM-EFR Tables

Table Size (Bytes) Encoder Decoder
ab 10 X

cdown 14 X
cos 130 X X
dhf_mask 114 X
dgray 16 X
dicol_lIsf 1024 X X
dico2_|Isf 2048 X X
dico3_lIsf 2048 X X
dico4_Isf 2048 X X
dico5_Isf 512 X X
f_gammal 20 X

f_gamma2 20 X

f_gamma3 20 X
f_gamma4 20 X
gray 20 X

grid 122 X

inter_6 50 X

inter_factor 48 X
t_inv_sqrt 98 X X
lag_h 20 X

lag_| 20 X

t log2 66 X X
Isp_old 20 X X
mean_Isf 20 X X
t_pow2 66 X X
pred_6 122 X X
gua_gain_code 64 X X
qua_gain_pitch 32 X X
slope 128 X
window_160_80 480 X

window_ 232 80 480 X

Total 9914 9668 8670

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation 9

{'? TEXAS

SPRA5658B INSTRUMENTS

5.3

5.4

10

Memory for Local Variables and Arrays

The local variables and arrays are stored in the stacks and consume about 4970 bytes and 1376
bytes of data memory space for the encoder and decoder, respectively.

Program Memory

The codec is mixed C and assembly. The overall hand coded assembly routines, total of 19
routines, require 12576 bytes of program memory. All of these 19 routines are called in the
encoder and only 8 of them, requiring 2208 bytes, are called in the decoder. With 3.00 compiler,
the overall code sizes of the rest C routines of the encoder and the decoder takes 32976 bytes
and 17632 bytes of program memory, respectively. The overall code size of the GSM EFR codec
with the compiler version 3.00 release, is 56832 bytes.

Table 4 summarizes the estimated number of bytes required for the GSM EFR vocoder program
memory and data memory. All of the numbers are in bytes. The N in the table represents the
number of channels running on the same device.

Table 4. Program and Data Memory Requirements of the GSM-EFR

Dynamic Program Memory
Function Static RAM RAM ROM Table (3.00 Compiler)
Encoder 1780 x N 4970 9668 45572
Decoder 700 x N 1376 8670 19842
Total 2480 x N 4970 9914 56832

Performance Results

Because the current implementation of EFR is a mixed C and C62x assembly, the cycle count
depends on the compiler used.

Table 5 gives the worst-case cycle count of one GSM EFR channel with the compiler version
3.00 release. The testing sequence is the test20 in the GSM EFR testing vectors, with both dtx
and post-filter enabled. The cycle count presented in the table is obtained by adding the
worst-case cycle count with the version 2.00 fast simulator and 10% overhead caused by
possible memory bank hits. (Because the program memory required by GSM EFR is
approximately ~56Kbytes, the code can fit into any C62x on-chip program memory.)

Table 5. Performance Estimation of GSM-EFR With C62x DSP Compiler Version 3.00

Function MHz
Encoder 9.09
Decoder 1.60
Total 10.69"

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation

{f’ TEXAS

INSTRUMENTS SPRA565B
7 References
1. European Telecommunications Standards Institute (ETSI), GSM—Enhanced Full Rate
Specifications 06.51, 06.60-63and 06.82.
2. Xiangdong Fu and Zhaohong Zhang, A Multichannel/Algorithm Implementation on the
TMS320C6000, [SPRA556,
3. Xiangdong Fu and Zhaohong Zhang, TMS320C6000 Multichannel Vocoder Technology
Demonstration Kit Host Side Design, .
4. Xiangdong Fu, TMS320C6000 Multichannel Vocoder Technology Demonstration Kit
Target Side Design.
5. eXpressDSP Algorithm Standard (Rules & Guidelines),
6. eXpressDSP Algorithm Standard (API Reference),
7. Stig Torud, Making DSP Algorithms Compliant to the eXpressDSP Algorithm Standard,
SeRASZd
8. Carl Bergman, Using the eXpressDSP Algorithm Standard in a Static DSP System,
9.

Carl Bergman, Using the eXpressDSP Algorithm Standard in a Dynamic DSP System,
SPRA58(Q.

10. TMS320C62x/67x Programmer’s Guide,|SPRU198|

GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x Implementation 11

http://www-s.ti.com/sc/techlit/spra556
http://www-s.ti.com/sc/techlit/spra558
http://www-s.ti.com/sc/techlit/spru352
http://www-s.ti.com/sc/techlit/spru360
http://www-s.ti.com/sc/techlit/spra579
http://www-s.ti.com/sc/techlit/spr577
http://www-s.ti.com/sc/techlit/spra580
http://www-s.ti.com/sc/techlit/spru198

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 00 2000, Texas Instruments Incorporated

	ABSTRACT
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Multichannel System
	3 Algorithm Description
	3.1 Encoder Structure
	3.2 Decoder Structure
	3.3 Main Program

	4 Coding Guidelines
	4.1 Variable, Array, and Pointer Names
	4.2 Math Operations
	4.3 Tables and Functions
	4.4 Interrupt Issues
	4.4.1 Interrupts at the Frame Boundary
	4.4.2 Interrupts at the Submodule Boundary

	5 Memory Requirements
	5.1 Memory for Context Data
	5.2 Memory for Tables
	5.3 Memory for Local Variables and Arrays
	5.4 Program Memory

	6 Performance Results
	7 References
	IMPORTANT NOTICE

