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ABSTRACT

This document describes how the multichannel buffered serial ports (McBSP) in the
TMS320C6000  digital signal processors (DSP) are used to communicate on a time-division
multiplexed (TDM) data highway.

TDM provides multiple devices a time slot to perform data transfer. Thus, multiple users
operate various channels; however, each user has a set of channel(s) assigned for
transmission and reception. The McBSP can support up to 128 channels in multichannel
mode. Each of these 128 channels can be enabled or disabled via software to communicate
only in those necessary time slots.

When multiple users are connected to the same data lines, bus contention can be an issue
during transmission. Although each device connected to this TDM highway has its own
channel assignment, it is possible that the next device getting onto the bus can contend with
the last bit(s) of the previous channel. The workaround for the data contention problem is
addressed in this document by considering multiple McBSPs connected to a single data line.
This document presents three workarounds applicable to the different C6000  devices.
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1 Design Problem

How do I use the multichannel buffered serial port (McBSP) to communicate over a time-division
multiplexed (TDM) data highway without bus contention?

C6000
McBSP

C6000
McBSP

DX

DX DXDR

DR

DR

TDM Highway

C6000
McBSP

Figure 1. Multiple McBSPs on a Time-Division Multiplexed Bus

2 Application

Multiple DSPs can be connected via a single TDM bus to communicate specific information to a
specific DSP or a group of DSPs. Typical applications would be messaging, broadcasting and
passing channels of processed data to required DSPs for further processing or as data input. The
TDM data transfer is achieved using the programmable McBSP and the DMA. The serial port pins
DX and DR are used for data transfer, whereas CLK(R/X) and FS(R/X) serve as the control signals
for clocking and synchronization. The DMA is responsible for retrieving data from the McBSP
receiver and storing in an in_buffer. The CPU can then process the in_buffer data as required and
make it available in the out_buffer for the DMA to write to the TDM bus via the transmitter.
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It is important to configure each DSP to send and receive channels of data on certain assigned
time slots. This TDM arrangement ensures proper allocation of data on particular channels and
retrieval of this data by the required DSP. Since there are no address lines used, the
multichannel operation of the McBSP helps in identifying the destination of data in transit.
DSP-specific messages are sent on a known channel, and the destination DSP listens to this
channel by enabling the appropriate receive channel enable bit(s).

3 Multichannel Operation Overview

The McBSP can perform multichannel selection operation for single-phase frames. Single-phase
frames are characterized by a group of elements that have the same element size. The maximum
number of elements per frame is the same as the number of channels, which is equal to 128.
Therefore, each frame represents a time-division multiplexed data stream with up to 128 channels.

All C6000 devices are capable of implementing a TDM highway using the multichannel serial
port and have the potential to transmit or receive from one up to 128 channels. The C64x
McBSP supports an enhanced multichannel mode that allows for greater channel selection
flexibility and requires fewer resources to transmit and receive over a large number of channels.

3.1 Multichannel Selection Mode (All C6000 devices)

For all C6000 devices, a set of programmable control registers in the McBSP specific for
multichannel operation makes communication on a TDM highway possible. They are the
Multichannel Control Register (MCR), the Transmit Channel Enable Register (XCER), and the
Receive Channel Enable Register (RCER). These registers are explained in detail in the
TMS320C6000 Peripherals Reference Guide (SPRU190).

The 128 channels in a frame are divided into eight 16-channel sub-frames as shown Figure 2.
Each channel can have programmable data sizes (8-, 12-, 16-, 20-, or 32-bits). But all channels
in a frame have to be of same data size. Odd-numbered sub-frames constitute Partition A
(represented by (R/X)PABLK), and even-numbered belong to Partition B (represented by
(R/X)PBBLK). Each of the 128 channels can be enabled or disabled for both transmit and
receive. This is achieved by the 32-bit (R/X)CER register. Therefore, up to 32 channels can be
enabled in two consecutive sub-frames, 16 in Partition A and 16 in Partition B.

Channels can be enabled or disabled at any time as long as it does not belong to the current (or
active) sub-frame. An active sub-frame can be viewed as that time slot where transmission or
reception is taking place. For example, if data transfer is ongoing in sub-frame 2 (channels
32–47 in (R/X)PABLK=1), the lower 16-bits of the channel enable registers (which correspond to
Partition A) should not be changed since they would affect the enabling of the current channels.
This can be ensured by using the current block status bits (R/X)CBLK in the MCR.

C64x is a trademark of Texas Instruments.

http://www-s.ti.com/sc/techlit/spru190
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SUB-FRAME 0 1 2 3 4 5 6 7 0

(R/X)PABLK 0 1 2 3 0
PARTITION A 0–15 32–47 64–79 97–111 0–15

(R/X)PBBLK 0 1 2 3

PARTITION B 16–31 48–63 80–95 112–127

FS(R/X)

Figure 2. Sub-Frames, Partitions, and Channels in a Multichannel Frame

3.2 Enhanced Multichannel Selection Mode (C64x only)

The C64x series McBSP includes an enhanced multichannel selection mode that enables
greater channel allocation flexibility, allowing up to 128 channels to be selected at any given
time. This mode is accessed through two new bits in the MCR, the enhanced receive
multichannel selection enable bit (RMCME) and the enhanced transmit multichannel selection
enable bit (XMCME). This mode also adds six enhanced receive/transmit enable registers
(RCERE1, RCERE2, RCERE3, XCERE1, XCERE2, and XCERE3) to the C64x McBSP. The
XCER and RCER become XCERE0 and RCERE0 respectively when enhanced mode is
enabled.

In enhanced multichannel mode, the registers RCERE0–RCERE3 and XCERE0–XCERE3 are
used to enable up to 128 channels. Thus, the values in (R/X)PABLK and (R/X)PBBLK are don’t
cares. Table 1 shows the channel enable bits for a 128-channel data stream.

Table 1. Channel Enable Bits (in RCEREx/XCEREx) for a 128-Channel Data Stream

Channel Number of a 128-Channel Data Stream

0–15 16–31 32–47 48– 63 64–79 80–95 96–111 112–127

Register
RCERE0
XCERE0

RCERE0
XCERE0

RCERE1
XCERE1

RCERE1
XCERE1

RCERE2
XCERE2

RCERE2
XCERE2

RCERE3
XCERE3

RCERE3
XCERE3

Channel
R/XCE0
to
R/XCE15

R/XCE16
to
R/XCE31

R/XCE32
to
R/XCE47

R/XCE48
to
R/XCE63

R/XCE64
to
R/XCE79

R/XCE80
to
R/XCE95

R/XCE96
to
R/XCE111

R/XCE112
to
R/XCE127

4 Problem Description

When multiple devices transmit over the same line, care should be taken to avoid bus contention
due to simultaneous or overlapped write accesses by two or more devices. Contention during
transmission can be avoided by ensuring enough dead time between the last write of one device
and the first write access of the next device.

To avoid data collision, the disable time (tdis(CKXH–DXZ)) of the DX output should be much
smaller than the enable or delay time (td(CKXH–DX)) of the DX output for the next device. This
is shown as Tdead in Figure 3 and is defined as:

Tdead = { td(CKXH–DX) – tdis(CKXH–DXZ) } >> 0
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CPU0: Bit 0 CPU2: Bit(n–1) CPU2: Bit(n–2) CPU2: Bit(n–3)

td(CKXH–DX)td(CKXH–DX)td(CKXH–DX)

tdis(CKXH–DXZ)

Tdead

CLKX

DX

Figure 3. DX Timing for Multichannel Operation

The timing parameters and their values for the C6000 McBSP DX output, as per the datasheet,
is shown in Table 2. It can be inferred from the timing numbers of the McBSP that the delay time
and disable time for the DX pin is the same. Therefore, there can be bus contention if two
McBSPs transmit on successive channels. The following sections will describe the workaround
for this problem using the C6000 devices.

Table 2. Switching Characteristics of DX Output of C6201 McBSP

NO. PARAMETER MIN MAX UNIT

12 tdis(CKXH DXZ)
Disable time, CLKX high to DX high impedance CLKX int 0 4 ns

12 tdis(CKXH-DXZ)
Disable time, CLKX high to DX high im edance
following last data bit CLKX ext 3 16 ns

13 td(CKXH DX)
Delay time, DX valid after CLKX high. For the first
data bit this is assured by design to be the delay

CLKX int 0 4 ns
13 td(CKXH-DX) data bit, this is assured by design to be the delay

time for data to become low impedance. CLKX ext 3 16 ns

5 Solution Overview

The bus contention problem is due to lack of control on the DX output buffer’s turn-on (delay)
and turn-off (disable) time. This application report shows three solutions to the problem.
Solution 1—dummy channel insertion—is applicable on all C6000 devices. Solution
2—DXENA—is recommended for C621x/C671x. Solution 3—DXENA plus enhanced
multichannel selection mode—is the optimal solution for C64x TDM operations.

5.1 Solution 1: Dummy Channel Insertion (Recommended for C620x/C670x)

Contention can be avoided by programming the McBSP to transfer one extra (dummy) element
or channel than what is necessary. This additional (dummy) channel should be disabled via the
XCER register since it does not represent data of interest. A disabled channel has its DX in
high-impedance state. The dummy channel will provide the necessary dead time between
transfers from two McBSPs and thus prevent contention.

Consider the example where one McBSP in each of the three DSPs is connected to the TDM
bus, as shown in Figure 4. Assume that DSP1 is the clock and frame master. As a result, DSP1
generates transmit and receive clocks and transmit and receive frame syncs.

In Figure 4, D(R/X)00 represents D(R/X) pins of McBSP0 in DSP0. Similarly D(R/X)01 and
D(R/X)02 correspond to McBSP0 of DSP1 and DSP2. For this example, DX00 occupies
sub-frame 0 and 1, DX01 occupies sub-frame 1, and DX02 occupies sub-frames 3, and 4. On
the receive side, DR00 listens to sub-frame 1, 3, and 4, DR01 receives channels in sub-frame 0
and 3, and lastly, DR02 receives sub-frames 0 and 1.
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DX02
ch 48–71
dummy 71

DSP0

DX00
ch0–15,
dummy 16

DR00
ch 16–31,
ch 48–71

DR02
ch 0–15,
ch 16–31

TDM Highway

DSP2

DSP1 Clock & Frame Master

DR01
ch 0–15,
ch 48–63

DX01
ch 17–31

Figure 4. Three DSPs on a TDM Bus

The actual channels (or time slots) in which each of the McBSPs transmit and receive are listed
in Table 3 and Table 4, respectively. In this TDM set up, up to 71 out of the available 128
channels are considered for data transfer. Among these 71 channels, only some are enabled for
transmission and reception. In this example, some or all channels in sub-frame 0, 1, 3, and 4 are
enabled, whereas sub-frame 2 corresponding to channels 32–47 is not used and is therefore
disabled. To selectively choose channels, the appropriate multichannel mode has to be chosen.
For this example, XMCM = RMCM = 1 will suit the application. The (R/X)MCM = 1 mode
disables all 128 channels by default. The required channels are enabled via the 16-channel
sub-frames (R/X)P(A/B)BLK and the channel enable registers (R/X)CER.

5.1.1 TDM Transmission

Since DSP1 is the clock and frame master, it will be programmed to generate frame sync for
every 71 channels. The frame period (FPER) depends on the serial element size in a frame and
the number of elements or channels in a frame. DSP0 and DSP2 are slaves and therefore will
start their respective data transfer upon receiving the frame and clock from the master DSP1.
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Table 3. TDM Data Transmission Setup

DSP#
Sub-frame/
XP(A/B)BLK Channels Transmitted Register Value

DSP#0
DX00

Sub-frame 0:
XPABLK = 0
XPBBLK = 0

Sub-frame channels: 0–15
Enabled channels (XPABLK): 0–15
Dummy channel: 16
Disabled channels: all others

XCER = 0x0000FFFF

DSP#1
DX01

Sub-frame 1:
XPBBLK = 0;

Sub-frame channels: 16–31
Enabled channels (XPBBLK): 17, 19
 20–23, 25,27, 28–31
Disabled channels: all others

XCER = 0xFAFA0000

DSP#2
DX02

Sub-frames 3, and 4:
XPBBLK = 1

XPABLK = 2

Sub-frame channels: 48–63 and 64–79
Enabled channels (XPBBLK): 48, 49, 51
52–54, 56, 58, 60, 61, 63
Enabled channels (XPABLK): 64–70
Dummy channel: 71
Disabled channels: all others

XCER = 0xB55B007F

Assume transmit and receive data delay to be 1. The frame sync from the master initiates data
transmission on DSP0, since DSP0 is enabled for transmission on channels 0–15. The first data
bit on DX is available one clock after the frame sync is active. At the same time, DSP1 and
DSP2 are enabled to receive some channels on sub-frame 0. Note that more than one device
can receive the same channel(s).

 In the next sub-frame 1 (channels 16–31), DSP1 transmits starting from channel 17. DSP0 is
programmed for 17 (channels 0–16) serial elements, and the last element will be disabled so
that DX will be driven to high-impedance state. This configuration occurs because channel 16
has to be a dummy channel to prevent bus contention between DSP0 and 1.

Ch70: B0

Ch71:Bn–B0

Ch0:(n–1)

Ch16:(n to 0)

Ch17:(n–1)

Ch71:Bn–B0

XDATDLY = 1
TdeaTdea

Dummy
(CPU Channel 0)

CLKX

FSX

DX
Dummy
(CPU Channel 2)

Dummy
(CPU Channel 2)

Figure 5. Dummy Channel on TDM Bus Used to Prevent Bus Contention

The transmission and reception continues on enabled channels up to channel 71. After channel
71 is transmitted on the TDM bus by DSP2, the next frame starts at channel 0. This
configuration occurs because FPER is programmed for ((data-size in bits * 71) –1), and also
because the data delay is 1. It provides for no gaps between two frames, which is known as
maximum packet frequency. Since channel 0 is enabled, this again leads to successive
channels (channel 71 and channel 0) being driven and resulting in bus contention. Therefore,
channel 71 has to be a dummy channel and must be disabled.
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5.1.2 TDM Reception

The receive section in DSP0, 1, and 2 can receive any channel of interest without any
restrictions on overlapping of channels, as shown in Table 4. Note, however, that DSP0 receives
channels from sub-frames 1, 3, and 4. Sub-frame 1 and 3 belong to partition B (RPBBLK) and
sub-frame 4 to RPABLK. Note that the channels enabled for one sub-frame cannot be changed
when it is the current one in transfer. Therefore, when the DSP0 receiver is in sub-frame 0 with a
particular set of channels enabled (via RCER in RPBBLK 0), the RCER cannot be changed to
be ready for the next sub-frame (3) which falls under the same partition. Before sub-frame 3
arrives, the receiver should be enabled for the appropriate channels (56, 58 in this case). To do
this, the current block status bits RCBLK in the multichannel control register (MCR) can be
probed to find out the current partition in progress. If the RCBLK does not point to block 0, then
RCER can be programmed for channel enabling in sub-frame 3. This can also be done for the
transmit side using the XCBLK, if required.

Table 4. TDM Data Reception Setup

DSP#
Sub-frame/
RP(A/B)BLK Channels Received Register Value

DSP#0
DR00

Sub-frames 1, 3, 4:
RPBBLK = 0

RPBBLK = 1
RPABLK = 1

Sub-frame channels: 16–31, 48–63, and 64–71
Enabled channels (RPBBLK): 25, 27
Enabled channels (RPBBLK): 56, 58
Enabled channels (RPABLK): 64–70
Disabled channels: All others

RCER = 0x0A000000

RCER = 0x05000000
RCER = 0x0000007F

DSP#1
DR01

Sub-frames 0, 3
RPABLK = 0

RPBBLK = 1

Sub-frame channels: 0–15, 48–63
Enabled channels (RPABLK): 0–7
Enabled channels (RPBBLK): 48, 49, 51, 52–54, 60, 61, 63
Disabled channels: all others

RCER = 0xB05B00FF

DSP#2
DR02

Sub-frames 0, 1:
RPABLK = 0

RPBBLK = 0

Sub-frame channels: 0–15, 16–31
Enabled channels (RPABLK): 0–15
Enabled channels (RPBBLK): 17, 19, 20–23, 28–31
Disabled channels: all others

RCER = 0xF0FAFFFF

5.1.3 McBSP Initialization

As in typical applications, consider that the DMA (C620x/C670x) or EDMA (C621x/C671x/C64x)
services the McBSP. The McBSP initialization procedure for other typical applications is
described in TMS320C6000 McBSP Initialization (SPRA488). The following steps describe the
setup of interrupts, DMA or EDMA, and the McBSP in the required order for the TDM example
above:

1. For DSP0, DSP1, and DSP2 McBSP0: Program the sample rate generator register
(SRGR), serial port control register (SPCR), pin control register (PCR), receive control
register (RCR), multichannel control register (MCR) and receive/transmit channel enable
registers ((R/X)CER) to the required values.

Caution: Do not set the GRST bit in SPCR in this step.

2. Take DSP1’s sample rate generator out of reset by setting GRST = 1 in the SPCR. GRST
is not required to be set for DSP0 and 2, since the clocks and frames are inputs.
Therefore, the sample rate generator is not used for McBSP0.

http://www-s.ti.com/sc/techlit/spra488


SPRA491A

9 TMS320C6000 McBSP as a TDM Highway

3. Enabling Interrupts: To use interrupts, you have to set the global interrupt enable (GIE),
and non-maskable interrupt enable (NMIE) bits in the IER. For the receiver of DSP0, an
end-of-subframe interrupt (RINTM = 01b) can be used to determine the end of a
16-channel sub-frame, and thereby change the channel enabling for odd- or
even-numbered sub-frame (see first row in Table 4).

DMA: Select the DMA channel you want to use. Enable CPU interrupts corresponding to the
DMA channel that will be used to service the McBSP. The default mapping of DMA
channel-complete interrupts to the CPU can be used.

EDMA: EDMA channels 12–15 are each associated with one specific McBSP transfer event.
Unlike the DMA controller, one EDMA interrupt is shared for all channels.

Choose EDMA channels based on the McBSP in use. Enable the EDMA interrupt to the
CPU.

4. DMA initialization: Program the DMA source/destination registers and primary control
register for required operation. Configure the R/WSYNC fields in the DMA primary control
register to receive requests from the McBSP if event-synchronized operation is desired.

EDMA initialization: EDMA initialization is similar to DMA except that configuration data is
written to a parameter RAM entry instead of a memory-mapped register. Configure the event
enable register (EER) if desired to receive requests from the McBSP.

5. Instruct the DMA to run if necessary. For example, set START = 01b in the DMA channel’s
primary control register to start the DMA without auto-initialization.

When McBSP synchronization events are enabled, the DMA or EDMA will respond
automatically to McBSP.

6. Take the transmitter and receiver of slave DSPs (0 and 2) out of reset. They will now await
the clock (CLKR/X) and frame sync (FSR/X) from the master DSP1.

7. Take the transmitter and receiver of the master (DSP0) out of reset. Set FRST = 1 in
DSP1. This causes the first frame sync output on FS(R/X) after 8-bit clocks.

5.2 Solution 2: DXENA (Recommended for C621x/C671x)

The C621x/C671x/C64x series of devices provides a hardware method to control the DX output
buffer, called the DX enabler (DXENA). The DXENA field in the serial port control register
(SPCR) controls the high impedance enable on the DX pin. When DXENA = 1, the DX pin
turn-on time gains additional delay equal to two CPU clock cycles. Because the DXENA delay is
independent from data transmission, the information seen on the TDM Highway is unchanged.
The only change that occurs when DXENA =  1 is that the amount of time a transmitter’s first bit
is presented to the line is decreased. Figure 6 shows this extra delay time.
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B0 (processor 0) B7 (processor1) B6 (processor 1)

No extra de;ay
even with DXENA = 1Dead time

Extra delay
If DXENA = 1 (processor 1)

Disable time
(processor 0)

CLKX

DX

Figure 6. DX Timing for Multichannel Operation

Let’s reconsider the previous example with DXENA = 1. We will keep the same three DSPs used
in Figure 4, with DSP1 as the clock and frame master. There is no longer a need to insert
wasted dummy channels. Notice that dummy channels 16 and 71 can be used to carry data.
Figure 7 summarizes the new channel assignments. The DX enabler ensures that only one
transmitter is active at any time; thus, no dummy channels are needed.

DX02
 ch 48–71

DSP0

DX00
ch0–16

DR00
ch 16–31,
ch 48–71

DR02
ch 0–15,
ch 16–31

TDM Highway

DSP2

DSP1 Clock & Frame Master

DR01
ch 0–15,
ch 48–63

DX01
ch 17–31

Figure 7. Three DSPs on a TDM Bus with DXENA = 1

5.3 Solution 3: DXENA and Enhanced Multichannel Selection Mode
(Recommended for C64x)

A third solution is available to C64x users. In addition to the normal multichannel mode, this
device adds the enhanced multichannel mode and features the DXENA.

Table 3 and Table 4 have also been updated to Table 5 and Table 6, respectively, with the new
channel assignment information. Enhanced multichannel mode eliminates the need for
(R/X)P(A/B)BLK fields, and these are shown as don’t cares (X) in the table. There is no need to
poll or update these fields to access multiple A or B blocks.
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Figure 8. Three DSPs on a TDM Bus With DXENA = 1 and Enhanced Multichannel Mode

Table 5. TDM Data Transmission for Hardware Solution

DSP# Channels Transmitted Register Value

DSP#0
DX00

Enabled channels: 0–16
Dummy channel: None
Disabled channels: all others

XCERE0 = 0x0001FFFF
XCERE1 = 0x00000000
XCERE2 = 0x00000000
XCERE3 = 0x00000000

DSP#1
DX01

Enabled channels: 17, 19, 20–23, 25,27, 28–31
Disabled channels: all others

XCERE0 = 0xFAFA0000
XCERE1 = 0x00000000
XCERE2 = 0x00000000
XCERE3 = 0x00000000

DSP#2
DX02

Enabled channels: 32–49, 51–54, 56, 58, 60, 61, 63–71
Dummy channel: None
Disabled channels: all others

XCERE0 = 0x00000000
XCERE1 = 0xB57BFFFF
XCERE2 = 0x000000FF
XCERE3 = 0x00000000
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Table 6. TDM Data Reception for Hardware Solution

DSP# Channels Received Register Value

DSP#0
DR00

Enabled channels: 16,17, 19–23, 25, 27, 31, 56, 58, 64–71
Disabled channels: All others

RCERE0 = 0x8AFB0000
RCERE1 = 0x05000000
RCERE2 = 0x000000FF
RCERE3 = 0x00000000

DSP#1
DR01

Enabled channels: 0–7, 48, 49, 51, 52–54, 60, 61, 63
Disabled channels: all others

RCERE0 = 0x000000FF
RCERE1 = 0xB07B0000
RCERE2 = 0x00000000
RCERE3 = 0x00000000

DSP#2
DR02

Enabled channels: 0–15, 17, 19, 20–23, 28–31
Disabled channels: all others

RCERE0 = 0xF0FAFFFF
RCERE1 = 0x00000000
RCERE2 = 0x00000000
RCERE3 = 0x00000000

Notice that McBSP initialization steps remain the same as before with two exceptions:

1. DXENA bit is now set to one in the SPCR in step one; and

2. RINTM does not have to be set in step three since subframes are not necessary in
enhanced multichannel mode.

5.4 Conclusion

Multiple C6x  devices can be connected in a multi-processor environment with one of them as a
clock and frame master. This is achieved by using time-division multiplexing via the McBSP
interface through the multichannel mode. Along with the standard multichannel mode, additional
solutions are possible with certain C6000 family members. The DX enabler in the
C621x/C671x/C64x allows increased TDM efficiency by eliminating dummy channels, and the
C64x enhanced multichannel mode improves channel selection flexibility while decreasing
operational complexity.

C6x is a trademark of Texas Instruments.
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Appendix A Sample Code

/***********************************************************************************\

*           Copyright (C) 2000 Texas Instruments Incorporated.

*                           All Rights Reserved

*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

* FILENAME...... XXXXXXXX

* DATE CREATED.. 11/28/2000

*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

* This program demonstrates the McBSP in multichannel mode and is based on CSL v2.0.

* Functions used to configure the DMA or EDMA to service the McBSP are included.

* This program relies on DSP/BIOS to handle hardware and software interupts. These

* interupts service the Ping Pong buffers and maintain a count of the active

* frame for multichannel operation.

\***********************************************************************************/

#include <std.h>

#include <swi.h>

#include <log.h>

#include <clk.h>

#include <csl.h>

#include <csl_cache.h>

#include <csl_edma.h>

#include <csl_dma.h>

#include <csl_irq.h>

#include <csl_mcbsp.h>

/*––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*
/

/* declare DSP/BIOS objects created with the configuration tool                    */

extern far SWI_Obj SwiMain;

extern far LOG_Obj LogMain;

extern far SWI_Obj swiProcess;

extern far LOG_Obj trace;

/* Pick which EDMA transfer completion interrupt we want to use                    */

#define TCCINTNUM   10
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/* define some constants                                                           */

#define BUFF_SZ  256               /* ping–pong buffer sizes in # of ints          */

#define BUFF_SZ_DR 32

#define BUFF_SZ_DX 32

#define EDMA_EIX 0

#define FCPU     150000000        /* CPU clock frequency                           */

#define SRATE    8000             /* data sample rate (simulated w/timer           */

#define TPRD     (FCPU/(4*SRATE)) /* timer period                                  */

/* Create the buffers. We want to align the buffers to be cache friendly           */

/* by aligning them on an L2 cache line boundary.                                  */

#pragma DATA_ALIGN(pingDX,128);

#pragma DATA_ALIGN(pongDX,128);

#pragma DATA_ALIGN(pingDR,128);

#pragma DATA_ALIGN(pongDR,128);

int pingDX[BUFF_SZ];

int pingDR[BUFF_SZ];

int pongDX[BUFF_SZ];

int pongDR[BUFF_SZ];

/* These two variables serve as the data sources for this example.                 */

/* Also want to align these on a cache line boundary since they                    */

/* sources of EDMA transfers.                                                      */

#pragma DATA_ALIGN(ping_data,128);

#pragma DATA_ALIGN(pong_data,128);

static int ping_data;

static int pong_data;

/* global variable used to track the ping–pong’ing                                 */

static int pingpong = 0;

int i=0;

/* declare some CSL objects                                                        */

#if (EDMA_SUPPORT)

EDMA_Handle hEdmaDR;     /* Handle for the EDMA channel                            */

EDMA_Handle hEdmaDX;     /* Handle for the EDMA channel                            */

EDMA_Handle hEdmaPing; /* Handle for the ping EDMA reload parameters               */
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EDMA_Handle hEdmaPong; /* Handle for the pong EDMA reload parameters               */

EDMA_Config cfgEdma;  /* EDMA configuration structure                              */

EDMA_Handle hEdmaPingDR; /* Handle for the ping EDMA reload parameters             */

EDMA_Handle hEdmaPongDR; /* Handle for the pong EDMA reload parameters             */

EDMA_Config cfgEdmaDR;   /* EDMA configuration structure                           */

EDMA_Handle hEdmaPingDX; /* Handle for the ping EDMA reload parameters             */

EDMA_Handle hEdmaPongDX; /* Handle for the pong EDMA reload parameters             */

EDMA_Config cfgEdmaDX;   /* EDMA configuration structure                           */

#endif

#if (DMA_SUPPORT)

DMA_Handle hDmaDR;

DMA_Handle hDmaDX;

#endif

MCBSP_Handle hMcbsp;    /* Handle for the McBSP                                    */

/* Function prototype section                                                      */

void run_dma();

void run_edma();

void run_mcbsp();

void hwiEdmaIsr(int arg);

void HWI_rpblk(int arg);   /* ISR used to track subframes for multichannel mode       */

void swiProcessFunc();

/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

 

/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

void main(){

  /* initialize the CSL library                                                    */

  CSL_init();

 

  /* initialize the input source data                                              */

  ping_data=0x00000000;

  pong_data=0x80000000;
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  for (i=0;i<BUFF_SZ; i++) {

  pongDX[i]=i;

  pingDX[i]=i;

  pongDR[i]=0xF;

  pingDR[i]=0xF;

  }

 

#if (EDMA_SUPPORT)

  run_edma();

#endif

#if(DMA_SUPPORT)

  run_dma();

#endif

  run_mcbsp();

}

/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

void swiProcessFunc(){

 

  int *inbuff;

  int *outbuff;

  int x;

 

  if (pingpong){

    /* If pingpong is 0, then we own the ping input buffer                         */

    inbuff = pingDR;

    outbuff = pingDX;

  }else{

    /* If pingpong is 1, then we own the pong input buffer                         */

    inbuff = pongDR;

    outbuff = pongDX;

  }

 

  /* Now let’s process the input buffer, for simplicity, we’ll                     */

  /* just copy it to the output buffer.                                            */

  for (x=0; x<BUFF_SZ; x++) {

    outbuff[x] = ping_data+x;

  }
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  ping_data++;

 

#if (EDMA_SUPPORT)

  /* If this example is enhanced to actually do something with the                 */

  /* output buffer such as DMA it somewhere, you will want to flush                */

  /* it out of the cache first.                                                    */

  CACHE_flush(CACHE_L2,outbuff,BUFF_SZ);

 

  /* Since we’re done processing the input buffer, clean it from cache,            */

  /* this invalidates it from cache to ensure we read a fresh version              */

  /* the next time.                                                                */

  CACHE_clean(CACHE_L2,inbuff,BUFF_SZ);

#endif

}

/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

void HWI_rpblk(int arg) {

  /* This ISR is called after every McBSP subframe                                 */

  /* By changing the inactive RCER or XCER, >32 channels can be enabled            */

  LOG_printf(&trace,”Here is where to modify the XCER and RCER”);

}

/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

void hwiEdmaIsr(int arg){

  /* Perform ping–pong                                                             */

  pingpong = (pingpong + 1) & 1;

#if (DMA_SUPPORT)

  /* Clear the pending condition from the DMA secondary control register           */

  DMA_CLEAR_CONDITION(hDmaDR,DMA_SECCTL_FRAMECOND);

#endif

 

#if (EDMA_SUPPORT)

  /* Clear the pending interrupt from the EDMA interrupt pending register          */

  EDMA_intClear(TCCINTNUM);

 

  /* Based on if we ping’ed or pong’ed, we need to set the EDMA channel            */

  /* link address for the NEXT frame.                                              */

  if (pingpong){

    /* Now filling pong so set link to ping                                        */

    EDMA_link(hEdmaDR,hEdmaPingDR);
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    EDMA_link(hEdmaDX,hEdmaPingDX);

  }

  else{

    /* Now filling ping so set link to pong                                        */

    EDMA_link(hEdmaDR,hEdmaPongDR);

    EDMA_link(hEdmaDX,hEdmaPongDX);

  }

#endif

  /* Notify the app that we just ping–pong’ed                                      */

  SWI_post(&swiProcess);

}

/*–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––*/

void run_mcbsp() {

  /* create a config structure for the McBSP                                       */

  static MCBSP_Config ConfigLoopback = {

#if (EDMA_SUPPORT)

    MCBSP_SPCR_RMK(

   MCBSP_SPCR_FRST_NO,

   MCBSP_SPCR_GRST_NO,

   MCBSP_SPCR_XINTM_FRM,

   MCBSP_SPCR_XSYNCERR_NO,

   MCBSP_SPCR_XRST_NO,

   MCBSP_SPCR_DLB_OFF,

   MCBSP_SPCR_RJUST_RZF,

   MCBSP_SPCR_CLKSTP_DISABLE,

   MCBSP_SPCR_DXENA_ON,

   MCBSP_SPCR_RINTM_FRM,

   MCBSP_SPCR_RSYNCERR_NO,

   MCBSP_SPCR_RRST_NO

   ),

    MCBSP_RCR_RMK(

  MCBSP_RCR_RPHASE_SINGLE,

  MCBSP_RCR_RFRLEN2_OF(0),

  MCBSP_RCR_RWDLEN2_8BIT,

  MCBSP_RCR_RCOMPAND_MSB,

  MCBSP_RCR_RFIG_YES,

  MCBSP_RCR_RDATDLY_0BIT,

  MCBSP_RCR_RPHASE2_NORMAL,

  MCBSP_RCR_RFRLEN1_OF(31),

  MCBSP_RCR_RWDLEN1_32BIT,
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  MCBSP_RCR_RWDREVRS_DISABLE

  ),

    MCBSP_XCR_RMK(

  MCBSP_XCR_XPHASE_SINGLE,

  MCBSP_XCR_XFRLEN2_OF(0),

  MCBSP_XCR_XWDLEN2_8BIT,

  MCBSP_XCR_XCOMPAND_MSB,

  MCBSP_XCR_XFIG_YES,

  MCBSP_XCR_XDATDLY_0BIT,

  MCBSP_XCR_XPHASE2_NORMAL,

  MCBSP_XCR_XFRLEN1_OF(31),

  MCBSP_XCR_XWDLEN1_32BIT,

  MCBSP_XCR_XWDREVRS_DISABLE

  ),

#endif

#if (DMA_SUPPORT)

    MCBSP_SPCR_RMK(

   MCBSP_SPCR_FRST_NO,

   MCBSP_SPCR_GRST_NO,

   MCBSP_SPCR_XINTM_FRM,

   MCBSP_SPCR_XSYNCERR_NO,

   MCBSP_SPCR_XRST_NO,

   MCBSP_SPCR_DLB_ON,

   MCBSP_SPCR_RJUST_RZF,

   MCBSP_SPCR_CLKSTP_DISABLE,

   MCBSP_SPCR_RINTM_EOS,

   MCBSP_SPCR_RSYNCERR_NO,

   MCBSP_SPCR_RRST_NO

   ),

    MCBSP_RCR_RMK(

  MCBSP_RCR_RPHASE_SINGLE,

  MCBSP_RCR_RFRLEN2_OF(0),

  MCBSP_RCR_RWDLEN2_8BIT,

  MCBSP_RCR_RCOMPAND_MSB,

  MCBSP_RCR_RFIG_YES,

  MCBSP_RCR_RDATDLY_0BIT,

  MCBSP_RCR_RFRLEN1_OF(31),

  MCBSP_RCR_RWDLEN1_32BIT

  ),

    MCBSP_XCR_RMK(
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  MCBSP_XCR_XPHASE_SINGLE,

  MCBSP_XCR_XFRLEN2_OF(0),

  MCBSP_XCR_XWDLEN2_8BIT,

  MCBSP_XCR_XCOMPAND_MSB,

  MCBSP_XCR_XFIG_YES,

  MCBSP_XCR_XDATDLY_0BIT,

  MCBSP_XCR_XFRLEN1_OF(31),

  MCBSP_XCR_XWDLEN1_32BIT

  ),

#endif

    MCBSP_SRGR_RMK(

   MCBSP_SRGR_GSYNC_FREE,

   MCBSP_SRGR_CLKSP_RISING,

   MCBSP_SRGR_CLKSM_INTERNAL,

   MCBSP_SRGR_FSGM_DXR2XSR,

   MCBSP_SRGR_FPER_OF(1023),

   MCBSP_SRGR_FWID_OF(127),

   MCBSP_SRGR_CLKGDV_OF(15)

   ),

    MCBSP_MCR_RMK(

  MCBSP_MCR_XPBBLK_SF1,

  MCBSP_MCR_XPABLK_SF0,

  MCBSP_MCR_XMCM_DISXP,

  MCBSP_MCR_RPBBLK_SF1,

  MCBSP_MCR_RPABLK_SF0,

  MCBSP_MCR_RMCM_ELDISABLE

  ),

    MCBSP_RCER_RMK(

   /*Change the RCER to reflect desired enabled receive channels            */

     /*Example: Enable recv channs 31,30,28,27,26,25,23,22,19,17 in Partition A*/

   /*and recv channels 15,14,12,11,10,9,1,0 in Partition B                  */

   /*(Note that BUFF_SZ_DR should change to reflect the # of channels enabled*/

   //MCBSP_RCER_RCEB_OF(0xDE03),

   //MCBSP_RCER_RCEA_OF(0xDECA),

   /*Default to enable all channels                                         */

   MCBSP_RCER_RCEB_OF(0xFFFF),

   MCBSP_RCER_RCEA_OF(0xFFFF)

   ),

    MCBSP_XCER_RMK(

   /* Change the XCER to reflect desired enabled receive channels           */
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   /* Example: to enable xmit channels 15,13,10,8,7,5,2,1 in Partition A    */

   /* and xmit channels 31,28,27,26,24,23,21,19,18,16 in Partition B        */

   /* (Note that BUFF_SZ_DX should change to reflect the # of channels enabled/

   //MCBSP_XCER_XCEB_OF(0x9DAD),

   //MCBSP_XCER_XCEA_OF(0xA5A6)

   /*Default to enable all channels                                         */

   MCBSP_XCER_XCEB_OF(0xFFFF),

   MCBSP_XCER_XCEA_OF(0xFFFF)

   ),

    MCBSP_PCR_RMK(

  MCBSP_PCR_XIOEN_SP,

  MCBSP_PCR_RIOEN_SP,

  MCBSP_PCR_FSXM_INTERNAL,

  MCBSP_PCR_FSRM_EXTERNAL,

  MCBSP_PCR_CLKXM_OUTPUT,

  MCBSP_PCR_CLKRM_INPUT,

  MCBSP_PCR_CLKSSTAT_0,

  MCBSP_PCR_DXSTAT_0,

  MCBSP_PCR_DXSTAT_0,

  MCBSP_PCR_FSRP_ACTIVEHIGH,

  MCBSP_PCR_CLKXP_RISING,

  MCBSP_PCR_CLKRP_FALLING

  )

  };

  /* Let’s open up serial port 1                                                   */

  hMcbsp = MCBSP_open(MCBSP_DEV1, MCBSP_OPEN_RESET);

 

  /* We’ll set it up for digital loopback, 32bit mode. We have                     */

  /* to setup the sample rate generator to allow self clocking.                    */

  MCBSP_config(hMcbsp,&ConfigLoopback);

 

  /*Configure McBSP Receive interupt to 11                                         */

  /*We’ll use this to count subframes to enable >32 channels in multichannel mode  */

  IRQ_disable(IRQ_EVT_RINT1);

  IRQ_clear(IRQ_EVT_RINT1);

  IRQ_map(IRQ_EVT_RINT1,11);

  /* Now that the port is setup, let’s enable it in steps.                         */

  MCBSP_enableRcv(hMcbsp);

  MCBSP_enableXmt(hMcbsp);
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  MCBSP_enableSrgr(hMcbsp);

 

  IRQ_enable(IRQ_EVT_RINT1);

}

#if (DMA_SUPPORT)

void run_dma() {

  Uint32 PriCtlDR,SecCtlDR,SrcAddrDR,DstAddrDR,XfrCntDR;

  Uint32 PriCtlDX,SecCtlDX,SrcAddrDX,DstAddrDX,XfrCntDX;

  Uint32 GblIdx0,GblAddr0,GblAddr1,GblCnt0;

  /* Let’s use the DMA to perform a simple data copy from                          */

  /* one buffer to another.                                                        */

 

  /* To start, we need to open up a DMA channel. Let’s use                         */

  /* DMA channel 2 and also reset it upon opening.                                 */

  hDmaDR = DMA_open(DMA_CHA1,DMA_OPEN_RESET);

  hDmaDX = DMA_open(DMA_CHA2,DMA_OPEN_RESET);

 

  /*Use CSL to allocate DMA registers                                              */

  /*Use address registers to reload the ping buffer after the end of each frame    */

  /*Use index register to advance from ping to pong                                */

  /*Use count register to reload the transfer control register                     */

  GblAddr0 = DMA_allocGlobalReg(DMA_GBL_ADDRRLD,(Uint32)pingDR);

  GblAddr1 = DMA_allocGlobalReg(DMA_GBL_ADDRRLD,(Uint32)pingDX);

  GblIdx0  = DMA_allocGlobalReg(DMA_GBL_INDEX,((((Uint32)pongDR – (Uint32)pingDR 
– (BUFF_SZ_DR * 4) + 4)<<16)| 4 ));

  GblCnt0  = DMA_allocGlobalReg(DMA_GBL_CNTRLD,( (2 <<16) | BUFF_SZ_DR));

  /* Generate discrete DMA parameters using ’make’ macros                          */

  PriCtlDR  = DMA_PRICTL_RMK(

     DMA_PRICTL_DSTRLD_OF(GblAddr0),

     DMA_PRICTL_SRCRLD_NONE,

     DMA_PRICTL_EMOD_NOHALT,

     DMA_PRICTL_FS_DISABLE,

     DMA_PRICTL_TCINT_ENABLE,

     DMA_PRICTL_PRI_CPU,

     DMA_PRICTL_WSYNC_NONE,

     DMA_PRICTL_RSYNC_REVT1,

     DMA_PRICTL_INDEX_OF(GblIdx0),

     DMA_PRICTL_CNTRLD_OF(GblCnt0),
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     DMA_PRICTL_SPLIT_DISABLE,

     DMA_PRICTL_ESIZE_32BIT,

     DMA_PRICTL_DSTDIR_IDX,

     DMA_PRICTL_SRCDIR_NONE,

     DMA_PRICTL_START_STOP

     );

  SecCtlDR  = DMA_SECCTL_RMK(

     DMA_SECCTL_DMACEN_LOW,

     DMA_SECCTL_WSYNCCLR_CLEAR,

     DMA_SECCTL_WSYNCSTAT_CLEAR,

     DMA_SECCTL_RSYNCCLR_CLEAR,

     DMA_SECCTL_RSYNCSTAT_CLEAR,

     DMA_SECCTL_WDROPIE_DISABLE,

     DMA_SECCTL_WDROPCOND_CLEAR,

     DMA_SECCTL_RDROPIE_DISABLE,

     DMA_SECCTL_RDROPCOND_CLEAR,

     DMA_SECCTL_BLOCKIE_DISABLE,

     DMA_SECCTL_BLOCKCOND_CLEAR,

     DMA_SECCTL_LASTIE_DISABLE,

     DMA_SECCTL_LASTCOND_CLEAR,

     DMA_SECCTL_FRAMEIE_ENABLE,

     DMA_SECCTL_FRAMECOND_CLEAR,

     DMA_SECCTL_SXIE_DISABLE,

     DMA_SECCTL_SXCOND_CLEAR

     );

  SrcAddrDR = (Uint32)MCBSP_getRcvAddr(hMcbsp);

  DstAddrDR = (Uint32)pingDR;

  XfrCntDR  = DMA_XFRCNT_RMK(

     DMA_XFRCNT_FRMCNT_OF(2),

     DMA_XFRCNT_ELECNT_OF(BUFF_SZ_DR)

     );

 

  PriCtlDX  = DMA_PRICTL_RMK(

     DMA_PRICTL_DSTRLD_NONE,

     DMA_PRICTL_SRCRLD_OF(GblAddr1),

     DMA_PRICTL_EMOD_NOHALT,

     DMA_PRICTL_FS_DISABLE,

     DMA_PRICTL_TCINT_DISABLE,

     DMA_PRICTL_PRI_CPU,

     DMA_PRICTL_WSYNC_XEVT1,
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     DMA_PRICTL_RSYNC_NONE,

     DMA_PRICTL_INDEX_OF(GblIdx0),

     DMA_PRICTL_CNTRLD_OF(GblCnt0),

     DMA_PRICTL_SPLIT_DISABLE,

     DMA_PRICTL_ESIZE_32BIT,

     DMA_PRICTL_DSTDIR_NONE,

     DMA_PRICTL_SRCDIR_IDX,

     DMA_PRICTL_START_STOP

     );

  SecCtlDX  = DMA_SECCTL_RMK(

     DMA_SECCTL_DMACEN_LOW,

     DMA_SECCTL_WSYNCCLR_CLEAR,

     DMA_SECCTL_WSYNCSTAT_CLEAR,

     DMA_SECCTL_RSYNCCLR_CLEAR,

     DMA_SECCTL_RSYNCSTAT_CLEAR,

     DMA_SECCTL_WDROPIE_DISABLE,

     DMA_SECCTL_WDROPCOND_CLEAR,

     DMA_SECCTL_RDROPIE_DISABLE,

     DMA_SECCTL_RDROPCOND_CLEAR,

     DMA_SECCTL_BLOCKIE_DISABLE,

     DMA_SECCTL_BLOCKCOND_CLEAR,

     DMA_SECCTL_LASTIE_DISABLE,

     DMA_SECCTL_LASTCOND_CLEAR,

     DMA_SECCTL_FRAMEIE_DISABLE,

     DMA_SECCTL_FRAMECOND_CLEAR,

     DMA_SECCTL_SXIE_DISABLE,

     DMA_SECCTL_SXCOND_CLEAR

     );

  SrcAddrDX = (Uint32)pingDX;

  DstAddrDX = (Uint32)MCBSP_getXmtAddr(hMcbsp);

  XfrCntDX  = DMA_XFRCNT_RMK(

     DMA_XFRCNT_FRMCNT_OF(2),

     DMA_XFRCNT_ELECNT_OF(BUFF_SZ_DX)

     );

 

  /* Configure up the DMA channels                                                 */

  DMA_configArgs(hDmaDR,PriCtlDR,SecCtlDR,SrcAddrDR,DstAddrDR,XfrCntDR);
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  DMA_configArgs(hDmaDX,PriCtlDX,SecCtlDX,SrcAddrDX,DstAddrDX,XfrCntDX);

 

  /* Configure DMA interupt                                                        */

  IRQ_disable(IRQ_EVT_DMAINT1);

  IRQ_clear(IRQ_EVT_DMAINT1);

  IRQ_map(IRQ_EVT_DMAINT1,8);

  /* Start the DMA operation                                                       */

  DMA_autoStart(hDmaDR);

  DMA_autoStart(hDmaDX);

 

  /*Enable the DMA Interupt                                                        */

  IRQ_enable(IRQ_EVT_DMAINT1);

}

#endif

#if (EDMA_SUPPORT)

void run_edma()

{/* Create the EDMA configuration structure for ping transfers                     */

  EDMA_Config cfgEdmaPingDX = {

    EDMA_OPT_RMK(

 EDMA_OPT_PRI_LOW,

 EDMA_OPT_ESIZE_32BIT,

 EDMA_OPT_2DS_NO,

 EDMA_OPT_SUM_INC,

 EDMA_OPT_2DD_NO,

 EDMA_OPT_DUM_NONE,

 EDMA_OPT_TCINT_NO,

 EDMA_OPT_TCC_OF(TCCINTNUM),

 EDMA_OPT_LINK_YES,

 EDMA_OPT_FS_NO

 ),

    EDMA_SRC_OF(pingDX),

    EDMA_CNT_OF(BUFF_SZ_DX),

    EDMA_DST_OF(0), /*Will set later using CSL                                     */

    EDMA_IDX_OF(EDMA_EIX),

    EDMA_RLD_OF(0x00000000)

  };
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  /* Create the EDMA configuration structure for pong transfers                    */

  EDMA_Config cfgEdmaPongDX = {

    EDMA_OPT_RMK(

 EDMA_OPT_PRI_LOW,

 EDMA_OPT_ESIZE_32BIT,

 EDMA_OPT_2DS_NO,

 EDMA_OPT_SUM_INC,

 EDMA_OPT_2DD_NO,

 EDMA_OPT_DUM_NONE,

 EDMA_OPT_TCINT_NO,

 EDMA_OPT_TCC_OF(TCCINTNUM),

 EDMA_OPT_LINK_YES,

 EDMA_OPT_FS_NO

 ),

    EDMA_SRC_OF(pongDX),

    EDMA_CNT_OF(BUFF_SZ_DX),

    EDMA_DST_OF(0), /*Will set later using CSL                                     */

    EDMA_IDX_OF(EDMA_EIX),

    EDMA_RLD_OF(0x00000000)

  };

  /* Create the EDMA configuration structure for ping transfers                    */

  EDMA_Config cfgEdmaPingDR = {

    EDMA_OPT_RMK(

 EDMA_OPT_PRI_LOW,

 EDMA_OPT_ESIZE_32BIT,

 EDMA_OPT_2DS_NO,

 EDMA_OPT_SUM_NONE,

 EDMA_OPT_2DD_NO,

 EDMA_OPT_DUM_INC,

 EDMA_OPT_TCINT_YES,

 EDMA_OPT_TCC_OF(TCCINTNUM),

 EDMA_OPT_LINK_YES,

 EDMA_OPT_FS_NO

 ),

    EDMA_SRC_OF(0), /*Will set later using CSL                                     */

    EDMA_CNT_OF(BUFF_SZ_DR),

    EDMA_DST_OF(pingDR),
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    EDMA_IDX_OF(EDMA_EIX),

    EDMA_RLD_OF(0x00000000)

  };

  /* Create the EDMA configuration structure for pong transfers                    */

  EDMA_Config cfgEdmaPongDR = {

    EDMA_OPT_RMK(

 EDMA_OPT_PRI_LOW,

 EDMA_OPT_ESIZE_32BIT,

 EDMA_OPT_2DS_NO,

 EDMA_OPT_SUM_NONE,

 EDMA_OPT_2DD_NO,

 EDMA_OPT_DUM_INC,

 EDMA_OPT_TCINT_YES,

 EDMA_OPT_TCC_OF(TCCINTNUM),

 EDMA_OPT_LINK_YES,

 EDMA_OPT_FS_NO

 ),

    EDMA_SRC_OF(0), /*Will set later using CSL                                     */

    EDMA_CNT_OF(BUFF_SZ_DR),

    EDMA_DST_OF(pongDR),

    EDMA_IDX_OF(EDMA_EIX),

    EDMA_RLD_OF(0x00000000)

  };

  cfgEdmaPingDR.src = MCBSP_getRcvAddr(hMcbsp);

  cfgEdmaPongDR.src = MCBSP_getRcvAddr(hMcbsp);

  cfgEdmaPingDX.dst = MCBSP_getXmtAddr(hMcbsp);

  cfgEdmaPongDX.dst = MCBSP_getXmtAddr(hMcbsp);

 

  /* Although not required, let’s clear all of the EDMA parameter RAM.             */

  /* This makes it easier to view the RAM and see the changes as we configure it   */

  EDMA_clearPram(0x00000000);

  /* Lets open up the EDMA channel associated with timer #1.                       */

  hEdmaDR = EDMA_open(EDMA_CHA_REVT1, EDMA_OPEN_RESET);

  hEdmaDX = EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET);
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  /* We also need two EDMA reload parameters for each set of buffers sets so        */

  /* let’s allocate them here. Notice the –1, this means allocate any availale tale.*/

  hEdmaPingDR = EDMA_allocTable(–1);

  hEdmaPongDR = EDMA_allocTable(–1);

  hEdmaPingDX = EDMA_allocTable(–1);

  hEdmaPongDX = EDMA_allocTable(–1);

  /* Let’s copy the ping reload configuration structure to an                      */

  /* intermediate configuration structure.                                         */

  cfgEdmaDR = cfgEdmaPingDR;

  cfgEdmaDX = cfgEdmaPingDX;

 

  /* Let’s initialize the link fields of the configuration structures              */

  cfgEdmaPingDR.rld = EDMA_RLD_RMK(BUFF_SZ_DR,hEdmaPingDR);

  cfgEdmaPongDR.rld = EDMA_RLD_RMK(BUFF_SZ_DR,hEdmaPongDR);

  cfgEdmaDR.rld     = EDMA_RLD_RMK(BUFF_SZ_DR,hEdmaPongDR);

 

  cfgEdmaPingDX.rld = EDMA_RLD_RMK(BUFF_SZ_DX,hEdmaPingDX);

  cfgEdmaPongDX.rld = EDMA_RLD_RMK(BUFF_SZ_DX,hEdmaPongDX);

  cfgEdmaDX.rld     = EDMA_RLD_RMK(BUFF_SZ_DX,hEdmaPongDX);

  /* Now let’s program up the EDMA channel with the configuration structure        */

  EDMA_config(hEdmaDR, &cfgEdmaPongDR);

  EDMA_config(hEdmaDX, &cfgEdmaPongDX);

 

  /* Let’s also configure the reload parameter tables in the EDMA PRAM             */

  /* with the values in the configuration structures.                              */

  EDMA_config(hEdmaPingDR, &cfgEdmaPingDR);

  EDMA_config(hEdmaPongDR, &cfgEdmaPongDR);

  EDMA_config(hEdmaPingDX, &cfgEdmaPingDX);

  EDMA_config(hEdmaPongDX, &cfgEdmaPongDX);

  /* Let’s disable/clear related interrupts just in case they are pending          */

  /* fram a previous run of the program.                                           */

  IRQ_reset(IRQ_EVT_EDMAINT);

  EDMA_intDisable(TCCINTNUM);

  EDMA_intClear(TCCINTNUM);

 



SPRA491A

29 TMS320C6000 McBSP as a TDM Highway

  /* Enable the EDMA channel                                                       */

  EDMA_enableChannel(hEdmaDX);

  EDMA_enableChannel(hEdmaDR);

 

  /* Enable the related interrupts                                                 */

  IRQ_enable(IRQ_EVT_EDMAINT);

  EDMA_intEnable(TCCINTNUM);

}

#endif
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