
Application Report
SPNA191–September 2013

UART Bootloader for Hercules TMS570LS04x MCU

QuingjunWang

ABSTRACT
This application report describes how to communicate with the Hercules™ UART bootloader. The UART
bootloader is a small piece of code that can be programmed at the beginning of Flash to act as an
application loader as well as an update mechanism for applications running on a Hercules Cortex™-R4
based TMS570LS04x microcontroller.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/spna191.

Contents
1 Introduction .. 1
2 Software Coding and Compilation .. 3
3 On Reset ... 4
4 During Bootloader Execution .. 4
5 MCU Initialization during Bootloader Execution ... 4
6 The Protocol Used in UART Bootloader ... 4
7 UART Bootloader Operation ... 6
8 HyperTerminal Configuration .. 9
9 References ... 9

List of Figures

1 UART Bootloader Flowchart... 5
2 The UART Bootloader is Loaded Through the JTAG port... 6
3 UART Bootloader Main Menu ... 7
4 User Application Code is Loaded Through the UART Bootloader.. 7
5 UART Bootloader Jumps to Application Code .. 8
6 COM Port Properties ... 9

List of Tables

1 List of Source Code Files Used in SPI Bootloader ... 3
2 Vector Table in CAN Bootloader .. 4

1 Introduction
An important requirement for most Flash memory-based systems is the ability to update firmware when
installed in the end product. This ability is referred to as in-application programming (IAP). The UART
bootloader provides a means of writing, reading, and erasing a predefined section of the program Flash
memory that typically holds the user application code.

Hercules, Code Composer Studio are trademarks of Texas Instruments.
Cortex is a trademark of ARM Limited.
ARM is a registered trademark of ARM Limited.
All other trademarks are the property of their respective owners.

1SPNA191–September 2013 UART Bootloader for Hercules TMS570LS04x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/lit/zip/spna191
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

Introduction www.ti.com

This document describes how to work with and customize the Hercules UART bootloader application. The
bootloader is provided as source code which allows any part of the bootloader to be completely
customized. The bootloader has been built and validated using Code Composer Studio™ v5 on the
TMS570LS04x Hercules Development HDK.

2 UART Bootloader for Hercules TMS570LS04x MCU SPNA191–September 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

www.ti.com Software Coding and Compilation

Table 1 shows an overview of the organization of the source code provided with the bootloader.

Table 1. List of Source Code Files Used in SPI Bootloader
sys_startup.c The start-up code used when TI’s Code Composer Studio compiler is being used to build the

bootloader.
bl_check.c The code to check if a firmware update is required, or if a firmware update is being requested.
bl_check.h Prototypes for the update check code.
bl_commands.h The list of commands and return messages supported by the bootloader.
bl_config.h Bootloader configuration file. This contains all of the possible configuration values.
bl_flash.c The functions for erasing, programming the Flash, and functions for erase and program check
bl_flash.h Prototypes for Flash operations
bl_link.cmd The linker script used when the Code Composer Studio compiler is being used to build the

bootloader.
bl_main.c The main control loop of the bootloader.
bl_packet.c The functions for handling the packet processing of commands and responses.
bl_packet.h Prototypes for the packet handling functions.
bl_uart.h Prototypes for the UART0 transfer functions.
bl_uart.c The functions for transferring data via the COM0 port.
bl_vimram.c VIM RAM table definition and initialization
hw_gio.c Low-level GIO driver
hw_gio.h Prototypes for low-level gio driver
hw_het.c Low-level NHET driver
hw_het.h Prototypes for low-level NHET driver
hw_interrupt_handler.c Define the INT handlers
hw_pinmux.c Function for define the pinmux
hw_pinmux.h Prototypes for pinmux functions
hw_sci.c Low-level SCI driver
hw_sci.h Prototypes for low-level SCI driver
hw_system.c Initialize system registers and PLL
bl_ymodem.c Function for define the ymodem protocol
bl_ymodem.h Prototype define the variables and functions
startup_eabi.c Global variables initialization
sys_intvecs.asm Interrupt vectors
sys_svc.asm Software INT routines

2 Software Coding and Compilation
• The bootloader code is implemented in C, ARM® Cortex-R4F assembly coding is used only when

absolutely necessary. The IDE is TI Code Composer Studio v5.4.
• The bootloader is compiled in the 32-BIT ARM mode.
• The bootloader is compiled and linked with the TI TMS470 code generation tools V 5.1.

3SPNA191–September 2013 UART Bootloader for Hercules TMS570LS04x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

On Reset www.ti.com

3 On Reset
On reset, the MCU enters in supervisor mode and starts executing the bootloader. The interrupt vectors
are setup as shown in Table 2.

Table 2. Vector Table in CAN Bootloader
Offset Vector Action
0x00 Reset Vector Branch to entry point of bootloader (c_int00)
0x04 Undefined Instruction Interrupt Branch to application vector table
0x08 Software Interrupt Branch to application vector table
0x0C Abort (Prefetch) Interrupt Branch to application vector table
0x10 Abort (Data) Interrupt Branch to application vector table
0x14 Reserved Endless loop (branch to itself)
0x18 IRQ Interrupt Branch to VIM
0x1C FIQ Interrupt Branch to VIM

4 During Bootloader Execution
During bootloader execution:
• MCU operates in supervisor mode
• MCU Clock is reconfigured and is maintained throughout the bootloader execution.

– Clock Source: OSCIN = 16 MHz
– System clock: HCLK = 80 MHz
– Peripheral clock: VCLK = 40 MHz

• No interrupts are used
• Fix point is used throughout the bootloader execution
• F021 API V2.00.01 executes in RAM
• The SCI is configured as 115200, 8-N-1

5 MCU Initialization during Bootloader Execution
• Operating Mode: supervisor mode
• HCLK Frequency: OSCIN x 120 / 12
• VCLK Frequency: VCLK = HCLK / 2
• Peripheral Control: peripherals enabled
• SCI Setup: The SCI/LIN is setup for SCI communication. The setup is 115200 8-N-1.
• MCU do self-test, PBIST, parity check at startup

6 The Protocol Used in UART Bootloader
The bootloader is based on Ymodem protocol. The Ymodem protocol sends data in 1024-byte blocks.
Error detection is applied to data blocks transmitted to the TMS570LS04x internal RAM. This is done
through a comparison between the transmitted and received data. Blocks received unsuccessfully are
acknowledged with a negative acknowledgment (NAK). For more details about the Ymodem protocol, see
the existing literature.

4 UART Bootloader for Hercules TMS570LS04x MCU SPNA191–September 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

YES

START

Init Device

Pushbutton

Is pressed?

Initialize MCU

UART

Display the

main menu

Download/Upload

Or Execute the

application code

Receive a

binary file

Complete?

Update Flag

Display the

name and size

of received file

Goto Main

Menu

Thransmit image

from internal flash

CRC

correct?

Switch to user

application

YES

Program the

Flash

CRC

correct?

NO

NO
Complete?

Goto Main

Menu

#1 #2 #3

SW

Version

Goto

Menu

HW

Info

Goto

Menu

#4 #5

Valid Flag?NO

NO

Switch to user

application

YES

YES

YES

NO

NO

YES

Write Data

to File

www.ti.com The Protocol Used in UART Bootloader

Figure 1. UART Bootloader Flowchart

5SPNA191–September 2013 UART Bootloader for Hercules TMS570LS04x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

UART Bootloader Operation www.ti.com

7 UART Bootloader Operation
The UART bootloader is built with Code Composer Studio v5.x and loaded through the JTAG port into the
lower part of the program memory at 0x0000.

Figure 2. The UART Bootloader is Loaded Through the JTAG port

After HDK reset, the start-up code copies the Flash API of bootloader from Flash to SRAM, and execute
the bootloader in Flash.

First, it will checks to see if the GPIO_A7 pin is pulled. If GPIO-A7 is pulled LOW, the application code is
forced to be updated. The GPIO pin check can be enabled with ENABLE_UPDATE_CHECK in the
bl_config.h header file. On TMS570LS04x HDK, the push button S1can toggle GPIO-A7.

Then, it will check the flag at 0x0007FF0. If the flag is a valid number (0x5A5A5A5A), the bootloader will
jump to the application code at 0x00020000. If the flag is not the valid number, it will configure the UART,
then start to update the user application code by calling UpdaterUart(). After all the application code is
programmed successfully, the flag is also updated.

6 UART Bootloader for Hercules TMS570LS04x MCU SPNA191–September 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

www.ti.com UART Bootloader Operation

The updating results in Figure 3 displayed in the HyperTerminal window.

Figure 3. UART Bootloader Main Menu

1. Download the user application code to TMS570LS04x Flash.
To download a binary file via HyperTerminal to the TMS570LS04x internal Flash, follow the procedure
below:
• Press “1” on the keyboard to choose the menu Download image to internal Flash.

Then, in the Transfer menu, select Send file…
• In the Filename field, type the name and the path of the binary file to be sent.
• In the Protocol list, choose the Ymodem protocol
• Click the Send button.

Following these steps, the bootloader loads the binary file into the TMS570LS04x internal Flash.
The bootloader will display the file name, and file size in the Hyperterminal window.

Figure 4. User Application Code is Loaded Through the UART Bootloader

7SPNA191–September 2013 UART Bootloader for Hercules TMS570LS04x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

UART Bootloader Operation www.ti.com

2. Upload the application code from TMS570LS04x Flash
To upload a copy of the internal Flash memory started from the user application address, do as
follows:
• Press 2 on the keyboard to select Upload image from the TMS570LS04x internal Flash
• Select Receive File in the Transfer menu.
• Choose the Directory of the binary file you want to create
• From the Protocol list, select the Ymodem protocol
• Click on the Receive button
The file UploadedApplicationImage.bin is uploaded to the directory you defined in step 2.

3. Execute the application.
Once the new application is downloaded successfully, press 3 on the keyboard to select the Execute.

Figure 5. UART Bootloader Jumps to Application Code

4. Get Bootloader Software Version
To get the software version, press 4 on the keyboard to retrieve the SW version from TMS570LS04x
UAR bootloader.

5. Get the TMS570LS04x Device Information
To get the device information, press 5 on the keyboard to retrieve the device information from
TMS570LS04x UAR bootloader.

8 UART Bootloader for Hercules TMS570LS04x MCU SPNA191–September 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

www.ti.com HyperTerminal Configuration

8 HyperTerminal Configuration
The bootloader requires a PC running HyperTerminal with the following settings:

Figure 6. COM Port Properties

9 References
• TMS570LS0432/0332 16/32-Bit RISC Flash Microcontroller Data Manual (SPNS186)
• F021 Flash API Version 2.00.01 Reference Guide (SPNU501)

9SPNA191–September 2013 UART Bootloader for Hercules TMS570LS04x MCU
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPNS186
http://www.ti.com/lit/pdf/SPNU501
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA191

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	UART Bootloader for Hercules TMS570LS04x MCU
	1 Introduction
	2 Software Coding and Compilation
	3 On Reset
	4 During Bootloader Execution
	5 MCU Initialization during Bootloader Execution
	6 The Protocol Used in UART Bootloader
	7 UART Bootloader Operation
	8 HyperTerminal Configuration
	9 References

