
Application Report
SPRA564B - February 2000

1

G.729/A Speech Coder:
Multichannel TMS320C62x Implementation

Chiouguey Chen
Xiangdong Fu

C6000 Applications

ABSTRACT

This document provides a detailed description of the implementation of the G.729 speech
encoder and decoder (codec) on the Texas Instruments (TI) TMS320C6201 digital signal
processor (DSP). Topics include program structure, code writing rules, data/program memory
requirements, and performance evaluation. Issues regarding multichannel implementation and
interrupts are also addressed.

Contents
1 Introduction 2.
2 Multichannel System 2.
3 Algorithm Description 4.

3.1 Encoder Structure 4.
3.2 Decoder Structure 5.

4 Coding Guidelines 5.
4.1 Variable, Array, and Pointer Names 5.
4.2 Math Operations 5.
4.3 Tables and Functions 5.
4.4 Interrupt Issues 5.

4.4.1 Interrupts at the Frame Boundary 6.
4.4.2 Interrupts at the Submodule Boundary 6.

5 Data Memory Requirements 6.
5.1 Memory for Context Data 6.
5.2 Memory for Tables 8.
5.3 Memory for Local Variables and Arrays 10.

6 Performance/Code Size Results 10.
7 References 10.

List of Figures
Figure 1. Framework Initialization 3.
Figure 2. Framework Kernel 3.

List of Tables
Table 1. Encoder Context Data Structure (ENCODER_G729_MEM_BLK) 7.
Table 2. Decoder Context Data Structure (DECODER_G729_MEM_BLK) 8.
Table 3. List of G.729_TABLES 9.
Table 4. G.729/A Performance/Code Size Results 10.

TI is a trademark of Texas Instruments Incorporated.

SPRA564B

2 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

1 Introduction

This document provides a detailed description of the implementation of the G.729/A speech encoder
and decoder (codec) the Texas Instruments (TI) TMS320C6201 digital signal processor (DSP).
Issues on multichannel implementation and interrupts are also addressed.

The G.729/A speech codec is defined by the Telecommunication Standardization Sector of the
International Telecommunication Union (ITU-T).

The G.729 speech codec uses the conjugate-structure algebraic code excited linear-prediction
(CS-ACELP) algorithm, which is an analysis-by-synthesis algorithm and belongs to the class of
speech coding algorithms known as code excited linear prediction (CELP). Therefore, the
speech decoder is primarily a subset of the speech encoder. For every 10-ms speech frame, the
speech signal is analyzed to extract the parameters of the CELP model (linear-prediction filter
coefficients, adaptive and fixed-codebook indices and gains). The G.729A is the annex A for
G.729 to reduce complexity of the CS-ACELP speech codec.

Each speech frame is equally divided into two subframes. Except for LP parameters, which are
extracted once per frame (and therefore are frame parameters,) the rest of the parameters are
subframe parameters. These parameters are quantized into 80 bits, resulting in a transmission
rate of 8 kbits/s. In the G.729 decoder, the quantized parameters are decoded and a synthetic
excitation is generated by adding the adaptive and fixed codevectors scaled by their respective
gains. The synthetic excitation is then filtered through the LP synthesis filter to generate the
synthetic speech waveform, which is processed by a so-called post-filter to further improve
speech quality.

2 Multichannel System

The multichannel system can run more than one algorithm at the same time. Any algorithm
compliant with the eXpress DSP Algorithm Standard (xDAIS) [7][8][9][10][11] is capable of
multichannel processing. An xDAIS-compliant algorithm requires three functional modules:
initialization, freeing and kernel. The kernel module performs the algorithm processing while
the initialization and freeing module initializes/frees the algorithm context data[4].

The XDAIS application programming interface (API) for the initialization is defined as

Int (*algInit)(IALG_Handle, const IALG_MemRec *,
IALG_Handle, const IALG_Params *);

The XDAIS application programming interface (API) for freeing is defined as

Int (*algFree)(IALG_Handle, const IALG_MemRec *);

where the first parameter of type IALG_Handle is a pointer that contains the current context data
memory location. During framework initialization, the framework calls the algorithm initialization
functions as shown in Figure 1. All the initialization functions perform the same tasks: initialize
context data and store to the desired memory location. After the initialization function is
completed, the system repeatedly calls an algorithm/algorithms until all the frames have been
processed.

SPRA564B

3 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

The system may need to call the algFree() function to free the algorithm instance after all
processing is done.

Framework Initialization

Framework Kernel

Alg1_ Init
(BaseAddr1, ...)

Alg2_ Init
(BaseAddr2, ...)

Alg3_ Init
(BaseAddr3, ...)

Figure 1. Framework Initialization

After the initialization function is completed, the framework repeatedly calls an algorithm/
algorithms until all the frames have been processed as shown in Figure 2.

Framework Kernel

Framework Kernel

Alg1
(ContextAddr1,
input1, output1)

Alg2
(ContextAddr2,
input2, output2)

Alg3
(ContextAddr3,
input3, outout3)

Figure 2. Framework Kernel

SPRA564B

4 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

The APIs for the called algorithm, encoder and decoder, is defined as

extern DAIS_Int8 G729E_TI_encode(IG729ENC_Handle handle,
DAIS_Int16* in, DAIS_Uint16* out);
extern DAIS_Int8 G729E_TI_encode(IG729ENC_Handle handle,
DAIS_Int16* in, DAIS_Uint16* out);

where handle points to the start address of the context data which contains the start address of
the constant tables of the algorithm. The pointers in and out point to the input and output data.
Since XDAIS does not specify standard APIs for algorithm processing, these two APIs are
algorithm specific.

3 Algorithm Description

The complete speech codec is implemented in C using the TMS320C6201 optimizer. Each basic
math operation defined in basic_op2.c either is replaced by its corresponding TMS320C62x
intrinsic or is static inlined. All of the 32-bit functions in oper_32b.c are expressed in intrinsics
and are static inlined.

The codec is multichannel enabled. After processing one frame of one channel, the codec is
capable of processing one frame of another channel. Additional effort is needed to make the
codec interruptible within frame processing to allow the decoder higher priority than the encoder
and/or to deliver the parameters timely to the next stage of the whole process.

Both encoder input and decoder output are 16-bit PCM values.

The interface is an 82-bit stream to the preliminary channel coding stage.

3.1 Encoder Structure

The G.729 speech encoder is divided into five submodules:

• Submodule 1 contains pre-processing, the LP analysis and LPC to LSP conversion,
including Pre_Process(), Autocorr(), Lag_window(), Levinson() and Az_lsp().

• Submodule 2 calls Qua_lsp() to conduct LSP quantization.

• Submodule 3 generates the interpolated LPC parameters, computes weighted speech, and
finds the open-loop pitch, including Int_qlpc(), Int_lpc(), Weight_Az(), Residu(), Syn_filt() and
Pitch_ol().

• Submodule 4 performs the closed-loop fractional pitch search and the adaptive codebook
search, calling Pitch_fr3(), Enc_lag3(), Pred_lt_3(), Convolve() and G_pitch().

• Submodule 5 performs the innovative codebook search and filter memory update, calling
ACELP_Codebook(), Corr_xy2(), Qua_gain() and Syn_filt().

Submodules 1 through 3 are for frame processing and should be done once per frame. Submodules
4 and 5 are for subframe processing and should be repeated twice per frame.

SPRA564B

5 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

3.2 Decoder Structure

The G.729 speech decoder is divided into two submodules:

• Submodule 1 deals with frame parameter recovering, which should be done once per frame.

• Submodule 2 contains subframe parameter recovering, speech synthesizing, and
post-filtering. Submodule 2 should be repeated twice per frame.

4 Coding Guidelines
This program is an optimized C implementation.

4.1 Variable, Array, and Pointer Names

We use the same name conventions for variables, arrays, and pointers as in the reference
C code.

4.2 Math Operations

All math operations defined in basicop2.c and oper_32b.c in the reference C program are
replaced by TMS320C62x intrinsics, if possible. In addition to the use of intrinsics, basic
operations div_s and negate and all the math functions defined in oper_32b.c are inlined. Their
expressions in intrinsics or inlined versions reside in basic_op.h and oper_32b.h, respectively.
For a description and usage of the TMS320C62x intrinsics, see the TMS320C62x/C67x
Programmer’s Guide (SPRU198) [4].

4.3 Tables and Functions

Tables are defined in the G729_TABLES structure (tab_ld8k.h). The G729_TABLES is used in
both encoder and decoder of G.729 and G.729A speech coders.

The functions are stored based on their functionality for either the G.729 or G.729A speech coder.

• A function name ending with the letter “A” or “a” belongs to G.729A code; for example,
Acelp_ca.c is used in the G.729A speech coder. A function name similar to the
previous-stated function name belongs to G.729 code; for example, Acelp_co.c is used in
the G.729 speech coder.

• The function name embedded with the prefix “dec” or “de” belongs to the decoder of either
the G.729 or G.729A code; for example, Dec_ld8k.c is used in the G.729 decoder. A function
name similar to the previous-stated function name belongs to the encoder; for example,
Cod_ld8k.c is used in the G.729 encoder.

• All functions except the previously mentioned functions are used by both the encoder and
the decoder of G.729 and G.729A.

– If it is in natural C, this function is named *.c in this implementation.
– If it is in optimized C, this function is named *_opt.c in this implementation.
– If it is in assembly, this function is named *_ho.asm in this implementation.

4.4 Interrupt Issues

The codec is multichannel enabled in the sense that, after the process of one frame of one
channel, the code can process one frame of another channel. That is, the codec is interruptible
at the frame process boundary. Additional study is required to make the codec interruptible
within a frame process.

http://www-s.ti.com/sc/techlit/spru198

SPRA564B

6 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

4.4.1 Interrupts at the Frame Boundary

To ensure access to the correct memory of each channel, static variables and arrays with values
that must be kept from one frame to the next are sorted into one of the two structures:

• ENCODER_G729_MEM_BLK for the encoder
• DECODER_G729_MEM_BLK for the decoder

Both of these two structures are defined in Coder.c and Decoder.c for encoder and decoder,
respectively. The static variables and arrays of the codec of each channel are initialized with
standard IALG initialization functions g729eInit() and g729dInit(), respectively.

To start the encoding process for a channel, the API is

extern DAIS_Int8 G729E_TI_encode(IG729ENC_Handle handle,
DAIS_Int16* in, DAIS_Uint16* out);

where the pointer handle denotes the start address of the channel context data of that particular
channel, the pointer in points to the start address of the input speech buffer of the frame to be
processed, and the pointer out points to the start address of the encoded bit stream buffer.

Similarly, to start a decoding process of a channel, the API is

extern DAIS_Int8 G729D_TI_decode(IG729DEC_Handle handle,
DAIS_Uint6* in, DAIS_Int16 out[]);

where the pointer handle denotes the start address of the channel context data of that particular
channel, the pointer in points to the start address of the input bit stream buffer, and the pointer
out points to the start address of the synthesized speech buffer.

4.4.2 Interrupts at the Submodule Boundary

You can interrupt the codec anywhere other than software pipelined loops. (Of course, you can
even choose not to interrupt the codec until the end of a frame process as long as the overall
system design requirement is met.) If interrupts are necessary, we suggest that, in general,
interrupts occur in certain places so that the increases in data memory and cycle counts are kept
minimal. Here we describe one particular interrupt scheme for this codec in which the interrupt
occurs at the end of each submodule.

5 Data Memory Requirements
The data memory is divided into three groups:

• Context data
• Tables
• Local variables and arrays

5.1 Memory for Context Data

The context data are the static variables and arrays with values that must be kept from one
frame to the next. Table 1 and Table 2 summarize the encoder/decoder context data names and
their sizes. The context data for the G.729/A codec are sorted into one of the two structures,
ENCODER_G729_MEM_BLK and DECODER_G729_MEM_BLK.

SPRA564B

7 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

Table 1. Encoder Context Data Structure (ENCODER_G729_MEM_BLK)

Array
Size

(Bytes)

prm 22

*new_speech 4

*preProcMemBlk
(Pre_Proc.c)

y2 4

y1 4

x0 2

x1 2

*coderMemBlk
(cod_ld8k.c)

old_speech 480

*speech 4

*p_window 4

*new_speech 4

old_wsp 446

*wsp 4

old_exc 468

*exc 4

ai_zero 102

*zero 4

lsp_old 20

lsp_old_q 20

mem_syn 20

mem_w0 20

mem_w 20

mem_err 100

*error 4

sharp 2

L_exe_err 16

*Levinson_mbl
k
(Lpc.c)

old_A 22

old_rc 4

*Lsp_encw_mb
lk (Qua_lsp.c)

freq_p
rev

80

smooth 2

LarOld 4

extra 2

past_qua_en 8

Total 1902

SPRA564B

8 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

Table 2. Decoder Context Data Structure (DECODER_G729_MEM_BLK)

Array
Size

(Bytes)

synth_buf 190

voicing 2

*decoderMblk (Dec_ld8k.c) old_exc 468

*exc 4

lsp_old 20

mem_syn 20

sharp 2

old_T0 2

gain_code 2

gain_pitch 2

*Lsp_decw_mb
lk (lspdec.c)

freq_prev 80

prev_ma 2

prev_lsp 20

seed 2

past_qua_en 8

*postfilterMblk (Pst.c) apond2 40

mem_stp 20

mem_zero 20

res2 384

*res2_ptr 4

*ptr_mem_stp 4

gain_prec 2

*postprocessMblk (Post_pro.c) y2 4

y1 4

x0 2

x1 2

Total 1310

5.2 Memory for Tables

The constant tables are sorted into the G729_TABLES defined in tab_ld8k.h. This structure is
common to both the encoder and decoder of G.729/A codec and takes 6024 bytes of data
memory structure. Table 3 summarizes the tables in the source code. Notice that the memory
for tables is independent of the number of channels running on the chip.

SPRA564B

9 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

Table 3. List of G.729_TABLES

Table
Size

(Bytes)

Hamwindow 480

lag 40

table 130

slope 128

table2 128

slope_cos 128

slope_acos 128

lspcb1 2560

lspcb2 640

fg 160

fg_sum 40

fg_sum_inv 40

inter_3l 62

pred 8

gbk1 32

gbk2 64

map1 16

map2 32

coef 8

L_coef 16

thr1 8

thr2 16

imap1 16

imap2 32

b100 6

a100 6

b140 6

a140 6

bitsno 22

tabpow 66

tablog 66

tabsqr 98

tab_zone 306

gridG729A 102

inter_3 26

grid 122

tab_hup_s 56

tab_hup_l 224

Total 6024

SPRA564B

10 G.729/A Speech Coder: Multichannel TMS320C62x Implementation

5.3 Memory for Local Variables and Arrays

The local variables and arrays are stored in the stacks and consume about 2780 bytes of data
memory space.

6 Performance/Code Size Results

Table 4 summarizes the measured performance and code size using the TMS320C6201 tools
version 2.1.

Table 4. G.729/A Performance/Code Size Results

Performance
(MHz)

Code Size
(K bytes)

G.729 30.7 G.729/A 92.1

G.729A 18.2

7 References
1. ITU-T Recommendation G.729—CS-ACELPD, March 1996.

2. ITU-T Recommendation G.729 Annex A—Reduced Complexity CS-ACELPD, March 1996.

3. M. Wang, GSM Enhanced Full Rate Speech Coder: Multichannel TMS320C62x
Implementation, SPRA565.

4. Xiangdong Fu and Zhaohong Zhang, A Multichannel/Algorithm Implementation on the
TMS320C6000, SPRA556.

5. Xiangdong Fu and Zhaohong Zhang, TMS320C6000 Multichannel Vocoder Technology
Demonstration Kit Host Side Design, SPRA558.

6. Xiangdong Fu, TMS320C6000 Multichannel Vocoder Technology Demonstration Kit
Target Side Design, SPRA560.

7. eXpressDSP Algorithm Standard (Rules & Guidelines), SPRU352.

8. eXpressDSP Algorithm Standard (API Reference), SPRU360.

9. Stig Torud, Making DSP Algorithms Compliant to the eXpressDSP Algorithm Standard,
SPRA579.

10. Carl Bergman, Using the eXpressDSP Algorithm Standard in a Static DSP System,
SPRA577.

11. Carl Bergman, Using the eXpressDSP Algorithm Standard in a Dynamic DSP System,
SPRA580.

http://www-s.ti.com/sc/techlit/spra565
http://www-s.ti.com/sc/techlit/spra556
http://www-s.ti.com/sc/techlit/spra558
http://www-s.ti.com/sc/techlit/spra560
http://www-s.ti.com/sc/techlit/spru352
http://www-s.ti.com/sc/techlit/spru360
http://www-s.ti.com/sc/techlit/spra579
http://www-s.ti.com/sc/techlit/spra577
http://www-s.ti.com/sc/techlit/spra580

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

	ABSTRACT
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Multichannel System
	3 Algorithm Description
	3.1 Encoder Structure
	3.2 Decoder Structure

	4 Coding Guidelines
	4.1 Variable, Array, and Pointer Names
	4.2 Math Operations
	4.3 Tables and Functions
	4.4 Interrupt Issues
	4.4.1 Interrupts at the Frame Boundary
	4.4.2 Interrupts at the Submodule Boundary

	5 Data Memory Requirements
	5.1 Memory for Context Data
	5.2 Memory for Tables
	5.3 Memory for Local Variables and Arrays

	6 Performance/Code Size Results
	7 References
	IMPORTANT NOTICE

