
1SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

Application Report
SPNA241–August 2019

CAN Bus Bootloader for Hercules™ Microcontrollers

Qingjun Wang

ABSTRACT
A bootloader enables field updates of application firmware. A controller area network (CAN) bootloader
enables firmware updates over the CAN bus. The CAN bootloader described in this application report is
based on the Hercules™ ARM® Cortex®-R4/R5 microcontrollers (TMS570LSx, TMS570LCx, RM4x, and
RM5x). This application report describes the CAN protocol used in the bootloader and details each
supported command.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://git.ti.com/hercules_examples/hercules_examples/trees/master/Bootloaders.

Contents
1 Introduction ... 2
2 Hardware Requirements .. 3
3 CAN Settings ... 3
4 Software Coding and Compilation ... 6
5 Exception Vector Table ... 6
6 ECC Generation for Bootloader Code .. 7
7 ECC Generation for Application Code .. 8
8 During Bootloader Execution ... 9
9 Bootloader Flow .. 10
10 CAN Bootloader Operation.. 11
11 CAN Bootloader Protocol.. 12
12 Create Application for Use With the Bootloader ... 14
13 Sample Code for PC-Side Application... 14
14 References .. 15

List of Figures

1 Bootloader Process.. 2
2 Hardware Setup.. 3
3 Standard CAN Frame Format.. 4
4 CAN Bit Timing... 5
5 CAN Bit Timing Calculation in HalCoGen .. 6
6 CAN Bootloader Flowchart.. 10
7 The CAN Bootloader is Loaded Through the JTAG Port ... 11
8 User Application Code is Loaded Through the CAN Bootloader .. 12
9 VC++ Project for PC-Side Bootloader ... 15

List of Tables

1 List of Source Code Files Used in CAN Bootloader .. 3
2 Commands Used in Bootloader.. 4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241
http://git.ti.com/hercules_examples/hercules_examples/trees/master/Bootloaders

texttext
Bootloader

Host Application

Communication Channel
(CAN)

x
x

x
x

x

User App.
Firmware Bootloader

Communication Channel
(CAN)

Flash

SRAM

Target

1

2

3

Introduction www.ti.com

2 SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

Trademarks
Hercules, Code Composer Studio are trademarks of Texas Instruments.
ARM, Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All other trademarks are the property of their respective owners.

1 Introduction
The CAN bootloader is a small piece of code that resides at the beginning of flash to act as an application
loader. It downloads the application through CAN bus, a reliable operation in automotive and industrial
control networks. The bootloader also helps designers update the user application for products already
deployed in the field.

This document describes how to work with and customize the Hercules CAN bootloader application. Since
full source code is provided, the bootloader can be completely customized.

The bootloader on the target device configures the CAN module in communication with PC host through
the CAN bus. The bootloader polls the CAN port for messages. After a message is received, the
bootloader attempts to decode the incoming commands for flash programming. After the bootloader has
successfully downloaded and programmed the whole application image, the bootloader updates the
application header. The bootloader jumps to the starting address of the new application image.

The CAN bootloaders for Hercules devices (TMS570LSx, TMS570LCx, RM4x, and RM5x) have been built
and validated using Code Composer Studio™ v9 on the Hercules HDKs. The bootloader host application
is developed with Visual C++ 2010. Figure 1 and Table 1 show an overview of the source code provided
with the bootloader.

(1) Bootloader host application reads the user application.
(2) Bootloader downloads user application to Hercules devices via CAN bus.
(3) Bootloader programs user application into the internal flash of Hercules devices.

Figure 1. Bootloader Process

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

www.ti.com Hardware Requirements

3SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

Table 1. List of Source Code Files Used in CAN Bootloader

bl_main.c The main control loop of the bootloader
bl_dcan.c The functions for transferring data via the CAN port
bl_check.c The code to check if a firmware update is required, or if a firmware update is being requested.
bl_link.cmd The linker script used when the Code Composer Studio compiler is being used to build the bootloader.
bl_flash.c The functions for erasing, programming the Flash, and functions for erase and program check
bl_commands.h The list of commands and return messages supported by the bootloader.
bl_config.h Bootloader configuration file. This contains all of the possible configuration values.
bl_flash.h Prototypes for Flash operations
bl_can.h Prototypes for the CAN transfer functions.
flash_defines.h Flash memory banks and sectors for Hercules microcontrollers
HALCoGen generated files Device initialization

2 Hardware Requirements
The hardware required for configuration includes:
• Power supply: 12 V to HDK
• CAN bus: single twisted pair cable with a DB9 socket to connect HDK and NI CAN adaptor.
• Hercules HDK
• NI USB 8473 high-speed CAN adaptor
• A windows 10 PC with Visual C++ 2010

Figure 2. Hardware Setup

3 CAN Settings
The Hercules CAN is compliant with the 2.0A specification with a bitrate up to 1 Mbit/s. It can receive and
transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. To
change the CAN settings for the bootloader, knowledge of the CAN protocol, revision 2.0 is assumed. For
details, see the CAN Protocol Revision 2.0 Specification.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

S

O

F

Arbitration R I D A

7-bit Bootloader T D L Data CRC C EOF

ID Commands R E C K

7

ACK Field

16 2

Data Frame (standard identifier)

44 + 8*N

Arbitration Field Control Field Data Field CRC Field

12 6 8*N

CAN Settings www.ti.com

4 SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

Figure 3 shows the essential fields of the standard frame that is used in this CAN bootloader.

Figure 3. Standard CAN Frame Format

Table 2. Commands Used in Bootloader

Commands CMD Description
PING 0x00 See Section 11
GET_ADDR_SIZE 0x01 See Section 11
GET_STATUS 0x03 See Section 11
GET_DATA 0x04 See Section 11
RESET 0x05 See Section 11
ACK 0x06 See Section 11

In this application, the CAN settings are:
• Standard identifier
• Baud Rate: 500 kbps is used by default.
• Functions used: canInit()

The transmit settings (from MCU to the host) are:
• Tx mailbox2: On -- #define MSG_OBJ_BCAST_TX_ID 1 in bl_dcan.c
• Tx mailbox1: Off -- #define MSG_OBJ_BCAST_RX_ID 2 in bl_dcan.c
• Tx identifier: 0x5A (device ID) + CMDs (0x00, 0x01, 0x02, 0x04, 0x05, 0x06)
• Functions used: CANMessageSetTx(), and PacketWrite()

The receive settings (from the host to the MCU) are:
• Synchronization (ACK), 0x06, is in the RX identifier and not in the data field.
• RX identifier: device ID + CMDs
• Error checking: Host re-transmits the frames that have lost arbitration or have been disturbed by errors

during transmission.
• Incoming messages can contain from 1 to 8 data bytes.
• Functions used: CANMessageGetRx(), CANMessageSetRx(), and PacketRead()

CAN Bit timing setting:

Two clock domains are provided to the CAN module:
• VCLK: general module clock source
• VCLKA1: clock source to CAN_CLK for generating the CAN Bit Timing (system.c)
• Functions used: canInit()

Both VCLK and VCLKA can be derived from the same clock source. However, if the frequency modulation
in the FMPLL is enabled (spread spectrum clock), then, due to the high precision clocking requirements of
the CAN Core, the FMPLL clock source should not be used for VCLKA. Alternatively, a separate clock
without any modulation (for example, derived directly from the OSCIN clock) should be used for VCLKA.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

Sync

Seg

Prop_Seg Phase_Seg1 Phase_Seg2

tQ

CAN Bit Time

Sample Point

Baud Rate Prescaler (BRP)

VCLKA1 (CAN_CLK)

tq = BRP / CAN_CLK

www.ti.com CAN Settings

5SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

Before configuring the CAN module, evaluate your system specifications such as system propagation
delay (wire length and transceiver delay), crystal tolerance, and re-synchronization jump width. To initialize
the CAN registers in CAN communication, you must define parameters such as baud rate, propagation
segment (Prog_Seg), time segment 1 (Phase_Seg1) and time segment 2 (Phase_Seg2). Figure 5 shows
the CAN BTR calculations in HalCoGen.

tprop = 2(tbus + ttransmitter + treceiver)

tbus = Bus Length (meter) * 5 ns/meter

ttransmitter and treceiver can be found in the device-specific transceiver data sheet

Figure 4. CAN Bit Timing

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

Software Coding and Compilation www.ti.com

6 SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

Figure 5. CAN Bit Timing Calculation in HalCoGen

4 Software Coding and Compilation
• The bootloader code is implemented in C. Assembly coding is used only when absolutely necessary.

The IDE is TI Code Composer Studio 9.x.
• The bootloader is compiled in the 32-bit ARM mode.
• The compiler is TIV18.12.1.LTS.

5 Exception Vector Table
Exceptions are interruptions of the normal program flow. The Cortex-R4/5 processor usually takes care to
preserve the critical parts of the current processor state, so that the normal program flow could be
resumed after the exception was handled by the application (saving and restoring of the CPSR and
banked Stack Pointers).

The processor state (ARM/Thumb2) and the operating mode can and will change on exception entry. The
Cortex-R4/5 processor supports exception entry in ARM and in Thumb2 state, the default after reset as
implemented in the Hercules family is the ARM state. The default state is used in this bootloader example.

When the hardware takes an exception, the program counter (PC) is automatically set to the address of
the relevant exception vector and the microcontroller begins executing instructions from that address.
When the microcontroller comes out of reset, the PC is automatically set to 0x00000000. An undefined
instruction sets the PC to 0x00000004, and a data abort sets the PC to 0x00000010, and so forth.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

www.ti.com ECC Generation for Bootloader Code

7SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

The exception table for ARM Cortex-R devices is held in flash and cannot be modified easily. The reset
vector must always point to the start of the bootloader code (0x00000000). One solution is to have an
exception service routine (UNDEF, SWI, DABT, PABT) in the bootloader that redirect to the exception
vector table located at a fixed location within the application memory space. Using this method added one
indirect jump instruction to each exception handler resulting in extra processor load for each interrupt that
is processed. Because the content of the IRQ/FIQ interrupt vector registers from the VIM are loaded into
PC at 0x18/0x1C of exception vector table, there is no need to redirect IRQ/FIQ.

Another solution is to use the exception handlers in the application. When any exception (UNDEF, SWI,
DABT, PABT) occurs, processor fetches the handler address from 0x04/0x08/0x0C/0x10, and jumps to
the handler in application. To achieve this, the branch addresses in bootloader exception vector table
need to be changed to Application Start Address – 0x8 in ARM state, and Application Start Address – 0x4
in Thumb2 state.
;***

.sect ".intvecs"
;---
; import reference for interrupt routines

.ref _c_int00
;---
; interrupt vectors
; application start address is 0x10020

b _c_int00 ;0x00
b #0x10018 ;0x04 UNDEF; application start address - 0x08
b #0x10018 ;0x08 SVC ; application start address - 0x08
b #0x10018 ;0x0C PABT ; application start address - 0x08
b #0x10018 ;0x10 DABT ; application start address - 0x08

reservedEntry
b reservedEntry ;0x14
ldr pc,[pc, #-0x1b0] ;0x18
ldr pc,[pc, #-0x1b0] ;0x1C

This bootloader example does not use any interrupt. There is no exception handler for UNDEF, SWI,
DABT, and PABT in this bootloader example.

6 ECC Generation for Bootloader Code
The Cortex-R4/R5 CPU may generate speculative fetches to any location within the ATCM memory
space. A speculative fetch to a location with invalid ECC, which is subsequently not used, will not create
an abort, but will set the ESM flags for a correctable or uncorrectable error. An uncorrectable error will
unconditionally cause the nERROR pin to toggle low. Therefore, care must be taken to generate the
correct ECC for the entire ATCM space including the holes between sections and any unused or blank
flash areas.

The easiest way to achieve this is to use the Linker to generate ECC data rather than the loader. Couple
changes should be made:
• Add a ‘vfill = 0xFFFFFFFF' directive to the end of each line that maps to Flash in the Memory{} section

of the command file. The 'vfill’ affects only the ECC generation. It instructs the ECC generator to treat
the flash as if it were filled with the value 0xFFFFFFFF. It's a virtual fill, because the loader doesn't
need to download 4Mbytes.

• Add memory regions corresponding to the ECC area of the flash bank to the Memory{} section.
• Add an ECC {} directive describing the algorithm that matches the device.

Once you make changes to linker command file so that the linker generates ECC for the project, it is
necessary to change the loader settings so that the loader doesn't also try to generate ECC. On CCS
“Flash Settings”, “Auto ECC Generation” should be unchecked, and “Flash Verification Settings” should be
'None'.

The following is a modified memory map of the linker command file used in the Cortex-R5 CAN bootloader
project that you can use to replace the one generated by HALCoGen.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

ECC Generation for Application Code www.ti.com

8 SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

The ECC algorithm directive for Flash ECC devices should be added to generate ECC data.
/* Linker Settings */
--retain="*(.intvecs)"

/* Memory Map */
MEMORY
{

/* Add a vfill directive to the end of each line that maps to Flash */
VECTORS (X) : origin=0x00000000 length=0x00000020 vfill = 0xffffffff
FLASH0 (RX) : origin=0x00000020 length=0x001FFFE0 vfill = 0xffffffff
FLASH1 (RX) : origin=0x00200000 length=0x00200000 vfill = 0xffffffff
SRAM (RWX) : origin=0x08002000 length=0x0002D000
STACK (RW) : origin=0x08000000 length=0x00002000

/* USER CODE BEGIN (3) */
#if 1

/* Add memory regions corresponding to the ECC area of the flash bank */
ECC_VEC (R) : origin=(0xf0400000 + (start(VECTORS) >> 3))

length=(size(VECTORS) >> 3)
ECC={algorithm=algoL2R5F021, input_range=VECTORS}

ECC_FLA0 (R) : origin=(0xf0400000 + (start(FLASH0) >> 3))
length=(size(FLASH0) >> 3)
ECC={algorithm=algoL2R5F021, input_range=FLASH0 }

ECC_FLA1 (R) : origin=(0xf0400000 + (start(FLASH1) >> 3))
length=(size(FLASH1) >> 3)
ECC={algorithm=algoL2R5F021, input_range=FLASH1 }

#endif
/* USER CODE END */
}

/* USER CODE BEGIN (4) */
/* Add an ECC {} directive describing the algorithm that matches the device */
ECC
{

algoL2R5F021 : address_mask = 0xfffffff8 /*Address Bits 31:3 */
hamming_mask = R4 /*Use R4/R5 build in Mask */
parity_mask = 0x0c /*Set which ECC bits are Even & Odd parity */
mirroring = F021 /*RM57Lx and TMS570LCx are build in F021*/

}
/* USER CODE END */

7 ECC Generation for Application Code
As stated in Section 6, the ECC values for all of the ATCM program memory space must be programmed
into the flash before SECDED is enabled. Before transferring the application image, the address and the
image size are transferred first. The bootloader erases the flash sectors based on the address and size,
and the ECC area corresponding to those flash sectors. If the image size is not equal to size of one flash
sector or multiple sectors, the un-programmed area in the last erased sector contains ECC error.

One way to avoid this ECC error is to fill the un-programmed area by appending 0xFFFFFFFF to the file.
MEMORY
{

VECTORS (X) : origin=0x00010020 length=0x00000020
/*sector 4/5 are used for application */
FLASH_CODE (RX) : origin=0x00010040 length=0x8000 - 0x40 fill=0xFFFFFFFF
FLASH0 (RX) : origin=0x00018000 length=0x00200000 - 0x18000
FLASH1 (RX) : origin=0x00200000 length=0x00200000
STACKS (RW) : origin=0x08000000 length=0x00001500
RAM (RW) : origin=0x08001500 length=0x0007EB00

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

www.ti.com During Bootloader Execution

9SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

8 During Bootloader Execution
During bootloader execution:
• MCU operates in supervisor mode: The F021 Flash APIs are called in bootloader to erase flash

sectors and program the application code. On the ARM Cortex-R4/R5 devices, the flash APIs must be
run in a privilege mode (a mode other than user) to allow access to the Flash memory controller
registers.

• MCU Clock is reconfigured and is maintained throughout the bootloader execution. The flash can
support zero address and data wait states up to a CPU speed of 50 MHz in nonpipelined mode. The
flash can support a maximum CPU clock speed in pipelined mode with appropriate address wait state
and data wait states. Please make sure the RWAIT is set properly for the specified system frequency.
– Clock Source: OSCIN = 16 MHz
– System clock (HCLK): 150 MHz for TMS570LCx and RM57x devices, 160 MHz for

TMS570LS31x/12x and RM48/RM46 devices, 100 MHz for TMS570LS07x and RM44 devices, 80
MHz for TMS570LS04x and RM42 devices.

– Peripheral clock (VCLK): 75 MHz for TMS570LCx and RM57x devices, 90 MHz for
TMS570LS31x/12x and RM48/RM46 devices, 100 MHz for TMS570LS07x and RM44 devices, 80
MHz for TMS570LS04x and RM42 devices.

• The interrupt is disabled in bootloader example code. If the interrupt is used in bootloader, it has to be
disabled before the code is branched to the application code.

• CAN bit timing: The interrupt is disabled in bootloader example code. If the interrupt is used in
bootloader, it has to be disabled before the code is branched to the application code. The default
setting is 500 kbps. You can modify the baudrate through HALCoGen.

• F021 Flash API Version 2.01.01 is used. The flash API and its related code must be executed from
SRAM.

The user application must be in raw binary format. The hex format is not supported.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

RESET

1. Initialize device

2. Copy Flash API from flash to

SRAM

3. Initialize CAN module

Valid Update Flag?

Jump to the default

Application Code

GIO for force update

Pressed?

Check the flag byte in a
pre-defined address

YesWaiting for CMDs

from Host

GET_ADDR_SIZE

command

routine

GET_DATA

command

routine

GET_STATUS

 command

routine

RUN

 command

routine

RESET

 command

routine

Yes

NO

NO

Program Flash

Complete &

Success?

Update the

Header

No

Yes

PING

 command

routine

ACK or NAK Get Addr & size

Erase Flash

Jump to New

Application Code

Bootloader Flow www.ti.com

10 SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

9 Bootloader Flow
Figure 6 shows the execution flow of the CAN Bootloader.

Figure 6. CAN Bootloader Flowchart

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

Exception Vector table

CAN Bootloader Code

Application Code

0x00010020

0x00000000
x

x x x

x
x

x
x

x
x

x
x

x

Host System

Load CAN Bootloader Code Through JTAG

0x00010000
APP Status

www.ti.com CAN Bootloader Operation

11SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

10 CAN Bootloader Operation
1. Load the bootloader to Flash.

The CAN bootloader is built with Code Composer Studio 9.x and loaded through the JTAG port into the
lower part of the program Flash memory at 0x00000000.

Figure 7. The CAN Bootloader is Loaded Through the JTAG Port

2. Load the user application code.
After HDK reset, F021 Flash APIs, Flash API related code and variables are copied from Flash to
SRAM, and execute the bootloader in Flash.
First, it checks to see if the GPIO_A7 pin is pulled low by calling CheckForceUpdate(). If GPIO-A7 is
pulled LOW, the application code is forced to be updated. The GPIO pin check can be enabled with
ENABLE_UPDATE_CHECK in the bl_config.h header file, in which case an update can be forced by
changing the state of a GPIO pin (with the push button S1 on HDK).
Then, it checks the magic word or flag at 0x00010000. If the flag is a valid number (0x5A5A5A5A), the
bootloader jumps to the application code at 0x00010020. If the flag is not the valid number, it
configures CAN and SCI, then starts to update the application code by calling UpdaterCan(). After all
of the application code is programmed successfully, the application header is programmed to 0x10000.
The application header consists of three 32bit words that start at 0x10000 in this example. The first
word of the header is the application start address, and the second word is the application size, and
third word is the status flag. If the application is programmed sucessfully, the flag is 0x5A5A5A5A..
The CAN bootloader uses Message Box 2 to handle incoming messages; Message Box 1 is used for
handling the outgoing messages.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

Exception Vector table

CAN
Bootloader Code

Application Code

0x00010020

0x00000000
x

x x x

x
x

x
x

x
x

x
x

x

Laptop

APP Status

Flag: 0x5A5A5A5A

Application address

Application size

User Application Code Loaded Through CAN

CAN Bootloader Protocol www.ti.com

12 SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

Figure 8. User Application Code is Loaded Through the CAN Bootloader

3. User application is downloaded and programmed. To execute the new application, the bootloader host
sends REET command or RUN command to the bootloader.

11 CAN Bootloader Protocol
Messages between a CAN bootloader host and the target use a simple command and acknowledge
(ACK) protocol. The host sends a command and within a timeout period the target responds with either an
ACK or with a NACK. The command data is combined into message ID. The standard 11 bit message ID
is used. Among the 11 bits, the bit 0 to bit 3 is for the bootloader commands, and bit 4 to bit 7 is used for
device ID, and the bit 8 to bit 11 is used for manufacturer ID.

The CAN bootloader provides a short list of commands that are used during the firmware update
operation. The definitions for these commands are provided in the file bl_commands.h. The description of
each of these commands is covered in this section.
• CAN_COMMAND_PING (0x00)

This command is used to receive an acknowledge command from the bootloader indicating that
communication has been established. This command has no data. If the device is present, it will
respond with a CAN_COMMAND_PING back to the CAN update application.

• CAN_COMMAND_GET_ADDR_SIZE (0x01)
This command sets the base address for the download as well as the size of the data to write to the
device. This command should be followed by a series of CAN_COMMAND_GET_ADDR_SIZE that
send the actual image to be programmed to the device. The command consists of two 32-bit values.
The first 32-bit value is the address to start programming data into, while the second is the 32-bit size
of the data that will be sent.
This command also triggers an erasure of the full application area in the Flash. This Flash erase
operation causes the command to take longer to send the CAN_COMMAND_ACK in response to the
command, which should be taken into account by the CAN update application.
The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = Download Address [7:0];
ucData[1] = Download Address [15:8];
ucData[2] = Download Address [23:16];
ucData[3] = Download Address [31:24];
ucData[4] = Download Size [7:0];
ucData[5] = Download Size [15:8];
ucData[6] = Download Size [23:16];
ucData[7] = Download Size [31:24];

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

www.ti.com CAN Bootloader Protocol

13SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

• CAN_COMMAND_GET_DATA (0x04)
This command should only follow a CAN_COMMAND_GET_ADDR_SIZE command or another
CAN_COMMAND_GET_DATA command when more data is needed.
Consecutive send data commands automatically increment the address and continue programming
from the previous location. The transfer size is limited to 8 bytes at a time based on the maximum size
of an individual CAN transmission. The command terminates programming once the number of bytes
indicated by the CAN_COMMAND_GET_ADDR_SIZE command have been received.
The CAN bootloader sends a CAN_COMMAND_ACK in response to each send data command to
allow the CAN update application to throttle the data going to the device and not overrun the
bootloader with data.
This command also triggers the programming of the application area into the Flash. This Flash
programming operation causes the command to take longer to send the CAN_COMMAND_ACK in
response to the command, which should be taken into account by the CAN update application.
The LED D7 is flashing until the application update is complete.
The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = Data[0];
ucData[1] = Data[1];
ucData[2] = Data[2];
ucData[3] = Data[3];
ucData[4] = Data[4];
ucData[5] = Data[5];
ucData[6] = Data[6];
ucData[8] = Data[7];

• CAN_COMMAND_RESET (0x05)
This command is used to tell the CAN bootloader to reset the microcontroller. This is used after
downloading a new image to the microcontroller to cause the new application or the new bootloader to
start from a reset. The normal boot sequence occurs and the image runs as if from a hardware reset. It
can also be used to reset the bootloader if a critical error occurs and the CAN update application
needs to restart communication with the bootloader.

• CAN_COMMAND_REQUEST (0x05)
This command returns the status of the last command that was issued. This command has no data.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

Create Application for Use With the Bootloader www.ti.com

14 SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

12 Create Application for Use With the Bootloader
In order to upgrade the application using the bootloader, application images are created with a starting
address of 0x10020 (default). The bootloader occupies the flash area below this address. To achieve this,
the flash start address defined in the linker command file must be changed.
/*--*/
/* Linker Settings */
--retain="*(.intvecs)"

/*--*/
/* Memory Map */
MEMORY
{

VECTORS (X) : origin=0x00010020 length=0x00000020
/*sector 4/5 are used for application */
FLASH_CODE (RX) : origin=0x00010040 length=0x8000 - 0x40 fill=0xFFFFFFFF
FLASH0 (RX) : origin=0x00018000 length=0x00200000 - 0x18000
FLASH1 (RX) : origin=0x00200000 length=0x00200000
STACKS (RW) : origin=0x08000000 length=0x00001500
RAM (RW) : origin=0x08001500 length=0x0007EB00

}

/*--*/
/* Section Configuration */
SECTIONS
{

.intvecs : {} > VECTORS

.text align(32) : {} > FLASH_CODE

.const align(32) : {} > FLASH_CODE

.cinit align(32) : {} > FLASH_CODE

.pinit align(32) : {} > FLASH_CODE

.bss : {} > RAM

.data : {} > RAM

.sysmem : {} > RAM
}

To create an application using TI Code Composer Studio 9.x, use the linker command file included in this
application report as a reference for your project. The included linker command file sets up the starting
address of exception vector table to 0x10020 for the binary. In the project properties window, type the
following command in “Post-Built Steps" to generate binary file:
"${CCE_INSTALL_ROOT}/utils/tiobj2bin/tiobj2bin" "${BuildArtifactFileName}"
"${BuildArtifactFileBaseName}.bin"
"${CG_TOOL_ROOT}/bin/armofd" "${CG_TOOL_ROOT}/bin/armhex"
"${CCE_INSTALL_ROOT}/utils/tiobj2bin/mkhex4bin"

The resulting binary will be placed in your project folder, and binary file name is projectName.bin.

13 Sample Code for PC-Side Application
The PC-side application is developed using VC++ 2010. The bl_command.h defines the commands used
for talking with the CAN bootloader on the MCU side. The library and header file for NI-CAN 8473 are
included in the project.

The can_bltest.c does all the tests for bootlader:
• Opens binary image (user application)
• Sends command to ping MCU bootloader
• Sends starting address and image size to the MCU bootloader
• Sends data of the image to the MCU bootloader
• Sends execution command to run the user application
• Sends Reset command to reset the MCU

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241

www.ti.com References

15SPNA241–August 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

CAN Bus Bootloader for Hercules™ Microcontrollers

The source code of the VC++ project can be downloaded from the following URL:
http://git.ti.com/hercules_examples/hercules_examples/trees/master/Bootloaders.

Figure 9. VC++ Project for PC-Side Bootloader

14 References
• Texas Instruments: TMS570LS0x32 16- and 32-Bit RISC Flash Microcontroller Data Sheet
• Texas Instruments: TMS570LS04x/03x 16/32-Bit RISC Flash Microcontroller Technical Reference

Manual
• Texas Instruments: RM42L432 16- and 32-Bit RISC Flash Microcontroller Data Sheet
• Texas Instruments: RM42x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual
• Texas Instruments: TMS570LS1224 16- and 32-Bit RISC Flash Microcontroller Data Sheet
• Texas Instruments: TMS570LS12x/11x 16/32-Bit RISC Flash Microcontroller Technical Reference

Manual
• Texas Instruments: RM46Lx50 16- and 32-Bit RISC Flash Microcontroller Data Sheet
• Texas Instruments: RM46x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual
• Texas Instruments: TMS570LS3137 16- and 32-Bit RISC Flash Microcontroller Data Sheet
• Texas Instruments: TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller Technical Reference

Manual
• Texas Instruments: RM48Lx50 16- and 32-Bit RISC Flash Microcontroller Data Sheet
• Texas Instruments: RM48x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual
• Texas Instruments: TMS570LC4357 Hercules™ Microcontroller Based on the ARM® Cortex®-R Core

Data Sheet
• Texas Instruments: TMS570LC43x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual
• Texas Instruments: RM57L843 Hercules™ Microcontroller Based on the ARM® Cortex®-R Core Data

Sheet
• Texas Instruments: RM57Lx 16/32-Bit RISC Flash Microcontroller Technical Reference Manual
• Specification of NI USB-CAN 8473 Adaptor: http://sine.ni.com/nips/cds/view/p/lang/en/nid/203384

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA241
http://git.ti.com/hercules_examples/hercules_examples/trees/master/Bootloaders
http://www.ti.com/lit/pdf/SPNS186
http://www.ti.com/lit/pdf/SPNU517
http://www.ti.com/lit/pdf/SPNU517
http://www.ti.com/lit/pdf/SPNS180
http://www.ti.com/lit/pdf/SPNU516
http://www.ti.com/lit/pdf/SPNS190
http://www.ti.com/lit/pdf/SPNU515
http://www.ti.com/lit/pdf/SPNU515
http://www.ti.com/lit/pdf/SPNS184
http://www.ti.com/lit/pdf/SPNU514
http://www.ti.com/lit/pdf/SPNS162
http://www.ti.com/lit/pdf/SPNU499
http://www.ti.com/lit/pdf/SPNU499
http://www.ti.com/lit/pdf/SPNS174
http://www.ti.com/lit/pdf/SPNU503
http://www.ti.com/lit/pdf/SPNS195
http://www.ti.com/lit/pdf/SPNS195
http://www.ti.com/lit/pdf/SPNU563
http://www.ti.com/lit/pdf/SPNS215
http://www.ti.com/lit/pdf/SPNS215
http://www.ti.com/lit/pdf/SPNU562
http://sine.ni.com/nips/cds/view/p/lang/en/nid/203384

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	CAN Bus Bootloader for Hercules Microcontrollers
	1 Introduction
	2 Hardware Requirements
	3 CAN Settings
	4 Software Coding and Compilation
	5 Exception Vector Table
	6 ECC Generation for Bootloader Code
	7 ECC Generation for Application Code
	8 During Bootloader Execution
	9 Bootloader Flow
	10 CAN Bootloader Operation
	11 CAN Bootloader Protocol
	12 Create Application for Use With the Bootloader
	13 Sample Code for PC-Side Application
	14 References

	Important Notice

