JU TEXAS Application Report

INSTRUMENTS SPRA551A - October 2001

Using a TMS320C6000 McBSP for Data Packing

Ivan Garcia Digital Signal Processing Solutions

ABSTRACT

This application report describes how to use the multichannel buffered serial port (McBSP)
in the Texas Instruments TMS320C6000™ digital signal processor (DSP) for data packing.
Data packing involves moving either multiple successive 8-bit elements to/from the McBSP
as a single 16/24/32-bit element or multiple successive 16-bit words to/from the McBSP as
a single 32-bit word.

The McBSP in the C6000™ DSP can implement data packing, thereby reducing the bus
bandwidth. This application report provides two solutions by which the highly programmable
McBSP performs data packing. The first solution manipulates the data frame length and
element length. The second solution sets the frame sync ignore bits of the McBSP.

In addition, this application report contains sample data packing C code. The sample code
described in this application report can be downloaded from http://www.ti.com/zip/SPRA551.

Contents
1 Design Problem . ...... .. i i 2
7 © 1 Y T 2
B~ 1o ¥ 1 o 3
3.1 Data Packing by Controlling (R/X)FRLEN and (R/X)WDLEN ..........cccooiiiiiiiieeeee i 3
3.2 McBSP Registers Configuration .............cuuueiiiiiiiiii e 5
O T 11T o 0 7
4.1 Data Packing by Controlling (RIX)FIG ... 7
4.2 McBSP Registers Configuration ..o 8
5 McBSP Initialization for Data Packing .........cccouiiiiimmmmmieeree e 10
6  Sample C FUNCLIONS ... s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s e s s s s e s e s s e s s e s s e e nnnnnnnnnnnnnnnnnns 13
A 0 4 T 11T ' o 14
S =Y (= (= T - 14
Appendix A Data Packing Sample Source Code..........ccommimiiiiiiiiiiiiiiisiessesessesssssssssssssssssssssssssssnne 15
List of Figures
Figure 1. Timing Diagram for Data Transfer of Six 8-Bit Elements (With NoPacking) ........... 2
Figure 2. Timing Diagram for Data Transfer of Two 24-Bit Elements
(With Data Packing)—So0IUtion 1 ... 4
Figure 3. Transferred Data in MEMOIY...........uiiiiiiiiee e 4

TMS320C6000 and C6000 are trademarks of Texas Instruments.

Trademarks are the property of their respective owners.


http://www.ti.com/zip/SPRA551

{if‘ TexAS

SPRA551A INSTRUMENTS
Figure 4. Timing Diagram for Data Transfer of Three 16-Bit Elements

(With Data Packing)—So0IUtion 1 ... 4
Figure 5. Receive Control Register (RCR)—Solution 1 ........ ... ... ... 5
Figure 6. Transmit Control Register (XCR)—Solution 1 ........ ... ... .. .. .. 5
Figure 7. Sample Rate Generator Register (SRGR)—Solution 1..........oooiiiiiiiiiiiiiiiieeeeeee 5
Figure 8. Pin Control Register (PCR)—S0IUtioN 1 ......cooiiiiii e 6
Figure 9. Timing Diagram for Data Packing With Frame Sync Ignore Operations—Solution 2 ........ 8
Figure 10.  Receive Control Register (RCR)—Solution 2 ...... ... .. .. .. . i ... 9
Figure 11.  Transmit Control Register (XCR)—Solution 2 ........ ... ... .. .. ... 9
Figure 12.  Sample Rate Generator Register (SRGR)—Solution 2. 9
Figure 13.  Pin Control Register (PCR)—SO0IUtioN 2............ouiiiiiiiiii e 9
Figure 14.  Data Packing Hardware Interface EXample ..o 13

List of Tables

Table 1. Bit-Field Values for McBSP Registers—Solution 1 ........... ... ... ... ... ... ..... 6
Table 2. Bit-Field Values for McBSP Registers—Solution2 ............................... 10
1 Design Problem

2

<—Element 1 —»|<— Element 2—>»<—Element 3 —>»<—Element 4 —»|<«—Element 5 —»<— Element 6 —»
CLKR/X [Ty o uu urnr o
FSR/X
DR/DX 9.0.0.09.0.00.9.00900.00.90000000.0.0000009 00000009,

How can the multichannel buffered serial port (McBSP) in the TMS320C6000™ digital signal
processor (DSP) be used for data packing?

Overview

A frame sync signal in the McBSP defines the beginning of a frame of a serial element transfer.
By programming the (R/X)PHASE field in the receive/transmit control register (RCR/XCR), you
can specify either a single-phase or dual-phase frame transfer. All elements in a phase must
have the same number of bits. This application report focuses on single-phase frame operations,
although dual-phase frame operations can also achieve data packing. The (R/X)WDLEN field in
RCR/XCR defines the word (element) length in a frame, which can be 8, 12, 16, 20, 24, or 32
bits. The McBSP can handle up to 128 elements in a single-phase frame or up to 256 elements
in a dual-phase frame. Frame length is programmable using the (R/X)FRLEN field in RCR/XCR.

A normal operation, in which six 8-bit elements are transmitted to and from the McBSP, requires
six reads of the data receive register (DRR) and six writes to the data transmit register (DXR),
respectively, to handle the 48 bits of receive data and the 48 bits of transmit data. Figure 1
shows this operation.

el et P el el
DXR to XSR Copy DXR to XSR Copy DXR toXSR Cop' DXR to XSR Copy DXR to XSR Copy DXR to XSRCopy

Figure 1. Timing Diagram for Data Transfer of Six 8-Bit Elements (With No Packing)

TMS320C6000 is a trademark of Texas Instruments.

Using a TMS320C6000 McBSP for Data Packing



{'}‘ TEXAS
INSTRUMENTS SPRA551A

3.1

In this configuration, the (E)DMA (direct memory access) needs to service the McBSP a total of
12 times—six 8-bit reads from the DRR and six 8-bit writes to the DXR. When the McBSP is
operating at maximum frequency, as shown in Figure 1, there are ways to efficiently pack the
transfer data so that the number of transfers required is reduced.

This application report discusses two solutions to the problem. Solution 1 achieves data packing
by manipulating the data frame length and element length. Solution 2 shows how to pack data
by setting the frame sync ignore bits of the McBSP.

Solution 1

Solution 1 achieves data packing by controlling the data receive/transmit frame length
(R/X)FRLEN and receive/transmit word (element) length (R/X)WDLEN bits of the McBSP.

Data Packing by Controlling (RIX)FRLEN and (R/X)WDLEN

The first solution to the problem is to set the frame length and element length to pack the
transfer data. The six 8-bit elements in Figure 1 can alternatively be viewed as a data stream of
two 24-bit elements in a single frame. The McBSP is set up as follows:

e Receive Control Register (RCR)
— RPHASE = 0, indicating a single-phase frame
— RFRLEN1 = 000 0001, indicating a two-element frame
— RWDLEN1 =100, indicating 24-bit elements

e Transmit Control Register (XCR)
— XPHASE = 0, indicating a single-phase frame
— XFRLEN1 =000 0001, indicating a two-element frame
— XWDLEN1 =100, indicating 24-bit elements

To handle the same 48 bits of receive and transmit data now requires only two 24-bit reads of
the DRR and two 24-bit writes to the DXR. Therefore, handling the same 48-bit data now
requires only one-third the previous number of internal data transfers. This reduces the amount
of bus time required for internal serial port data movement.

Figure 2 shows this data packing operation. You can use the (E)DMA to service the McBSP.
Because the (E)DMA can only transfer 8-, 16-, or 32-bit elements, you must set the DMA
element length to 32 bits to transfer the 24-bit data to/from the McBSP. This wastes 8 bits of
memory space per word and creates gaps in the memory arrays, as shown in Figure 3. If you
view the 48-bit data as three 16-bit elements instead of two 24-bit elements and set the (E)DMA
to perform three 16-bit element transfers, no gaps are created in the memory, as shown in
Figure 3. However, the trade-off is that the (E)DMA must perform three transfers (16-bit
elements) instead of two transfers (24-bit elements). Figure 4 shows the timing diagram for
transferring three 16-bit elements.

Using a TMS320C6000 McBSP for Data Packing 3



{if‘ TexAS

SPRA551A INSTRUMENTS

<«————— Element 1 (24 bits)}——————»«———————— Element 2 (24 bits)

CLKR/X

FSR/X

DR/DX

P
DXR to XSR Copy DXR to XSR Copy

Figure 2. Timing Diagram for Data Transfer of Two 24-Bit Elements
(With Data Packing)—Solution 1

24-Bit Elements 16-Bit Elements
Example Memory wasted gaps in memory Example Memory 16—bit elements
Location Location
0x80000000) {xx\oz 01 00 0x80000000 | 03 02 01 00
0x80000004 |xx/05 04 03 0x80000004 | xx xx 05 04
\-/ . .
24—bit elements If more than 48—bit data is

transferred, the next 16—bit
element can be placed here.

Figure 3. Transferred Data in Memory

4—— Element 1 (16 bits)—»|€—— Element 2 (16 bits) —»|€—— Element 3 (16 bits) —»

cucrx ML UL UL UL UL UL LU UL

FSR/X /\
U 0 009000.00.0.0 000009900000 00009000000 0000 00000000000 E
rd ad ad
DXR to XSR Copy DXR to XSR Copy DXR to XSR Copy

Figure 4. Timing Diagram for Data Transfer of Three 16-Bit Elements
(With Data Packing)—Solution 1

In Solution 1, the McBSP receive/transmit clocks (CLKR/CLKX) can be either internally or
externally generated. Similarly, you can use either internal or external frame sync signals, FSR
and FSX. The register setup discussed in section 3.2 and the sample code in Appendix A apply
when the serial clock and frame sync signals are generated internally by the sample rate
generator. By modifying the FSXM, FSRM, CLKXM, and CLKRM fields in the pin control register
(PCR), you can alternatively configure the clock and frame sync signals to be inputs to the
McBSP.

When an external device generates the frame sync signals, ensure that the frame sync signals
occur only once per 48 bits of transferred data. Otherwise, you must refer to Solution 2 and set
the receive/transmit frame ignore bits (RFIG/XFIG) in RCR/XCR to 1. This directs the McBSP to

ignore unexpected receive/transmit frame sync pulses.

4 Using a TMS320C6000 McBSP for Data Packing



{5‘ TEXAS
INSTRUMENTS SPRA551A

3.2 McBSP Registers Configuration

Figure 5, Figure 6, Figure 7, and Figure 8 show the bit field setup for the McBSP control
registers for Solution 1. Table 1 lists and describes the bit fields. This solution assumes that the
McBSP generates the frame sync and clock signals internally.

The bit fields and registers not listed in Table 1 assume default values. You are responsible to
set some of the register fields, such as clock source, clock divide, and other parameters required
by the application, if the initial state is different from the default.

31 30 24 23 21 20 19 18 17 16
| RPHASE | RFRLEN2 | RWDLEN2 | RCOMPAND | RFIG | RDATDLY |
0 0 0 0 0 01

15 14 8 7 5 4 3 0
RPHASE2T | RFRLEN( | RWDLEN1 | RWDREVRST | Resen ed
0 000 0001 100 0 0

T Available only on C621x/C671x and C64x devices.
Figure 5. Receive Control Register (RCR)—Solution 1

31 30 24 23 21 20 19 18 17 16
XPHASE XFRLEN2 XWDLEN2 | XCOMPAND [ XFIG | XDATDLY
0 0 0 0 0 01

15 14 8 7 5 4 3 0
XPHASE2' | XFRLEN1 | XWDLEN1 | XWDREVRSt | Resened
0 000 0001 100 0 0

T Available only on C621x/C671x and C64x devices.
Figure 6. Transmit Control Register (XCR)—Solution 1

31 30 29 28 27 16
GSYNC CLKSP CLKSM FSGM FPER
0 0 1 1 0010 1111
15 8 7 0
FWID | CLKGDV
0 0000 0111

Figure 7. Sample Rate Generator Register (SRGR)—Solution 1

Using a TMS320C6000 McBSP for Data Packing 5



{if‘ TexAS

SPRA551A INSTRUMENTS
31 16
Reserved |
0
15 14 13 12 1 10 9 8
Reserved XIOEN RIOEN FSXM FSRM CLKXM CLKRM
0 0 0 1 1 1 1
7 6 5 4 3 2 1 0
Reserved | CLKSSTATl DXSTAT | DRSTAT | FSXP | FSRP | CLKXP CLKRP
0 0 0 0 0 0 0 0

Figure 8. Pin Control Register (PCR)—Solution 1

Table 1. Bit-Field Values for McBSP Registers—Solution 1

Bit Field
Register Bits Name Value (binary) Function
RCR 17-16 RDATDLY 01 Receive data delay is 1 bit.
14-8 RFRLEN1 000 0001 Receive frame length (number of elements) in phase 1 is
2 elements.
7-5 RWDLEN!1 100 Receive word length (number of bits) in phase 1 is 24 bits.
XCR 17-16 XDATDLY 01 Transmit data delay is 1 bit.
14-8 XFRLEN1 000 0001 Transmit frame length (number of elements) in phase 1 is
2 elements.
7-5 XWDLEN!1 100 Transmit word length (number of bits) in phase 1 is 24 bits.
SRGR 29 CLKSM 1 Sample-rate generator clock is derived from CPU clock.
28 FSGM 1 Transmit frame-sync signal (FSX) is driven by the sample-rate
generator frame-sync signal (FSG).
27-16 FPER 0010 1111 Frame period is 48 sample-rate generator clock (CLKG) periods
(FPER + 1). The next frame-sync signal is active every 48 CLKG.
7-0 CLKGDV 0000 0111 Sample-rate generator clock (CLKG) frequency is equal to
1/(CLKGDV + 1) of the internal clock source. The internal clock
source is:

o CPU clock frequency (C620x/C670x)
o CPU clock frequency/2 (C621x/C671x)
o CPU clock frequency/4 (C64x)

Actual CLKGDV used depends on applications and the frequency
desired.

6 Using a TMS320C6000 McBSP for Data Packing



{'}‘ TEXAS
INSTRUMENTS SPRA551A

Table 1. Bit-Field Values for McBSP Registers—Solution 1 (Continued)

Bit Field
Register Bits Name Value (binary) Function
PCR 1" FSXM 1 Transmit frame-sync signal (FSX) is an output signal.
10 FSRM 1 Frame-synchronization signal is generated internally by the
sample-rate generator. FSR is an output signal.
9 CLKXM 1 CLKX is an output pin and is driven by the internal sample-rate
generator.
8 CLKRM 1 CLKR is an output pin and is driven by the internal sample-rate
generator.

4 Solution 2

Solution 2 shows how to pack data by setting the receive/transmit frame sync ignore (R/X)FIG
bits of the McBSP.

4.1 Data Packing by Controlling (R/X)FIG

As shown in Figure 1, for a normal operation in which six 8-bit elements are transmitted to and
from the McBSP, six reads of the DRR and six writes to the DXR, respectively, are required to
handle the 48 bits of receive data and 48 bits of transmit data. Solution 1 presents an example
of packing the transfer data by controlling the transfer frame and element length, provided that
the serial data is being transferred at maximum packet frequency.

If the frame sync signal is generated by an external source, you can apply Solution 2 to pack the
transfer data using the frame sync ignore (RFIG/XFIG) bits in the receive/transmit control
registers (RCR/XCR). In this solution, an external serial device sends data in six 8-bit elements.
In addition, this external device generates the frame sync signal. Solution 2 applies when either
the McBSP or the external serial device generates the serial clocks, CLKR and CLKX. For data
packing, the McBSP divides this 48-bit data into two 24-bit elements with the same data setup
as Solution 1:

e Receive Control Register (RCR)
— RPHASE = 0, indicating a single-phase frame
— RFRLEN1 = 000 0001, indicating a two-element frame
— RWDLENT1 =100, indicating 24-bit elements

e Transmit Control Register (XCR)
— XPHASE = 0, indicating a single-phase frame
— XFRLEN1 =000 0001, indicating a two-element frame
— XWDLEN1 =100, indicating 24-bit elements

Using a TMS320C6000 McBSP for Data Packing 7



{if‘ TexAS

SPRA551A INSTRUMENTS

CLKR/X

FSR/X

DR/DX 000000000000000000000000000000000000000000000

In Solution 2, the external device sends one frame sync pulse for each 8-bit data element, as
shown in Figure 9. However, to implement data packing, only one frame sync pulse is desired
for every 24 bits of data. Toignore the extraneous frame syncs, the RFIG/XFIG bits should be
set to 1. By setting the frame sync ignore bits, and the frame length and element length bits, only
two reads of the DRR and two writes to the DXR are required to receive and transmit 48 bits of
data. Figure 9 is the timing diagram for this operation.

«——Element 1 (24 bits) ———»«—————FElement 2 (24 bits) ——»

Frame Ignore  Frame Ignore Frame Ignore  Frame Ignore

/\ /\ /N

=
DXR to XSR Copy DXR to XSR Copy

Figure 9. Timing Diagram for Data Packing With Frame Sync Ignore Operations—Solution 2

4.2

McBSP Registers Configuration

Figure 10, Figure 11, Figure 12, and Figure 13 show the bit field setup for the McBSP control
registers for Solution 2. Table 2 lists and describes the bit fields. The RCR and XCR setup in this
solution is similar to the setup in Solution 1, in addition to the frame sync ignore bits (RFIG and
XFIG) being set.

The register setup in this solution shows the case in which the external device drives the serial
clocks (CLKR and CLKX) and the frame sync signals (FSR and FSX). However, Solution 2 also
applies if the McBSP generates the serial clocks and frame sync signals internally. If the frame
sync signals are generated internally, setting the frame sync ignore bits (RFIG and XFIG) is
optional because you should set the McBSP to generate the frame sync signals for only once
every 24 bits of data.

In this solution with external clocks and frame sync signals, the sample rate generator register
(SRGR) of the McBSP is configured with the default values. If you want the McBSP to generate
the serial clocks instead, you need to set the SRGR as shown in Table 1. The following bits in
the SRGR are don'’t cares, if the following external frame sync signals are used: GSYNC,
FSGM, FPER, and FWID.

The bit fields and registers not listed in Table 2 assume default values. You are responsible to
set some of the register fields, such as clock source, clock divide, and other parameters required
by the application, if the initial state is different from the default.

Using a TMS320C6000 McBSP for Data Packing



{? TEXAS

INSTRUMENTS SPRA551A
31 30 24 23 21 20 19 18 17 16
| RPHASE | RFRLEN2 | RWDLEN2 | RCOMPAND |RFIG | RDATDLY |
0 0 0 0 1 01
15 14 8 7 5 4 3 0
|RPHASE2T| RFRLEN1 | RWDLEN1 | RWDREVRSt | Resen ed |
0 000 0001 100 0 0
T Available only on C621x/C671x and C64x devices.
Figure 10. Receive Control Register (RCR)—Solution 2
31 30 24 23 21 20 19 18 17 16
| XPHASE | XFRLEN2 | XWDLEN2 | XCOMPAND |XFIG | XDATDLY |
0 0 0 0 1 01
15 14 8 7 5 4 3 0
|XPHASE2T | XFRLEN1 | XWDLEN1 | XWDREVRSt | Resen ed |
0 000 0001 100 0 0
T Available only on C621x/C671x and C64x devices.
Figure 11. Transmit Control Register (XCR)—Solution 2
31 30 29 28 27 16
| GSYNC CLKSP CLKSM FSGM | FPER |
0 0 1 0
15 8 7 0
| FWID | CLKGDV |
0 0000 0111
Figure 12. Sample Rate Generator Register (SRGR)—Solution 2
31 16
| Reserved |
0
15 14 13 12 11 10 9 8
| Reserved | XIOEN | RIOEN | FSXM | FSRM | CLKXM | CLKRM |
0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
| Reserved | CLKSSTATl DXSTAT | DRSTAT | FSXP | FSRP | CLKXP | CLKRP |
0 0 0 0 0 0 0 0

Figure 13. Pin Control Register (PCR)—Solution 2

Using a TMS320C6000 McBSP for Data Packing 9



{if‘ TexAS

SPRA551A INSTRUMENTS

Table 2. Bit-Field Values for McBSP Registers—Solution 2

Bit Field
Register Bits Name Value (binary) Function
RCR 18 RFIG 1 Receive frame-sync pulses after the first pulse are ignored.
17-16 RDATDLY 01 Receive data delay is 1 bit.
14-8 RFRLEN1 000 0001 Receive frame length (number of elements) in phase 1 is
2 elements.
7-5 RWDLENH1 100 Receive word length (number of bits) in phase 1 is 24 bits.
XCR 18 XFIG 1 Transmit frame-sync pulses after the first pulse are ignored.
17-16 XDATDLY 01 Transmit data delay is 1 bit.
14-8 XFRLEN1 000 0001 Transmit frame length (number of elements) in phase 1 is
2 elements.
7-5 XWDLEN!1 100 Transmit word length (number of bits) in phase 1 is 24 bits.
PCR 11 FSXM 0 Frame-sync signal is derived from an external source. Transmit
frame-sync signal (FSX) is an input signal.
10 FSRM 0 Frame-sync signal is derived from an external source. Receive
frame-sync signal (FSR) is an input signal.
9 CLKXM 0 CLKX is an input pin and is driven by an external clock.
8 CLKRM 0 CLKR is an input pin and is driven by an external clock.
5 McBSP Initialization for Data Packing
The following example shows how to set up and initialize the McBSP to perform data packing. In
this example, two multichannel buffered serial ports in one device are used. The first serial port,
McBSPO, is used to transmit six 8-bit elements to the second serial port, McBSP1. McBSP1 is
set up to use the method described in Solution 1 to pack data into two 24-bit elements. The
(E)DMA in both devices service the corresponding McBSP by controlling internal data flow to
and from the McBSP. The following steps describe the procedure necessary to initialize the
(E)DMA, the McBSP, and the interrupts.
1. For McBSPO, program the SRGR, PCR, XCR, and RCR:
e SRGR: Default values (sample rate generator is not used)
e PCR:FSXM=FSRM=0
e XCR: XWDLEN1 = 000 (8 bits)
XFRLEN1 =101 (6 elements)
e RCR: Default values (not used to receive)
2. For McBSP1, program the SRGR, PCR, XCR, and RCR to the values listed in Table 1.
10 Using a TMS320C6000 McBSP for Data Packing



{'? TEXAS

INSTRUMENTS SPRA551A

Caution: Do not set the GRST bit in the serial port control register (SPCR) in the next step.

3. Take the sample rate generator of McBSP1 out of reset by setting GRST = 1 in the SPCR
of McBSP1. The GRST bit in McBSPO can remain at 0, because the sample rate
generator of McBSPO is not used.

4. Enabling interrupts. To use interrupts, you must set the global interrupt enable (GIE) in the
control status register (CSR) and nonmaskable interrupt enable (NMIE) bits in the interrupt
enable register (IER).

For DMA (C620x/C670x)

For the C62x™ and C67x™ DSPs, select the DMA channel(s) you want to use. Enable
CPU interrupts that correspond to the DMA channel used to service the McBSP. The
default mapping of DMA channel-complete interrupts to CPU is:

= DMA channel 0 = CPU interrupt 8
= DMA channel 1 = CPU interrupt 9
o DMA channel 2 = CPU interrupt 11
o DMA channel 3 = CPU interrupt 12

For EDMA (C621x/C671x and C64x)

Channels 12 and 15 were used to synchronize the EDMA transfers to the McBSPO
transmit and McBSP1 receive events, respectively. Unlike the C620x/C670x DMA
controller which has individual interrupts for each DMA channel, the EDMA generates a
single interrupt (EDMA _INT) to the CPU on behalf of all 16 channels (C621x and

C671x DSPs) or 64 channels (C64x™ DSP).

When the TCINT bit, in EDMA channel options register, is set to 1 for an EDMA channel
and a specific transfer complete code (TCC) is provided, the EDMA controller sets a bit
in the EDMA channel interrupt pending register (CIPR). The C64x DSP has two channel
interrupt pending registers, channel interrupt pending low register (CIPRL) and channel
interrupt pending high register (CIPRH), for the 64 channels.

To configure the EDMA for any channel to interrupt the CPU:
o In CIER, set CIEn to 1
o In EDMA channel options register, set TCINT to 1

o In EDMA channel options register, set TCC ton

The transfer complete code is directly mapped to the CIPR bits in the C621x/C671x DSP.
The transfer complete code is specified by the 4-bit TCC field.

The transfer complete code is directly mapped to the CIPRL or CIPRH bits in the

C64x DSP. The transfer complete code is expanded to a 6-bit value to accommodate the
64 channels. The transfer complete code is specified by the 2-bit TCCM field (MSBs) and
the 4-bit TCC field.

The CPU ISR should read the CIPR and determine what, if any, events/channels have
completed and perform the operations necessary. The ISR should clear the bit in CIPR
upon servicing the interrupt.

The default mapping of EDMA channel-complete interrupts to CPU is:

EDMA interrupt = CPU interrupt 8

C62x, C64x, and C67x are trademarks of Texas Instruments.

Using a TMS320C6000 McBSP for Data Packing 11



SPRA551A

{if‘ TexAS

INSTRUMENTS

12

5. DMA initialization. Program the DMA channel for both transfers for the required operation.
The following is a typical setup for the DMA channel corresponding to McBSPO:

O

(|
(|
(|

Source address = internal memory or as required

Destination address = DXR

Transfer counter = number of elements to be transferred

In DMA channel primary control register (PRICTL):

m DMA interrupt bit, TCINT = 1 (enabled)

m Priority bit, PRI = 1 (DMA priority); optional, but recommended
m  Write sync event, WSYNC = 01100 (XEVT from McBSP)

The following is a typical set up for the DMA channel corresponding to McBSP1:

O

(|
(|
(|

Source address = DRR

Destination address = internal memory or as required

Transfer counter = number of elements to be transferred

In DMA channel primary control register (PRICTL):

m DMA interrupt bit, TCINT = 1 (enabled)

m Priority bit, PRI = 1 (DMA priority); optional, but recommended
m Read sync event, RSYNC = 01111 (REVT from McBSP)

EDMA initialization: Program the EDMA channel for both transfers for the required operation.
The following is a typical setup for the EDMA channel corresponding to McBSPO:

O

(|
(|
(|

Source address = internal memory or as required
Destination address = DXR

Transfer counter = number of elements to be transferred
In DMA channel primary control register (PRICTL):

m Write sync event, WSYNC = 01100 (EDMA channel synchronized toMcBSPO
transmit event, XEVTO)

In EDMA channel options register:

m Priority, PRI = 001 (High); optional, but recommended
m EDMA interrupt bit, TCINT = 1 (enabled)

m Transfer complete code, TCC = 1100

m 1D transfer, FS=0

The following is a typical set up for the EDMA channel corresponding to McBSP1:

O

(|
(|
(|

Source address = DRR

Destination address = internal memory or as required
Transfer counter = number of elements to be transferred
In DMA channel primary control register (PRICTL):

m Read sync event, RSYNC = 01111 (EDMA channel synchronized to McBSP1
receive event, REVT1)

Using a TMS320C6000 McBSP for Data Packing



{'}‘ TEXAS
INSTRUMENTS SPRA551A

o In EDMA channel options register:
m Priority, PRI = 001 (High); optional, but recommended
m EDMA interrupt bit, TCINT = 1 (enabled)
m Transfer complete code, TCC = 1111
m 1D transfer, FS =0

Instruct the (E)DMA channel(s) in both devices to run. In the DMA channel primary control
register (PRICTL), set START = 01 to start the DMA without autoinitialization. For the
EDMA, set the corresponding bit in the EDMA event enable register. The (E)DMA starts
the first transfer on receiving the first read/write sync event.

In the serial port control register (SPCR), set XRST=1 to wake up McBSPO. Note that
McBSPO must wake up before McBSP1 because McBSPO must be ready to transmit as
soon as it receives the frame sync signal from McBSP1.

In SPCR, set RRST = XRST = 1 to wake up McBSP1.

In SPCR, set FRST = 1 to start the frame sync generator in McBSP1. The first frame sync
signal (FSX) is generated by McBSP1 after 8 CLKG clocks. This FSX signal from McBSP1
is captured by McBSPO on the falling edge of McBSP1 internal signal CLKG. Data transfer

between the two devices begins.

6 Sample C Functions

Appendix A contains sample C codes that perform data packing by applying Solution 1 from this
application report. The C codes are tested on a board with a hardware setup shown in
Figure 14. This example uses a single TMS320C6000 DSP. McBSP1 operates as the frame and
clock master. McBSPO operates as the external serial device mentioned in Solution 1.

The C code in Appendix A sets up both the external serial device (McBSPO) to transmit two
frames of six 8-bit elements and sets up the frame and clock master (McBSP1) to pack the data
from McBSPO into two frames of two 24-bit elements. (See the TMS320C6000 Chip Support
Library API User’s Guide for a detailed description of the header files used in the C code.)

McBSPO McBSP1
FSX |- FSR
CLKX [« CLKR
DX P DR
FSR |« FSX
CLKR [\ CLKX
DR (% DX
Operates as an Frame and Clock
External Serial Device Master

Not used in this example

Figure 14. Data Packing Hardware Interface Example

Using a TMS320C6000 McBSP for Data Packing 13



{if‘ TexAS

SPRA551A INSTRUMENTS

7 Conclusion

Two different solutions are available to implement data packing using the TMS320C6000
McBSP. Solution 1 applies when either the McBSP or an external device generates the frame
sync signals. Solution 2 applies only when an external source generates the frame sync signals.
Both methods are equally effective in reducing the bus bandwidth for serial transfers. The
programmable features of the McBSP, such as frame length, element length, and frame sync
ignore help accomplish data packing.

8 References
1. TMS320C6000 Peripherals Reference Guide, literature number SPRU190, Texas Instruments

2. TMS320C6000 Chip Support Library API User’s Guide, literature number SPRU401, Texas
Instruments

14 Using a TMS320C6000 McBSP for Data Packing



Ji‘ TEXAS

INSTRUMENTS SPRA551A

Appendix A Data Packing Sample Source Code

TI Proprietary Information
Internal Data

Written by Rebecca Ma

3/9/98

Updated by Ivan Garcia
7/13/01

datapack.c:

This code sets up McBSPO to transmit six 8-bit

elements to McBSPl. DMA Channel 1 services McBSPO.

The sample rate generator for McBSPO is not used. FSX and CLKX
are both input pins, driven by McBSPl.

This code also sets up McBSP1 to pack received data (from McBSPO)

into two 24-bit data elements. DMA Channel 2 services

McBSP1. The sample rate generator for McBSPl is used. FSR and CLKR

are both output pins that drive the FSX and CLKX pins of McBSP0O, respectively.

Datapacking only works if data is transferred at maximum packetfrequency.

NOTE: Since DMA can only transfer 8, 16, or 32 bits, we set the DMA transfer
element size to 32-bits, even though the data elements from DRR in McBSP1l are
24-bits long. We leave the RJUST bit in SPCR of McBSPl to be 0 (default),

so that McBSP1 will right-justify and zero-fill MSBs in DRR.

*/
#define CHIP 6711 /* choose chip */

#include <c6x.h>
#include <csl.h>
#include <csl dma.h>
#include <csl edma.h>
#include <csl irg.h>
#include <csl mcbsp.h>

/*************** DSPO/MCBSPO Constal’lts ***************/
#define XFER ELEMENT CNTO 6 /* number of 8-b elements transferred per frame */

#define XFER FRAME CNTO 2 /* total number of frames transferred */
#define DMA XFER SIZEQ 6 /* number of elements that DMA needs to transfer */
#define DMA XFER FRAMEOQ 2 /* number of frames that DMA needs to transfer */
#define XDATA 0x8000 /* location of data to be transmitted */
/*************** DSP]_/MCBSP]_ CODStal’ltS ***************/
#define X ELEMENT CNT1 2 /* number of 24-b elements transferred per frame */
#define X FRAME CNT1 2 /* total number of frames transferred */
#define DMA XFER SIZE1 2 /* number of elements per frame that DMA needs */
/* transfer * )
#define DMA XFER FRAME1 2 /* number of frames for DMA transfer *x/
#define CLK DIV 7 /* CLKG freqg = 1/(7+1) = 1/8 the freq of */
/* internal clk source. Internal clk source */
/* changes according to device */
#define FR PERIOD 47 /* frame period = 47+1 = 48 CLKG */
#define RDATA 0x8100 /* location to put received data */

MCBSP_Handle hMcbspO;
MCBSP Handle hMcbspl;

[x*Fxxxkx functions for McBSPQ **x*kxxxx/
void init data(void);

void init mcbspO (void) ;

void set interrupts(void);

void run dmaO (void);

void wake mcbspO (void);

Using a TMS320C6000 McBSP for Data Packing

15



{if‘ TexAS

SPRA551A INSTRUMENTS

J****xxx* functions for McBSP1l ****xxx*xx*/
void init mcbspl (void) ;

void run dmal (void);

void wake mcbspl (void) ;

/* Inlcude the vector table to call the IRQ ISRs hookup */
extern far void vectors():;

int dma done0 = FALSE;
int dma donel = FALSE;

#if (EDMA SUPPORT)

EDMA Handle hEdmal;

EDMA Handle hEdma2;

EDMA Handle hEdma dummy;

#endif B

#if (DMA SUPPORT)

DMA Handle hDmal;

DMA Handle hDma2;

#endif

void

main (void)

{
CSL init(); /* initialize the CSL library */
init data():
init mcbspO();
init mcbspl();

#if (DMA SUPPORT)

DMA reset (INV); /* reset all DMA channels to power-on defaults */

hDmal = DMA open (DMA CHA1, DMA OPEN RESET) ;

hDma2 = DMA_open (DMA_ CHA2, DMA_ OPEN RESET) ;

#endif

set interrupts(); /* initialize the interrupts */
/* enable the interrupts after the DMA channels are */
/* opened, as the DMA OPEN RESET clears and disables */

/* the channel interrupt once specified and clears */
/* the corresponding interrupt bits in the IER. */
/* This is not applicable for the EDMA channel open */
/* case. * /
run_dmao0 () ;
run_dmal () ;
#if (EDMA SUPPORT)
hEdma dummy = EDMA allocTable (-1); /* Dynamically allocates */
B B /* PaRAM RAM table */
EDMA configArgs (hEdma dummy, /* Dummy or Terminating Table */
0x00000000, /* in PaRAM */
0x00000000, /* Terminate EDMA transfers by */
0x00000000, /* linking to this NULL table */
0x00000000,
0x00000000,
0x00000000

);
EDMA link (hEdmal, hEdma dummy) ;
EDMA link (hEdma2, hEdma dummy) ;

EDMA enableChannel (hEdmal) ;
EDMA enableChannel (hEdmaZ2) ;
#endif

wake mcbspO0 () ;

wake mcbspl();

while (! (dma doneO & dma donel));

16 Using a TMS320C6000 McBSP for Data Packing



J@ TEXAS
INSTRUMENTS SPRA551A

MCBSP_close (hMcbsp0) ;
MCBSP close (hMcbspl) ;

#if (DMA_SUPPORT) /* close DMA channels */
DMA close (hDmal) ;
DMA close (hDmaZ2) ;

#endif
#if (EDMA_SUPPPORT)
EDMA close (hEdmal) ; /* close EDMA channels */

EDMA close (hEdma2) ;
EDMA close (hEdma dummy) ;

#endif
} /* end main */
/* Initialize data to be transferred by (E)DMA ChO from memory to McBSPO */

void
init data(void)
{
unsigned int i;
int *xdata = (int *)XDATA;
/* total elements for transfer */
for (i=0; 1 < XFER ELEMENT CNTO*XFER FRAME CNTO; i++)
; _ _ _ _
*xdata++ = i+1;
} /* end for*/
} /* End init data */
void
init mcbsp0 (void)
{
MCBSP_Config mcbspCfgl0 = {
MCBSP_SPCR_DEFAULT,
MCBSP_RCR_DEFAULT,

#if (EDMA SUPPORT)
MCBSP XCR RMK (

MCBSP XCR XPHASE SINGLE,
MCBSP XCR XFRLEN2 DEFAULT,
MCBSP XCR XWDLEN2 DEFAULT,
MCBSP XCR XCOMPAND DEFAULT,
MCBSP XCR XFIG DEFAULT,
MCBSP XCR XDATDLY 1BIT,
MCBSP XCR XFRLEN1 OF (XFER ELEMENT CNTO-1),
MCBSP XCR XWDLEN1 8BIT, B
MCBSP XCR XWDREVRS DEFAULT
)

#endif

#if (DMA SUPPORT)

MCBSP XCR RMK (

MCBSP XCR XPHASE SINGLE,
MCBSP XCR XFRLEN2 DEFAULT,
MCBSP XCR XWDLEN2 DEFAULT,
MCBSP XCR XCOMPAND DEFAULT,
MCBSP XCR XFIG DEFAULT,
MCBSP XCR XDATDLY 1BIT,
MCBSP XCR XFRLEN1 OF (XFER ELEMENT CNTO0-1),
MCBSP XCR XWDLEN1 8BIT B

)y

fendif
MCBSP_SRGR_DEFAULT, /* SRGR left at default value since */
/* McBSPO sample rate generator not */
/* used */

MCBSP_MCR DEFAULT,

Using a TMS320C6000 McBSP for Data Packing 17



SPRA551A

4E?TEXAS

INSTRUMENTS

}

18

#1f (1C64 SUPPORT)
MCBSP_RCER_RMK (
MCBSP_RCER_RCEB_DEFAULT,
MCBSP_RCER_RCEA_DEFAULT
),
#endif

#1f (1C64 SUPPORT)
MCBSP_XCER_RMK (
MCBSP_XCER_XCEB_DEFAULT,
MCBSP_XCER_XCEA_DEFAULT
),
#endif

#1f (C64 SUPPORT)
MCBSP RCEREO RMK (0),
MCBSP RCEREL RMK (0),
MCBSP RCERE2 RMK (0),
MCBSP_RCERE3 RMK (0),
#endif

#1f (C64 SUPPORT)
MCBSP XCEREO RMK (0),
MCBSP XCEREL RMK (0),
MCBSP XCERE2 RMK (0),
MCBSP_XCERE3 RMK (0),
#endif

/* setup PCR */
MCBSP_PCR_RMK (

MCBSP_PCR _XIOEN DEFAULT,
MCBSP PCR RIOEN DEFAULT,
MCBSP_PCR_FSXM EXTERNAL,
MCBSP PCR FSRM DEFAULT,
MCBSP_PCR CLKXM INPUT,
MCBSP PCR CLKRM DEFAULT,
MCBSP_PCR_CLKSSTAT DEFAULT,
MCBSP PCR DXSTAT DEFAULT,
MCBSP PCR FSXP ACTIVELOW,
MCBSP PCR FSRP DEFAULT,
MCBSP PCR CLKXP DEFAULT,
MCBSP PCR CLKRP DEFAULT
)

}i

/*

/*

/*

/*

All fields

All fields

Additional

Additional

in RCER set to

in XCER set to

registers only

registers only

hMcbsp0 = MCBSP open (MCBSP DEV0O, MCBSP OPEN RESET);

MCBSP config (hMcbsp0, &mcbspC£fg0);

/* enable sample rate generator */

/* don’t need to do this because CLKX is generated by McBSP1 */

/* end init mcbspO */

Using a TMS320C6000 McBSP for Data Packing

default

default

for 64x

for 64x

*/

*/

*/

*/



‘EP'TEXAS
INSTRUMENTS SPRA551A

void
init mcbspl (void)
{
MCBSP Config mcbspCfgl = {
MCBSP_SPCR DEFAULT,

#if (EDMA SUPPORT)
MCBSP RCR RMK (

MCBSP RCR RPHASE SINGLE,
MCBSP RCR RFRLENZ2 DEFAULT,
MCBSP RCR RWDLEN2 DEFAULT,
MCBSP RCR RCOMPAND DEFAULT,
MCBSP RCR RFIG DEFAULT,
MCBSP RCR RDATDLY 1BIT,
MCBSP RCR RFRLEN1 OF (X ELEMENT CNT1-1),
MCBSP RCR RWDLEN1 24BIT, o
MCBSP_RCR_RWDREVRS DEFAULT
)4

#endif

#if (DMA SUPPORT)
MCBSP RCR RMK (

MCBSP RCR RPHASE SINGLE,
MCBSP RCR RFRLEN2 DEFAULT,
MCBSP RCR RWDLENZ2 DEFAULT,
MCBSP_RCR_RCOMPAND DEFAULT,
MCBSP RCR RFIG DEFAULT,
MCBSP_RCR RDATDLY 1BIT,
MCBSP RCR RFRLEN1 OF (X ELEMENT CNT1-1),
MCBSP_RCR RWDLEN1 24BIT N
)4

#endif

MCBSP_XCR DEFAULT,
MCBSP_SRGR RMK (

MCBSP_SRGR GSYNC FREE,
MCBSP_SRGR CLKSP DEFAULT,
MCBSP_SRGR CLKSM INTERNAL,
MCBSP_SRGR_FSGM DEFAULT,
MCBSP_SRGR_FPER_OF (FR_PERIOD),
MCBSP_SRGR_FWID DEFAULT,
MCBSP_SRGR CLKGDV_OF (CLK_DIV)

)y
MCBSP_MCR_DEFAULT,

#1if (!C64 SUPPORT)
MCBSP_RCER_RMK (
MCBSP RCER RCEB DEFAULT, /* All fields in RCER set to default */
MCBSP_RCER RCEA DEFAULT
)y
#endif

#1f (!C64 SUPPORT)
MCBSP_XCER_RMK (
MCBSP XCER XCEB DEFAULT, /* All fields in XCER set to default */
MCBSP_ XCER XCEA DEFAULT
),
#endif

#if (C64 SUPPORT)
MCBSP_RCEREO_RMK (0),
MCBSP_RCERE1 RMK(0),
MCBSP_RCERE2 RMK(0),
MCBSP_RCERE3 RMK(0),

#endif

/* Additional registers only for 64x */

Using a TMS320C6000 McBSP for Data Packing 19



SPRA551A

4E?TEXAS

INSTRUMENTS

#if (C64_SUPPORT)
MCBSP XCEREQ RMK
MCBSP XCERE1l RMK
MCBSP XCERE2 RMK
MCBSP XCERE3 RMK

#endif

/* setup PCR */
MCBSP PCR RMK (

MCBSP PCR XIOEN DEFAULT,
MCBSP PCR RIOEN DEFAULT,
MCBSP PCR FSXM DEFAULT,
MCBSP PCR FSRM INTERNAL,
MCBSP PCR CLKXM DEFAULT,
MCBSP PCR CLKRM OUTPUT,
MCBSP PCR CLKSSTAT DEFAULT,
MCBSP PCR DXSTAT DEFAULT,
MCBSP PCR FSXP DEFAULT,
MCBSP PCR FSRP ACTIVELOW,
MCBSP PCR CLKXP DEFAULT,
MCBSP PCR CLKRP DEFAULT
)

(0),
(0),
(0),
(0),

b

hMcbspl = MCBSP open (MCBSP DEV1, MCBSP OPEN RESET);
MCBSP config (hMcbspl, &mcbspCfgl);

/* Enable sample rate generator GRST=1
MCBSP_enableSrgr (hMcbspl) ; /* Handle to SRGR

} /* end init mcbsp */

/* Set up interrupts, such that DMA Channel 1 interrupt will cause
/* ¢ _int09 to execute and DMA Channel 2 interrupt will cause

/* ¢ intll to execute.

#if (DMA SUPPORT)

void N

set interrupts (void)

{

IRQ setVecs (vectors); /* point to the IRQ vector table
IRQ nmiEnable () ; /* enable NMIE
IRQ globalEnable(); /* set GIE in CSR

IRQ map (IRQ EVT DMAINT1, 9);
IRQ map (IRQ EVT DMAINTZ2, 11);

IRQ reset (IRQ EVT DMAINTI1) ; /* disable and clear

IRQ reset (IRQ EVT DMAINTZ2) ;

IRQ enable (IRQ EVT DMAINTI1); /* enable DMA chO interrupt
IRQ enable (IRQ EVT DMAINTZ) ; /* enable DMA chl interrupt

} /* End set interrupts */
#endif

20 Using a TMS320C6000 McBSP for Data Packing

/* Additional registers only for 64x */

*/
*/

*/
*/
*/

*/

*/
*/



J@ TEXAS
INSTRUMENTS SPRA551A

/* Set up interrupt, such that EDMA interrupt will cause c_int08 to execute */
#if (EDMA SUPPORT)
void
set interrupts(void)
{
IRQ setVecs (vectors); /* point to the IRQ vector table */

IRQ nmiEnable () ;

IRQ globalEnable () ;

IRQ_map(IRQ EVT EDMAINT, 8);

IRQ reset (IRQ EVT EDMAINT) ;

IRQ disable (IRQ EVT EDMAINT) ;

EDMA intDisable(12); /* ch 12 for McBSP transmit event XEVTOQ */
EDMA intDisable (15); /* ch 15 for McBSP receive event REVT1 */
IRO Elear(IRQ EVT EDMAINT) ;

EDMA intClear (12);

EDMA intClear (15);

IRQ enable (IRQ EVT EDMAINT) ;

EDMA intEnable(12); /* enable a x-fer completion interrupt */
EDMA intEnable (15); /* by modifying the CIER register */
} /* End set_interrupts */
#endif
/* DMA Channel Interrupt Service Routines will execute upon */
/* completion of a Block Transfer by a channel. */
interrupt void /* vecs.asm hooks this up to IRQ 11 */
c_intll (void) /* DMA ch?2 */
{
#if (DMA SUPPORT)
dma_donel = TRUE; /* finished receiving? */
return;
fendif
}
interrupt void /* vecs.asm hooks this up to IRQ 09 */
c_int09 (void) /* DMA chl */
{
#if (DMA SUPPORT)
dma done0 = TRUE; /* finished transmitting? */
return;
fendif
}
interrupt void /* vecs.asm hooks this up to IRQ 08 */
c_int08 (void) /* for the EDMA */

{
#if (EDMA_SUPPORT)
if (EDMA intTest (12))
{
dma done0 = TRUE;
EDMA intClear(12); /* clear CIPR bit so future interrupts can be recognized */
}
else if (EDMA intTest (15))
{
dma donel = TRUE;
EDMA intClear(15); /* clear CIPR bit so future interrupts can be recognized */

}
#endif
return;

}

Using a TMS320C6000 McBSP for Data Packing 21



4E?TEXAS

SPRA551A INSTRUMENTS
/* Set up the DMA Control Registers to perform the data transfers */
/* from XDATA to McBSPO. Channel 1 is used. */

#if (DMA SUPPORT)

void

run_dma0 (void)

{

DMA RSET (GBLCNTA,

DMA GBLCNT ELECNT OF (6))

) ;

DMA configArgs (hDmal,

DMA start (hDmal) ;

/* count reload occurs at the end of each frame */
DMA_GBLCNT RMK(DMA_GBLCNT_FRMCNT_OF(O),

DMA PRICTL RMK ( /* initialize primary control register */
DMA PRICTL DSTRLD NONE,
DMA PRICTL SRCRLD NONE,
DMA PRICTL EMOD HALT,
DMA PRICTL FS DISABLE, /* need to disable frame sync */
DMA PRICTL TCINT ENABLE, /* enable interrupt */

DMA SECCTL RMK (

DMA PRICTL PRI DMA,

DMA PRICTL WSYNC XEVTO,
DMA PRICTL RSYNC NONE,
DMA PRICTL INDEX A,

DMA PRICTL CNTRLD A,

DMA PRICTL SPLIT DISABLE,
DMA PRICTL ESIZE 32BIT,
DMA PRICTL DSTDIR NONE,
DMA PRICTL SRCDIR INC,
DMA PRICTL START STOP

),

DMA SECCTL RSPOL DEFAULT, /*
DMA SECCTL FSIG DEFAULT, /*
DMA SECCTL DMACEN BLOCKCOND,
DMA SECCTL WSYNCCLR DEFAULT,
DMA SECCTL WSYNCSTAT DEFAULT,
DMA SECCTL RSYNCCLR DEFAULT,
DMA SECCTL RSYNCSTAT DEFAULT,
DMA SECCTL WDROPIE DEFAULT,
DMA SECCTL WDROPCOND DEFAULT,
DMA SECCTL RDROPIE DEFAULT,
DMA SECCTL RDROPCOND DEFAULT,
DMA SECCTL BLOCKIE ENABLE,
DMA SECCTL BLOCKCOND DEFAULT,
DMA SECCTL LASTIE DEFAULT,
DMA SECCTL LASTCOND DEFAULT,
DMA SECCTL FRAMEIE DEFAULT,
DMA SECCTL FRAMECOND DEFAULT,
DMA SECCTL SXIE DEFAULT,

DMA SECCTL_SXCOND DEFAULT

),

DMA SRC RMK (XDATA),

DMA DST RMK (MCBSP getXmtAddr (hMcbsp0)),
DMA_XFRCNT RMK (
DMA XFRCNT FRMCNT OF (DMA XFER FRAMEO),
DMA XFRCNT ELECNT OF (DMA XFER SIZEO)

);

)

} /* end run dma */

#endif

22 Using a TMS320C6000 McBSP for Data Packing

» /* initialize DMAQO secondary control
DMA SECCTL WSPOL DEFAULT, /* only available for
only available for
only available for

6202/6203
6202/6203
6202/6203

/* start DMA Channel 1

register */
*/
*/
*/

/* init DMAl transfer counter register */

*/



‘EP'TEXAS
INSTRUMENTS SPRA551A

#if (EDMA_SUPPORT)

void

run_dma0 (void)

{

/* channel tied to McBSPO xmit */

hEdmal = EDMA open (EDMA CHA XEVTO, EDMA OPEN RESET) ;
EDMA configArgs (hEdmal,

#if (!C64 SUPPORT)
EDMA OPT RMK (

EDMA OPT PRI HIGH,

EDMA OPT ESIZE 32BIT, /* Element size 32 bits */
EDMA OPT 2DS NO,

EDMA OPT SUM INC,

EDMA OPT 2DD NO,

EDMA OPT DUM NONE,

EDMA OPT TCINT_ YES, /* Enable Transfer Complete Interrupt */
EDMA_OPT_TCC OF (12),
EDMA OPT LINK YES, /* Enable linking to NULL table */

EDMA OPT FS NO
),
#endif

#if (C64 SUPPORT)
EDMA OPT RMK (

EDMA OPT PRI DEFAULT,
EDMA OPT ESIZE 32BIT, /* Element size 32 bits */
EDMA OPT 2DS NO,
EDMA OPT SUM INC,
EDMA OPT 2DD NO,
EDMA OPT DUM NONE,

EDMA OPT TCINT YES, /* Enable Transfer Complete Interrupt */
EDMA OPT TCC OF (12)

EDMA OPT LINK YES, /* Enable linking to NULL table */
EDMA OPT FS NO,

EDMA OPT TCCM DEFAULT, /* ™™ = 00 */

EDMA OPT ATCINT DEFAULT,
EDMA OPT ATCC DEFAULT,
EDMA OPT PDTS DEFAULT,
EDMA OPT PDTD DEFAULT
)

#endif

EDMA SRC RMK (XDATA),
EDMA CNT RMK (DMA XFER FRAMEO-1, DMA XFER SIZEOQ), /* no. of elements */
EDMA DST RMK (MCBSP getXmtAddr (hMcbsp0)),
EDMA IDX RMK(0,EDMA IDX FRMIDX OF(0)),
EDMA RLD RMK (EDMA RLD ELERLD OF (6),0)
) ;
EDMA enableChannel (hEdmal) ;
}  /* end run dma0O */
#endif -

Using a TMS320C6000 McBSP for Data Packing 23



4E?TEXAS

SPRA551A INSTRUMENTS
/* Set up the DMA Control Registers to perform the data transfers */

/* from McBSP1l to RDATA. Channel 2 is used. */

#1if DMA SUPPORT )

void

run_dmal (void)

{

DMA RSET (GBLCNTB, /* channel tied to McBSPO xmit */
- DMA GBLCNT_ RMK (DMA GBLCNT FRMCNT OF (0),

DMA GBLCNT ELECNT OF (2))
) ;

DMA configArgs (hDma2,

DMA PRICTL RMK ( /* Init DMAl primary control register */

DMA PRICTL DSTRLD NONE,
DMA PRICTL SRCRLD NONE,
DMA PRICTL EMOD HALT,
DMA PRICTL FS DISABLE, /* Need to disable frame sync */
DMA PRICTL TCINT ENABLE, /* enable interrupt */
DMA PRICTL PRI DMA,
DMA PRICTL WSYNC NONE,
DMA PRICTL RSYNC REVTI1,
DMA PRICTL INDEX A,
DMA PRICTL CNTRLD B,
DMA PRICTL SPLIT DISABLE,
DMA PRICTL ESIZE 32BIT,
DMA PRICTL DSTDIR INC,
DMA PRICTL SRCDIR NONE,
DMA PRICTL START STOP

),

DMA SECCTL RMK ( /* Init DMAl secondary control register */
DMA SECCTL WSPOL DEFAULT, /* only available for 6202/6203 */
DMA SECCTL RSPOL DEFAULT, /* only available for 6202/6203 */
DMA SECCTL FSIG DEFAULT, /* only available for 6202/6203 */

DMA SECCTL DMACEN BLOCKCOND,
DMA SECCTL WSYNCCLR DEFAULT,
DMA SECCTL WSYNCSTAT DEFAULT,
DMA SECCTL RSYNCCLR DEFAULT,
DMA SECCTL RSYNCSTAT DEFAULT,
DMA SECCTL WDROPIE DEFAULT,
DMA SECCTL WDROPCOND DEFAULT,
DMA SECCTL RDROPIE DEFAULT,
DMA SECCTL RDROPCOND DEFAULT,
DMA SECCTL BLOCKIE ENABLE,
DMA SECCTL BLOCKCOND DEFAULT,
DMA SECCTL LASTIE DEFAULT,
DMA SECCTL LASTCOND DEFAULT,
DMA SECCTL FRAMEIE DEFAULT,
DMA SECCTL FRAMECOND DEFAULT,
DMA SECCTL SXIE DEFAULT,
DMA SECCTL SXCOND DEFAULT
) s

DMA SRC RMK (MCBSP getRcvAddr (hMcbspl)),

DMA DST RMK (RDATA),

DMA XFRCNT RMK ( /* Init DMAl transfer counter register */
DMA XFRCNT FRMCNT OF (DMA XFER FRAMEL),
DMA XFRCNT ELECNT OF (DMA XFER SIZE1)
)

);

DMA start (hDma2) ;
} /* end run dmal */
#endif

24 Using a TMS320C6000 McBSP for Data Packing



‘E?'TEXAS

INSTRUMENTS

SPRA551A

#if (EDMA_SUPPORT)

void

run_dmal (void)

{

/* channel tied to McBSPl rcv */
hEdma2 = EDMA open (EDMA CHA REVTI,
EDMA configArgs (hEdma2z,

#if (!C64 SUPPORT)
EDMA OPT RUMK (

EDMA OPT PRI HIGH,
EDMA OPT ESIZE 32BIT,
EDMA OPT 2DS DEFAULT,
EDMA OPT SUM NONE,
EDMA OPT 2DD NO,
EDMA OPT DUM INC,
EDMA OPT TCINT YES,
EDMA OPT TCC OF (15),
EDMA OPT LINK YES,
EDMA OPT FS NO
),

#endif

#if (C64 SUPPORT)

EDMA OPT RMK (

EDMA OPT PRI DEFAULT,
EDMA OPT ESIZE 32BIT,
EDMA OPT 2DS NO,
EDMA OPT SUM NONE,
EDMA OPT 2DD NO,
EDMA OPT DUM INC,
EDMA OPT TCINT YES,
EDMA OPT TCC OF (15),
EDMA OPT LINK YES,
EDMA OPT FS NO,
EDMA OPT TCCM DEFAULT,
EDMA OPT ATCINT DEFAULT,
EDMA OPT ATCC DEFAULT,
EDMA OPT PDTS DEFAULT,
EDMA OPT PDTD DEFAULT
)

#endif

EDMA OPEN_ RESET) ;

/* Element size 32 bits

/* Enable Transfer Complete Interrupt

/* Enable linking to NULL table

/* Enable Transfer Complete Interrupt
/* Enable linking to NULL table

/* TM = 00

EDMA SRC RMK (MCBSP getRcvAddr (hMcbspl)),

(
EDMA_CNT_ RMK (
EDMAﬁDSTiRMK(RDATA)
EDMA_IDX RMK (0, 0),

(

DMA XFER FRAME1-1, DMAﬁXFERﬁSIZEl), /* no. of elements

EDMA RLD RMK EDMA RLD ELERLD OF(2),0)

);
// EDMA enableChannel (hEdma2) ;
} /* end run dmal */
#endif

/* wake up mcbspO transmitter. wait for frame sync from McBSPl

void
wake mcbspO (void)
{
MCBSP enableXmt (hMcbspO) ;
} /* end wake mcbsp0 */
/* wake up mcbspl receiver
void
wake mcbspl (void)
{
MCBSP enableRcv (hMcbspl) ;
MCBSP enableFsync (hMcbspl) ;
} /* end wake mcbspl */

*/

*/
*/

*/
*/
*/

*/

*/

*/

Using a TMS320C6000 McBSP for Data Packing 25



IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you
permission to use these resources only for development of an application that uses the Tl products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third
party intellectual property right. Tl disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated


http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	This application report describes how to use the multichannel buffered serial port (McBSP) in the Texas Instruments TMS320C6000 digital signal processor (DSP) for data packing. Data packing involves moving either multiple successive 8-bit elements to...

	List of Figures
	Figure 1. Timing Diagram for Data Transfer of Six 8-Bit Elements (With No Packing) Figure 2. Timing Diagram for Data Transfer of Two 24-Bit Elements
	. . . . . . . . . . . 2
	(With Data Packing)—Solution 1 4
	Figure 3. Transferred Data in Memory 4
	Figure 4. Timing Diagram for Data Transfer of Three 16-Bit Elements
	(With Data Packing)—Solution 1 4
	Figure 5. Receive Control Register (RCR)—Solution 1 Figure 6. Transmit Control Register (XCR)—Solution 1
	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
	Figure 7. Sample Rate Generator Register (SRGR)—Solution 1 5
	Figure 8. Pin Control Register (PCR)—Solution 1 6
	Figure 9. Timing Diagram for Data Packing With Frame Sync Ignore Operations—Solution 2 8
	Figure 10. Receive Control Register (RCR)—Solution 2 Figure 11. Transmit Control Register (XCR)—Solution 2
	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
	Figure 12. Sample Rate Generator Register (SRGR)—Solution 2 9
	Figure 13. Pin Control Register (PCR)—Solution 2 9
	Figure 14. Data Packing Hardware Interface Example 13

	2 Overview
	Figure 1. Timing Diagram for Data Transfer of Six 8-Bit Elements (With No Packing)
	In this configuration, the (E)DMA (direct memory access) needs to service the McBSP a total of 12 times—six 8-bit reads from the DRR and six 8-bit writes to the DXR. When the McBSP is operating at maximum frequency, as shown in Figure 1, there are way...


	3 Solution 1
	3.1 Data Packing by Controlling (R/X)FRLEN and (R/X)WDLEN
	Figure 2. Timing Diagram for Data Transfer of Two 24-Bit Elements (With Data Packing)—Solution 1
	Figure 3. Transferred Data in Memory
	Figure 4. Timing Diagram for Data Transfer of Three 16-Bit Elements (With Data Packing)—Solution 1
	In Solution 1, the McBSP receive/transmit clocks (CLKR/CLKX) can be either internally or externally generated. Similarly, you can use either internal or external frame sync signals, FSR and FSX. The register setup discussed in section 3.2 and the samp...


	3.2 McBSP Registers Configuration
	Figure 5. Receive Control Register (RCR)—Solution 1
	Figure 6. Transmit Control Register (XCR)—Solution 1
	Figure 7. Sample Rate Generator Register (SRGR)—Solution 1
	Figure 8. Pin Control Register (PCR)—Solution 1
	Table 1. Bit-Field Values for McBSP Registers—Solution 1 (Continued)


	4 Solution 2
	Solution 2 shows how to pack data by setting the receive/transmit frame sync ignore (R/X)FIG bits of the McBSP.
	4.1 Data Packing by Controlling (R/X)FIG
	4.2 McBSP Registers Configuration
	Figure 10, Figure 11, Figure 12, and Figure 13 show the bit field setup for the McBSP control registers for Solution 2. Table 2 lists and describes the bit fields. The RCR and XCR setup in this solution is similar to the setup in Solution 1, in additi...
	Figure 10. Receive Control Register (RCR)—Solution 2
	Figure 11. Transmit Control Register (XCR)—Solution 2
	Figure 12. Sample Rate Generator Register (SRGR)—Solution 2
	Figure 13. Pin Control Register (PCR)—Solution 2


	5 McBSP Initialization for Data Packing
	The following example shows how to set up and initialize the McBSP to perform data packing. In this example, two multichannel buffered serial ports in one device are used. The first serial port, McBSP0, is used to transmit six 8-bit elements to the se...
	Channels 12 and 15 were used to synchronize the EDMA transfers to the McBSP0 transmit and McBSP1 receive events, respectively. Unlike the C620x/C670x DMA controller which has individual interrupts for each DMA channel, the EDMA generates a single inte...
	The transfer complete code is directly mapped to the CIPR bits in the C621x/C671x DSP. The transfer complete code is specified by the 4-bit TCC field.
	5. DMA initialization. Program the DMA channel for both transfers for the required operation. The following is a typical setup for the DMA channel corresponding to McBSP0:
	The following is a typical set up for the DMA channel corresponding to McBSP1:
	EDMA initialization: Program the EDMA channel for both transfers for the required operation. The following is a typical setup for the EDMA channel corresponding to McBSP0:
	The following is a typical set up for the EDMA channel corresponding to McBSP1:
	6. Instruct the (E)DMA channel(s) in both devices to run. In the DMA channel primary control register (PRICTL), set START = 01 to start the DMA without autoinitialization. For the EDMA, set the corresponding bit in the EDMA event enable register. The ...

	6 Sample C Functions
	Figure 14. Data Packing Hardware Interface Example

	7 Conclusion
	Two different solutions are available to implement data packing using the TMS320C6000 McBSP. Solution 1 applies when either the McBSP or an external device generates the frame sync signals. Solution 2 applies only when an external source generates the...

	8 References
	Appendix A Data Packing Sample Source Code

