
Copyright © 2013-2014
Texas Instruments Incorporated

UG-ROM-TM4C129x-818
SPMU363

ROM USER’S GUIDE

Tiva™ C Series TM4C129x

Copyright
Copyright © 2013-2014 Texas Instruments Incorporated. All rights reserved. Tiva and TivaWare are trademarks of Texas Instruments Instruments. ARM
and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
www.ti.com/tiva-c

Revision Information
This is version 818 of this document, last updated on May 14, 2014.

2 May 14, 2014

www.ti.com/tiva-c

Tiva TM4C129x ROM User’s Guide

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 7

2 Analog Comparator . 9
2.1 Introduction . 9
2.2 Functions . 9

3 Analog to Digital Converter (ADC) . 15
3.1 Introduction . 15
3.2 Functions . 15

4 AES . 37
4.1 Introduction . 37
4.2 API Functions . 37

5 Controller Area Network (CAN) . 53
5.1 Introduction . 53
5.2 Functions . 54

6 CRC . 69
6.1 Introduction . 69
6.2 API Functions . 69

7 DES . 73
7.1 Introduction . 73
7.2 API Functions . 73

8 EEPROM . 83
8.1 Introduction . 83
8.2 API Functions . 84

9 Ethernet Controller . 97
9.1 Introduction . 97
9.2 API Functions . 97

10 External Peripheral Interface (EPI) . 165
10.1 Introduction . 165
10.2 Functions . 166

11 Flash . 195
11.1 Introduction . 195
11.2 Functions . 195

12 Floating-Point Unit (FPU) . 203
12.1 Introduction . 203
12.2 API Functions . 204

13 GPIO . 209
13.1 Introduction . 209
13.2 Functions . 209

14 Hibernation Module . 239
14.1 Introduction . 239
14.2 Functions . 240

15 Inter-Integrated Circuit (I2C) . 269
15.1 Introduction . 269

May 14, 2014 3

Table of Contents

15.2 Functions . 270

16 Interrupt Controller (NVIC) . 301
16.1 Introduction . 301
16.2 Functions . 301

17 LCD Controller (LCD) . 309
17.1 Introduction . 309
17.2 API Functions . 309

18 Memory Protection Unit (MPU) . 333
18.1 Introduction . 333
18.2 Functions . 334

19 1-Wire Master Module . 341
19.1 Introduction . 341
19.2 API Functions . 341

20 Pulse Width Modulator (PWM) . 351
20.1 Introduction . 351
20.2 Functions . 351

21 Quadrature Encoder (QEI) . 375
21.1 Introduction . 375
21.2 Functions . 375

22 SMBus Stack . 385
22.1 Introduction . 385
22.2 API Functions . 386

23 Software AES Data Tables . 419
23.1 Introduction . 419
23.2 Data Structures . 419

24 Software CRC . 421
24.1 Introduction . 421
24.2 Functions . 421

25 SPI Flash Module . 427
25.1 Introduction . 427
25.2 API Functions . 427

26 Synchronous Serial Interface (SSI) . 443
26.1 Introduction . 443
26.2 Functions . 445

27 System Control . 459
27.1 Introduction . 459
27.2 Functions . 460

28 System Exception Module . 491
28.1 Introduction . 491
28.2 API Functions . 491

29 System Tick (SysTick) . 495
29.1 Introduction . 495
29.2 Functions . 495

30 Timer . 499
30.1 Introduction . 499
30.2 Functions . 500

31 UART . 521

4 May 14, 2014

Tiva TM4C129x ROM User’s Guide

31.1 Introduction . 521
31.2 Functions . 521

32 uDMA Controller . 549
32.1 Introduction . 549
32.2 Functions . 551

33 USB Controller . 567
33.1 Introduction . 567
33.2 Functions . 568

34 Watchdog Timer . 641
34.1 Introduction . 641
34.2 Functions . 641

IMPORTANT NOTICE . 650

May 14, 2014 5

Table of Contents

6 May 14, 2014

Tiva TM4C129x ROM User’s Guide

1 Introduction
Note:

This document describes the complete set of TM4C129x APIs. Not all API functions are sup-
ported in all devices. Refer to the datasheet for your specific device to determine which periph-
erals / APIs are supported for your device.

The TM4C129x ROM contains the TivaWare™ Peripheral Driver Library and the TivaWare Boot
Loader. The peripheral driver library can be used by applications to reduce their flash footprint,
allowing more of the flash to be used by the application for other purposes. The boot loader is used
as an initial program loader (when the flash is empty) as well as an application-initiated firmware
upgrade mechanism (by calling back to the boot loader).

There is a table at the beginning of the ROM that points to the entry points for the APIs that are
provided in the ROM. Accessing the API through these tables provides scalability; while the API
locations may change in future versions of the ROM, the API tables will not. The tables are split
into two levels; the main table contains one pointer per peripheral which points to a secondary table
that contains one pointer per API that is associated with that peripheral. The main table is located
at 0x0100.0010, right after the Cortex-M vector table in the ROM.

The following table shows a small portion of the API tables in a graphical form to illustrate the
arrangement of the tables:

ROM_APITABLE (at 0x0100.0010)
[0] = ROM_VERSION
[1] = pointer to ROM_UARTTABLE
[2] = pointer to ROM_SSITABLE
[3] = pointer to ROM_I2CTABLE
[4] = pointer to ROM_GPIOTABLE =⇒ ROM_GPIOTABLE
[5] = pointer to ROM_ADCTABLE [0] = pointer to ROM_GPIOPinWrite
[6] = pointer to ROM_COMPARATORTABLE [1] = pointer to ROM_GPIODirModeSet
[7] = pointer to ROM_FLASHTABLE [2] = pointer to ROM_GPIODirModeGet
... ...

The address of the ROM_GPIOTABLE table is located in the memory location at 0x0100.0020.
The address of the ROM_GPIODirModeSet() function is contained at offset 0x4 from that table. In
the function documentation, this configuration is represented as:

ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODirModeSet is a function pointer located at ROM_GPIOTABLE[1].

The TivaWare Peripheral Driver Library contains a file called driverlib/rom.h that assists with
calling the peripheral driver library functions in the ROM. The naming conventions for the tables
and APIs that are used in this document match those used in that file.

The following shows how to call the ROM_GPIODirModeSet() function:

#define TARGET_IS_FLURRY_RA1
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/gpio.h"
#include "driverlib/rom.h"

May 14, 2014 7

Introduction

int
main(void)
{

// ...

ROM_GPIODirModeSet(GPIO_PORTA_BASE, GPIO_PIN_0, GPIO_DIR_MODE_OUT);

//
}

See the “Using the ROM” chapter of the TivaWare Peripheral Driver Library User’s Guide for more
details on calling the ROM functions and using driverlib/rom.h.

The APIs provided by the ROM can be used by any compiler that complies with the Embedded
Applications Binary Interface (EABI), including all recent compilers for the Tiva microcontroller.

8 May 14, 2014

Tiva TM4C129x ROM User’s Guide

2 Analog Comparator
Introduction . 9
Functions . 9

2.1 Introduction

The comparator API provides a set of functions for programming and using the analog comparators.
A comparator can compare a test voltage against an individual external reference voltage, a shared
single external reference voltage, or a shared internal reference voltage. It can provide its output
to a device pin, acting as a replacement for an analog comparator on the board, or it can be
used to signal the application via interrupts or triggers to the ADC to start capturing a sample
sequence. The interrupt generation logic is independent from the ADC triggering logic. As a result,
the comparator can generate an interrupt based on one event and an ADC trigger based on another
event. For example, an interrupt can be generated on a rising edge and the ADC triggered on a
falling edge.

2.2 Functions

Functions
void ROM_ComparatorConfigure (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32Config)
void ROM_ComparatorIntClear (uint32_t ui32Base, uint32_t ui32Comp)
void ROM_ComparatorIntDisable (uint32_t ui32Base, uint32_t ui32Comp)
void ROM_ComparatorIntEnable (uint32_t ui32Base, uint32_t ui32Comp)
bool ROM_ComparatorIntStatus (uint32_t ui32Base, uint32_t ui32Comp, bool bMasked)
void ROM_ComparatorRefSet (uint32_t ui32Base, uint32_t ui32Ref)
bool ROM_ComparatorValueGet (uint32_t ui32Base, uint32_t ui32Comp)

2.2.1 Function Documentation

2.2.1.1 ROM_ComparatorConfigure

Configures a comparator.

Prototype:
void
ROM_ComparatorConfigure(uint32_t ui32Base,

uint32_t ui32Comp,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorConfigure is a function pointer located at ROM_COMPARATORTABLE[1].

May 14, 2014 9

Analog Comparator

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator to configure.
ui32Config is the configuration of the comparator.

Description:
This function configures a comparator. The ui32Config parameter is the result of a logical
OR operation between the COMP_TRIG_xxx, COMP_INT_xxx, COMP_ASRCP_xxx, and
COMP_OUTPUT_xxx values.

The COMP_TRIG_xxx term can take on the following values:

COMP_TRIG_NONE to have no trigger to the ADC.
COMP_TRIG_HIGH to trigger the ADC when the comparator output is high.
COMP_TRIG_LOW to trigger the ADC when the comparator output is low.
COMP_TRIG_FALL to trigger the ADC when the comparator output goes low.
COMP_TRIG_RISE to trigger the ADC when the comparator output goes high.
COMP_TRIG_BOTH to trigger the ADC when the comparator output goes low or high.

The COMP_INT_xxx term can take on the following values:

COMP_INT_HIGH to generate an interrupt when the comparator output is high.
COMP_INT_LOW to generate an interrupt when the comparator output is low.
COMP_INT_FALL to generate an interrupt when the comparator output goes low.
COMP_INT_RISE to generate an interrupt when the comparator output goes high.
COMP_INT_BOTH to generate an interrupt when the comparator output goes low or high.

The COMP_ASRCP_xxx term can take on the following values:

COMP_ASRCP_PIN to use the dedicated Comp+ pin as the reference voltage.
COMP_ASRCP_PIN0 to use the Comp0+ pin as the reference voltage (this the same as
COMP_ASRCP_PIN for the comparator 0).
COMP_ASRCP_REF to use the internally generated voltage as the reference voltage.

The COMP_OUTPUT_xxx term can take on the following values:

COMP_OUTPUT_NORMAL to enable a non-inverted output from the comparator to a
device pin.
COMP_OUTPUT_INVERT to enable an inverted output from the comparator to a device
pin.

Returns:
None.

2.2.1.2 ROM_ComparatorIntClear

Clears a comparator interrupt.

Prototype:
void
ROM_ComparatorIntClear(uint32_t ui32Base,

uint32_t ui32Comp)

10 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorIntClear is a function pointer located at ROM_COMPARATORTABLE[0].

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
The comparator interrupt is cleared, so that it no longer asserts. This function must be called in
the interrupt handler to keep the handler from being called again immediately upon exit. Note
that for a level-triggered interrupt, the interrupt cannot be cleared until it stops asserting.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

2.2.1.3 ROM_ComparatorIntDisable

Disables the comparator interrupt.

Prototype:
void
ROM_ComparatorIntDisable(uint32_t ui32Base,

uint32_t ui32Comp)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorIntDisable is a function pointer located at ROM_COMPARATORTABLE[5].

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
This function disables generation of an interrupt from the specified comparator. Only enabled
comparator interrupts can be reflected to the processor.

Returns:
None.

May 14, 2014 11

Analog Comparator

2.2.1.4 ROM_ComparatorIntEnable

Enables the comparator interrupt.

Prototype:
void
ROM_ComparatorIntEnable(uint32_t ui32Base,

uint32_t ui32Comp)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorIntEnable is a function pointer located at ROM_COMPARATORTABLE[4].

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
This function enables generation of an interrupt from the specified comparator. Only enabled
comparator interrupts can be reflected to the processor.

Returns:
None.

2.2.1.5 ROM_ComparatorIntStatus

Gets the current interrupt status.

Prototype:
bool
ROM_ComparatorIntStatus(uint32_t ui32Base,

uint32_t ui32Comp,
bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorIntStatus is a function pointer located at ROM_COMPARATORTABLE[6].

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the comparator. Either the raw or the masked
interrupt status can be returned.

Returns:
true if the interrupt is asserted and false if it is not asserted.

12 May 14, 2014

Tiva TM4C129x ROM User’s Guide

2.2.1.6 ROM_ComparatorRefSet

Sets the internal reference voltage.

Prototype:
void
ROM_ComparatorRefSet(uint32_t ui32Base,

uint32_t ui32Ref)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorRefSet is a function pointer located at ROM_COMPARATORTABLE[2].

Parameters:
ui32Base is the base address of the comparator module.
ui32Ref is the desired reference voltage.

Description:
This function sets the internal reference voltage value. The voltage is specified as one of the
following values:

COMP_REF_OFF to turn off the reference voltage
COMP_REF_0V to set the reference voltage to 0 V
COMP_REF_0_1375V to set the reference voltage to 0.1375 V
COMP_REF_0_275V to set the reference voltage to 0.275 V
COMP_REF_0_4125V to set the reference voltage to 0.4125 V
COMP_REF_0_55V to set the reference voltage to 0.55 V
COMP_REF_0_6875V to set the reference voltage to 0.6875 V
COMP_REF_0_825V to set the reference voltage to 0.825 V
COMP_REF_0_928125V to set the reference voltage to 0.928125 V
COMP_REF_0_9625V to set the reference voltage to 0.9625 V
COMP_REF_1_03125V to set the reference voltage to 1.03125 V
COMP_REF_1_134375V to set the reference voltage to 1.134375 V
COMP_REF_1_1V to set the reference voltage to 1.1 V
COMP_REF_1_2375V to set the reference voltage to 1.2375 V
COMP_REF_1_340625V to set the reference voltage to 1.340625 V
COMP_REF_1_375V to set the reference voltage to 1.375 V
COMP_REF_1_44375V to set the reference voltage to 1.44375 V
COMP_REF_1_5125V to set the reference voltage to 1.5125 V
COMP_REF_1_546875V to set the reference voltage to 1.546875 V
COMP_REF_1_65V to set the reference voltage to 1.65 V
COMP_REF_1_753125V to set the reference voltage to 1.753125 V
COMP_REF_1_7875V to set the reference voltage to 1.7875 V
COMP_REF_1_85625V to set the reference voltage to 1.85625 V
COMP_REF_1_925V to set the reference voltage to 1.925 V
COMP_REF_1_959375V to set the reference voltage to 1.959375 V
COMP_REF_2_0625V to set the reference voltage to 2.0625 V
COMP_REF_2_165625V to set the reference voltage to 2.165625 V

May 14, 2014 13

Analog Comparator

COMP_REF_2_26875V to set the reference voltage to 2.26875 V
COMP_REF_2_371875V to set the reference voltage to 2.371875 V

Returns:
None.

2.2.1.7 ROM_ComparatorValueGet

Gets the current comparator output value.

Prototype:
bool
ROM_ComparatorValueGet(uint32_t ui32Base,

uint32_t ui32Comp)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_COMPARATORTABLE is an array of pointers located at ROM_APITABLE[6].
ROM_ComparatorValueGet is a function pointer located at ROM_COMPARATORTABLE[3].

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:
This function retrieves the current value of the comparator output.

Returns:
Returns true if the comparator output is high and false if the comparator output is low.

14 May 14, 2014

Tiva TM4C129x ROM User’s Guide

3 Analog to Digital Converter (ADC)
Introduction . 15
Functions . 15

3.1 Introduction

The analog to digital converter (ADC) API provides a set of functions for programming and using the
ADC. Functions are provided to configure the sample sequencers, read the captured data, register
a sample sequence interrupt handler, and handle interrupt masking/clearing.

The ADC supports up to twenty-four input channels plus an internal temperature sensor. Four
sampling sequencers, each with configurable trigger events, can be captured. The first sequencer
captures up to eight samples, the second and third sequencers capture up to four samples, and
the fourth sequencer captures a single sample. Each sample can be the same channel, different
channels, or any combination in any order.

The sample sequencers have configurable priorities that determine the order in which they are
captured when multiple triggers occur simultaneously. The highest priority sequencer that is cur-
rently triggered is sampled first. Care must be taken with triggers that occur frequently (such as the
“always” trigger); if their priority is too high, it is possible to starve the lower priority sequencers.

Hardware oversampling of the ADC data is available for improved accuracy. An oversampling factor
of 2x, 4x, 8x, 16x, 32x, or 64x is supported, but reduces the throughput of the ADC by a corre-
sponding factor. Hardware oversampling is applied uniformly across all sample sequencers.

3.2 Functions

Functions
bool ROM_ADCBusy (uint32_t ui32Base)
void ROM_ADCComparatorConfigure (uint32_t ui32Base, uint32_t ui32Comp, uint32_t
ui32Config)
void ROM_ADCComparatorIntClear (uint32_t ui32Base, uint32_t ui32Status)
void ROM_ADCComparatorIntDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCComparatorIntEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
uint32_t ROM_ADCComparatorIntStatus (uint32_t ui32Base)
void ROM_ADCComparatorRegionSet (uint32_t ui32Base, uint32_t ui32Comp, uint32_t
ui32LowRef, uint32_t ui32HighRef)
void ROM_ADCComparatorReset (uint32_t ui32Base, uint32_t ui32Comp, bool bTrigger, bool
bInterrupt)
void ROM_ADCHardwareOversampleConfigure (uint32_t ui32Base, uint32_t ui32Factor)
void ROM_ADCIntClear (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCIntDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCIntDisableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_ADCIntEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)

May 14, 2014 15

Analog to Digital Converter (ADC)

void ROM_ADCIntEnableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_ADCIntStatus (uint32_t ui32Base, uint32_t ui32SequenceNum, bool bMasked)
uint32_t ROM_ADCIntStatusEx (uint32_t ui32Base, bool bMasked)
uint32_t ROM_ADCPhaseDelayGet (uint32_t ui32Base)
void ROM_ADCPhaseDelaySet (uint32_t ui32Base, uint32_t ui32Phase)
void ROM_ADCProcessorTrigger (uint32_t ui32Base, uint32_t ui32SequenceNum)
uint32_t ROM_ADCReferenceGet (uint32_t ui32Base)
void ROM_ADCReferenceSet (uint32_t ui32Base, uint32_t ui32Ref)
void ROM_ADCSequenceConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum, uint32_t
ui32Trigger, uint32_t ui32Priority)
int32_t ROM_ADCSequenceDataGet (uint32_t ui32Base, uint32_t ui32SequenceNum,
uint32_t ∗pui32Buffer)
void ROM_ADCSequenceDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCSequenceDMADisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCSequenceDMAEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCSequenceEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
int32_t ROM_ADCSequenceOverflow (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCSequenceOverflowClear (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCSequenceStepConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum,
uint32_t ui32Step, uint32_t ui32Config)
int32_t ROM_ADCSequenceUnderflow (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ROM_ADCSequenceUnderflowClear (uint32_t ui32Base, uint32_t ui32SequenceNum)

3.2.1 Function Documentation

3.2.1.1 ROM_ADCBusy

Determines whether the ADC is busy or not.

Prototype:
bool
ROM_ADCBusy(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCBusy is a function pointer located at ROM_ADCTABLE[34].

Parameters:
ui32Base is the base address of the ADC.

Description:
This function allows the caller to determine whether or not the ADC is currently sampling . If
false is returned, then the ADC is not sampling data.

Use this function to detect that the ADC is finished sampling data before putting the device
into deep sleep. Before using this function, it is highly recommended that the event trigger
is changed to ADC_TRIGGER_NEVER on all enabled sequencers to prevent the ADC from
starting after checking the busy status.

16 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
Returns true if the ADC is sampling or false if all samples are complete.

3.2.1.2 ROM_ADCComparatorConfigure

Configures an ADC digital comparator.

Prototype:
void
ROM_ADCComparatorConfigure(uint32_t ui32Base,

uint32_t ui32Comp,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorConfigure is a function pointer located at ROM_ADCTABLE[15].

Parameters:
ui32Base is the base address of the ADC module.
ui32Comp is the index of the comparator to configure.
ui32Config is the configuration of the comparator.

Description:
This function configures a comparator. The ui32Config parameter is the result of a logical OR
operation between the ADC_COMP_TRIG_xxx, and ADC_COMP_INT_xxx values.

The ADC_COMP_TRIG_xxx term can take on the following values:

ADC_COMP_TRIG_NONE to never trigger PWM fault condition.
ADC_COMP_TRIG_LOW_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the low-band.
ADC_COMP_TRIG_LOW_ONCE to trigger PWM fault condition once when ADC output
transitions into the low-band.
ADC_COMP_TRIG_LOW_HALWAYS to always trigger PWM fault condition when ADC
output is in the low-band only if ADC output has been in the high-band since the last
trigger output.
ADC_COMP_TRIG_LOW_HONCE to trigger PWM fault condition once when ADC output
transitions into low-band only if ADC output has been in the high-band since the last trigger
output.
ADC_COMP_TRIG_MID_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the mid-band.
ADC_COMP_TRIG_MID_ONCE to trigger PWM fault condition once when ADC output
transitions into the mid-band.
ADC_COMP_TRIG_HIGH_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the high-band.
ADC_COMP_TRIG_HIGH_ONCE to trigger PWM fault condition once when ADC output
transitions into the high-band.
ADC_COMP_TRIG_HIGH_HALWAYS to always trigger PWM fault condition when ADC
output is in the high-band only if ADC output has been in the low-band since the last
trigger output.

May 14, 2014 17

Analog to Digital Converter (ADC)

ADC_COMP_TRIG_HIGH_HONCE to trigger PWM fault condition once when ADC output
transitions into high-band only if ADC output has been in the low-band since the last trigger
output.

The ADC_COMP_INT_xxx term can take on the following values:

ADC_COMP_INT_NONE to never generate ADC interrupt.
ADC_COMP_INT_LOW_ALWAYS to always generate ADC interrupt when ADC output is
in the low-band.
ADC_COMP_INT_LOW_ONCE to generate ADC interrupt once when ADC output transi-
tions into the low-band.
ADC_COMP_INT_LOW_HALWAYS to always generate ADC interrupt when ADC output
is in the low-band only if ADC output has been in the high-band since the last trigger output.
ADC_COMP_INT_LOW_HONCE to generate ADC interrupt once when ADC output tran-
sitions into low-band only if ADC output has been in the high-band since the last trigger
output.
ADC_COMP_INT_MID_ALWAYS to always generate ADC interrupt when ADC output is
in the mid-band.
ADC_COMP_INT_MID_ONCE to generate ADC interrupt once when ADC output transi-
tions into the mid-band.
ADC_COMP_INT_HIGH_ALWAYS to always generate ADC interrupt when ADC output is
in the high-band.
ADC_COMP_INT_HIGH_ONCE to generate ADC interrupt once when ADC output transi-
tions into the high-band.
ADC_COMP_INT_HIGH_HALWAYS to always generate ADC interrupt when ADC output
is in the high-band only if ADC output has been in the low-band since the last trigger output.
ADC_COMP_INT_HIGH_HONCE to generate ADC interrupt once when ADC output tran-
sitions into high-band only if ADC output has been in the low-band since the last trigger
output.

Returns:
None.

3.2.1.3 ROM_ADCComparatorIntClear

Clears sample sequence comparator interrupt source.

Prototype:
void
ROM_ADCComparatorIntClear(uint32_t ui32Base,

uint32_t ui32Status)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorIntClear is a function pointer located at ROM_ADCTABLE[21].

Parameters:
ui32Base is the base address of the ADC module.
ui32Status is the bit-mapped interrupts status to clear.

18 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
The specified interrupt status is cleared.

Returns:
None.

3.2.1.4 ROM_ADCComparatorIntDisable

Disables a sample sequence comparator interrupt.

Prototype:
void
ROM_ADCComparatorIntDisable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorIntDisable is a function pointer located at ROM_ADCTABLE[18].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function disables the requested sample sequence comparator interrupt.

Returns:
None.

3.2.1.5 ROM_ADCComparatorIntEnable

Enables a sample sequence comparator interrupt.

Prototype:
void
ROM_ADCComparatorIntEnable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorIntEnable is a function pointer located at ROM_ADCTABLE[19].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function enables the requested sample sequence comparator interrupt.

Returns:
None.

May 14, 2014 19

Analog to Digital Converter (ADC)

3.2.1.6 ROM_ADCComparatorIntStatus

Gets the current comparator interrupt status.

Prototype:
uint32_t
ROM_ADCComparatorIntStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorIntStatus is a function pointer located at ROM_ADCTABLE[20].

Parameters:
ui32Base is the base address of the ADC module.

Description:
This function returns the digital comparator interrupt status bits. This status is sequence ag-
nostic.

Returns:
The current comparator interrupt status.

3.2.1.7 ROM_ADCComparatorRegionSet

Defines the ADC digital comparator regions.

Prototype:
void
ROM_ADCComparatorRegionSet(uint32_t ui32Base,

uint32_t ui32Comp,
uint32_t ui32LowRef,
uint32_t ui32HighRef)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorRegionSet is a function pointer located at ROM_ADCTABLE[16].

Parameters:
ui32Base is the base address of the ADC module.
ui32Comp is the index of the comparator to configure.
ui32LowRef is the reference point for the low/mid band threshold.
ui32HighRef is the reference point for the mid/high band threshold.

Description:
The ADC digital comparator operation is based on three ADC value regions:

low-band is defined as any ADC value less than or equal to the ui32LowRef value.
mid-band is defined as any ADC value greater than the ui32LowRef value but less than
or equal to the ui32HighRef value.
high-band is defined as any ADC value greater than the ui32HighRef value.

20 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

3.2.1.8 ROM_ADCComparatorReset

Resets the current ADC digital comparator conditions.

Prototype:
void
ROM_ADCComparatorReset(uint32_t ui32Base,

uint32_t ui32Comp,
bool bTrigger,
bool bInterrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCComparatorReset is a function pointer located at ROM_ADCTABLE[17].

Parameters:
ui32Base is the base address of the ADC module.
ui32Comp is the index of the comparator.
bTrigger is the flag to indicate reset of Trigger conditions.
bInterrupt is the flag to indicate reset of Interrupt conditions.

Description:
Because the digital comparator uses current and previous ADC values, this function allows
the comparator to be reset to its initial value to prevent stale data from being used when a
sequence is enabled.

Returns:
None.

3.2.1.9 ROM_ADCHardwareOversampleConfigure

Configures the hardware oversampling factor of the ADC.

Prototype:
void
ROM_ADCHardwareOversampleConfigure(uint32_t ui32Base,

uint32_t ui32Factor)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCHardwareOversampleConfigure is a function pointer located at
ROM_ADCTABLE[14].

Parameters:
ui32Base is the base address of the ADC module.

May 14, 2014 21

Analog to Digital Converter (ADC)

ui32Factor is the number of samples to be averaged.

Description:
This function configures the hardware oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Six different oversampling rates are supported; 2x, 4x,
8x, 16x, 32x, and 64x. Specifying an oversampling factor of zero disables hardware oversam-
pling.

Hardware oversampling applies uniformly to all sample sequencers. It does not reduce the
depth of the sample sequencers like the software oversampling APIs; each sample written into
the sample sequencer FIFO is a fully oversampled analog input reading.

Enabling hardware averaging increases the precision of the ADC at the cost of throughput. For
example, enabling 4x oversampling reduces the throughput of a 250 k samples/second ADC
to 62.5 k samples/second.

Returns:
None.

3.2.1.10 ROM_ADCIntClear

Clears sample sequence interrupt source.

Prototype:
void
ROM_ADCIntClear(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntClear is a function pointer located at ROM_ADCTABLE[4].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
The specified sample sequence interrupt is cleared, so that it no longer asserts. This func-
tion must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

22 May 14, 2014

Tiva TM4C129x ROM User’s Guide

3.2.1.11 ROM_ADCIntDisable

Disables a sample sequence interrupt.

Prototype:
void
ROM_ADCIntDisable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntDisable is a function pointer located at ROM_ADCTABLE[1].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function disables the requested sample sequence interrupt.

Returns:
None.

3.2.1.12 ROM_ADCIntDisableEx

Disables ADC interrupt sources.

Prototype:
void
ROM_ADCIntDisableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntDisableEx is a function pointer located at ROM_ADCTABLE[29].

Parameters:
ui32Base is the base address of the ADC module.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function disables the indicated ADC interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

ADC_INT_SS0 - interrupt due to ADC sample sequence 0.
ADC_INT_SS1 - interrupt due to ADC sample sequence 1.
ADC_INT_SS2 - interrupt due to ADC sample sequence 2.
ADC_INT_SS3 - interrupt due to ADC sample sequence 3.

May 14, 2014 23

Analog to Digital Converter (ADC)

ADC_INT_DMA_SS0 - interrupt due to DMA on ADC sample sequence 0.
ADC_INT_DMA_SS1 - interrupt due to DMA on ADC sample sequence 1.
ADC_INT_DMA_SS2 - interrupt due to DMA on ADC sample sequence 2.
ADC_INT_DMA_SS3 - interrupt due to DMA on ADC sample sequence 3.
ADC_INT_DCON_SS0 - interrupt due to digital comparator on ADC sample sequence 0.
ADC_INT_DCON_SS1 - interrupt due to digital comparator on ADC sample sequence 1.
ADC_INT_DCON_SS2 - interrupt due to digital comparator on ADC sample sequence 2.
ADC_INT_DCON_SS3 - interrupt due to digital comparator on ADC sample sequence 3.

Returns:
None.

3.2.1.13 ROM_ADCIntEnable

Enables a sample sequence interrupt.

Prototype:
void
ROM_ADCIntEnable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntEnable is a function pointer located at ROM_ADCTABLE[2].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function enables the requested sample sequence interrupt. Any outstanding interrupts
are cleared before enabling the sample sequence interrupt.

Returns:
None.

3.2.1.14 ROM_ADCIntEnableEx

Enables ADC interrupt sources.

Prototype:
void
ROM_ADCIntEnableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntEnableEx is a function pointer located at ROM_ADCTABLE[30].

24 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the ADC module.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function enables the indicated ADC interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

ADC_INT_SS0 - interrupt due to ADC sample sequence 0.
ADC_INT_SS1 - interrupt due to ADC sample sequence 1.
ADC_INT_SS2 - interrupt due to ADC sample sequence 2.
ADC_INT_SS3 - interrupt due to ADC sample sequence 3.
ADC_INT_DMA_SS0 - interrupt due to DMA on ADC sample sequence 0.
ADC_INT_DMA_SS1 - interrupt due to DMA on ADC sample sequence 1.
ADC_INT_DMA_SS2 - interrupt due to DMA on ADC sample sequence 2.
ADC_INT_DMA_SS3 - interrupt due to DMA on ADC sample sequence 3.
ADC_INT_DCON_SS0 - interrupt due to digital comparator on ADC sample sequence 0.
ADC_INT_DCON_SS1 - interrupt due to digital comparator on ADC sample sequence 1.
ADC_INT_DCON_SS2 - interrupt due to digital comparator on ADC sample sequence 2.
ADC_INT_DCON_SS3 - interrupt due to digital comparator on ADC sample sequence 3.

Returns:
None.

3.2.1.15 ROM_ADCIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ROM_ADCIntStatus(uint32_t ui32Base,

uint32_t ui32SequenceNum,
bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntStatus is a function pointer located at ROM_ADCTABLE[3].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the specified sample sequence. Either the raw
interrupt status or the status of interrupts that are allowed to reflect to the processor can be
returned.

May 14, 2014 25

Analog to Digital Converter (ADC)

Returns:
The current raw or masked interrupt status.

3.2.1.16 ROM_ADCIntStatusEx

Gets interrupt status for the specified ADC module.

Prototype:
uint32_t
ROM_ADCIntStatusEx(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCIntStatusEx is a function pointer located at ROM_ADCTABLE[31].

Parameters:
ui32Base is the base address of the ADC module.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the current interrupt status for the specified ADC module. The value returned is the
logical OR of the ADC_INT_∗ values that are currently active.

3.2.1.17 ROM_ADCPhaseDelayGet

Gets the phase delay between a trigger and the start of a sequence.

Prototype:
uint32_t
ROM_ADCPhaseDelayGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCPhaseDelayGet is a function pointer located at ROM_ADCTABLE[25].

Parameters:
ui32Base is the base address of the ADC module.

Description:
This function gets the current phase delay between the detection of an ADC trigger event and
the start of the sample sequence.

26 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
Returns the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22_5,
ADC_PHASE_45, ADC_PHASE_67_5, ADC_PHASE_90, ADC_PHASE_112_5,
ADC_PHASE_135, ADC_PHASE_157_5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC_PHASE_225, ADC_PHASE_247_5, ADC_PHASE_270, ADC_PHASE_292_5,
ADC_PHASE_315, or ADC_PHASE_337_5.

3.2.1.18 ROM_ADCPhaseDelaySet

Sets the phase delay between a trigger and the start of a sequence.

Prototype:
void
ROM_ADCPhaseDelaySet(uint32_t ui32Base,

uint32_t ui32Phase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCPhaseDelaySet is a function pointer located at ROM_ADCTABLE[24].

Parameters:
ui32Base is the base address of the ADC module.
ui32Phase is the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22_5,

ADC_PHASE_45, ADC_PHASE_67_5, ADC_PHASE_90, ADC_PHASE_112_5,
ADC_PHASE_135, ADC_PHASE_157_5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC_PHASE_225, ADC_PHASE_247_5, ADC_PHASE_270, ADC_PHASE_292_5,
ADC_PHASE_315, or ADC_PHASE_337_5.

Description:
This function sets the phase delay between the detection of an ADC trigger event and the start
of the sample sequence. By selecting a different phase delay for a pair of ADC modules (such
as ADC_PHASE_0 and ADC_PHASE_180) and having each ADC module sample the same
analog input, it is possible to increase the sampling rate of the analog input (with samples N,
N+2, N+4, and so on, coming from the first ADC and samples N+1, N+3, N+5, and so on,
coming from the second ADC). The ADC module has a single phase delay that is applied to all
sample sequences within that module.

Returns:
None.

3.2.1.19 ROM_ADCProcessorTrigger

Causes a processor trigger for a sample sequence.

Prototype:
void
ROM_ADCProcessorTrigger(uint32_t ui32Base,

uint32_t ui32SequenceNum)

May 14, 2014 27

Analog to Digital Converter (ADC)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCProcessorTrigger is a function pointer located at ROM_ADCTABLE[13].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number, with ADC_TRIGGER_WAIT or

ADC_TRIGGER_SIGNAL optionally ORed into it.

Description:
This function triggers a processor-initiated sample sequence if the sample sequence trigger
is configured to ADC_TRIGGER_PROCESSOR. If ADC_TRIGGER_WAIT is ORed into the
sequence number, the processor-initiated trigger is delayed until a later processor-initiated
trigger to a different ADC module that specifies ADC_TRIGGER_SIGNAL, allowing multiple
ADCs to start from a processor-initiated trigger in a synchronous manner.

Returns:
None.

3.2.1.20 ROM_ADCReferenceGet

Returns the current setting of the ADC reference.

Prototype:
uint32_t
ROM_ADCReferenceGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCReferenceGet is a function pointer located at ROM_ADCTABLE[23].

Parameters:
ui32Base is the base address of the ADC module.

Description:
Returns the value of the ADC reference setting. The returned value is one of ADC_REF_INT
or ADC_REF_EXT_3V.

Returns:
The current setting of the ADC reference.

3.2.1.21 ROM_ADCReferenceSet

Selects the ADC reference.

Prototype:
void
ROM_ADCReferenceSet(uint32_t ui32Base,

uint32_t ui32Ref)

28 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCReferenceSet is a function pointer located at ROM_ADCTABLE[22].

Parameters:
ui32Base is the base address of the ADC module.
ui32Ref is the reference to use.

Description:
The ADC reference is set as specified by ui32Ref . It must be one of ADC_REF_INT or
ADC_REF_EXT_3V, for internal or external reference. If ADC_REF_INT is chosen, then an
internal 3V reference is used and no external reference is needed. If ADC_REF_EXT_3V is
chosen, then a 3V reference must be supplied to the AVREF pin.

Returns:
None.

3.2.1.22 ROM_ADCSequenceConfigure

Configures the trigger source and priority of a sample sequence.

Prototype:
void
ROM_ADCSequenceConfigure(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t ui32Trigger,
uint32_t ui32Priority)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceConfigure is a function pointer located at ROM_ADCTABLE[7].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Trigger is the trigger source that initiates the sample sequence; must be one of the

ADC_TRIGGER_∗ values.
ui32Priority is the relative priority of the sample sequence with respect to the other sample

sequences.

Description:
This function configures the initiation criteria for a sample sequence. Valid sample sequencers
range from zero to three; sequencer zero captures up to eight samples, sequencers one and
two capture up to four samples, and sequencer three captures a single sample. The trigger
condition and priority (with respect to other sample sequencer execution) are set.

The ui32Trigger parameter can take on the following values:

ADC_TRIGGER_PROCESSOR - A trigger generated by the processor, via the
ROM_ADCProcessorTrigger() function.

May 14, 2014 29

Analog to Digital Converter (ADC)

ADC_TRIGGER_COMP0 - A trigger generated by the first analog comparator; configured
with ROM_ComparatorConfigure().
ADC_TRIGGER_COMP1 - A trigger generated by the second analog comparator; config-
ured with ROM_ComparatorConfigure().
ADC_TRIGGER_COMP2 - A trigger generated by the third analog comparator; configured
with ROM_ComparatorConfigure().

ADC_TRIGGER_EXTERNAL - A trigger generated by an input from the Port B4 pin, or
the GPIO selected using the ROM_GPIOADCTriggerEnable() function.
ADC_TRIGGER_TIMER - A trigger generated by a timer; configured with
ROM_TimerControlTrigger().

ADC_TRIGGER_PWM0 - A trigger generated by the first PWM generator; configured with
ROM_PWMGenIntTrigEnable().
ADC_TRIGGER_PWM1 - A trigger generated by the second PWM generator; configured
with ROM_PWMGenIntTrigEnable().
ADC_TRIGGER_PWM2 - A trigger generated by the third PWM generator; configured with
ROM_PWMGenIntTrigEnable().
ADC_TRIGGER_PWM3 - A trigger generated by the fourth PWM generator; configured
with ROM_PWMGenIntTrigEnable().

ADC_TRIGGER_ALWAYS - A trigger that is always asserted, causing the sample se-
quence to capture repeatedly (so long as there is not a higher priority source active).

The ui32Priority parameter is a value between 0 and 3, where 0 represents the highest priority
and 3 the lowest. Note that when programming the priority among a set of sample sequences,
each must have unique priority; it is up to the caller to guarantee the uniqueness of the priori-
ties.

Returns:
None.

3.2.1.23 ROM_ADCSequenceDataGet

Gets the captured data for a sample sequence.

Prototype:
int32_t
ROM_ADCSequenceDataGet(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t *pui32Buffer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceDataGet is a function pointer located at ROM_ADCTABLE[0].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
pui32Buffer is the address where the data is stored.

30 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function copies data from the specified sample sequencer output FIFO to a memory resi-
dent buffer. The number of samples available in the hardware FIFO are copied into the buffer,
which is assumed to be large enough to hold that many samples. This function only returns
the samples that are presently available, which may not be the entire sample sequence if it is
in the process of being executed.

Returns:
Returns the number of samples copied to the buffer.

3.2.1.24 ROM_ADCSequenceDisable

Disables a sample sequence.

Prototype:
void
ROM_ADCSequenceDisable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceDisable is a function pointer located at ROM_ADCTABLE[6].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
Prevents the specified sample sequence from being captured when its trigger is detected. A
sample sequence must be disabled before it is configured.

Returns:
None.

3.2.1.25 ROM_ADCSequenceDMADisable

Disables DMA for sample sequencers.

Prototype:
void
ROM_ADCSequenceDMADisable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceDMADisable is a function pointer located at ROM_ADCTABLE[33].

Parameters:
ui32Base is the base address of the ADC module.

May 14, 2014 31

Analog to Digital Converter (ADC)

ui32SequenceNum is the sample sequence number.

Description:
Prevents the specified sample sequencer from generating DMA requests.

Returns:
None.

3.2.1.26 ROM_ADCSequenceDMAEnable

Enables DMA for sample sequencers.

Prototype:
void
ROM_ADCSequenceDMAEnable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceDMAEnable is a function pointer located at ROM_ADCTABLE[32].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
Allows DMA requests to be generated based on the FIFO level of the sample sequencer.

Returns:
None.

3.2.1.27 ROM_ADCSequenceEnable

Enables a sample sequence.

Prototype:
void
ROM_ADCSequenceEnable(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceEnable is a function pointer located at ROM_ADCTABLE[5].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

32 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
Allows the specified sample sequence to be captured when its trigger is detected. A sample
sequence must be configured before it is enabled.

Returns:
None.

3.2.1.28 ROM_ADCSequenceOverflow

Determines if a sample sequence overflow occurred.

Prototype:
int32_t
ROM_ADCSequenceOverflow(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceOverflow is a function pointer located at ROM_ADCTABLE[9].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function determines if a sample sequence overflow has occurred. Overflow happens if the
captured samples are not read from the FIFO before the next trigger occurs.

Returns:
Returns zero if there was not an overflow, and non-zero if there was.

3.2.1.29 ROM_ADCSequenceOverflowClear

Clears the overflow condition on a sample sequence.

Prototype:
void
ROM_ADCSequenceOverflowClear(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceOverflowClear is a function pointer located at ROM_ADCTABLE[10].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

May 14, 2014 33

Analog to Digital Converter (ADC)

Description:
This function clears an overflow condition on one of the sample sequences. The overflow
condition must be cleared in order to detect a subsequent overflow condition (it otherwise
causes no harm).

Returns:
None.

3.2.1.30 ROM_ADCSequenceStepConfigure

Configure a step of the sample sequencer.

Prototype:
void
ROM_ADCSequenceStepConfigure(uint32_t ui32Base,

uint32_t ui32SequenceNum,
uint32_t ui32Step,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceStepConfigure is a function pointer located at ROM_ADCTABLE[8].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Step is the step to be configured.
ui32Config is the configuration of this step; must be a logical OR of ADC_CTL_TS,

ADC_CTL_IE, ADC_CTL_END, ADC_CTL_D, one of the input channel selects
(ADC_CTL_CH0 through ADC_CTL_CH23), and one of the digital comparator selects
(ADC_CTL_CMP0 through ADC_CTL_CMP7).

Description:
This function configures the ADC for one step of a sample sequence. The ADC can be
configured for single-ended or differential operation (the ADC_CTL_D bit selects differen-
tial operation when set), the channel to be sampled can be chosen (the ADC_CTL_CH0
through ADC_CTL_CH23 values), and the internal temperature sensor can be selected (the
ADC_CTL_TS bit). Additionally, this step can be defined as the last in the sequence (the
ADC_CTL_END bit) and it can be configured to cause an interrupt when the step is complete
(the ADC_CTL_IE bit). If the digital comparators are present on the device, this step may also
be configured to send the ADC sample to the selected comparator using ADC_CTL_CMP0
through ADC_CTL_CMP7. The configuration is used by the ADC at the appropriate time when
the trigger for this sequence occurs.

Note:
If the Digital Comparator is present and enabled using the ADC_CTL_CMP0 through
ADC_CTL_CMP7 selects, the ADC sample is NOT written into the ADC sequence data FIFO.

The ui32Step parameter determines the order in which the samples are captured by the ADC when
the trigger occurs. It can range from zero to seven for the first sample sequencer, from zero to three
for the second and third sample sequencer, and can only be zero for the fourth sample sequencer.

34 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Differential mode only works with adjacent channel pairs (for example, 0 and 1). The channel select
must be the number of the channel pair to sample (for example, ADC_CTL_CH0 for 0 and 1, or
ADC_CTL_CH1 for 2 and 3) or undefined results are returned by the ADC. Additionally, if differential
mode is selected when the temperature sensor is being sampled, undefined results are returned
by the ADC.

It is the responsibility of the caller to ensure that a valid configuration is specified; this function does
not check the validity of the specified configuration.

Returns:
None.

3.2.1.31 ROM_ADCSequenceUnderflow

Determines if a sample sequence underflow occurred.

Prototype:
int32_t
ROM_ADCSequenceUnderflow(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceUnderflow is a function pointer located at ROM_ADCTABLE[11].

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function determines if a sample sequence underflow has occurred. Underflow happens if
too many samples are read from the FIFO.

Returns:
Returns zero if there was not an underflow, and non-zero if there was.

3.2.1.32 ROM_ADCSequenceUnderflowClear

Clears the underflow condition on a sample sequence.

Prototype:
void
ROM_ADCSequenceUnderflowClear(uint32_t ui32Base,

uint32_t ui32SequenceNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ADCTABLE is an array of pointers located at ROM_APITABLE[5].
ROM_ADCSequenceUnderflowClear is a function pointer located at ROM_ADCTABLE[12].

May 14, 2014 35

Analog to Digital Converter (ADC)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

Description:
This function clears an underflow condition on one of the sample sequencers. The underflow
condition must be cleared in order to detect a subsequent underflow condition (it otherwise
causes no harm).

Returns:
None.

36 May 14, 2014

Tiva TM4C129x ROM User’s Guide

4 AES
Introduction . 37
API Functions .37

4.1 Introduction

The AES module driver provides a method for performing encryption and decryption operations on
blocks of 128 bits of data. The configuration and feature highlights are:

Supports ECB, CBC, CTR, ICM, CFB, CBC-MAC, GCM, CCM, XTS, F8, and F9 operating
modes.

The cipher block handles keys of 128 bits, 192 bits, and 256 bits.

In modes that require authentication, a hash tag is generated.

Controls uDMA triggers for context and data transfers.

4.2 API Functions

Functions
void ROM_AESAuthLengthSet (uint32_t ui32Base, uint32_t ui32Length)
void ROM_AESConfigSet (uint32_t ui32Base, uint32_t ui32Config)
bool ROM_AESDataAuth (uint32_t ui32Base, uint32_t ∗pui32Src, uint32_t ui32Length,
uint32_t ∗pui32Tag)
bool ROM_AESDataProcess (uint32_t ui32Base, uint32_t ∗pui32Src, uint32_t ∗pui32Dest,
uint32_t ui32Length)
bool ROM_AESDataProcessAuth (uint32_t ui32Base, uint32_t ∗pui32Src, uint32_t
∗pui32Dest, uint32_t ui32Length, uint32_t ∗pui32AuthSrc, uint32_t ui32AuthLength, uint32_t
∗pui32Tag)
void ROM_AESDataRead (uint32_t ui32Base, uint32_t ∗pui32Dest)
bool ROM_AESDataReadNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Dest)
void ROM_AESDataWrite (uint32_t ui32Base, uint32_t ∗pui32Src)
bool ROM_AESDataWriteNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Src)
void ROM_AESDMADisable (uint32_t ui32Base, uint32_t ui32Flags)
void ROM_AESDMAEnable (uint32_t ui32Base, uint32_t ui32Flags)
void ROM_AESIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_AESIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_AESIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_AESIntStatus (uint32_t ui32Base, bool bMasked)
void ROM_AESIVRead (uint32_t ui32Base, uint32_t ∗pui32IVData)
void ROM_AESIVSet (uint32_t ui32Base, uint32_t ∗pui32IVdata)
void ROM_AESKey1Set (uint32_t ui32Base, uint32_t ∗pui32Key, uint32_t ui32Keysize)
void ROM_AESKey2Set (uint32_t ui32Base, uint32_t ∗pui32Key, uint32_t ui32Keysize)

May 14, 2014 37

AES

void ROM_AESKey3Set (uint32_t ui32Base, uint32_t ∗pui32Key)
void ROM_AESLengthSet (uint32_t ui32Base, uint64_t ui64Length)
void ROM_AESReset (uint32_t ui32Base)
void ROM_AESTagRead (uint32_t ui32Base, uint32_t ∗pui32TagData)

4.2.1 Function Documentation

4.2.1.1 ROM_AESAuthLengthSet

Sets the authentication data length in the AES module.

Prototype:
void
ROM_AESAuthLengthSet(uint32_t ui32Base,

uint32_t ui32Length)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESAuthLengthSet is a function pointer located at ROM_AESTABLE[1].

Parameters:
ui32Base is the base address of the AES module.
ui32Length is the length in bytes.

Description:
This function is only used to write the authentication data length in the combined modes (GCM
or CCM) and XTS mode. Supported AAD lengths for CCM are from 0 to (2∧16 - 28) bytes. For
GCM, any value up to (2∧32 - 1) can be used. For XTS mode, this register is used to load j.
Loading of j is only required if j != 0. j represents the sequential number of the 128-bit blocks
inside the data unit. Consequently, j must be multiplied by 16 when passed to this function,
thereby placing the block number in bits [31:4] of the register.

When this function is called, the engine is triggered to start using this context for GCM and
CCM.

Returns:
None

4.2.1.2 ROM_AESConfigSet

Configures the AES module.

Prototype:
void
ROM_AESConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESConfigSet is a function pointer located at ROM_AESTABLE[2].

38 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the AES module.
ui32Config is the configuration of the AES module.

Description:
This function configures the AES module based on the specified parameters. It does not
change any DMA- or interrupt-related parameters.

The ui32Config parameter is a bit-wise OR of a number of configuration flags. The valid flags
are grouped based on their function.

The direction of the operation is specified with only of following flags:

AES_CFG_DIR_ENCRYPT - Encryption mode
AES_CFG_DIR_DECRYPT - Decryption mode

The key size is specified with only one of the following flags:

AES_CFG_KEY_SIZE_128BIT - Key size of 128 bits
AES_CFG_KEY_SIZE_192BIT - Key size of 192 bits
AES_CFG_KEY_SIZE_256BIT - Key size of 256 bits

The mode of operation is specified with only one of the following flags.

AES_CFG_MODE_ECB - Electronic codebook mode
AES_CFG_MODE_CBC - Cipher-block chaining mode
AES_CFG_MODE_CFB - Cipher feedback mode
AES_CFG_MODE_CTR - Counter mode
AES_CFG_MODE_ICM - Integer counter mode
AES_CFG_MODE_XTS - Ciphertext stealing mode
AES_CFG_MODE_XTS_TWEAKJL - XEX-based tweaked-codebook mode with cipher-
text stealing with previous/intermediate tweak value and j loaded
AES_CFG_MODE_XTS_K2IJL - XEX-based tweaked-codebook mode with ciphertext
stealing with key2, i and j loaded
AES_CFG_MODE_XTS_K2ILJ0 - XEX-based tweaked-codebook mode with ciphertext
stealing with key2 and i loaded, j = 0
AES_CFG_MODE_F8 - F8 mode
AES_CFG_MODE_F9 - F9 mode
AES_CFG_MODE_CBCMAC - Cipher block chaining message authentication code mode
AES_CFG_MODE_GCM_HLY0ZERO - Galois/counter mode with GHASH with H loaded,
Y0-encrypted forced to zero and counter is not enabled.
AES_CFG_MODE_GCM_HLY0CALC - Galois/counter mode with GHASH with H loaded,
Y0-encrypted calculated internally and counter is enabled.
AES_CFG_MODE_GCM_HY0CALC - Galois/Counter mode with autonomous GHASH
(both H and Y0-encrypted calculated internally) and counter is enabled.
AES_CFG_MODE_CCM - Counter with CBC-MAC mode

The following defines are used to specify the counter width. It is only required to be defined
when using CTR, CCM, or GCM modes, only one of the following defines must be used to
specify the counter width length:

AES_CFG_CTR_WIDTH_32 - Counter is 32 bits
AES_CFG_CTR_WIDTH_64 - Counter is 64 bits

May 14, 2014 39

AES

AES_CFG_CTR_WIDTH_96 - Counter is 96 bits
AES_CFG_CTR_WIDTH_128 - Counter is 128 bits

Only one of the following defines must be used to specify the length field for CCM operations
(L):

AES_CFG_CCM_L_2 - 2 bytes
AES_CFG_CCM_L_4 - 4 bytes
AES_CFG_CCM_L_8 - 8 bytes

Only one of the following defines must be used to specify the length of the authentication
field for CCM operations (M) through the ui32Config argument in the ROM_AESConfigSet()
function:

AES_CFG_CCM_M_4 - 4 bytes
AES_CFG_CCM_M_6 - 6 bytes
AES_CFG_CCM_M_8 - 8 bytes
AES_CFG_CCM_M_10 - 10 bytes
AES_CFG_CCM_M_12 - 12 bytes
AES_CFG_CCM_M_14 - 14 bytes
AES_CFG_CCM_M_16 - 16 bytes

Note:
When performing a basic GHASH operation for used with GCM mode, use the
AES_CFG_MODE_GCM_HLY0ZERO and do not specify a direction.

Returns:
None.

4.2.1.3 ROM_AESDataAuth

Used to authenticate blocks of data by generating a hash tag.

Prototype:
bool
ROM_AESDataAuth(uint32_t ui32Base,

uint32_t *pui32Src,
uint32_t ui32Length,
uint32_t *pui32Tag)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDataAuth is a function pointer located at ROM_AESTABLE[3].

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to the memory location where the input data is stored. The data must

be padded to the 16-byte boundary.
ui32Length is the length of the cryptographic data in bytes.
pui32Tag is a pointer to a 4-word array where the hash tag is written.

40 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function processes data to produce a hash tag that can be used tor authentication. Before
calling this function, ensure that the AES module is properly configured the key, data size,
mode, etc. Only CBC-MAC and F9 modes should be used.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

4.2.1.4 ROM_AESDataProcess

Used to process(transform) blocks of data, either encrypt or decrypt it.

Prototype:
bool
ROM_AESDataProcess(uint32_t ui32Base,

uint32_t *pui32Src,
uint32_t *pui32Dest,
uint32_t ui32Length)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDataProcess is a function pointer located at ROM_AESTABLE[4].

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to the memory location where the input data is stored. The data must

be padded to the 16-byte boundary.
pui32Dest is a pointer to the memory location output is written. The space for written data

must be rounded up to the 16-byte boundary.
ui32Length is the length of the cryptographic data in bytes.

Description:
This function iterates the encryption or decryption mechanism number over the data length.
Before calling this function, ensure that the AES module is properly configured the key, data
size, mode, etc. Only ECB, CBC, CTR, ICM, CFB, XTS and F8 operating modes should be
used. The data is processed in 4-word (16-byte) blocks.

Note:
This function only supports values of ui32Length less than 2∧32, because the memory size is
restricted to between 0 to 2∧32 bytes.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

4.2.1.5 ROM_AESDataProcessAuth

Processes and authenticates blocks of data, either encrypt it or decrypts it.

May 14, 2014 41

AES

Prototype:
bool
ROM_AESDataProcessAuth(uint32_t ui32Base,

uint32_t *pui32Src,
uint32_t *pui32Dest,
uint32_t ui32Length,
uint32_t *pui32AuthSrc,
uint32_t ui32AuthLength,
uint32_t *pui32Tag)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDataProcessAuth is a function pointer located at ROM_AESTABLE[5].

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to the memory location where the input data is stored. The data must

be padded to the 16-byte boundary.
pui32Dest is a pointer to the memory location output is written. The space for written data

must be rounded up to the 16-byte boundary.
ui32Length is the length of the cryptographic data in bytes.
pui32AuthSrc is a pointer to the memory location where the additional authentication data is

stored. The data must be padded to the 16-byte boundary.
ui32AuthLength is the length of the additional authentication data in bytes.
pui32Tag is a pointer to a 4-word array where the hash tag is written.

Description:
This function encrypts or decrypts blocks of data in addition to authentication data. A hash
tag is also produced. Before calling this function, ensure that the AES module is properly
configured the key, data size, mode, etc. Only CCM and GCM modes should be used.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

4.2.1.6 ROM_AESDataRead

Reads plaintext/ciphertext from data registers with blocking.

Prototype:
void
ROM_AESDataRead(uint32_t ui32Base,

uint32_t *pui32Dest)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDataRead is a function pointer located at ROM_AESTABLE[6].

Parameters:
ui32Base is the base address of the AES module.

42 May 14, 2014

Tiva TM4C129x ROM User’s Guide

pui32Dest is a pointer to an array of words.

Description:
This function reads a block of either plaintext or ciphertext out of the AES module. If the output
is not ready, the function waits until it is ready. A block is 16 bytes or 4 words.

Returns:
None.

4.2.1.7 ROM_AESDataReadNonBlocking

Reads plaintext/ciphertext from data registers without blocking.

Prototype:
bool
ROM_AESDataReadNonBlocking(uint32_t ui32Base,

uint32_t *pui32Dest)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDataReadNonBlocking is a function pointer located at ROM_AESTABLE[7].

Parameters:
ui32Base is the base address of the AES module.
pui32Dest is a pointer to an array of words of data.

Description:
This function reads a block of either plaintext or ciphertext out of the AES module. If the output
data is not ready, the function returns false. If the read completed successfully, the function
returns true. A block is 16 bytes or 4 words.

Returns:
true or false.

4.2.1.8 ROM_AESDataWrite

Writes plaintext/ciphertext to data registers with blocking.

Prototype:
void
ROM_AESDataWrite(uint32_t ui32Base,

uint32_t *pui32Src)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDataWrite is a function pointer located at ROM_AESTABLE[8].

Parameters:
ui32Base is the base address of the AES module.

May 14, 2014 43

AES

pui32Src is a pointer to an array of bytes.

Description:
This function writes a block of either plaintext or ciphertext into the AES module. If the input is
not ready, the function waits until it is ready before performing the write. A block is 16 bytes or
4 words.

Returns:
None.

4.2.1.9 ROM_AESDataWriteNonBlocking

Writes plaintext/ciphertext to data registers without blocking.

Prototype:
bool
ROM_AESDataWriteNonBlocking(uint32_t ui32Base,

uint32_t *pui32Src)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDataWriteNonBlocking is a function pointer located at ROM_AESTABLE[9].

Parameters:
ui32Base is the base address of the AES module.
pui32Src is a pointer to an array of words of data.

Description:
This function writes a block of either plaintext or ciphertext into the AES module. If the input
is not ready, the function returns false. If the write completed successfully, the function returns
true. A block is 16 bytes or 4 words.

Returns:
True or false.

4.2.1.10 ROM_AESDMADisable

Disables uDMA requests for the AES module.

Prototype:
void
ROM_AESDMADisable(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDMADisable is a function pointer located at ROM_AESTABLE[10].

44 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the AES module.
ui32Flags is a bit mask of the uDMA requests to be disabled.

Description:
This function disables the uDMA request sources in the AES module. The ui32Flags parameter
is the logical OR of any of the following:

AES_DMA_DATA_IN
AES_DMA_DATA_OUT
AES_DMA_CONTEXT_IN
AES_DMA_CONTEXT_OUT

Returns:
None.

4.2.1.11 ROM_AESDMAEnable

Enables uDMA requests for the AES module.

Prototype:
void
ROM_AESDMAEnable(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESDMAEnable is a function pointer located at ROM_AESTABLE[11].

Parameters:
ui32Base is the base address of the AES module.
ui32Flags is a bit mask of the uDMA requests to be enabled.

Description:
This function enables the uDMA request sources in the AES module. The ui32Flags parameter
is the logical OR of any of the following:

AES_DMA_DATA_IN
AES_DMA_DATA_OUT
AES_DMA_CONTEXT_IN
AES_DMA_CONTEXT_OUT

Returns:
None.

4.2.1.12 ROM_AESIntClear

Clears AES module interrupts.

May 14, 2014 45

AES

Prototype:
void
ROM_AESIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESIntClear is a function pointer located at ROM_AESTABLE[12].

Parameters:
ui32Base is the base address of the AES module.
ui32IntFlags is a bit mask of the interrupt sources to disable.

Description:
This function clears the interrupt sources in the AES module. The ui32IntFlags parameter is
the logical OR of any of the following:

AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
AES_INT_DMA_DATA_IN - Data input DMA done interrupt
AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Note:
Only the DMA done interrupts can be cleared. The remaining interrupts should be disabled
with ROM_AESIntDisable().

Returns:
None.

4.2.1.13 ROM_AESIntDisable

Disables AES module interrupts.

Prototype:
void
ROM_AESIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESIntDisable is a function pointer located at ROM_AESTABLE[13].

Parameters:
ui32Base is the base address of the AES module.
ui32IntFlags is a bit mask of the interrupt sources to disable.

Description:
This function disables the interrupt sources in the AES module. The ui32IntFlags parameter is
the logical OR of any of the following:

AES_INT_CONTEXT_IN - Context interrupt

46 May 14, 2014

Tiva TM4C129x ROM User’s Guide

AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt
AES_INT_DATA_IN - Data input interrupt
AES_INT_DATA_OUT - Data output interrupt
AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
AES_INT_DMA_DATA_IN - Data input DMA done interrupt
AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Note:
The DMA done interrupts are the only interrupts that can be cleared. The remaining interrupts
can be disabled instead using ROM_AESIntDisable().

Returns:
None.

4.2.1.14 ROM_AESIntEnable

Enables AES module interrupts.

Prototype:
void
ROM_AESIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESIntEnable is a function pointer located at ROM_AESTABLE[14].

Parameters:
ui32Base is the base address of the AES module.
ui32IntFlags is a bit mask of the interrupt sources to enable.

Description:
This function enables the interrupts in the AES module. The ui32IntFlags parameter is the
logical OR of any of the following:

AES_INT_CONTEXT_IN - Context interrupt
AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt
AES_INT_DATA_IN - Data input interrupt
AES_INT_DATA_OUT - Data output interrupt
AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
AES_INT_DMA_DATA_IN - Data input DMA done interrupt
AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Note:
Interrupts that have been previously been enabled are not disabled when this function is called.

Returns:
None.

May 14, 2014 47

AES

4.2.1.15 ROM_AESIntStatus

Returns the current AES module interrupt status.

Prototype:
uint32_t
ROM_AESIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESIntStatus is a function pointer located at ROM_AESTABLE[0].

Parameters:
ui32Base is the base address of the AES module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Returns:
Returns a bit mask of the interrupt sources, which is a logical OR of any of the following:

AES_INT_CONTEXT_IN - Context interrupt

AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt.

AES_INT_DATA_IN - Data input interrupt

AES_INT_DATA_OUT - Data output interrupt

AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt

AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt

AES_INT_DMA_DATA_IN - Data input DMA done interrupt

AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

4.2.1.16 void ROM_AESIVRead (uint32_t ui32Base, uint32_t ∗ pui32IVData)

Saves the Initial Vector (IV) registers to a user-defined location.

Parameters:
ui32Base is the base address of the AES module.
pui32IVData is pointer to the location that stores the IV data.

Description:
This function stores the IV for use with authenticated encryption and decryption operations. It
is assumed that the AES_CTRL_SAVE_CONTEXT bit is set in the AES_CTRL register.

Returns:
None.

48 May 14, 2014

Tiva TM4C129x ROM User’s Guide

4.2.1.17 ROM_AESIVSet

Writes the Initial Vector (IV) register, needed in some of the AES Modes.

Prototype:
void
ROM_AESIVSet(uint32_t ui32Base,

uint32_t *pui32IVdata)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESIVSet is a function pointer located at ROM_AESTABLE[15].

Parameters:
ui32Base is the base address of the AES module.
pui32IVdata is an array of 4 words (128 bits), containing the IV value to be configured. The

least significant word is in the 0th index.

Description:
This functions writes the initial vector registers in the AES module.

Returns:
None.

4.2.1.18 ROM_AESKey1Set

Writes the key 1 configuration registers, which are used for encryption or decryption.

Prototype:
void
ROM_AESKey1Set(uint32_t ui32Base,

uint32_t *pui32Key,
uint32_t ui32Keysize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESKey1Set is a function pointer located at ROM_AESTABLE[16].

Parameters:
ui32Base is the base address for the AES module.
pui32Key is an array of 32-bit words, containing the key to be configured. The least significant

word in the 0th index.
ui32Keysize is the size of the key, which must be one of the following values:

AES_CFG_KEY_SIZE_128, AES_CFG_KEY_SIZE_192, or AES_CFG_KEY_SIZE_256.

Description:
This function writes key 1 configuration registers based on the key size. This function is used
in all modes.

Returns:
None.

May 14, 2014 49

AES

4.2.1.19 ROM_AESKey2Set

Writes the key 2 configuration registers, which are used for encryption or decryption.

Prototype:
void
ROM_AESKey2Set(uint32_t ui32Base,

uint32_t *pui32Key,
uint32_t ui32Keysize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESKey2Set is a function pointer located at ROM_AESTABLE[17].

Parameters:
ui32Base is the base address for the AES module.
pui32Key is an array of 32-bit words, containing the key to be configured. The least significant

word in the 0th index.
ui32Keysize is the size of the key, which must be one of the following values:

AES_CFG_KEY_SIZE_128, AES_CFG_KEY_SIZE_192, or AES_CFG_KEY_SIZE_256.

Description:
This function writes the key 2 configuration registers based on the key size. This function is
used in the F8, F9, XTS, CCM, and CBC-MAC modes.

Returns:
None.

4.2.1.20 ROM_AESKey3Set

Writes key 3 configuration registers, which are used for encryption or decryption.

Prototype:
void
ROM_AESKey3Set(uint32_t ui32Base,

uint32_t *pui32Key)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESKey3Set is a function pointer located at ROM_AESTABLE[18].

Parameters:
ui32Base is the base address for the AES module.
pui32Key is a pointer to an array of 4 words (128 bits), containing the key to be configured.

The least significant word is in the 0th index.

Description:
This function writes the key 2 configuration registers with key 3 data used in CBC-MAC and F8
modes. This key is always 128 bits.

50 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

4.2.1.21 ROM_AESLengthSet

Used to set the write crypto data length in the AES module.

Prototype:
void
ROM_AESLengthSet(uint32_t ui32Base,

uint64_t ui64Length)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESLengthSet is a function pointer located at ROM_AESTABLE[19].

Parameters:
ui32Base is the base address of the AES module.
ui64Length is the crypto data length in bytes.

Description:
This function stores the cryptographic data length in blocks for all modes. Data lengths up to
(2∧61 - 1) bytes are allowed. For GCM, any value up to (2∧36 - 2) bytes are allowed because
a 32-bit block counter is used. For basic modes (ECB/CBC/CTR/ICM/CFB128), zero can be
programmed into the length field, indicating that the length is infinite.

When this function is called, the engine is triggered to start using this context.

Note:
This length does not include the authentication-only data used in some modes. Use the
ROM_AESAuthLengthSet() function to specify the authentication data length.

Returns:
None

4.2.1.22 ROM_AESReset

Resets the AES module.

Prototype:
void
ROM_AESReset(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESReset is a function pointer located at ROM_AESTABLE[20].

Parameters:
ui32Base is the base address of the AES module.

May 14, 2014 51

AES

Description:
This function performs a softreset the AES module.

Returns:
None.

4.2.1.23 ROM_AESTagRead

Saves the tag registers to a user-defined location.

Prototype:
void
ROM_AESTagRead(uint32_t ui32Base,

uint32_t *pui32TagData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_AESTABLE is an array of pointers located at ROM_APITABLE[43].
ROM_AESTagRead is a function pointer located at ROM_AESTABLE[21].

Parameters:
ui32Base is the base address of the AES module.
pui32TagData is pointer to the location that stores the tag data.

Description:
This function stores the tag data for use authenticated encryption and decryption operations.
It is assumed that the AES_CTRL_SAVE_CONTEXT bit is set in the AES_CTRL register.

Returns:
None.

52 May 14, 2014

Tiva TM4C129x ROM User’s Guide

5 Controller Area Network (CAN)
Introduction . 53
Functions . 54

5.1 Introduction

The Controller Area Network (CAN) APIs provide a set of functions for programming and using the
Tiva CAN modules. Functions are provided to configure the CAN controllers, configure message
objects, and manage CAN interrupts.

The Tiva CAN module provides hardware processing of the CAN data link layer. It can be configured
with message filters and preloaded message data so that it can autonomously send and receive
messages on the bus, and notify the application accordingly. It automatically handles generation
and checking of CRCs, error processing, and retransmission of CAN messages.

The message objects are stored in the CAN controller and provide the main interface for the CAN
module on the CAN bus. There are 32 message objects that can each be programmed to handle
a separate message ID, or can be chained together for a sequence of frames with the same ID.
The message identifier filters provide masking that can be programmed to match any or all of the
message ID bits, and frame types.

The CAN module is disabled by default, so the ROM_CANInit() function must be called before any
other CAN functions are called. This call initializes the message objects to a safe state prior to
enabling the controller on the CAN bus. Also, the bit timing values must be programmed prior to
enabling the CAN controller. The ROM_CANBitTimingSet() function should be called with the ap-
propriate bit timing values for the CAN bus. Once these two functions have been called, a CAN con-
troller can be enabled using the ROM_CANEnable() and later disabled using ROM_CANDisable()
if needed. Calling ROM_CANDisable() does not reinitialize a CAN controller, so it can be used to
temporarily remove a CAN controller from the bus.

The CAN controller is highly configurable and can be programmed to automatically transmit and
receive CAN messages under certain conditions. Message objects allow the application to perform
some actions automatically without interaction from the microcontroller. Some examples of these
actions are the following:

Send a data frame immediately

Send a data frame when a matching remote frame is seen on the CAN bus

Receive a specific data frame

Receive data frames that match a certain identifier pattern

To configure message objects to perform any of these actions, the application must first set up one
of the 32 message objects using ROM_CANMessageSet(). This function must be used to configure
a message object to send data, or to configure a message object to receive data. Each message
object can be configured to generate interrupts on transmission or reception of CAN messages.

When data is received from the CAN bus, the application can use the ROM_CANMessageGet()
function to read the received message. This function can also be used to read a message object
that is already configured in order to populate a message structure prior to making changes to the
configuration of a message object. Reading the message object using this function also clears any
pending interrupt on the message object.

May 14, 2014 53

Controller Area Network (CAN)

Once a message object has been configured using ROM_CANMessageSet(), the message object
has been allocated and continues to perform its programmed function unless it is released by a
call to ROM_CANMessageClear(). The application is not required to clear out a message object
before setting it with a new configuration, because each time ROM_CANMessageSet() is called, it
overwrites any previously programmed configuration.

The 32 message objects are identical except for priority. The lowest numbered message objects
have the highest priority. Priority affects operation in two ways. First, if multiple actions are ready
at the same time, the one with the highest priority message object occurs first. And second, when
multiple message objects have interrupts pending, the highest priority is presented first when read-
ing the interrupt status. It is up to the application to manage the 32 message objects as a resource
and determine the best method for allocating and releasing them.

The CAN controller can generate interrupts on several conditions:

When any message object transmits a message

When any message object receives a message

On warning conditions such as an error counter reaching a limit or occurrence of various bus
errors

On controller error conditions such as entering the bus-off state

Once CAN interrupts are enabled, the handler is invoked whenever a CAN interrupt is triggered.
The handler can determine which condition caused the interrupt by using the ROM_CANIntStatus()
function. Multiple conditions can be pending when an interrupt occurs, so the handler must be
designed to process all pending interrupt conditions before exiting. Each interrupt condition must
be cleared before exiting the handler. There are two ways to do this. The ROM_CANIntClear()
function clears a specific interrupt condition without further action required by the handler. However,
the handler can also clear the condition by performing certain actions. If the interrupt is a status
interrupt, the interrupt can be cleared by reading the status register with ROM_CANStatusGet().
If the interrupt is caused by one ofthe message objects, then it can be cleared by reading the
message object using ROM_CANMessageGet().

There are several status registers that can be used to help the application manage the controller.
The status registers are read using the ROM_CANStatusGet() function. There is a controller status
register that provides general status information such as error or warning conditions. There are also
several status registers that provide information about all of the message objects at once using a
32-bit bit map of the status, with one bit representing each message object. These status registers
can be used to determine:

Which message objects have unprocessed received data

Which message objects have pending transmission requests

Which message objects are allocated for use

5.2 Functions

Functions
uint32_t ROM_CANBitRateSet (uint32_t ui32Base, uint32_t ui32SourceClock, uint32_t
ui32BitRate)
void ROM_CANBitTimingGet (uint32_t ui32Base, tCANBitClkParms ∗psClkParms)

54 May 14, 2014

Tiva TM4C129x ROM User’s Guide

void ROM_CANBitTimingSet (uint32_t ui32Base, tCANBitClkParms ∗psClkParms)
void ROM_CANDisable (uint32_t ui32Base)
void ROM_CANEnable (uint32_t ui32Base)
bool ROM_CANErrCntrGet (uint32_t ui32Base, uint32_t ∗pui32RxCount, uint32_t
∗pui32TxCount)
void ROM_CANInit (uint32_t ui32Base)
void ROM_CANIntClear (uint32_t ui32Base, uint32_t ui32IntClr)
void ROM_CANIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_CANIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_CANIntStatus (uint32_t ui32Base, tCANIntStsReg eIntStsReg)
void ROM_CANMessageClear (uint32_t ui32Base, uint32_t ui32ObjID)
void ROM_CANMessageGet (uint32_t ui32Base, uint32_t ui32ObjID, tCANMsgObject
∗psMsgObject, bool bClrPendingInt)
void ROM_CANMessageSet (uint32_t ui32Base, uint32_t ui32ObjID, tCANMsgObject
∗psMsgObject, tMsgObjType eMsgType)
bool ROM_CANRetryGet (uint32_t ui32Base)
void ROM_CANRetrySet (uint32_t ui32Base, bool bAutoRetry)
uint32_t ROM_CANStatusGet (uint32_t ui32Base, tCANStsReg eStatusReg)

5.2.1 Function Documentation

5.2.1.1 ROM_CANBitRateSet

Sets the CAN bit timing values to a nominal setting based on a desired bit rate.

Prototype:
uint32_t
ROM_CANBitRateSet(uint32_t ui32Base,

uint32_t ui32SourceClock,
uint32_t ui32BitRate)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANBitRateSet is a function pointer located at ROM_CANTABLE[16].

Parameters:
ui32Base is the base address of the CAN controller.
ui32SourceClock is the system clock for the device in Hz.
ui32BitRate is the desired bit rate.

Description:
This function sets the CAN bit timing for the bit rate passed in the ui32BitRate parameter
based on the ui32SourceClock parameter. Because the CAN clock is based off of the sys-
tem clock, the calling function must pass in the source clock rate either by retrieving it from
SysCtlClockGet() or using a specific value in Hz. The CAN bit timing is calculated assuming
a minimal amount of propagation delay, which works for most cases where the network length
is int16_t. If tighter timing requirements or longer network lengths are needed, then the CAN-
BitTimingSet() function is available for full customization of all of the CAN bit timing values.

May 14, 2014 55

Controller Area Network (CAN)

Because not all bit rates can be matched exactly, the bit rate is set to the value closest to the
desired bit rate without being higher than the ui32BitRate value.

Note:
On some devices the source clock is fixed at 8MHz so the ui32SourceClock must be set to
8000000.

Returns:
This function returns the bit rate that the CAN controller was configured to use or it returns 0
to indicate that the bit rate was not changed because the requested bit rate was not valid.

5.2.1.2 ROM_CANBitTimingGet

Reads the current settings for the CAN controller bit timing.

Prototype:
void
ROM_CANBitTimingGet(uint32_t ui32Base,

tCANBitClkParms *psClkParms)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANBitTimingGet is a function pointer located at ROM_CANTABLE[5].

Parameters:
ui32Base is the base address of the CAN controller.
psClkParms is a pointer to a structure to hold the timing parameters.

Description:
This function reads the current configuration of the CAN controller bit clock timing and stores
the resulting information in the structure supplied by the caller. Refer to CANBitTimingSet() for
the meaning of the values that are returned in the structure pointed to by psClkParms.

Returns:
None.

5.2.1.3 ROM_CANBitTimingSet

Configures the CAN controller bit timing.

Prototype:
void
ROM_CANBitTimingSet(uint32_t ui32Base,

tCANBitClkParms *psClkParms)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANBitTimingSet is a function pointer located at ROM_CANTABLE[4].

56 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the CAN controller.
psClkParms points to the structure with the clock parameters.

Description:
Configures the various timing parameters for the CAN bus bit timing: Propagation segment,
Phase Buffer 1 segment, Phase Buffer 2 segment, and the Synchronization Jump Width.
The values for Propagation and Phase Buffer 1 segments are derived from the combination
psClkParms->ui32SyncPropPhase1Seg parameter. Phase Buffer 2 is determined from the
psClkParms->ui32Phase2Seg parameter. These two parameters, along with psClkParms-
>ui32SJW are based in units of bit time quanta. The actual quantum time is determined by
the psClkParms->ui32QuantumPrescaler value, which specifies the divisor for the CAN mod-
ule clock.

The total bit time, in quanta, is the sum of the two Seg parameters, as follows:

bit_time_q = ui32SyncPropPhase1Seg + ui32Phase2Seg + 1

Note that the Sync_Seg is always one quantum in duration, and is added to derive the correct
duration of Prop_Seg and Phase1_Seg.

The equation to determine the actual bit rate is as follows:

CAN Clock / ((ui32SyncPropPhase1Seg + ui32Phase2Seg + 1) ∗ (ui32QuantumPrescaler))

Thus with ui32SyncPropPhase1Seg = 4, ui32Phase2Seg = 1, ui32QuantumPrescaler = 2 and
an 8 MHz CAN clock, the bit rate is (8 MHz) / ((5 + 2 + 1) ∗ 2) or 500 Kbit/sec.

Returns:
None.

5.2.1.4 ROM_CANDisable

Disables the CAN controller.

Prototype:
void
ROM_CANDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANDisable is a function pointer located at ROM_CANTABLE[3].

Parameters:
ui32Base is the base address of the CAN controller to disable.

Description:
Disables the CAN controller for message processing. When disabled, the controller no longer
automatically processes data on the CAN bus. The controller can be restarted by calling
ROM_CANEnable(). The state of the CAN controller and the message objects in the controller
are left as they were before this call was made.

Returns:
None.

May 14, 2014 57

Controller Area Network (CAN)

5.2.1.5 ROM_CANEnable

Enables the CAN controller.

Prototype:
void
ROM_CANEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANEnable is a function pointer located at ROM_CANTABLE[2].

Parameters:
ui32Base is the base address of the CAN controller to enable.

Description:
Enables the CAN controller for message processing. Once enabled, the controller automati-
cally transmits any pending frames, and processes any received frames. The controller can be
stopped by calling ROM_CANDisable(). Prior to calling ROM_CANEnable(), ROM_CANInit()
must have been called to initialize the controller and the CAN bus clock must be configured by
calling ROM_CANBitTimingSet().

Returns:
None.

5.2.1.6 ROM_CANErrCntrGet

Reads the CAN controller error counter register.

Prototype:
bool
ROM_CANErrCntrGet(uint32_t ui32Base,

uint32_t *pui32RxCount,
uint32_t *pui32TxCount)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANErrCntrGet is a function pointer located at ROM_CANTABLE[15].

Parameters:
ui32Base is the base address of the CAN controller.
pui32RxCount is a pointer to storage for the receive error counter.
pui32TxCount is a pointer to storage for the transmit error counter.

Description:
This function reads the error counter register and returns the transmit and receive error counts
to the caller along with a flag indicating if the controller receive counter has reached the error
passive limit. The values of the receive and transmit error counters are returned through the
pointers provided as parameters.

After this call, ∗pui32RxCount holds the current receive error count and ∗pui32TxCount holds
the current transmit error count.

58 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
Returns true if the receive error count has reached the error passive limit, and false if the error
count is below the error passive limit.

5.2.1.7 ROM_CANInit

Initializes the CAN controller after reset.

Prototype:
void
ROM_CANInit(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANInit is a function pointer located at ROM_CANTABLE[1].

Parameters:
ui32Base is the base address of the CAN controller.

Description:
After reset, the CAN controller is left in the disabled state. However, the memory used for
message objects contains undefined values and must be cleared prior to enabling the CAN
controller the first time. This prevents unwanted transmission or reception of data before the
message objects are configured. This function must be called before enabling the controller
the first time.

Returns:
None.

5.2.1.8 ROM_CANIntClear

Clears a CAN interrupt source.

Prototype:
void
ROM_CANIntClear(uint32_t ui32Base,

uint32_t ui32IntClr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANIntClear is a function pointer located at ROM_CANTABLE[0].

Parameters:
ui32Base is the base address of the CAN controller.
ui32IntClr is a value indicating which interrupt source to clear.

Description:
This function can be used to clear a specific interrupt source. The ui32IntClr parameter must
be one of the following values:

May 14, 2014 59

Controller Area Network (CAN)

CAN_INT_INTID_STATUS - Clears a status interrupt.
1-32 - Clears the specified message object interrupt

It is not necessary to use this function to clear an interrupt. This function is only used if the
application wants to clear an interrupt source without taking the normal interrupt action.

Normally, the status interrupt is cleared by reading the controller status using CANStatusGet().
A specific message object interrupt is normally cleared by reading the message object using
CANMessageGet().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

5.2.1.9 ROM_CANIntDisable

Disables individual CAN controller interrupt sources.

Prototype:
void
ROM_CANIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANIntDisable is a function pointer located at ROM_CANTABLE[11].

Parameters:
ui32Base is the base address of the CAN controller.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the specified CAN controller interrupt sources. Only enabled interrupt sources can
cause a processor interrupt.

The ui32IntFlags parameter has the same definition as in the CANIntEnable() function.

Returns:
None.

5.2.1.10 ROM_CANIntEnable

Enables individual CAN controller interrupt sources.

60 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_CANIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANIntEnable is a function pointer located at ROM_CANTABLE[10].

Parameters:
ui32Base is the base address of the CAN controller.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables specific interrupt sources of the CAN controller. Only enabled sources
cause a processor interrupt.

The ui32IntFlags parameter is the logical OR of any of the following:

CAN_INT_ERROR - a controller error condition has occurred
CAN_INT_STATUS - a message transfer has completed, or a bus error has been detected
CAN_INT_MASTER - allow CAN controller to generate interrupts

In order to generate any interrupts, CAN_INT_MASTER must be enabled. Further, for any
particular transaction from a message object to generate an interrupt, that message object
must have interrupts enabled (see CANMessageSet()). CAN_INT_ERROR generates an in-
terrupt if the controller enters the “bus off” condition, or if the error counters reach a limit.
CAN_INT_STATUS generates an interrupt under quite a few status conditions and may pro-
vide more interrupts than the application needs to handle. When an interrupt occurs, use
CANIntStatus() to determine the cause.

Returns:
None.

5.2.1.11 ROM_CANIntStatus

Returns the current CAN controller interrupt status.

Prototype:
uint32_t
ROM_CANIntStatus(uint32_t ui32Base,

tCANIntStsReg eIntStsReg)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANIntStatus is a function pointer located at ROM_CANTABLE[12].

Parameters:
ui32Base is the base address of the CAN controller.
eIntStsReg indicates which interrupt status register to read

May 14, 2014 61

Controller Area Network (CAN)

Description:
This function returns the value of one of two interrupt status registers. The interrupt status
register read is determined by the eIntStsReg parameter, which can have one of the following
values:

CAN_INT_STS_CAUSE - indicates the cause of the interrupt
CAN_INT_STS_OBJECT - indicates pending interrupts of all message objects

CAN_INT_STS_CAUSE returns the value of the controller interrupt register and indicates the
cause of the interrupt. The value returned is CAN_INT_INTID_STATUS if the cause is a status
interrupt. In this case, the status register is read with the CANStatusGet() function. Calling
this function to read the status also clears the status interrupt. If the value of the interrupt
register is in the range 1-32, then this indicates the number of the highest priority message
object that has an interrupt pending. The message object interrupt can be cleared by using the
CANIntClear() function, or by reading the message using CANMessageGet() in the case of a
received message. The interrupt handler can read the interrupt status again to make sure all
pending interrupts are cleared before returning from the interrupt.

CAN_INT_STS_OBJECT returns a bit mask indicating which message objects have pending
interrupts. This value can be used to discover all of the pending interrupts at once, as opposed
to repeatedly reading the interrupt register by using CAN_INT_STS_CAUSE.

Returns:
Returns the value of one of the interrupt status registers.

5.2.1.12 ROM_CANMessageClear

Clears a message object so that it is no longer used.

Prototype:
void
ROM_CANMessageClear(uint32_t ui32Base,

uint32_t ui32ObjID)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANMessageClear is a function pointer located at ROM_CANTABLE[9].

Parameters:
ui32Base is the base address of the CAN controller.
ui32ObjID is the message object number to disable (1-32).

Description:
This function frees the specified message object from use. Once a message object has been
“cleared,” it no longer automatically sends or receives messages, nor does it generate inter-
rupts.

Returns:
None.

62 May 14, 2014

Tiva TM4C129x ROM User’s Guide

5.2.1.13 ROM_CANMessageGet

Reads a CAN message from one of the message object buffers.

Prototype:
void
ROM_CANMessageGet(uint32_t ui32Base,

uint32_t ui32ObjID,
tCANMsgObject *psMsgObject,
bool bClrPendingInt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANMessageGet is a function pointer located at ROM_CANTABLE[7].

Parameters:
ui32Base is the base address of the CAN controller.
ui32ObjID is the object number to read (1-32).
psMsgObject points to a structure containing message object fields.
bClrPendingInt indicates whether an associated interrupt should be cleared.

Description:
This function is used to read the contents of one of the 32 message objects in the CAN con-
troller and return it to the caller. The data returned is stored in the fields of the caller-supplied
structure pointed to by psMsgObject . The data consists of all of the parts of a CAN message,
plus some control and status information.

Normally, this function is used to read a message object that has received and stored a CAN
message with a certain identifier. However, this function could also be used to read the contents
of a message object in order to load the fields of the structure in case only part of the structure
must be changed from a previous setting.

When using CANMessageGet(), all of the same fields of the structure are populated in the
same way as when the CANMessageSet() function is used, with the following exceptions:

psMsgObject->ui32Flags:

MSG_OBJ_NEW_DATA indicates if this data is new since the last time it was read
MSG_OBJ_DATA_LOST indicates that at least one message was received on this mes-
sage object and not read by the host before being overwritten.

Returns:
None.

5.2.1.14 ROM_CANMessageSet

Configures a message object in the CAN controller.

Prototype:
void
ROM_CANMessageSet(uint32_t ui32Base,

uint32_t ui32ObjID,

May 14, 2014 63

Controller Area Network (CAN)

tCANMsgObject *psMsgObject,
tMsgObjType eMsgType)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANMessageSet is a function pointer located at ROM_CANTABLE[6].

Parameters:
ui32Base is the base address of the CAN controller.
ui32ObjID is the object number to configure (1-32).
psMsgObject is a pointer to a structure containing message object settings.
eMsgType indicates the type of message for this object.

Description:
This function is used to configure any one of the 32 message objects in the CAN controller. A
message object can be configured to be any type of CAN message object as well as to use au-
tomatic transmission and reception. This call also allows the message object to be configured
to generate interrupts on completion of message receipt or transmission. The message object
can also be configured with a filter/mask so that actions are only taken when a message that
meets certain parameters is seen on the CAN bus.

The eMsgType parameter must be one of the following values:

MSG_OBJ_TYPE_TX - CAN transmit message object.
MSG_OBJ_TYPE_TX_REMOTE - CAN transmit remote request message object.
MSG_OBJ_TYPE_RX - CAN receive message object.
MSG_OBJ_TYPE_RX_REMOTE - CAN receive remote request message object.
MSG_OBJ_TYPE_RXTX_REMOTE - CAN remote frame receive remote, then transmit
message object.

The message object pointed to by psMsgObject must be populated by the caller, as follows:

ui32MsgID - contains the message ID, either 11 or 29 bits.
ui32MsgIDMask - mask of bits from ui32MsgID that must match if identifier filtering is
enabled.
ui32Flags

• Set MSG_OBJ_TX_INT_ENABLE flag to enable interrupt on transmission.
• Set MSG_OBJ_RX_INT_ENABLE flag to enable interrupt on receipt.
• Set MSG_OBJ_USE_ID_FILTER flag to enable filtering based on the identifier mask

specified by ui32MsgIDMask .
ui32MsgLen - the number of bytes in the message data. This parameter must be non-zero
even for a remote frame; it must match the expected bytes of data in the responding data
frame.
pui8MsgData - points to a buffer containing up to 8 bytes of data for a data frame.

Example: To send a data frame or remote frame (in response to a remote request), take the
following steps:

1. Set eMsgType to MSG_OBJ_TYPE_TX.
2. Set psMsgObject->ui32MsgID to the message ID.
3. Set psMsgObject->ui32Flags. Make sure to set MSG_OBJ_TX_INT_ENABLE to allow

an interrupt to be generated when the message is sent.

64 May 14, 2014

Tiva TM4C129x ROM User’s Guide

4. Set psMsgObject->ui32MsgLen to the number of bytes in the data frame.
5. Set psMsgObject->pui8MsgData to point to an array containing the bytes to send in the

message.
6. Call this function with ui32ObjID set to one of the 32 object buffers.

Example: To receive a specific data frame, take the following steps:

1. Set eMsgObjType to MSG_OBJ_TYPE_RX.
2. Set psMsgObject->ui32MsgID to the full message ID, or a partial mask to use partial ID

matching.
3. Set psMsgObject->ui32MsgIDMask bits that are used for masking during comparison.
4. Set psMsgObject->ui32Flags as follows:

Set MSG_OBJ_RX_INT_ENABLE flag to be interrupted when the data frame is re-
ceived.
Set MSG_OBJ_USE_ID_FILTER flag to enable identifier-based filtering.

5. Set psMsgObject->ui32MsgLen to the number of bytes in the expected data frame.
6. The buffer pointed to by psMsgObject->pui8MsgData is not used by this call as no data is

present at the time of the call.
7. Call this function with ui32ObjID set to one of the 32 object buffers.

If you specify a message object buffer that already contains a message definition, it is overwrit-
ten.

Returns:
None.

5.2.1.15 ROM_CANRetryGet

Returns the current setting for automatic retransmission.

Prototype:
bool
ROM_CANRetryGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANRetryGet is a function pointer located at ROM_CANTABLE[13].

Parameters:
ui32Base is the base address of the CAN controller.

Description:
This function reads the current setting for automatic retransmission in the CAN controller and
returns it to the caller.

Returns:
Returns true if automatic retransmission is enabled, false otherwise.

May 14, 2014 65

Controller Area Network (CAN)

5.2.1.16 ROM_CANRetrySet

Sets the CAN controller automatic retransmission behavior.

Prototype:
void
ROM_CANRetrySet(uint32_t ui32Base,

bool bAutoRetry)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANRetrySet is a function pointer located at ROM_CANTABLE[14].

Parameters:
ui32Base is the base address of the CAN controller.
bAutoRetry enables automatic retransmission.

Description:
This function enables or disables automatic retransmission of messages with detected errors.
If bAutoRetry is true, then automatic retransmission is enabled, otherwise it is disabled.

Returns:
None.

5.2.1.17 ROM_CANStatusGet

Reads one of the controller status registers.

Prototype:
uint32_t
ROM_CANStatusGet(uint32_t ui32Base,

tCANStsReg eStatusReg)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CANTABLE is an array of pointers located at ROM_APITABLE[18].
ROM_CANStatusGet is a function pointer located at ROM_CANTABLE[8].

Parameters:
ui32Base is the base address of the CAN controller.
eStatusReg is the status register to read.

Description:
This function reads a status register of the CAN controller and returns it to the caller. The
different status registers are:

CAN_STS_CONTROL - the main controller status
CAN_STS_TXREQUEST - bit mask of objects pending transmission
CAN_STS_NEWDAT - bit mask of objects with new data
CAN_STS_MSGVAL - bit mask of objects with valid configuration

66 May 14, 2014

Tiva TM4C129x ROM User’s Guide

When reading the main controller status register, a pending status interrupt is cleared. This pa-
rameter is used in the interrupt handler for the CAN controller if the cause is a status interrupt.
The controller status register fields are as follows:

CAN_STATUS_BUS_OFF - controller is in bus-off condition
CAN_STATUS_EWARN - an error counter has reached a limit of at least 96
CAN_STATUS_EPASS - CAN controller is in the error passive state
CAN_STATUS_RXOK - a message was received successfully (independent of any mes-
sage filtering).
CAN_STATUS_TXOK - a message was successfully transmitted
CAN_STATUS_LEC_MSK - mask of last error code bits (3 bits)
CAN_STATUS_LEC_NONE - no error
CAN_STATUS_LEC_STUFF - stuffing error detected
CAN_STATUS_LEC_FORM - a format error occurred in the fixed format part of a message
CAN_STATUS_LEC_ACK - a transmitted message was not acknowledged
CAN_STATUS_LEC_BIT1 - dominant level detected when trying to send in recessive
mode
CAN_STATUS_LEC_BIT0 - recessive level detected when trying to send in dominant
mode
CAN_STATUS_LEC_CRC - CRC error in received message

The remaining status registers consist of 32-bit-wide bit maps to the message objects. They
can be used to quickly obtain information about the status of all the message objects without
needing to query each one. They contain the following information:

CAN_STS_TXREQUEST - if a message object’s TXRQST bit is set, a transmission is
pending on that object. The application can use this information to determine which objects
are still waiting to send a message.
CAN_STS_NEWDAT - if a message object’s NEWDAT bit is set, a new message has been
received in that object, and has not yet been picked up by the host application
CAN_STS_MSGVAL - if a message object’s MSGVAL bit is set, the object has a valid
configuration programmed. The host application can use this information to determine
which message objects are empty/unused.

Returns:
Returns the value of the status register.

May 14, 2014 67

Controller Area Network (CAN)

68 May 14, 2014

Tiva TM4C129x ROM User’s Guide

6 CRC
Introduction . 69
API Functions .69

6.1 Introduction

The CRC module driver provides a method for generating CRC checksums of various types. The
configuration and feature highlights are:

Seed value for CRC operations is either all zeroes, all ones or a user-defined value.

Accepts data as bytes or 4-byte words.

Optionally performs pre- and post-processing on the input data and checksum.

6.2 API Functions

Functions
void ROM_CRCConfigSet (uint32_t ui32Base, uint32_t ui32CRCConfig)
uint32_t ROM_CRCDataProcess (uint32_t ui32Base, uint32_t ∗pui32DataIn, uint32_t
ui32DataLength, bool bPPResult)
void ROM_CRCDataWrite (uint32_t ui32Base, uint32_t ui32Data)
uint32_t ROM_CRCResultRead (uint32_t ui32Base, bool bPPResult)
void ROM_CRCSeedSet (uint32_t ui32Base, uint32_t ui32Seed)

6.2.1 Function Documentation

6.2.1.1 ROM_CRCConfigSet

Set the configuration of CRC functionality with the EC module.

Prototype:
void
ROM_CRCConfigSet(uint32_t ui32Base,

uint32_t ui32CRCConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CRCTABLE is an array of pointers located at ROM_APITABLE[44].
ROM_CRCConfigSet is a function pointer located at ROM_CRCTABLE[0].

Parameters:
ui32Base is the base address of the EC module.
ui32CRCConfig is the configuration of the CRC engine.

May 14, 2014 69

CRC

Description:
This function configures the operation of the CRC engine within the EC module. The configu-
ration is specified with the ui32CRCConfig argument. It is the logical OR of any of the following
options:

CRC Initialization Value

CRC_CFG_INIT_SEED - Initialize with seed value
CRC_CFG_INIT_0 - Initialize to all ’0s’
CRC_CFG_INIT_1 - Initialize to all ’1s’

Input Data Size

CRC_CFG_SIZE_8BIT - Input data size of 8 bits
CRC_CFG_SIZE_32BIT - Input data size of 32 bits

Post Process Reverse/Inverse

CRC_CFG_RESINV - Result inverse enable
CRC_CFG_OBR - Output reverse enable

Input Bit Reverse

CRC_CFG_IBR - Bit reverse enable

Endian Control

CRC_CFG_ENDIAN_SBHW - Swap byte in half-word
CRC_CFG_ENDIAN_SHW - Swap half-word

Operation Type

CRC_CFG_TYPE_P8005 - Polynomial 0x8005
CRC_CFG_TYPE_P1021 - Polynomial 0x1021
CRC_CFG_TYPE_P4C11DB7 - Polynomial 0x4C11DB7
CRC_CFG_TYPE_P1EDC6F41 - Polynomial 0x1EDC6F41
CRC_CFG_TYPE_TCPCHKSUM - TCP checksum

Returns:
None.

6.2.1.2 ROM_CRCDataProcess

Process data to generate a CRC with the EC module.

Prototype:
uint32_t
ROM_CRCDataProcess(uint32_t ui32Base,

uint32_t *pui32DataIn,
uint32_t ui32DataLength,
bool bPPResult)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CRCTABLE is an array of pointers located at ROM_APITABLE[44].
ROM_CRCDataProcess is a function pointer located at ROM_CRCTABLE[1].

70 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the EC module.
pui32DataIn is a pointer to an array of data that is processed.
ui32DataLength is the number of data items that are processed to produce the CRC.
bPPResult is true to read the post-processed result, or false to read the unmodified result.

Description:
This function processes an array of data to produce a CRC result.

The data in the array pointed to be pui32DataIn is either an array of bytes or an array or
words depending on the selection of the input data size options CRC_CFG_SIZE_8BIT and
CRC_CFG_SIZE_32BIT.

This function returns either the unmodified CRC result or the post- processed CRC result from
the EC module. The post-processing options are selectable through CRC_CFG_RESINV and
CRC_CFG_OBR parameters.

Returns:
The CRC result.

6.2.1.3 ROM_CRCDataWrite

Write data into the EC module for CRC operations.

Prototype:
void
ROM_CRCDataWrite(uint32_t ui32Base,

uint32_t ui32Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CRCTABLE is an array of pointers located at ROM_APITABLE[44].
ROM_CRCDataWrite is a function pointer located at ROM_CRCTABLE[2].

Parameters:
ui32Base is the base address of the EC module.
ui32Data is the data to be written.

Description:
This function writes either 8 or 32 bits of data into the EC module for CRC operations.
The distinction between 8 and 32 bits of data is made when the CRC_CFG_SIZE_8BIT or
CRC_CFG_SIZE_32BIT flag is set using the ROM_CRCConfigSet() function.

When writing 8 bits of data, ensure the data is in the least significant byte position. The re-
maining bytes should be written with zero. For example, when writing 0xAB, ui32Data should
be 0x000000AB.

Returns:
None

May 14, 2014 71

CRC

6.2.1.4 ROM_CRCResultRead

Reads the result of a CRC operation in the EC module.

Prototype:
uint32_t
ROM_CRCResultRead(uint32_t ui32Base,

bool bPPResult)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CRCTABLE is an array of pointers located at ROM_APITABLE[44].
ROM_CRCResultRead is a function pointer located at ROM_CRCTABLE[3].

Parameters:
ui32Base is the base address of the EC module.
bPPResult is true to read the post-processed result, or false to read the unmodified result.

Description:
This function reads either the unmodified CRC result or the post processed CRC result from
the EC module. The post-processing options are selectable through CRC_CFG_RESINV and
CRC_CFG_OBR parameters in the ROM_CRCConfigSet() function.

Returns:
The CRC result.

6.2.1.5 ROM_CRCSeedSet

Write the seed value for CRC operations in the EC module.

Prototype:
void
ROM_CRCSeedSet(uint32_t ui32Base,

uint32_t ui32Seed)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_CRCTABLE is an array of pointers located at ROM_APITABLE[44].
ROM_CRCSeedSet is a function pointer located at ROM_CRCTABLE[4].

Parameters:
ui32Base is the base address of the EC module.
ui32Seed is the seed value.

Description:
This function writes the seed value for use with CRC operations in the EC module. This value
is the start value for CRC operations. If this value is not written, then the residual seed from
the previous operation is used as the starting value.

Note:
The seed must be written only if CRC_CFG_INIT_SEED is set with the ROM_CRCConfigSet()
function.

72 May 14, 2014

Tiva TM4C129x ROM User’s Guide

7 DES
Introduction . 73
API Functions .73

7.1 Introduction

The DES module driver provides a method for performing encryption and decryption operations on
blocks of 64-bits of data. The configuration and feature highlights are:

Supports ECB, CBC, and CFB operating modes.

Supports DES and TDES (3EDE) operating modes.

7.2 API Functions

Functions
void ROM_DESConfigSet (uint32_t ui32Base, uint32_t ui32Config)
bool ROM_DESDataProcess (uint32_t ui32Base, uint32_t ∗pui32Src, uint32_t ∗pui32Dest,
uint32_t ui32Length)
void ROM_DESDataRead (uint32_t ui32Base, uint32_t ∗pui32Dest)
bool ROM_DESDataReadNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Dest)
void ROM_DESDataWrite (uint32_t ui32Base, uint32_t ∗pui32Src)
bool ROM_DESDataWriteNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Src)
void ROM_DESDMADisable (uint32_t ui32Base, uint32_t ui32Flags)
void ROM_DESDMAEnable (uint32_t ui32Base, uint32_t ui32Flags)
void ROM_DESIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_DESIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_DESIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_DESIntStatus (uint32_t ui32Base, bool bMasked)
bool ROM_DESIVSet (uint32_t ui32Base, uint32_t ∗pui32IVdata)
void ROM_DESKeySet (uint32_t ui32Base, uint32_t ∗pui32Key)
void ROM_DESLengthSet (uint32_t ui32Base, uint32_t ui32Length)
void ROM_DESReset (uint32_t ui32Base)

7.2.1 Function Documentation

7.2.1.1 ROM_DESConfigSet

Configures the DES module for operation.

May 14, 2014 73

DES

Prototype:
void
ROM_DESConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESConfigSet is a function pointer located at ROM_DESTABLE[1].

Parameters:
ui32Base is the base address of the DES module.
ui32Config is the configuration of the DES module.

Description:
This function configures the DES module for operation.

The ui32Config parameter is a bit-wise OR of a number of configuration flags. The valid flags
are grouped below based on their function.

The direction of the operation is specified with one of the following two flags. Only one is
permitted.

DES_CFG_DIR_ENCRYPT - Encryption
DES_CFG_DIR_DECRYPT - Decryption

The operational mode of the DES engine is specified with one of the following flags. Only one
is permitted.

DES_CFG_MODE_ECB - Electronic Codebook Mode
DES_CFG_MODE_CBC - Cipher-Block Chaining Mode
DES_CFG_MODE_CFB - Cipher Feedback Mode

The selection of single DES or triple DES is specified with one of the following two flags. Only
one is permitted.

DES_CFG_SINGLE - Single DES
DES_CFG_TRIPLE - Triple DES

Returns:
None.

7.2.1.2 ROM_DESDataProcess

Processes blocks of data through the DES module.

Prototype:
bool
ROM_DESDataProcess(uint32_t ui32Base,

uint32_t *pui32Src,
uint32_t *pui32Dest,
uint32_t ui32Length)

74 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESDataProcess is a function pointer located at ROM_DESTABLE[4].

Parameters:
ui32Base is the base address of the DES module.
pui32Src is a pointer to an array of words that contains the source data for processing.
pui32Dest is a pointer to an array of words consisting of the processed data.
ui32Length is the length of the cryptographic data in bytes. It must be a multiple of eight.

Description:
This function takes the data contained in the pui32Src array and processes it using the DES
engine. The resulting data is stored in the pui32Dest array. The function blocks until all of the
data has been processed. If processing is successful, the function returns true.

Note:
This functions assumes that the DES module has been configured, and initialization values
and keys have been written.

Returns:
true or false.

7.2.1.3 ROM_DESDataRead

Reads plaintext/ciphertext from data registers with blocking.

Prototype:
void
ROM_DESDataRead(uint32_t ui32Base,

uint32_t *pui32Dest)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESDataRead is a function pointer located at ROM_DESTABLE[2].

Parameters:
ui32Base is the base address of the DES module.
pui32Dest is a pointer to an array of bytes.

Description:
This function waits until the DES module is finished and encrypted or decrypted data is ready.
The output data is then stored in the pui32Dest array.

Returns:
None

May 14, 2014 75

DES

7.2.1.4 ROM_DESDataReadNonBlocking

Reads plaintext/ciphertext from data registers without blocking

Prototype:
bool
ROM_DESDataReadNonBlocking(uint32_t ui32Base,

uint32_t *pui32Dest)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESDataReadNonBlocking is a function pointer located at ROM_DESTABLE[3].

Parameters:
ui32Base is the base address of the DES module.
pui32Dest is a pointer to an array of 2 words.

Description:
This function returns true if the data was ready when the function was called. If the data was
not ready, false is returned.

Returns:
True or false.

7.2.1.5 ROM_DESDataWrite

Writes plaintext/ciphertext to data registers without blocking

Prototype:
void
ROM_DESDataWrite(uint32_t ui32Base,

uint32_t *pui32Src)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESDataWrite is a function pointer located at ROM_DESTABLE[5].

Parameters:
ui32Base is the base address of the DES module.
pui32Src is a pointer to an array of bytes.

Description:
This function waits until the DES module is ready before writing the data contained in the
pui32Src array.

Returns:
None.

76 May 14, 2014

Tiva TM4C129x ROM User’s Guide

7.2.1.6 ROM_DESDataWriteNonBlocking

Writes plaintext/ciphertext to data registers without blocking

Prototype:
bool
ROM_DESDataWriteNonBlocking(uint32_t ui32Base,

uint32_t *pui32Src)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESDataWriteNonBlocking is a function pointer located at ROM_DESTABLE[6].

Parameters:
ui32Base is the base address of the DES module.
pui32Src is a pointer to an array of 2 words.

Description:
This function returns false if the DES module is not ready to accept data. It returns true if the
data was written successfully.

Returns:
true or false.

7.2.1.7 ROM_DESDMADisable

Disables DMA request sources in the DES module.

Prototype:
void
ROM_DESDMADisable(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESDMADisable is a function pointer located at ROM_DESTABLE[7].

Parameters:
ui32Base is the base address of the DES module.
ui32Flags is a bit mask of the DMA requests to be disabled.

Description:
This function disables DMA request sources in the DES module. The ui32Flags parameter
should be the logical OR of any of the following:

DES_DMA_CONTEXT_IN - Context In
DES_DMA_DATA_OUT - Data Out
DES_DMA_DATA_IN - Data In

Returns:
None.

May 14, 2014 77

DES

7.2.1.8 ROM_DESDMAEnable

Enables DMA request sources in the DES module.

Prototype:
void
ROM_DESDMAEnable(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESDMAEnable is a function pointer located at ROM_DESTABLE[8].

Parameters:
ui32Base is the base address of the DES module.
ui32Flags is a bit mask of the DMA requests to be enabled.

Description:
This function enables DMA request sources in the DES module. The ui32Flags parameter
should be the logical OR of any of the following:

DES_DMA_CONTEXT_IN - Context In
DES_DMA_DATA_OUT - Data Out
DES_DMA_DATA_IN - Data In

Returns:
None.

7.2.1.9 ROM_DESIntClear

Clears interrupts in the DES module.

Prototype:
void
ROM_DESIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESIntClear is a function pointer located at ROM_DESTABLE[9].

Parameters:
ui32Base is the base address of the DES module.
ui32IntFlags is a bit mask of the interrupts to be disabled.

Description:
This function disables interrupt sources in the DES module. ui32IntFlags should be a logical
OR of one or more of the following values:

DES_INT_DMA_CONTEXT_IN - Context interrupt

78 May 14, 2014

Tiva TM4C129x ROM User’s Guide

DES_INT_DMA_DATA_IN - Data input interrupt
DES_INT_DMA_DATA_OUT - Data output interrupt

Note:
The DMA done interrupts are the only interrupts that can be cleared. The remaining interrupts
can be disabled instead using ROM_DESIntDisable().

Returns:
None.

7.2.1.10 ROM_DESIntDisable

Disables interrupts in the DES module.

Prototype:
void
ROM_DESIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESIntDisable is a function pointer located at ROM_DESTABLE[10].

Parameters:
ui32Base is the base address of the DES module.
ui32IntFlags is a bit mask of the interrupts to be disabled.

Description:
This function disables interrupt sources in the DES module. ui32IntFlags should be a logical
OR of one or more of the following values:

DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA_IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Returns:
None.

7.2.1.11 ROM_DESIntEnable

Enables interrupts in the DES module.

Prototype:
void
ROM_DESIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

May 14, 2014 79

DES

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESIntEnable is a function pointer located at ROM_DESTABLE[11].

Parameters:
ui32Base is the base address of the DES module.
ui32IntFlags is a bit mask of the interrupts to be enabled.

Description:
ui32IntFlags should be a logical OR of one or more of the following values:

DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA_IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Returns:
None.

7.2.1.12 ROM_DESIntStatus

Returns the current interrupt status of the DES module.

Prototype:
uint32_t
ROM_DESIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESIntStatus is a function pointer located at ROM_DESTABLE[0].

Parameters:
ui32Base is the base address of the DES module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function gets the current interrupt status of the DES module. The value returned is a
logical OR of the following values:

DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT_INT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA_IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

80 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
A bit mask of the current interrupt status.

7.2.1.13 ROM_DESIVSet

Sets the initialization vector in the DES module.

Prototype:
bool
ROM_DESIVSet(uint32_t ui32Base,

uint32_t *pui32IVdata)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESIVSet is a function pointer located at ROM_DESTABLE[12].

Parameters:
ui32Base is the base address of the DES module.
pui32IVdata is a pointer to an array of 64 bits (2 words) of data to be written into the initializa-

tion vectors registers.

Description:
This function sets the initialization vector in the DES module. It returns true if the registers
were successfully written. If the context registers cannot be written at the time the function was
called, then false is returned.

Returns:
True or false.

7.2.1.14 ROM_DESKeySet

Sets the key used for DES operations.

Prototype:
void
ROM_DESKeySet(uint32_t ui32Base,

uint32_t *pui32Key)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESKeySet is a function pointer located at ROM_DESTABLE[13].

Parameters:
ui32Base is the base address of the DES module.
pui32Key is a pointer to an array that holds the key

Description:
This function sets the key used for DES operations.

pui32Key should be 64 bits long (2 words) if single DES is being used or 192 bits (6 words) if
triple DES is being used.

May 14, 2014 81

DES

Returns:
None.

7.2.1.15 ROM_DESLengthSet

Sets the crytographic data length in the DES module.

Prototype:
void
ROM_DESLengthSet(uint32_t ui32Base,

uint32_t ui32Length)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESLengthSet is a function pointer located at ROM_DESTABLE[14].

Parameters:
ui32Base is the base address of the DES module.
ui32Length is the length of the data in bytes.

Description:
This function writes the cryptographic data length into the DES module. When this register is
written, the engine is triggered to start using this context.

Note:
Data lengths up to (2∧32 - 1) bytes are allowed.

Returns:
None.

7.2.1.16 ROM_DESReset

Resets the DES Module.

Prototype:
void
ROM_DESReset(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_DESTABLE is an array of pointers located at ROM_APITABLE[45].
ROM_DESReset is a function pointer located at ROM_DESTABLE[15].

Parameters:
ui32Base is the base address of the DES module.

Description:
This function performs a soft-reset sequence of the DES module.

Returns:
None.

82 May 14, 2014

Tiva TM4C129x ROM User’s Guide

8 EEPROM
Introduction . 83
API Functions .84

8.1 Introduction

The EEPROM API provides a set of functions for interacting with the on-chip EEPROM providing
easy-to-use non-volatile data storage. Functions are provided to program and erase the EEPROM,
configure the EEPROM protection, and handle the EEPROM interrupt.

The EEPROM can be programmed on a word-by-word basis and, unlike flash, the application need
not explicitly erase a word or page before writing a new value to it.

The EEPROM controller has the ability to generate an interrupt when an invalid access is attempted
(such as reading from a protected block). This interrupt can be used to validate the operation of a
program; the interrupt prevents invalid accesses from being silently ignored, hiding potential bugs.
An interrupt can also be generated when an erase or programming operation has completed.

The size of the EEPROM can be determined at runtime with ROM_EEPROMSizeGet() and
ROM_EEPROMBlockCountGet().

Data protection is supported at both the device and block levels with configurable passwords used to
control read and write access. Additionally, blocks may be configured to allow access only while the
CPU is running in supervisor mode. A second protection mechanism allows one or more EEPROM
blocks to be made completely inaccessible to software until the next system reset.

8.1.1 EEPROM Protection

The EEPROM device is organized into a number of blocks each of which may be configured with
various protection options to control an application’s ability to read and/or write data. Additionally,
protection options set on the first block of the device, block 0, affect access to the EEPROM as a
whole, allowing global options to be set on block 0 and individual block protection to be layered on
top.

Each block may be configured for two protection states, one that is in effect when the block is locked
and a second that applies when the block is unlocked. Unlocking is performed by writing a 32- to
96-bit password that has previously been set and committed by the user.

If a password is set on block 0, all other blocks in the device and the registers that control them
are inaccessible until block 0 is unlocked. After block 0 is unlocked, the protection set on each
individual block applies, with those blocks being individually lockable via their own passwords.

The EEPROM driver allows three specific protection modes to be set on each block. These modes
are defined by the following labels from eeprom.h that define the protection provided if the block
has no password set, if it has a password set and is locked and if it has a password set and is
unlocked. Additionally, EEPROM_PROT_SUPERVISOR_ONLY may be ORed with each of these
labels when calling ROM_EEPROMBlockProtectSet() to prevent all accesses to the block when the
CPU is executing in user mode.

May 14, 2014 83

EEPROM

8.1.1.1 EEPROM_PROT_RW_LRO_URW

If no password is set for the block, this protection level allows both read and write access to the
block data.

If a password is set for the block and the block is locked, this protection level allows only read
access to the block data.

If a password is set for the block and the block is unlocked, this protection level allows both read
and write access to the block data.

8.1.1.2 EEPROM_PROT_NA_LNA_URW

If no password is set for the block, this protection level prevents the block data from being read or
written.

If a password is set for the block and the block is locked, this protection level prevents the block
data from being read or written.

If a password is set for the block and the block is unlocked, this protection level allows both read
and write access to the block data.

8.1.1.3 EEPROM_PROT_RO_LNA_URO

If no password is set for the block, this protection level allows only read access to the block data.

If a password is set for the block and the block is locked, this protection level prevents the block
data from being read or written.

If a password is set for the block and the block is unlocked, this protection level allows only read
access to the block data.

8.2 API Functions

Functions
uint32_t ROM_EEPROMBlockCountGet (void)
void ROM_EEPROMBlockHide (uint32_t ui32Block)
uint32_t ROM_EEPROMBlockLock (uint32_t ui32Block)
uint32_t ROM_EEPROMBlockPasswordSet (uint32_t ui32Block, uint32_t ∗pui32Password,
uint32_t ui32Count)
uint32_t ROM_EEPROMBlockProtectGet (uint32_t ui32Block)
uint32_t ROM_EEPROMBlockProtectSet (uint32_t ui32Block, uint32_t ui32Protect)
uint32_t ROM_EEPROMBlockUnlock (uint32_t ui32Block, uint32_t ∗pui32Password, uint32_t
ui32Count)
uint32_t ROM_EEPROMInit (void)
void ROM_EEPROMIntClear (uint32_t ui32IntFlags)
void ROM_EEPROMIntDisable (uint32_t ui32IntFlags)
void ROM_EEPROMIntEnable (uint32_t ui32IntFlags)

84 May 14, 2014

Tiva TM4C129x ROM User’s Guide

uint32_t ROM_EEPROMIntStatus (bool bMasked)
uint32_t ROM_EEPROMProgram (uint32_t ∗pui32Data, uint32_t ui32Address, uint32_t
ui32Count)
uint32_t ROM_EEPROMProgramNonBlocking (uint32_t ui32Data, uint32_t ui32Address)
void ROM_EEPROMRead (uint32_t ∗pui32Data, uint32_t ui32Address, uint32_t ui32Count)
uint32_t ROM_EEPROMSizeGet (void)
uint32_t ROM_EEPROMStatusGet (void)

8.2.1 Function Documentation

8.2.1.1 ROM_EEPROMBlockCountGet

Determines the number of blocks in the EEPROM.

Prototype:
uint32_t
ROM_EEPROMBlockCountGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMBlockCountGet is a function pointer located at ROM_EEPROMTABLE[1].

Description:
This function may be called to determine the number of blocks in the EEPROM. Each block is
the same size, and the number of bytes of storage contained in a block may be determined by
dividing the size of the device, obtained via a call to the ROM_EEPROMSizeGet() function, by
the number of blocks returned by this function.

Returns:
Returns the total number of blocks in the device EEPROM.

8.2.1.2 ROM_EEPROMBlockHide

Hides an EEPROM block until the next reset.

Prototype:
void
ROM_EEPROMBlockHide(uint32_t ui32Block)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMBlockHide is a function pointer located at ROM_EEPROMTABLE[2].

Parameters:
ui32Block is the EEPROM block number that is to be hidden.

May 14, 2014 85

EEPROM

Description:
This function hides an EEPROM block other than block 0. Once hidden, a block is completely
inaccessible until the next reset. This mechanism allows initialization code to have access to
data that is to be hidden from the rest of the application. Unlike applications using passwords,
an application making using of block hiding need not contain any embedded passwords that
could be found through disassembly.

Returns:
None.

8.2.1.3 ROM_EEPROMBlockLock

Locks a password-protected EEPROM block.

Prototype:
uint32_t
ROM_EEPROMBlockLock(uint32_t ui32Block)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMBlockLock is a function pointer located at ROM_EEPROMTABLE[3].

Parameters:
ui32Block is the EEPROM block number that is to be locked.

Description:
This function locks an EEPROM block that has previously been protected by writing a pass-
word. Access to the block once it is locked is determined by the protection settings applied via
a previous call to the ROM_EEPROMBlockProtectSet() function. If no password has previously
been set for the block, this function has no effect.

Locking block 0 has the effect of making all other blocks in the EEPROM inaccessible.

Returns:
Returns the lock state for the block on exit, 1 if unlocked (as would be the case if no password
was set) or 0 if locked.

8.2.1.4 ROM_EEPROMBlockPasswordSet

Sets the password used to protect an EEPROM block.

Prototype:
uint32_t
ROM_EEPROMBlockPasswordSet(uint32_t ui32Block,

uint32_t *pui32Password,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMBlockPasswordSet is a function pointer located at ROM_EEPROMTABLE[4].

86 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Block is the EEPROM block number for which the password is to be set.
pui32Password points to an array of uint32_t values comprising the password to set. Each

element may be any 32-bit value other than 0xFFFFFFFF. This array must contain the
number of elements given by the ui32Count parameter.

ui32Count provides the number of elements in the pui32Password array. Valid values are 1,
2 and 3.

Description:
This function allows the password used to unlock an EEPROM block to be set. Valid passwords
may be either 32, 64 or 96 bits comprising words with any value other than 0xFFFFFFFF.
The password may only be set once. Any further attempts to set the password result in an
error. Once the password is set, the block remains unlocked until ROM_EEPROMBlockLock()
is called for that block or block 0, or a reset occurs.

Setting a password on block 0 affects locking of the peripheral as a whole. When block 0 is
locked, all other EEPROM blocks are inaccessible until block 0 is unlocked. Once block 0 is
unlocked, other blocks become accessible according to any passwords set on those blocks and
the protection set for that block via a call to ROM_EEPROMBlockProtectSet().

Returns:
Returns a logical OR combination of EEPROM_RC_INVPL, EEPROM_RC_WRBUSY,
EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEPROM_RC_WKERASE, and EEP-
ROM_RC_WORKING to indicate status and error conditions.

8.2.1.5 ROM_EEPROMBlockProtectGet

Returns the current protection level for an EEPROM block.

Prototype:
uint32_t
ROM_EEPROMBlockProtectGet(uint32_t ui32Block)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMBlockProtectGet is a function pointer located at ROM_EEPROMTABLE[5].

Parameters:
ui32Block is the block number for which the protection level is to be queried.

Description:
This function returns the current protection settings for a given EEPROM block. If block 0 is
currently locked, it must be unlocked prior to calling this function to query the protection setting
for other blocks.

Returns:
Returns one of EEPROM_PROT_RW_LRO_URW, EEPROM_PROT_NA_LNA_URW or EEP-
ROM_PROT_RO_LNA_URO optionally OR-ed with EEPROM_PROT_SUPERVISOR_ONLY.

May 14, 2014 87

EEPROM

8.2.1.6 ROM_EEPROMBlockProtectSet

Set the current protection options for an EEPROM block.

Prototype:
uint32_t
ROM_EEPROMBlockProtectSet(uint32_t ui32Block,

uint32_t ui32Protect)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMBlockProtectSet is a function pointer located at ROM_EEPROMTABLE[6].

Parameters:
ui32Block is the block number for which the protection options are to be set.
ui32Protect consists of one of the values EEPROM_PROT_RW_LRO_URW, EEP-

ROM_PROT_NA_LNA_URW or EEPROM_PROT_RO_LNA_URO optionally ORed with
EEPROM_PROT_SUPERVISOR_ONLY.

Description:
This function sets the protection settings for a given EEPROM block assuming no protection
settings have previously been written. Note that protection settings applied to block 0 have
special meaning and control access to the EEPROM peripheral as a whole. Protection settings
applied to blocks numbered 1 and above are layered above any protection set on block 0 such
that the effective protection on each block is the logical OR of the protection flags set for block
0 and for the target block. This protocol allows global protection options to be set for the whole
device via block 0 and more restrictive protection settings to be set on a block-by-block basis.

The protection flags indicate access permissions as follow:

EEPROM_PROT_SUPERVISOR_ONLY restricts access to the block to threads running in su-
pervisor mode. If clear, both user and supervisor threads can access the block.

EEPROM_PROT_RW_LRO_URW provides read/write access to the block if no password is
set or if a password is set and the block is unlocked. If the block is locked, only read access is
permitted.

EEPROM_PROT_NA_LNA_URW provides neither read nor write access unless a password
is set and the block is unlocked. If the block is unlocked, both read and write access are
permitted.

EEPROM_PROT_RO_LNA_URO provides read access to the block if no password is set or
if a password is set and the block is unlocked. If the block is password protected and locked,
neither read nor write access is permitted.

Returns:
Returns a logical OR combination of EEPROM_RC_INVPL, EEPROM_RC_WRBUSY,
EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEPROM_RC_WKERASE, and EEP-
ROM_RC_WORKING to indicate status and error conditions.

8.2.1.7 ROM_EEPROMBlockUnlock

Unlocks a password-protected EEPROM block.

88 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
uint32_t
ROM_EEPROMBlockUnlock(uint32_t ui32Block,

uint32_t *pui32Password,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMBlockUnlock is a function pointer located at ROM_EEPROMTABLE[7].

Parameters:
ui32Block is the EEPROM block number which is to be unlocked.
pui32Password points to an array of uint32_t values containing the password for the

block. Each element must match the password originally set via a call to
ROM_EEPROMBlockPasswordSet().

ui32Count provides the number of elements in the pui32Password array and must match the
value originally passed to ROM_EEPROMBlockPasswordSet(). Valid values are 1, 2 and
3.

Description:
This function unlocks an EEPROM block that has previously been protected by writing a pass-
word. Access to the block once it is unlocked is determined by the protection settings applied
via a previous call to the ROM_EEPROMBlockProtectSet() function.

To successfully unlock an EEPROM block, the password provided must match the password
provided on the original call to ROM_EEPROMBlockPasswordSet(). If an incorrect password
is provided, the block remains locked.

Unlocking block 0 has the effect of making all other blocks in the device accessible according
to their own access protection settings. When block 0 is locked, all other EEPROM blocks are
inaccessible.

Returns:
Returns the lock state for the block on exit, 1 if unlocked or 0 if locked.

8.2.1.8 ROM_EEPROMInit

Performs any necessary recovery in case of power failures during write.

Prototype:
uint32_t
ROM_EEPROMInit(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMInit is a function pointer located at ROM_EEPROMTABLE[17].

Description:
This function must be called after ROM_SysCtlPeripheralEnable() and before the EEPROM is
accessed. It is used to check for errors in the EEPROM state such as from power fail during a
previous write operation. The function detects these errors and performs as much recovery as

May 14, 2014 89

EEPROM

possible before returning information to the caller on whether or not a previous data write was
lost and must be retried.

In cases where EEPROM_INIT_RETRY is returned, the application is responsible for deter-
mining which data write may have been lost and rewriting this data. If EEPROM_INIT_ERROR
is returned, the EEPROM was unable to recover its state. This condition may or may not be
resolved on future resets depending upon the cause of the fault. For example, if the supply
voltage is unstable, retrying the operation once the voltage is stabilized may clear the error.

Failure to call this function after a reset may lead to incorrect operation or permanent data loss
if the EEPROM is later written.

Returns:
Returns EEPROM_INIT_OK if no errors were detected, EEPROM_INIT_RETRY if a pre-
vious write operation may have been interrupted by a power or reset event or EEP-
ROM_INIT_ERROR if the EEPROM peripheral cannot currently recover from an interrupted
write or erase operation.

8.2.1.9 ROM_EEPROMIntClear

Clears the EEPROM interrupt.

Prototype:
void
ROM_EEPROMIntClear(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMIntClear is a function pointer located at ROM_EEPROMTABLE[8].

Parameters:
ui32IntFlags indicates which interrupt sources to clear. Currently, the only valid value is EEP-

ROM_INT_PROGRAM.

Description:
This function allows an application to clear the EEPROM interrupt.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

8.2.1.10 ROM_EEPROMIntDisable

Disables the EEPROM interrupt.

90 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_EEPROMIntDisable(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMIntDisable is a function pointer located at ROM_EEPROMTABLE[9].

Parameters:
ui32IntFlags indicates which EEPROM interrupt source to disable. Currently, the only valid

value is EEPROM_INT_PROGRAM.

Description:
This function disables the EEPROM interrupt and prevents calls to the interrupt vector when
any EEPROM write or erase operation completes. The EEPROM peripheral shares a sin-
gle interrupt vector with the flash memory subsystem, INT_FLASH. This function is pro-
vided as a convenience but the EEPROM interrupt can also be disabled using a call to
ROM_FlashIntDisable() passing FLASH_INT_EEPROM in the ui32IntFlags parameter.

Returns:
None.

8.2.1.11 ROM_EEPROMIntEnable

Enables the EEPROM interrupt.

Prototype:
void
ROM_EEPROMIntEnable(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMIntEnable is a function pointer located at ROM_EEPROMTABLE[10].

Parameters:
ui32IntFlags indicates which EEPROM interrupt source to enable. Currently, the only valid

value is EEPROM_INT_PROGRAM.

Description:
This function enables the EEPROM interrupt. When enabled, an interrupt is generated when
any EEPROM write or erase operation completes. The EEPROM peripheral shares a sin-
gle interrupt vector with the flash memory subsystem, INT_FLASH. This function is pro-
vided as a convenience but the EEPROM interrupt can also be enabled using a call to
ROM_FlashIntEnable() passing FLASH_INT_EEPROM in the ui32IntFlags parameter.

Returns:
None.

May 14, 2014 91

EEPROM

8.2.1.12 ROM_EEPROMIntStatus

Reports the state of the EEPROM interrupt.

Prototype:
uint32_t
ROM_EEPROMIntStatus(bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMIntStatus is a function pointer located at ROM_EEPROMTABLE[11].

Parameters:
bMasked determines whether the masked or unmasked state of the interrupt is to be returned.

If bMasked is true, the masked state is returned, otherwise the unmasked state is returned.

Description:
This function allows an application to query the state of the EEPROM interrupt. If active, the
interrupt may be cleared by calling ROM_EEPROMIntClear().

Returns:
Returns EEPROM_INT_PROGRAM if an interrupt is being signaled or 0 otherwise.

8.2.1.13 ROM_EEPROMProgram

Writes data to the EEPROM.

Prototype:
uint32_t
ROM_EEPROMProgram(uint32_t *pui32Data,

uint32_t ui32Address,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMProgram is a function pointer located at ROM_EEPROMTABLE[13].

Parameters:
pui32Data points to the first word of data to write to the EEPROM.
ui32Address defines the byte address within the EEPROM that the data is to be written to.

This value must be a multiple of 4.
ui32Count defines the number of bytes of data that is to be written. This value must be a

multiple of 4.

Description:
This function may be called to write data into the EEPROM at a given word-aligned address.
The call is synchronous and returns only after all data has been written or an error occurs.

Returns:
Returns 0 on success or non-zero values on failure. Failure codes are logical OR combi-
nations of EEPROM_RC_INVPL, EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEP-
ROM_RC_WKCOPY, EEPROM_RC_WKERASE, and EEPROM_RC_WORKING.

92 May 14, 2014

Tiva TM4C129x ROM User’s Guide

8.2.1.14 ROM_EEPROMProgramNonBlocking

Writes a word to the EEPROM.

Prototype:
uint32_t
ROM_EEPROMProgramNonBlocking(uint32_t ui32Data,

uint32_t ui32Address)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMProgramNonBlocking is a function pointer located at
ROM_EEPROMTABLE[14].

Parameters:
ui32Data is the word to write to the EEPROM.
ui32Address defines the byte address within the EEPROM to which the data is to be written.

This value must be a multiple of 4.

Description:
This function is intended to allow EEPROM programming under interrupt control. It may be
called to start the process of writing a single word of data into the EEPROM at a given word-
aligned address. The call is asynchronous and returns immediately without waiting for the
write to complete. Completion of the operation is signaled by means of an interrupt from the
EEPROM module. The EEPROM peripheral shares a single interrupt vector with the flash
memory subsystem, INT_FLASH.

Returns:
Returns status and error information in the form of a logical OR combinations
of EEPROM_RC_INVPL, EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEP-
ROM_RC_WKCOPY, EEPROM_RC_WKERASE and EEPROM_RC_WORKING. Flags
EEPROM_RC_WKCOPY, EEPROM_RC_WKERASE, and EEPROM_RC_WORKING are
expected in normal operation and do not indicate an error.

8.2.1.15 ROM_EEPROMRead

Reads data from the EEPROM.

Prototype:
void
ROM_EEPROMRead(uint32_t *pui32Data,

uint32_t ui32Address,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMRead is a function pointer located at ROM_EEPROMTABLE[0].

Parameters:
pui32Data is a pointer to storage for the data read from the EEPROM. This pointer must point

to at least ui32Count bytes of available memory.

May 14, 2014 93

EEPROM

ui32Address is the byte address within the EEPROM from which data is to be read. This
value must be a multiple of 4.

ui32Count is the number of bytes of data to read from the EEPROM. This value must be a
multiple of 4.

Description:
This function may be called to read a number of words of data from a word-aligned address
within the EEPROM. Data read is copied into the buffer pointed to by the pui32Data parameter.

Returns:
None.

8.2.1.16 ROM_EEPROMSizeGet

Determines the size of the EEPROM.

Prototype:
uint32_t
ROM_EEPROMSizeGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMSizeGet is a function pointer located at ROM_EEPROMTABLE[15].

Description:
This function returns the size of the EEPROM in bytes.

Returns:
Returns the total number of bytes in the EEPROM.

8.2.1.17 ROM_EEPROMStatusGet

Returns status on the last EEPROM program or erase operation.

Prototype:
uint32_t
ROM_EEPROMStatusGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EEPROMTABLE is an array of pointers located at ROM_APITABLE[24].
ROM_EEPROMStatusGet is a function pointer located at ROM_EEPROMTABLE[16].

Description:
This function returns the current status of the last program or erase operation performed by
the EEPROM. It is intended to provide error information to applications programming or setting
EEPROM protection options under interrupt control.

94 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
Returns 0 if the last program or erase operation completed without any errors. If an
operation is ongoing or an error occurred, the return value is a logical OR combi-
nation of EEPROM_RC_INVPL, EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEP-
ROM_RC_WKCOPY, EEPROM_RC_WKERASE, and EEPROM_RC_WORKING.

May 14, 2014 95

EEPROM

96 May 14, 2014

Tiva TM4C129x ROM User’s Guide

9 Ethernet Controller
Introduction . 97
API Functions .97

9.1 Introduction

The Tiva Ethernet controller consists of a fully integrated media access controller (MAC) and a
network physical (PHY) interface device. The Ethernet controller conforms to IEEE 802.3 specifica-
tions and fully supports 10BASE-T and 100BASE-TX standards. Additionally, external PHYs may
be connected via either MII or RMII interfaces.

The Ethernet MAC API provides the set of functions required to implement an interrupt-driven
Ethernet driver for the Tiva Ethernet MAC. Functions are provided to configure and control the MAC,
to access the register set on the PHY, to transmit and receive Ethernet packets using the MAC’s
integrated DMA engine, to control timestamp handling for IEEE1588, to configure and control low
power operation, to configure and control VLAN tagging, and to configure and control the peripheral
interrupts.

9.2 API Functions

Functions
uint32_t ROM_EMACAddrFilterGet (uint32_t ui32Base, uint32_t ui32Index)
void ROM_EMACAddrFilterSet (uint32_t ui32Base, uint32_t ui32Index, uint32_t ui32Config)
void ROM_EMACAddrGet (uint32_t ui32Base, uint32_t ui32Index, uint8_t ∗pui8MACAddr)
void ROM_EMACAddrSet (uint32_t ui32Base, uint32_t ui32Index, const uint8_t
∗pui8MACAddr)
void ROM_EMACConfigGet (uint32_t ui32Base, uint32_t ∗pui32Config, uint32_t ∗pui32Mode,
uint32_t ∗pui32RxMaxFrameSize)
void ROM_EMACConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32ModeFlags,
uint32_t ui32RxMaxFrameSize)
uint32_t ROM_EMACDMAStateGet (uint32_t ui32Base)
uint32_t ROM_EMACFrameFilterGet (uint32_t ui32Base)
void ROM_EMACFrameFilterSet (uint32_t ui32Base, uint32_t ui32FilterOpts)
uint32_t ROM_EMACHashFilterBitCalculate (uint8_t ∗pui8MACAddr)
void ROM_EMACHashFilterGet (uint32_t ui32Base, uint32_t ∗pui32HashHi, uint32_t
∗pui32HashLo)
void ROM_EMACHashFilterSet (uint32_t ui32Base, uint32_t ui32HashHi, uint32_t
ui32HashLo)
void ROM_EMACInit (uint32_t ui32Base, uint32_t ui32SysClk, uint32_t ui32BusConfig,
uint32_t ui32RxBurst, uint32_t ui32TxBurst, uint32_t ui32DescSkipSize)
void ROM_EMACIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_EMACIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_EMACIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)

May 14, 2014 97

Ethernet Controller

uint32_t ROM_EMACIntStatus (uint32_t ui32Base, bool bMasked)
uint32_t ROM_EMACNumAddrGet (uint32_t ui32Base)
void ROM_EMACPHYConfigSet (uint32_t ui32Base, uint32_t ui32Config)
uint16_t ROM_EMACPHYExtendedRead (uint32_t ui32Base, uint8_t ui8PhyAddr, uint16_t
ui16RegAddr)
void ROM_EMACPHYExtendedWrite (uint32_t ui32Base, uint8_t ui8PhyAddr, uint16_t
ui16RegAddr, uint16_t ui16Value)
void ROM_EMACPHYPowerOff (uint32_t ui32Base, uint8_t ui8PhyAddr)
void ROM_EMACPHYPowerOn (uint32_t ui32Base, uint8_t ui8PhyAddr)
uint16_t ROM_EMACPHYRead (uint32_t ui32Base, uint8_t ui8PhyAddr, uint8_t ui8RegAddr)
void ROM_EMACPHYWrite (uint32_t ui32Base, uint8_t ui8PhyAddr, uint8_t ui8RegAddr,
uint16_t ui16Data)
uint32_t ROM_EMACPowerManagementControlGet (uint32_t ui32Base)
void ROM_EMACPowerManagementControlSet (uint32_t ui32Base, uint32_t ui32Flags)
uint32_t ROM_EMACPowerManagementStatusGet (uint32_t ui32Base)
void ROM_EMACRemoteWakeUpFrameFilterGet (uint32_t ui32Base, tEMACWakeUpFrame-
Filter ∗pFilter)
void ROM_EMACRemoteWakeUpFrameFilterSet (uint32_t ui32Base, const tEMACWake-
UpFrameFilter ∗pFilter)
void ROM_EMACReset (uint32_t ui32Base)
void ROM_EMACRxDisable (uint32_t ui32Base)
uint8_t ∗ ROM_EMACRxDMACurrentBufferGet (uint32_t ui32Base)
tEMACDMADescriptor ∗ ROM_EMACRxDMACurrentDescriptorGet (uint32_t ui32Base)
tEMACDMADescriptor ∗ ROM_EMACRxDMADescriptorListGet (uint32_t ui32Base)
void ROM_EMACRxDMADescriptorListSet (uint32_t ui32Base, tEMACDMADescriptor
∗pDescriptor)
void ROM_EMACRxDMAPollDemand (uint32_t ui32Base)
void ROM_EMACRxEnable (uint32_t ui32Base)
void ROM_EMACRxWatchdogTimerSet (uint32_t ui32Base, uint8_t ui8Timeout)
uint32_t ROM_EMACStatusGet (uint32_t ui32Base)
void ROM_EMACTimestampAddendSet (uint32_t ui32Base, uint32_t ui32Increment)
uint32_t ROM_EMACTimestampConfigGet (uint32_t ui32Base, uint32_t
∗pui32SubSecondInc)
void ROM_EMACTimestampConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t
ui32SubSecondInc)
void ROM_EMACTimestampDisable (uint32_t ui32Base)
void ROM_EMACTimestampEnable (uint32_t ui32Base)
uint32_t ROM_EMACTimestampIntStatus (uint32_t ui32Base)
void ROM_EMACTimestampPPSCommand (uint32_t ui32Base, uint8_t ui8Cmd)
void ROM_EMACTimestampPPSCommandModeSet (uint32_t ui32Base, uint32_t
ui32Config)
void ROM_EMACTimestampPPSPeriodSet (uint32_t ui32Base, uint32_t ui32Period, uint32_t
ui32Width)
void ROM_EMACTimestampPPSSimpleModeSet (uint32_t ui32Base, uint32_t
ui32FreqConfig)
void ROM_EMACTimestampSysTimeGet (uint32_t ui32Base, uint32_t ∗pui32Seconds,
uint32_t ∗pui32SubSeconds)

98 May 14, 2014

Tiva TM4C129x ROM User’s Guide

void ROM_EMACTimestampSysTimeSet (uint32_t ui32Base, uint32_t ui32Seconds, uint32_t
ui32SubSeconds)
void ROM_EMACTimestampSysTimeUpdate (uint32_t ui32Base, uint32_t ui32Seconds,
uint32_t ui32SubSeconds, bool bInc)
void ROM_EMACTimestampTargetIntDisable (uint32_t ui32Base)
void ROM_EMACTimestampTargetIntEnable (uint32_t ui32Base)
void ROM_EMACTimestampTargetSet (uint32_t ui32Base, uint32_t ui32Seconds, uint32_t
ui32SubSeconds)
void ROM_EMACTxDisable (uint32_t ui32Base)
uint8_t ∗ ROM_EMACTxDMACurrentBufferGet (uint32_t ui32Base)
tEMACDMADescriptor ∗ ROM_EMACTxDMACurrentDescriptorGet (uint32_t ui32Base)
tEMACDMADescriptor ∗ ROM_EMACTxDMADescriptorListGet (uint32_t ui32Base)
void ROM_EMACTxDMADescriptorListSet (uint32_t ui32Base, tEMACDMADescriptor
∗pDescriptor)
void ROM_EMACTxDMAPollDemand (uint32_t ui32Base)
void ROM_EMACTxEnable (uint32_t ui32Base)
void ROM_EMACTxFlush (uint32_t ui32Base)
uint32_t ROM_EMACVLANHashFilterBitCalculate (uint16_t ui16Tag)
uint32_t ROM_EMACVLANHashFilterGet (uint32_t ui32Base)
void ROM_EMACVLANHashFilterSet (uint32_t ui32Base, uint32_t ui32Hash)
uint32_t ROM_EMACVLANRxConfigGet (uint32_t ui32Base, uint16_t ∗pui16Tag)
void ROM_EMACVLANRxConfigSet (uint32_t ui32Base, uint16_t ui16Tag, uint32_t
ui32Config)
uint32_t ROM_EMACVLANTxConfigGet (uint32_t ui32Base, uint16_t ∗pui16Tag)
void ROM_EMACVLANTxConfigSet (uint32_t ui32Base, uint16_t ui16Tag, uint32_t
ui32Config)
void ROM_UpdateEMAC (uint32_t ui32Clock)

9.2.1 Function Documentation

9.2.1.1 ROM_EMACAddrFilterGet

Gets filtering parameters associated with one of the configured MAC addresses.

Prototype:
uint32_t
ROM_EMACAddrFilterGet(uint32_t ui32Base,

uint32_t ui32Index)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACAddrFilterGet is a function pointer located at ROM_EMACTABLE[35].

Parameters:
ui32Base is the base address of the controller.
ui32Index is the index of the MAC address slot for which the filter is to be queried.

May 14, 2014 99

Ethernet Controller

Description:
This function returns filtering parameters associated with one of the MAC address slots that
the controller supports. This configuration is used when perfect filtering (rather than hash table
filtering) is selected.

Valid values for ui32Index are from 1 to (number of MAC address slots – 1). The number of
supported MAC address slots may be found by calling ROM_EMACNumAddrGet(). MAC index
0 is the local MAC address and does not have filtering parameters associated with it.

Returns:
Returns the filter configuration as the logical OR of the following labels:

EMAC_FILTER_ADDR_ENABLE indicates that this MAC address is enabled and is used
when performing perfect filtering. If this flag is absent, the MAC address at the given index is
disabled and is not used in filtering.

EMAC_FILTER_SOURCE_ADDR indicates that the MAC address at the given index is com-
pared to the source address of incoming frames while performing perfect filtering. If absent,
the MAC address is compared against the destination address.

EMAC_FILTER_MASK_BYTE_6 indicates that the MAC ignores the sixth byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_5 indicates that the MAC ignores the fifth byte of the source or
destination address when filtering.

EMAC_FILTER_MASK_BYTE_4 indicates that the MAC ignores the fourth byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_3 indicates that the MAC ignores the third byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_2 indicates that the MAC ignores the second byte of the
source or destination address when filtering.

EMAC_FILTER_MASK_BYTE_1 indicates that the MAC ignores the first byte of the source or
destination address when filtering.

9.2.1.2 ROM_EMACAddrFilterSet

Sets filtering parameters associated with one of the configured MAC addresses.

Prototype:
void
ROM_EMACAddrFilterSet(uint32_t ui32Base,

uint32_t ui32Index,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACAddrFilterSet is a function pointer located at ROM_EMACTABLE[36].

Parameters:
ui32Base is the base address of the controller.
ui32Index is the index of the MAC address slot for which the filter is to be set.
ui32Config sets the filter parameters for the given MAC address.

100 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function sets filtering parameters associated with one of the MAC address slots that the
controller supports. This configuration is used when perfect filtering (rather than hash table
filtering) is selected.

Valid values for ui32Index are from 1 to (number of MAC address slots – 1). The number of
supported MAC address slots may be found by calling ROM_EMACNumAddrGet(). MAC index
0 is the local MAC address and does not have filtering parameters associated with it.

The ui32Config parameter determines how the given MAC address is used when filtering in-
coming Ethernet frames. It is comprised of a logical OR of the fields:

EMAC_FILTER_ADDR_ENABLE indicates that this MAC address is enabled and should
be used when performing perfect filtering. If this flag is absent, the MAC address at the
given index is disabled and is not used in filtering.
EMAC_FILTER_SOURCE_ADDR indicates that the MAC address at the given index is
compared to the source address of incoming frames while performing perfect filtering. If
absent, the MAC address is compared against the destination address.
EMAC_FILTER_MASK_BYTE_6 indicates that the MAC should ignore the sixth byte of
the source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_5 indicates that the MAC should ignore the fifth byte of the
source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_4 indicates that the MAC should ignore the fourth byte of
the source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_3 indicates that the MAC should ignore the third byte of
the source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_2 indicates that the MAC should ignore the second byte of
the source or destination address when filtering.
EMAC_FILTER_MASK_BYTE_1 indicates that the MAC should ignore the first byte of the
source or destination address when filtering.

Returns:
None.

9.2.1.3 ROM_EMACAddrGet

Gets one of the MAC addresses stored in the Ethernet controller.

Prototype:
void
ROM_EMACAddrGet(uint32_t ui32Base,

uint32_t ui32Index,
uint8_t *pui8MACAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACAddrGet is a function pointer located at ROM_EMACTABLE[1].

Parameters:
ui32Base is the base address of the controller.
ui32Index is the zero-based index of the MAC address to return.

May 14, 2014 101

Ethernet Controller

pui8MACAddr is the pointer to the location in which to store the array of MAC-48 address
octets.

Description:
This function reads the currently programmed MAC address into the pui8MACAddr buffer.
The ui32Index parameter defines which of the hardware’s MAC addresses to return. The
number of MAC addresses supported by the controller may be queried using a call to
ROM_EMACNumAddrGet(). Index 0 refers to the MAC address of the local node. Other indices
are used to hold MAC addresses when filtering incoming packets.

The address is written to the pui8MACAddr array ordered with the first byte to be transmit-
ted in the first array entry. For example, if the address is written in its usual form with the
Organizationally Unique Identifier (OUI) shown first as:

AC-DE-48-00-00-80

the data is returned with 0xAC in the first byte of the array, 0xDE in the second, 0x48 in the
third and so on.

Returns:
None.

9.2.1.4 ROM_EMACAddrSet

Sets the MAC address of the Ethernet controller.

Prototype:
void
ROM_EMACAddrSet(uint32_t ui32Base,

uint32_t ui32Index,
const uint8_t *pui8MACAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACAddrSet is a function pointer located at ROM_EMACTABLE[2].

Parameters:
ui32Base is the base address of the Ethernet controller.
ui32Index is the zero-based index of the MAC address to set.
pui8MACAddr is the pointer to the array of MAC-48 address octets.

Description:
This function programs the IEEE-defined MAC-48 address specified in pui8MACAddr into the
Ethernet controller. This address is used by the Ethernet controller for hardware-level filtering
of incoming Ethernet packets (when promiscuous mode is not enabled). Index 0 is used to
hold the local node’s MAC address which is inserted into all transmitted packets.

The controller may support several Ethernet MAC address slots, each of which may be pro-
grammed independently and used to filter incoming packets. The number of MAC addresses
that the hardware supports may be queried using a call to ROM_EMACNumAddrGet(). The
value of the ui32Index parameter must lie in the range from 0 to (number of MAC addresses -
1) inclusive.

102 May 14, 2014

Tiva TM4C129x ROM User’s Guide

The MAC-48 address is defined as 6 octets, illustrated by the following example address. The
numbers are shown in hexadecimal format.

AC-DE-48-00-00-80

In this representation, the first three octets (AC-DE-48) are the Organizationally Unique Iden-
tifier (OUI). This is a number assigned by the IEEE to an organization that requests a block of
MAC addresses. The last three octets (00-00-80) are a 24-bit number managed by the OUI
owner to uniquely identify a piece of hardware within that organization that is to be connected
to the Ethernet.

In this representation, the octets are transmitted from left to right, with the “AC” octet being
transmitted first and the “80” octet being transmitted last. Within an octet, the bits are transmit-
ted LSB to MSB. For this address, the first bit to be transmitted would be “0”, the LSB of “AC”,
and the last bit to be transmitted would be “1”, the MSB of “80”.

The address passed to this function in the pui8MACAddr array is ordered with the first byte
to be transmitted in the first array entry. For example, the address given above could be
represented using the following array:

uint8_t g_pui8MACAddr[] = { 0xAC, 0xDE, 0x48, 0x00, 0x00, 0x80 };

If the MAC address set by this function is currently enabled, it will remain enabled following this
call. Similarly, any filter configured for the MAC address will remain unaffected by a change in
the address.

Returns:
None.

9.2.1.5 ROM_EMACConfigGet

Returns the Ethernet MAC’s current basic configuration parameters.

Prototype:
void
ROM_EMACConfigGet(uint32_t ui32Base,

uint32_t *pui32Config,
uint32_t *pui32Mode,
uint32_t *pui32RxMaxFrameSize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACConfigGet is a function pointer located at ROM_EMACTABLE[3].

Parameters:
ui32Base is the base address of the Ethernet controller.
pui32Config points to storage that is written with Ethernet MAC configuration.
pui32Mode points to storage that is written with Ethernet MAC mode information.
pui32RxMaxFrameSize points to storage that is written with the maximum receive frame size.

Description:
This function is called to query the basic operating parameters for the MAC and its DMA en-
gines.

May 14, 2014 103

Ethernet Controller

The pui32Config parameter is written with the logical OR of various fields and flags. The first
field describes which MAC address is used during insertion or replacement for all transmitted
frames. Valid options are

EMAC_CONFIG_USE_MACADDR1
EMAC_CONFIG_USE_MACADDR0

The interframe gap between transmitted frames is given using one of the following values:

EMAC_CONFIG_IF_GAP_96BITS
EMAC_CONFIG_IF_GAP_88BITS
EMAC_CONFIG_IF_GAP_80BITS
EMAC_CONFIG_IF_GAP_72BITS
EMAC_CONFIG_IF_GAP_64BITS
EMAC_CONFIG_IF_GAP_56BITS
EMAC_CONFIG_IF_GAP_48BITS
EMAC_CONFIG_IF_GAP_40BITS

The number of bytes of preamble added to the beginning of every transmitted frame is de-
scribed using one of the following values:

EMAC_CONFIG_7BYTE_PREAMBLE
EMAC_CONFIG_5BYTE_PREAMBLE
EMAC_CONFIG_3BYTE_PREAMBLE

The back-off limit determines the range of the random time that the MAC delays after a collision
and before attempting to retransmit a frame. One of the following values provides the currently
selected limit. In each case the retransmission delay in terms of 512 bit time slots, is the lower
of (2 ∗∗ N) and a random number between 0 and the reported backoff-limit.

EMAC_CONFIG_BO_LIMIT_1024
EMAC_CONFIG_BO_LIMIT_256
EMAC_CONFIG_BO_LIMIT_16
EMAC_CONFIG_BO_LIMIT_2

Handling of insertion or replacement of the source address in all transmitted frames is de-
scribed by one of the following fields:

EMAC_CONFIG_SA_INSERT causes the MAC address (0 or 1 depending upon whether
EMAC_CONFIG_USE_MACADDR0 or EMAC_CONFIG_USE_MACADDR1 was speci-
fied) to be inserted into all transmitted frames.
EMAC_CONFIG_SA_REPLACE causes the MAC address to be replaced with the se-
lected address in all transmitted frames.
EMAC_CONFIG_SA_FROM_DESCRIPTOR causes control of source address insertion
or deletion to be controlled by fields in the DMA transmit descriptor, allowing control on a
frame-by-frame basis.

Whether the interface attempts to operate in full- or half-duplex mode is reported by one of the
following flags:

EMAC_CONFIG_FULL_DUPLEX
EMAC_CONFIG_HALF_DUPLEX

The following additional flags may also be included:

104 May 14, 2014

Tiva TM4C129x ROM User’s Guide

EMAC_CONFIG_2K_PACKETS indicates that IEEE802.3as support for 2K packets is en-
abled. When present, the MAC considers all frames up to 2000 bytes in length as nor-
mal packets. When EMAC_CONFIG_JUMBO_ENABLE is not reported, all frames larger
than 2000 bytes are treated as Giant frames. The value of this flag should be ignored if
EMAC_CONFIG_JUMBO_ENABLE is also reported.
EMAC_CONFIG_STRIP_CRC indicates that the 4 byte CRC of all Ethernet type frames is
being stripped and dropped before the frame is forwarded to the application.
EMAC_CONFIG_JABBER_DISABLE indicates that the the jabber timer on the transmitter
is disabled, allowing frames of up to 16384 bytes to be transmitted. If this flag is absent,
the MAC does not allow more than 2048 (or 10240 if EMAC_CONFIG_JUMBO_ENABLE
is reported) bytes to be sent in any one frame.
EMAC_CONFIG_JUMBO_ENABLE indicates that Jumbo Frames of up to 9018 (or 9022
if using VLAN tagging) are enabled.
EMAC_CONFIG_CS_DISABLE indicates that Carrier Sense is disabled during transmis-
sion when operating in half-duplex mode.
EMAC_CONFIG_100MBPS indicates that the MAC is using 100Mbps signaling to com-
municate with the PHY.
EMAC_CONFIG_RX_OWN_DISABLE indicates that reception of transmitted frames is
disabled when operating in half-duplex mode.
EMAC_CONFIG_LOOPBACK indicates that internal loopback is enabled.
EMAC_CONFIG_CHECKSUM_OFFLOAD indicates that IPv4 header checksum checking
and IPv4 or IPv6 TCP, UPD or ICMP payload checksum checking is enabled. The results
of the checksum calculations are reported via status fields in the DMA receive descriptors.
EMAC_CONFIG_RETRY_DISABLE indicates that retransmission is disabled in cases
where half-duplex mode is in use and a collision occurs. This causes the current frame to
be ignored and a frame abort to be reported in the transmit frame status.
EMAC_CONFIG_AUTO_CRC_STRIPPING indicates that the last 4 bytes (frame check
sequence) from all Ether type frames are being stripped before frames are forwarded to
the application.
EMAC_CONFIG_DEFERRAL_CHK_ENABLE indicates that transmit deferral checking is
disabled in half-duplex mode. When enabled, the transmitter will report an error if it is
unable to transmit a frame for more than 24288 bit times (or 155680 bit times in Jumbo
frame mode) due to an active carrier sense signal on the MII.
EMAC_CONFIG_TX_ENABLED indicates that the MAC transmitter is currently enabled.
EMAC_CONFIG_RX_ENABLED indicates that the MAC receiver is currently enabled.

The pui32ModeFlags parameter is written with operating parameters related to the internal
MAC FIFOs. It comprises a logical OR of the following fields. The first reports the transmit
FIFO threshold. Transmission of a frame begins when this amount of data or a full frame exists
in the transmit FIFO. This field should be ignored if EMAC_MODE_TX_STORE_FORWARD is
also reported. One of the following values is reported:

EMAC_MODE_TX_THRESHOLD_16_BYTES
EMAC_MODE_TX_THRESHOLD_24_BYTES
EMAC_MODE_TX_THRESHOLD_32_BYTES
EMAC_MODE_TX_THRESHOLD_40_BYTES
EMAC_MODE_TX_THRESHOLD_64_BYTES
EMAC_MODE_TX_THRESHOLD_128_BYTES
EMAC_MODE_TX_THRESHOLD_192_BYTES
EMAC_MODE_TX_THRESHOLD_256_BYTES

May 14, 2014 105

Ethernet Controller

The second field reports the receive FIFO threshold. DMA transfers of received data begin
either when the receive FIFO contains a full frame or this number of bytes. This field should be
ignored if EMAC_MODE_RX_STORE_FORWARD is included. One of the following values is
reported:

EMAC_MODE_RX_THRESHOLD_64_BYTES
EMAC_MODE_RX_THRESHOLD_32_BYTES
EMAC_MODE_RX_THRESHOLD_96_BYTES
EMAC_MODE_RX_THRESHOLD_128_BYTES

The following additional flags may be included:

EMAC_MODE_KEEP_BAD_CRC indicates that frames with TCP/IP checksum errors are
being forwarded to the application if those frames do not have any errors (including FCS
errors) in the Ethernet framing. In these cases, the frames have errors only in the pay-
load. If this flag is not reported, all frames with any detected error are discarded unless
EMAC_MODE_RX_ERROR_FRAMES is also reported.
EMAC_MODE_RX_STORE_FORWARD indicates that the receive DMA is configured to
read frames from the FIFO only after the complete frame has been written to it. If this
mode is enabled, the receive threshold is ignored.
EMAC_MODE_RX_FLUSH_DISABLE indicates that the flushing of received frames is
disabled in cases where receive descriptors or buffers are unavailable.
EMAC_MODE_TX_STORE_FORWARD indicates that the transmitter is configured to
transmit a frame only after the whole frame has been written to the transmit FIFO. If this
mode is enabled, the transmit threshold is ignored.
EMAC_MODE_RX_ERROR_FRAMES indicates that all frames other than runt error
frames are being forwarded to the receive DMA regardless of any errors detected in the
frames.
EMAC_MODE_RX_UNDERSIZED_FRAMES indicates that undersized frames (frames
shorter than 64 bytes but with no errors) are being forwarded to the application. If this
option is not reported, all undersized frames are dropped by the receiver unless it has
already started transferring them to the receive FIFO due to the receive threshold setting.
EMAC_MODE_OPERATE_2ND_FRAME indicates that the transmit DMA is configured
to operate on a second frame while waiting for the previous frame to be transmitted and
associated status and timestamps to be reported. If absent, the transmit DMA works on a
single frame at any one time, waiting for that frame to be transmitted and its status to be
received before moving on to the next frame.
EMAC_MODE_TX_DMA_ENABLED indicates that the transmit DMA engine is currently
enabled.
EMAC_MODE_RX_DMA_ENABLED indicates that the receive DMA engine is currently
enabled.

The pui32RxMaxFrameSize is written with the currently configured maximum receive packet
size. Packets larger than this will be flagged as being in error.

Returns:
None.

9.2.1.6 ROM_EMACConfigSet

Configures basic Ethernet MAC operation parameters.

106 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_EMACConfigSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32ModeFlags,
uint32_t ui32RxMaxFrameSize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACConfigSet is a function pointer located at ROM_EMACTABLE[4].

Parameters:
ui32Base is the base address of the Ethernet controller.
ui32Config provides various flags and values configuring the MAC.
ui32ModeFlags provides configuration relating to the transmit and receive DMA engines.
ui32RxMaxFrameSize sets the maximum receive frame size above which an error will be

reported.

Description:
This function is called to configure basic operating parameters for the MAC and its DMA en-
gines.

The ui32Config parameter is the logical OR of various fields and flags. The first field determines
which MAC address is used during insertion or replacement for all transmitted frames. Valid
options are

EMAC_CONFIG_USE_MACADDR1 and
EMAC_CONFIG_USE_MACADDR0

The interframe gap between transmitted frames is controlled using one of the following values:

EMAC_CONFIG_IF_GAP_96BITS
EMAC_CONFIG_IF_GAP_88BITS
EMAC_CONFIG_IF_GAP_80BITS
EMAC_CONFIG_IF_GAP_72BITS
EMAC_CONFIG_IF_GAP_64BITS
EMAC_CONFIG_IF_GAP_56BITS
EMAC_CONFIG_IF_GAP_48BITS
EMAC_CONFIG_IF_GAP_40BITS

The number of bytes of preamble added to the beginning of every transmitted frame is selected
using one of the following values:

EMAC_CONFIG_7BYTE_PREAMBLE
EMAC_CONFIG_5BYTE_PREAMBLE
EMAC_CONFIG_3BYTE_PREAMBLE

The back-off limit determines the range of the random time that the MAC delays after a collision
and before attempting to retransmit a frame. One of the following values must be used to select
this limit. In each case, the retransmission delay in terms of 512 bit time slots, will be the lower
of (2 ∗∗ N) and a random number between 0 and the selected backoff-limit.

EMAC_CONFIG_BO_LIMIT_1024

May 14, 2014 107

Ethernet Controller

EMAC_CONFIG_BO_LIMIT_256
EMAC_CONFIG_BO_LIMIT_16
EMAC_CONFIG_BO_LIMIT_2

Control over insertion or replacement of the source address in all transmitted frames is provided
by using one of the following fields:

EMAC_CONFIG_SA_INSERT causes the MAC address (0 or 1 depending upon whether
EMAC_CONFIG_USE_MACADDR0 or EMAC_CONFIG_USE_MACADDR1 was speci-
fied) to be inserted into all transmitted frames.
EMAC_CONFIG_SA_REPLACE causes the MAC address to be replaced with the se-
lected address in all transmitted frames.
EMAC_CONFIG_SA_FROM_DESCRIPTOR causes control of source address insertion
or deletion to be controlled by fields in the DMA transmit descriptor, allowing control on a
frame-by-frame basis.

Whether the interface attempts to operate in full- or half-duplex mode is controlled by one of
the following flags:

EMAC_CONFIG_FULL_DUPLEX
EMAC_CONFIG_HALF_DUPLEX

The following additional flags may also be specified:

EMAC_CONFIG_2K_PACKETS enables IEEE802.3as support for 2K packets. When
specified, the MAC considers all frames up to 2000 bytes in length as nor-
mal packets. When EMAC_CONFIG_JUMBO_ENABLE is not specified, all frames
larger than 2000 bytes are treated as Giant frames. This flag is ignored if
EMAC_CONFIG_JUMBO_ENABLE is specified.
EMAC_CONFIG_STRIP_CRC causes the 4 byte CRC of all Ethernet type frames to be
stripped and dropped before the frame is forwarded to the application.
EMAC_CONFIG_JABBER_DISABLE disables the jabber timer on the transmitter and en-
ables frames of up to 16384 bytes to be transmitted. If this flag is absent, the MAC does
not allow more than 2048 (or 10240 if EMAC_CONFIG_JUMBO_ENABLE is specified)
bytes to be sent in any one frame.
EMAC_CONFIG_JUMBO_ENABLE enables Jumbo Frames, allowing frames of up to
9018 (or 9022 if using VLAN tagging) to be handled without reporting giant frame errors.
EMAC_CONFIG_100MBPS forces the MAC to communicate with the PHY using 100Mbps
signaling. If this option is not specified, the MAC will use 10Mbps signaling. This speed set-
ting is important when using an external RMII PHY where the selected rate must match the
PHY’s setting which may have been made as a result of auto-negotiation. When using the
internal PHY or an external MII PHY, the signaling rate is controlled by the PHY-provided
transmit and receive clocks.
EMAC_CONFIG_CS_DISABLE disables Carrier Sense during transmission when operat-
ing in half-duplex mode.
EMAC_CONFIG_RX_OWN_DISABLE disables reception of transmitted frames when op-
erating in half-duplex mode.
EMAC_CONFIG_LOOPBACK enables internal loopback.
EMAC_CONFIG_CHECKSUM_OFFLOAD enables IPv4 header checksum checking and
IPv4 or IPv6 TCP, UPD or ICMP payload checksum checking. The results of the checksum
calculations are reported via status fields in the DMA receive descriptors.

108 May 14, 2014

Tiva TM4C129x ROM User’s Guide

EMAC_CONFIG_RETRY_DISABLE disables retransmission in cases where half-duplex
mode is in use and a collision occurs. This causes the current frame to be ignored and a
frame abort to be reported in the transmit frame status.
EMAC_CONFIG_AUTO_CRC_STRIPPING strips the last 4 bytes (frame check sequence)
from all Ether type frames before forwarding the frames to the application.
EMAC_CONFIG_DEFERRAL_CHK_ENABLE enables transmit deferral checking in half-
duplex mode. When enabled, the transmitter will report an error if it is unable to transmit a
frame for more than 24288 bit times (or 155680 bit times in Jumbo frame mode) due to an
active carrier sense signal on the MII.

The ui32ModeFlags parameter sets operating parameters related to the internal MAC FIFOs.
It comprises a logical OR of the following fields. The first selects the transmit FIFO threshold.
Transmission of a frame begins when this amount of data or a full frame exists in the transmit
FIFO. This field is ignored if EMAC_MODE_TX_STORE_FORWARD is included. One of the
following must be specified:

EMAC_MODE_TX_THRESHOLD_16_BYTES
EMAC_MODE_TX_THRESHOLD_24_BYTES
EMAC_MODE_TX_THRESHOLD_32_BYTES
EMAC_MODE_TX_THRESHOLD_40_BYTES
EMAC_MODE_TX_THRESHOLD_64_BYTES
EMAC_MODE_TX_THRESHOLD_128_BYTES
EMAC_MODE_TX_THRESHOLD_192_BYTES
EMAC_MODE_TX_THRESHOLD_256_BYTES

The second field controls the receive FIFO threshold. DMA transfers of received data begin
either when the receive FIFO contains a full frame or this number of bytes. This field is ignored
if EMAC_MODE_RX_STORE_FORWARD is included. One of the following must be specified:

EMAC_MODE_RX_THRESHOLD_64_BYTES
EMAC_MODE_RX_THRESHOLD_32_BYTES
EMAC_MODE_RX_THRESHOLD_96_BYTES
EMAC_MODE_RX_THRESHOLD_128_BYTES

The following additional flags may be specified:

EMAC_MODE_KEEP_BAD_CRC causes frames with TCP/IP checksum errors to be for-
warded to the application if those frames do not have any errors (including FCS er-
rors) in the Ethernet framing. In these cases, the frames have errors only in the pay-
load. If this flag is not specified, all frames with any detected error are discarded unless
EMAC_MODE_RX_ERROR_FRAMES is also specified.
EMAC_MODE_RX_STORE_FORWARD causes the receive DMA to read frames from the
FIFO only after the complete frame has been written to it. If this mode is enabled, the
receive threshold is ignored.
EMAC_MODE_RX_FLUSH_DISABLE disables the flushing of received frames in cases
where receive descriptors or buffers are unavailable.
EMAC_MODE_TX_STORE_FORWARD causes the transmitter to start transmitting a
frame only after the whole frame has been written to the transmit FIFO. If this mode is
enabled, the transmit threshold is ignored.
EMAC_MODE_RX_ERROR_FRAMES causes all frames other than runt error frames to
be forwarded to the receive DMA regardless of any errors detected in the frames.

May 14, 2014 109

Ethernet Controller

EMAC_MODE_RX_UNDERSIZED_FRAMES causes undersized frames (frames shorter
than 64 bytes but with no errors) to the application. If this option is not selected, all under-
sized frames are dropped by the receiver unless it has already started transferring them to
the receive FIFO due to the receive threshold setting.
EMAC_MODE_OPERATE_2ND_FRAME enables the transmit DMA to operate on a sec-
ond frame while waiting for the previous frame to be transmitted and associated status and
timestamps to be reported. If absent, the transmit DMA works on a single frame at any one
time, waiting for that frame to be transmitted and its status to be received before moving
on to the next frame.

The ui32RxMaxFrameSize parameter may be used to override the default setting for the maxi-
mum number of bytes that can be received in a frame before that frame is flagged as being in
error. If the parameter is set to 0, the default hardware settings are applied. If non-zero, any
frame received which is longer than the ui32RxMaxFrameSize, regardless of whether the MAC
is configured for normal or Jumbo frame operation, will be flagged as an error.

Returns:
None.

9.2.1.7 ROM_EMACDMAStateGet

Returns the current states of the Ethernet MAC transmit and receive DMA engines.

Prototype:
uint32_t
ROM_EMACDMAStateGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACDMAStateGet is a function pointer located at ROM_EMACTABLE[5].

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to query the current states of the transmit and receive DMA engines.
The return value contains two fields, one providing the transmit state and the other the re-
ceive state. Macros ROM_EMAC_TX_DMA_STATE() and ROM_EMAC_RX_DMA_STATE()
may be used to extract these fields from the returned value. Alternatively, masks
EMAC_DMA_TXSTAT_MASK and EMAC_DMA_RXSTAT_MASK may be used directly to
mask out the individual states from the returned value.

Returns:
Returns the states of the transmit and receive DMA engines. These states are ORed together
into a single word containing one of:

EMAC_DMA_TXSTAT_STOPPED indicating that the transmit engine is stopped.

EMAC_DMA_TXSTAT_RUN_FETCH_DESC indicating that the transmit engine is fetching the
next descriptor.

EMAC_DMA_TXSTAT_RUN_WAIT_STATUS indicating that the transmit engine is waiting for
status from the MAC.

110 May 14, 2014

Tiva TM4C129x ROM User’s Guide

EMAC_DMA_TXSTAT_RUN_READING indicating that the transmit engine is currently trans-
ferring data from memory to the MAC transmit FIFO.

EMAC_DMA_TXSTAT_RUN_CLOSE_DESC indicating that the transmit engine is closing the
descriptor after transmission of the buffer data.

EMAC_DMA_TXSTAT_TS_WRITE indicating that the transmit engine is currently writing
timestamp information to the descriptor.

EMAC_DMA_TXSTAT_SUSPENDED indicating that the transmit engine is suspended due to
the next descriptor being unavailable (owned by the host) or a transmit buffer underflow.

and one of:

EMAC_DMA_RXSTAT_STOPPED indicating that the receive engine is stopped.

EMAC_DMA_RXSTAT_RUN_FETCH_DESC indicating that the receive engine is fetching the
next descriptor.

EMAC_DMA_RXSTAT_RUN_WAIT_PACKET indicating that the receive engine is waiting for
the next packet.

EMAC_DMA_RXSTAT_SUSPENDED indicating that the receive engine is suspended due to
the next descriptor being unavailable.

EMAC_DMA_RXSTAT_RUN_CLOSE_DESC indicating that the receive engine is closing the
descriptor after receiving a buffer of data.

EMAC_DMA_RXSTAT_TS_WRITE indicating that the transmit engine is currently writing
timestamp information to the descriptor.

EMAC_DMA_RXSTAT_RUN_RECEIVING indicating that the receive engine is currently trans-
ferring data from the MAC receive FIFO to memory.

Additionally, a DMA bus error may be signaled using EMAC_DMA_ERROR. If this flag is present,
the source of the error is identified using one of the following values which may be extracted from
the return value using EMAC_DMA_ERR_MASK:

EMAC_DMA_ERR_RX_DATA_WRITE indicates that an error occurred when writing received
data to memory.

EMAC_DMA_ERR_TX_DATA_READ indicates that an error occurred when reading data from
memory for transmission.

EMAC_DMA_ERR_RX_DESC_WRITE indicates that an error occurred when writing to the
receive descriptor.

EMAC_DMA_ERR_TX_DESC_WRITE indicates that an error occurred when writing to the
transmit descriptor.

EMAC_DMA_ERR_RX_DESC_READ indicates that an error occurred when reading the re-
ceive descriptor.

EMAC_DMA_ERR_TX_DESC_READ indicates that an error occurred when reading the
transmit descriptor.

9.2.1.8 ROM_EMACFrameFilterGet

Returns the current Ethernet frame filtering settings.

May 14, 2014 111

Ethernet Controller

Prototype:
uint32_t
ROM_EMACFrameFilterGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACFrameFilterGet is a function pointer located at ROM_EMACTABLE[6].

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be called to retrieve the frame filtering configuration set using a prior call to
ROM_EMACFrameFilterSet().

Returns:
Returns a value comprising the logical OR of various flags indicating the frame filtering options
in use. Possible flags are:

EMAC_FRMFILTER_RX_ALL indicates that the MAC to is configured to pass all received
frames regardless of whether or not they pass any address filter that is configured. The receive
status word in the relevant DMA descriptor is updated to indicate whether the configured filter
passed or failed for the frame.

EMAC_FRMFILTER_VLAN indicates that the MAC is configured to drop any frames which do
not pass the VLAN tag comparison.

EMAC_FRMFILTER_HASH_AND_PERFECT indicates that the MAC is configured to
pass frames if they match either the hash filter or the perfect filter. If this flag
is absent, frames passing based on the result of a single filter, the perfect filter
if EMAC_FRMFILTER_HASH_MULTICAST or EMAC_FRMFILTER_HASH_UNICAST are
clear or the hash filter otherwise.

EMAC_FRMFILTER_SADDR indicates that the MAC is configured to drop received frames
when the source address field in the frame does not match the values programmed into the
enabled SA registers.

EMAC_FRMFILTER_INV_SADDR enables inverse source address filtering. When this option
is specified, frames whose SA does not match the SA registers are marked as passing the
source address filter.

EMAC_FRMFILTER_BROADCAST indicates that the MAC is configured to discard all incom-
ing broadcast frames.

EMAC_FRMFILTER_PASS_MULTICAST indicates that the MAC is configured to pass all in-
coming frames with multicast destinations addresses.

EMAC_FRMFILTER_INV_DADDR indicates that the sense of the destination address filtering
for both unicast and multicast frames is inverted.

EMAC_FRMFILTER_HASH_MULTICAST indicates that destination address filtering of re-
ceived multicast frames is enabled using the hash table. If absent, perfect destination address
filtering is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this
flag indicates that the hash filter should be used for incoming multicast packets along with the
perfect filter.

EMAC_FRMFILTER_HASH_UNICAST indicates that destination address filtering of received
unicast frames is enabled using the hash table. If absent, perfect destination address filtering
is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag

112 May 14, 2014

Tiva TM4C129x ROM User’s Guide

indicates that the hash filter should be used for incoming unicast packets along with the perfect
filter.

EMAC_FRMFILTER_PROMISCUOUS indicates that the MAC is configured to operate in
promiscuous mode where all received frames are passed to the application and the SA and
DA filter status bits of the descriptor receive status word are always cleared.

Control frame filtering configuration is indicated by one of the following values which may be ex-
tracted from the returned value using the mask EMAC_FRMFILTER_PASS_MASK:

EMAC_FRMFILTER_PASS_NO_CTRL prevents any control frame from reaching the applica-
tion.

EMAC_FRMFILTER_PASS_NO_PAUSE passes all control frames other than PAUSE even if
they fail the configured address filter.

EMAC_FRMFILTER_PASS_ALL_CTRL passes all control frames, including PAUSE even if
they fail the configured address filter.

EMAC_FRMFILTER_PASS_ADDR_CTRL passes all control frames only if they pass the con-
figured address filter.

9.2.1.9 ROM_EMACFrameFilterSet

Sets options related to Ethernet frame filtering.

Prototype:
void
ROM_EMACFrameFilterSet(uint32_t ui32Base,

uint32_t ui32FilterOpts)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACFrameFilterSet is a function pointer located at ROM_EMACTABLE[7].

Parameters:
ui32Base is the base address of the controller.
ui32FilterOpts is a logical OR of flags defining the required MAC address filtering options.

Description:
This function allows various filtering options to be defined and allows an application to con-
trol which frames are received based upon various criteria related to the frame source and
destination MAC addresses or VLAN tagging.

The ui32FilterOpts parameter is a logical OR of any of the following flags:

EMAC_FRMFILTER_RX_ALL configures the MAC to pass all received frames regardless
of whether or not they pass any address filter that is configured. The receive status word
in the relevant DMA descriptor is updated to indicate whether the configured filter passed
or failed for the frame.
EMAC_FRMFILTER_VLAN configures the MAC to drop any frames which do not pass the
VLAN tag comparison.

May 14, 2014 113

Ethernet Controller

EMAC_FRMFILTER_HASH_AND_PERFECT configures the MAC to filter frames
based on both any perfect filters set and the hash filter if enabled using
EMAC_FRMFILTER_HASH_UNICAST or EMAC_FRMFILTER_HASH_MULTICAST. In
this case, only of both filters fail will the packet be rejected. If this option is absent, only
one of the filter types is used, as controlled by EMAC_FRMFILTER_HASH_UNICAST and
EMAC_FRMFILTER_HASH_MULTICAST for unicast and multicast frames respectively.
EMAC_FRMFILTER_SADDR configures the MAC to drop received frames when the
source address field in the frame does not match the values programmed into the enabled
SA registers.
EMAC_FRMFILTER_INV_SADDR enables inverse source address filtering. When this
option is specified, frames whose SA does not match the SA registers are marked as
passing the source address filter.
EMAC_FRMFILTER_BROADCAST configures the MAC to discard all incoming broadcast
frames.
EMAC_FRMFILTER_PASS_MULTICAST configures the MAC to pass all incoming frames
with multicast destinations addresses.
EMAC_FRMFILTER_INV_DADDR inverts the sense of the destination address filtering for
both unicast and multicast frames.
EMAC_FRMFILTER_HASH_MULTICAST enables destination address filtering of re-
ceived multicast frames using the hash table. If absent, perfect destination address filtering
is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag
indicates that the hash filter should be used for incoming multicast packets along with the
perfect filter.
EMAC_FRMFILTER_HASH_UNICAST enables destination address filtering of received
unicast frames using the hash table. If absent, perfect destination address filtering is
used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag
indicates that the hash filter should be used for incoming unicast packets along with the
perfect filter.
EMAC_FRMFILTER_PROMISCUOUS configures the MAC to operate in promiscuous
mode where all received frames are passed to the application and the SA and DA filter
status bits of the descriptor receive status word are always cleared.

Control frame filtering may be configured by ORing one of the following values into
ui32FilterOpts:

EMAC_FRMFILTER_PASS_NO_CTRL prevents any control frame from reaching the ap-
plication.
EMAC_FRMFILTER_PASS_NO_PAUSE passes all control frames other than PAUSE
even if they fail the configured address filter.
EMAC_FRMFILTER_PASS_ALL_CTRL passes all control frames, including PAUSE even
if they fail the configured address filter.
EMAC_FRMFILTER_PASS_ADDR_CTRL passes all control frames only if they pass the
configured address filter.

Returns:
None.

9.2.1.10 ROM_EMACHashFilterBitCalculate

Returns the bit number to set in the MAC hash filter corresponding to a given MAC address.

114 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
uint32_t
ROM_EMACHashFilterBitCalculate(uint8_t *pui8MACAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACHashFilterBitCalculate is a function pointer located at
ROM_EMACTABLE[37].

Parameters:
pui8MACAddr points to a buffer containing the 6 byte MAC address whose hash filter bit is to

be determined.

Description:
This function may be used to determine which bit in the MAC address hash filter to set to
describe a given 6 byte MAC address. The returned value is a 6 bit number where bit 5
indicates which of the two hash table words is affected and the bottom 5 bits indicate the bit
number to set within that word. For example, if 0x22 (100010b) is returned, this indicates that
bit 2 of word 1 (ui32HashHi as passed to ROM_EMACHashFilterSet()) must be set to describe
the passed MAC address.

Returns:
Returns the bit number to set in the MAC hash table to describe the passed MAC address.

9.2.1.11 ROM_EMACHashFilterGet

Returns the current MAC address hash filter table.

Prototype:
void
ROM_EMACHashFilterGet(uint32_t ui32Base,

uint32_t *pui32HashHi,
uint32_t *pui32HashLo)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACHashFilterGet is a function pointer located at ROM_EMACTABLE[38].

Parameters:
ui32Base is the base address of the controller.
pui32HashHi points to storage which will be written with the upper 32 bits of the current 64-bit

hash filter table.
pui32HashLo points to storage which will be written with the lower 32 bits of the current 64-bit

hash filter table.

Description:
This function may be used to retrieve the current 64-bit hash filter table from the MAC prior to
making changes and setting the new hash filter via a call to ROM_EMACHashFilterSet().

Hash table filtering allows many different MAC addresses to be filtered simultaneously at the
cost of some false-positive results in the form of packets passing the filter when their MAC

May 14, 2014 115

Ethernet Controller

address was not one of those required. A CRC of the packet source or destination MAC
address is calculated and the bottom 6 bits used as a bit index into the 64-bit hash filter table.
If the bit in the hash table is set, the filter is considered to have passed. If the bit is clear, the filter
fails and the packet is rejected (assuming normal rather than inverse filtering is configured).

Returns:
None.

9.2.1.12 ROM_EMACHashFilterSet

Sets the MAC address hash filter table.

Prototype:
void
ROM_EMACHashFilterSet(uint32_t ui32Base,

uint32_t ui32HashHi,
uint32_t ui32HashLo)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACHashFilterSet is a function pointer located at ROM_EMACTABLE[39].

Parameters:
ui32Base is the base address of the controller.
ui32HashHi is the upper 32 bits of the current 64-bit hash filter table to set.
ui32HashLo is the lower 32 bits of the current 64-bit hash filter table to set.

Description:
This function may be used to set the current 64-bit hash filter table used by the MAC to
filter incoming packets when hash filtering is enabled. Hash filtering is enabled by pass-
ing EMAC_FRMFILTER_HASH_UNICAST and/or EMAC_FRMFILTER_HASH_MULTICAST
in the ui32FilterOpts parameter to ROM_EMACFrameFilterSet(). The current hash filter may
be retrieved by calling ROM_EMACHashFilterGet().

Hash table filtering allows many different MAC addresses to be filtered simultaneously at the
cost of some false-positive results (in the form of packets passing the filter when their MAC
address was not one of those required). A CRC of the packet source or destination MAC
address is calculated and the bottom 6 bits used as a bit index into the 64-bit hash filter table.
If the bit in the hash table is set, the filter is considered to have passed. If the bit is clear, the filter
fails and the packet is rejected (assuming normal rather than inverse filtering is configured).

Returns:
None.

9.2.1.13 ROM_EMACInit

Initializes the Ethernet MAC and sets bus-related DMA parameters.

116 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_EMACInit(uint32_t ui32Base,

uint32_t ui32SysClk,
uint32_t ui32BusConfig,
uint32_t ui32RxBurst,
uint32_t ui32TxBurst,
uint32_t ui32DescSkipSize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACInit is a function pointer located at ROM_EMACTABLE[8].

Parameters:
ui32Base is the base address of the Ethernet controller.
ui32SysClk is the current system clock frequency in Hertz.
ui32BusConfig defines the bus operating mode for the Ethernet MAC DMA controller.
ui32RxBurst is the maximum receive burst size in words.
ui32TxBurst is the maximum transmit burst size in words.
ui32DescSkipSize is the number of 32-bit words to skip between two unchained DMA de-

scriptors. Values in the range 0 to 31 are valid.

Description:
This function sets bus-related parameters for the Ethernet MAC DMA engines. It must
be called after ROM_EMACPHYConfigSet() and called again after any subsequent call to
ROM_EMACPHYConfigSet().

The ui32BusConfig parameter is the logical OR of various fields. The first sets the DMA chan-
nel priority weight:

EMAC_BCONFIG_DMA_PRIO_WEIGHT_1
EMAC_BCONFIG_DMA_PRIO_WEIGHT_2
EMAC_BCONFIG_DMA_PRIO_WEIGHT_3
EMAC_BCONFIG_DMA_PRIO_WEIGHT_4

The second field sets the receive and transmit priorities used when arbitrating between
the Rx and Tx DMA. The priorities are Rx:Tx unless EMAC_BCONFIG_TX_PRIORITY is
also specified in which case they become Tx:Rx. The priority provided here is ignored if
EMAC_BCONFIG_PRIORITY_FIXED is specified.

EMAC_BCONFIG_PRIORITY_1_1
EMAC_BCONFIG_PRIORITY_2_1
EMAC_BCONFIG_PRIORITY_3_1
EMAC_BCONFIG_PRIORITY_4_1

The following additional flags may also be defined:

EMAC_BCONFIG_TX_PRIORITY indicates that the transmit DMA should be higher prior-
ity in all arbitration for the system-side bus. If this is not defined, the receive DMA will have
higher priority.
EMAC_BCONFIG_ADDR_ALIGNED works in tandem with
EMAC_BCONFIG_FIXED_BURST to control address alignment of AHB bursts. When

May 14, 2014 117

Ethernet Controller

both flags are specified, all bursts are aligned to the start address least significant bits.
If EMAC_BCONFIG_FIXED_BURST is not specified, the first burst will be unaligned but
subsequent bursts are aligned to the address.
EMAC_BCONFIG_ALT_DESCRIPTORS indicates that the DMA engine should use the
alternate descriptor format as defined in type tEMACDMADescriptor. If absent, the ba-
sic descriptor type is used. Alternate descriptors are required if using IEEE1588-2008
advanced timestamping, VLAN or TCP/UDP/ICMP CRC insertion features. Note that, for
clarity, emac.h does not contain type definitions for the basic descriptor type. Please see
the part datasheet for information on basic descriptor structures.
EMAC_BCONFIG_PRIORITY_FIXED indicates that a fixed priority scheme
should be employed when arbitrating between the transmit and receive DMA
for system-side bus access. In this case, the receive channel always has pri-
ority unless EMAC_BCONFIG_TX_PRIORITY is set in which case the trans-
mit channel has priority. If EMAC_BCONFIG_PRIORITY_FIXED is not speci-
fied, a weighted round-robin arbitration scheme is used with the weighting de-
fined using EMAC_BCONFIG_PRIORITY_1_1, EMAC_BCONFIG_PRIORITY_2_1,
EMAC_BCONFIG_PRIORITY_3_1 or EMAC_BCONFIG_PRIORITY_4_1, and
EMAC_BCONFIG_TX_PRIORITY.
EMAC_BCONFIG_FIXED_BURST indicates that fixed burst transfers should be used.
EMAC_BCONFIG_MIXED_BURST indicates that the DMA engine should use mixed burst
types depending upon the length of data to be transferred across the system bus.

The ui32RxBurst and ui32TxBurst parameters indicate the maximum number of words that the
relevant DMA should transfer in a single transaction. Valid values are 1, 2, 4, 8, 16 and 32.
Any other value will result in undefined behavior.

The ui32DescSkipSize parameter is used when the descriptor lists are using ring mode (where
descriptors are contiguous in memory with the last descriptor marked with the END_OF_RING
flag) rather than chained mode (where each descriptor includes a field which points to the next
descriptor in the list). In this case, the hardware uses the ui32DescSkipSize to skip past any
application-defined fields after the end the hardware-defined descriptor fields. The parameter
value indicates the number of 32-bit words to skip after the last field of the hardware-defined de-
scriptor to get to the first field of the next descriptor. When using arrays of either the tEMACD-
MADescriptor or tEMACAltDMADescriptor types defined for this driver, ui32DescSkipSize
must be set to 1 to skip the pvNext pointer added to the end of each of these structures. Ap-
plications may modify these structure definitions to include their own application-specific data
and modify ui32DescSkipSize appropriately if desired.

Returns:
None.

9.2.1.14 ROM_EMACIntClear

Clears individual Ethernet MAC interrupt sources.

Prototype:
void
ROM_EMACIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.

118 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACIntClear is a function pointer located at ROM_EMACTABLE[9].

Parameters:
ui32Base is the base address of the Ethernet MAC.
ui32IntFlags is the bit mask of the interrupt sources to be cleared.

Description:
This function disables the indicated Ethernet MAC interrupt sources.

The ui32IntFlags parameter is the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable, disable and clear particular notifi-
cations.
EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.
EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.
EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.
EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.
EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.
EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
ROM_EMACRxDMAPollDemand().
EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.
EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.
EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This happens
when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode) and
causes the transmit process to abort and enter the Stopped state.
EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
ROM_EMACTxDMAPollDemand().
EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are
cleared automatically by the driver if any of their constituent sources are cleared. Applications
do not need to explicitly clear these bits.

Returns:
None.

May 14, 2014 119

Ethernet Controller

9.2.1.15 ROM_EMACIntDisable

Disables individual Ethernet MAC interrupt sources.

Prototype:
void
ROM_EMACIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACIntDisable is a function pointer located at ROM_EMACTABLE[10].

Parameters:
ui32Base is the base address of the Ethernet MAC.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated Ethernet MAC interrupt sources.

The ui32IntFlags parameter is the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable and disable particular notifications.
EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.
EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.
EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.
EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.
EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.
EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
ROM_EMACRxDMAPollDemand().
EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.
EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.
EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This happens
when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode) and
causes the transmit process to abort and enter the Stopped state.
EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
ROM_EMACTxDMAPollDemand().

120 May 14, 2014

Tiva TM4C129x ROM User’s Guide

EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.
EMAC_INT_TIMESTAMP indicates that an interrupt from the timestamp module has
occurred. This precise source of the interrupt can be determined by calling
ROM_EMACTimestampIntStatus() which will also clear this bit.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are
disabled automatically by the driver if none of their constituent sources are enabled. Appli-
cations do not need to explicitly disable these bits.

Note:
Timestamp-related interrupts from the IEEE-1588 module must be disabled independently by
using a call to ROM_EMACTimestampTargetIntDisable().

Returns:
None.

9.2.1.16 ROM_EMACIntEnable

Enables individual Ethernet MAC interrupt sources.

Prototype:
void
ROM_EMACIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACIntEnable is a function pointer located at ROM_EMACTABLE[11].

Parameters:
ui32Base is the base address of the Ethernet MAC.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated Ethernet MAC interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable and disable particular notifications.
EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.
EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.
EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.

May 14, 2014 121

Ethernet Controller

EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.
EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.
EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
ROM_EMACRxDMAPollDemand().
EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.
EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.
EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This happens
when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode) and
causes the transmit process to abort and enter the Stopped state.
EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
ROM_EMACTxDMAPollDemand().
EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are en-
abled automatically by the driver if any of their constituent sources are enabled. Applications
do not need to explicitly enable these bits.

Note:
Timestamp-related interrupts from the IEEE-1588 module must be enabled independently by
using a call to ROM_EMACTimestampTargetIntEnable().

Returns:
None.

9.2.1.17 ROM_EMACIntStatus

Gets the current Ethernet MAC interrupt status.

Prototype:
uint32_t
ROM_EMACIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACIntStatus is a function pointer located at ROM_EMACTABLE[0].

122 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the Ethernet MAC.
bMasked is true to return the masked interrupt status or false to return the unmasked status.

Description:
This function returns the interrupt status for the Ethernet MAC. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status as the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY interrupt has occurred. Software must read the rele-
vant PHY interrupt status register to determine the cause.
EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer of
a packet.
EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the
DMA engine has been disabled. The cause of the error can be determined by calling
ROM_EMACDMAStateGet().
EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully written
from memory into the MAC transmit FIFO.
EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes (of
10240 bytes in Jumbo Frame mode) was received.
EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped state.
EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
ROM_EMACRxDMAPollDemand().
EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow during
transmission. The transmit process is suspended.
EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during reception.
EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This happens when
the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode) and causes the
transmit process to abort and enter the Stopped state.
EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
ROM_EMACTxDMAPollDemand().
EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.
EMAC_INT_NORMAL_INT is a summary interrupt comprising the logical OR of the masked
state of EMAC_INT_TRANSMIT, EMAC_INT_RECEIVE, EMAC_INT_TX_NO_BUFFER and
EMAC_INT_EARLY_RECEIVE.
EMAC_INT_ABNORMAL_INT is a summary interrupt comprising
the logical OR of the masked state of EMAC_INT_TX_STOPPED,
EMAC_INT_TX_JABBER, EMAC_INT_RX_OVERFLOW, EMAC_INT_TX_UNDERFLOW,
EMAC_INT_RX_NO_BUFFER, EMAC_INT_RX_STOPPED, EMAC_INT_RX_WATCHDOG,
EMAC_INT_EARLY_TRANSMIT and EMAC_INT_BUS_ERROR.

May 14, 2014 123

Ethernet Controller

9.2.1.18 ROM_EMACNumAddrGet

Returns the number of MAC addresses supported by the Ethernet controller.

Prototype:
uint32_t
ROM_EMACNumAddrGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACNumAddrGet is a function pointer located at ROM_EMACTABLE[40].

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function may be used to determine the number of MAC addresses that the given controller
supports. MAC address slots may be used when performing perfect (rather than hash table)
filtering of packets.

Returns:
Returns the number of supported MAC addresses.

9.2.1.19 ROM_EMACPHYConfigSet

Selects the Ethernet PHY in use.

Prototype:
void
ROM_EMACPHYConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPHYConfigSet is a function pointer located at ROM_EMACTABLE[12].

Parameters:
ui32Base is the base address of the Ethernet controller.
ui32Config selects the PHY in use and, when using the internal PHY, allows various various

PHY parameters to be configured.

Description:
This function must be called prior to ROM_EMACInit() and ROM_EMACConfigSet() to select
the Ethernet PHY to be used. If the internal PHY is selected, the function also allows config-
uration of various PHY parameters. Note that the Ethernet MAC is reset during this function
call since parameters set here are latched by the hardware only on a MAC reset. The call
sequence to select and configure the PHY, therefore, must be as follows:

// Enable and reset the MAC.
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_EMAC0);
ROM_SysCtlPeripheralReset(SYSCTL_PERIPH_EMAC0);

124 May 14, 2014

Tiva TM4C129x ROM User’s Guide

if(<using internal PHY>)
{

// Enable and reset the internal PHY.
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_EPHY0);
ROM_SysCtlPeripheralReset(SYSCTL_PERIPH_EPHY0);

}

// Ensure the MAC is completed its reset.
while(!ROM_SysCtlPeripheralReady(SYSCTL_PERIPH_EMAC0))
{
}

// Set the PHY type and configuration options.
ROM_EMACPHYConfigSet(EMAC0_BASE, <config>);

// Initialize and configure the MAC.
ROM_EMACInit(EMAC0_BASE, <system clock rate>, <bus config>,

<Rx burst size>, <Tx burst size>, <desc skip>);
ROM_EMACConfigSet(EMAC0_BASE, <parameters>);

The ui32Config parameter must specify one of the following values:

EMAC_PHY_TYPE_INTERNAL selects the internal Ethernet PHY.
EMAC_PHY_TYPE_EXTERNAL_MII selects an external PHY connected via the MII inter-
face.
EMAC_PHY_TYPE_EXTERNAL_RMII selects an external PHY connected via the RMII
interface.

If EMAC_PHY_TYPE_INTERNAL is selected, the following flags may be ORed into ui32Config
to control various PHY features and modes. These are ignored if an external PHY is selected.

EMAC_PHY_INT_NIB_TXERR_DET_DIS disables odd nibble transmit error detection
(sets the default value of PHY register 0x0A, bit 1).
EMAC_PHY_INT_RX_ER_DURING_IDLE enables receive error detection during idle
(sets the default value of PHY register 0x0A, bit 2).
EMAC_PHY_INT_ISOLATE_MII_LLOSS ties the MII outputs low if no link is established
in 100B-T and full duplex modes(sets the default value of PHY register 0x0A, bit 3).
EMAC_PHY_INT_LINK_LOSS_RECOVERY enables link loss recovery (sets the default
value of PHY register 0x09, bit 7).
EMAC_PHY_INT_TDRRUN enables execution of the TDR procedure after a link down
event (sets the default value of PHY register 0x09, bit 8).
EMAC_PHY_INT_LD_ON_RX_ERR_COUNT enables link down if the receiver error count
reaches 32 within a 10uS interval (sets the default value of PHY register 0x0B bit 3).
EMAC_PHY_INT_LD_ON_MTL3_ERR_COUNT enables link down if the MTL3 error
count reaches 20 in a 10uS interval (sets the default value of PHY register 0x0B bit 2).
EMAC_PHY_INT_LD_ON_LOW_SNR enables link down if the low SNR threshold is
crossed 20 times in a 10uS interval (sets the default value of PHY register 0x0B bit 1).
EMAC_PHY_INT_LD_ON_SIGNAL_ENERGY enables link down if energy detector indi-
cates Energy Loss (sets the default value of PHY register 0x0B bit 0).
EMAC_PHY_INT_POLARITY_SWAP inverts the polarity on both TPTD and TPRD pairs
(sets the default value of PHY register 0x0B bit 5).
EMAC_PHY_INT_MDI_SWAP swaps the MDI pairs putting receive on the TPTD pair and
transmit on TPRD (sets the default value of PHY register 0x0B bit 6).
EMAC_PHY_INT_ROBUST_MDIX enables robust auto MDI-X resolution (sets the default
value of PHY register 0x09 bit 5).

May 14, 2014 125

Ethernet Controller

EMAC_PHY_INT_FAST_MDIX enables fast auto-MDI/MDIX resolution (sets the default
value of PHY register 0x09 bit 6).
EMAC_PHY_INT_MDIX_EN enables auto-MDI/MDIX crossover (sets the default value of
PHY register 0x09 bit 14).
EMAC_PHY_INT_FAST_RXDV_DETECT enables fast RXDV detection (set the default
value of PHY register 0x09 bit 1).
EMAC_PHY_INT_FAST_L_UP_DETECT enables fast link-up time during parallel detec-
tion (sets the default value of PHY register 0x0A bit 6)
EMAC_PHY_INT_EXT_FULL_DUPLEX forces full-duplex while working with a link part-
ner in forced 100B-TX (sets the default value of PHY register 0x0A bit 5).
EMAC_PHY_INT_FAST_AN_80_50_35 enables fast auto-negotiation using break link,
link fail inhibit and wait timers set to 80, 50 and 35 respectively (sets the default value
of PHY register 9 bits [4:2] to 3b100).
EMAC_PHY_INT_FAST_AN_120_75_50 enables fast auto-negotiation using break link,
link fail inhibit and wait timers set to 120, 75 and 50 respectively (sets the default value of
PHY register 9 bits [4:2] to 3b101).
EMAC_PHY_INT_FAST_AN_140_150_100 enables fast auto-negotiation using break
link, link fail inhibit and wait timers set to 140, 150 and 100 respectively (sets the default
value of PHY register 9 bits [4:2] to 3b110).
EMAC_PHY_FORCE_10B_T_HALF_DUPLEX disables auto-negotiation and forces op-
eration in 10Base-T, half duplex mode (sets the default value of PHY register 9 bits [13:11]
to 3b000).
EMAC_PHY_FORCE_10B_T_FULL_DUPLEX disables auto-negotiation and forces oper-
ation in 10Base-T, full duplex mode (sets the default value of PHY register 9 bits [13:11] to
3b001).
EMAC_PHY_FORCE_100B_T_HALF_DUPLEX disables auto-negotiation and forces op-
eration in 100Base-T, half duplex mode (sets the default value of PHY register 9 bits [13:11]
to 3b010).
EMAC_PHY_FORCE_100B_T_FULL_DUPLEX disables auto-negotiation and forces op-
eration in 100Base-T, full duplex mode (sets the default value of PHY register 9 bits [13:11]
to 3b011).
EMAC_PHY_AN_10B_T_HALF_DUPLEX enables auto-negotiation and advertises
10Base-T, half duplex mode (sets the default value of PHY register 9 bits [13:11] to 3b100).
EMAC_PHY_AN_10B_T_FULL_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex modes (sets the default value of PHY register 9 bits [13:11] to
3b101).
EMAC_PHY_AN_100B_T_HALF_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex, and 100Base-T half duplex modes (sets the default value
of PHY register 9 bits [13:11] to 3b110).
EMAC_PHY_AN_100B_T_FULL_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex, and 100Base-T half or full duplex modes (sets the default
value of PHY register 9 bits [13:11] to 3b111).
EMAC_PHY_INT_HOLD prevents the PHY from transmitting energy on the line.

As a side-effect of this function, the Ethernet MAC is reset so any previous MAC configuration
is lost.

Returns:
None.

126 May 14, 2014

Tiva TM4C129x ROM User’s Guide

9.2.1.20 ROM_EMACPHYExtendedRead

Reads from an extended PHY register.

Prototype:
uint16_t
ROM_EMACPHYExtendedRead(uint32_t ui32Base,

uint8_t ui8PhyAddr,
uint16_t ui16RegAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPHYExtendedRead is a function pointer located at ROM_EMACTABLE[41].

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to access.
ui16RegAddr is the address of the PHY extended register to be accessed.

Description:
When using the internal PHY or when connected to an external PHY supporting extended
registers, this function returns the contents of the extended PHY register specified by
ui16RegAddr .

Returns:
Returns the 16-bit value read from the PHY.

9.2.1.21 ROM_EMACPHYExtendedWrite

Writes a value to an extended PHY register.

Prototype:
void
ROM_EMACPHYExtendedWrite(uint32_t ui32Base,

uint8_t ui8PhyAddr,
uint16_t ui16RegAddr,
uint16_t ui16Value)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPHYExtendedWrite is a function pointer located at ROM_EMACTABLE[42].

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to access.
ui16RegAddr is the address of the PHY extended register to be accessed.
ui16Value is the value to write to the register.

May 14, 2014 127

Ethernet Controller

Description:
When using the internal PHY or when connected to an external PHY supporting extended
registers, this function allows a value to be written to the extended PHY register specified by
ui16RegAddr .

Returns:
None.

9.2.1.22 ROM_EMACPHYPowerOff

Powers off the Ethernet PHY.

Prototype:
void
ROM_EMACPHYPowerOff(uint32_t ui32Base,

uint8_t ui8PhyAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPHYPowerOff is a function pointer located at ROM_EMACTABLE[13].

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to power down.

Description:
This function powers off the Ethernet PHY, reducing the current consumption of the device.
While in the powered off state, the Ethernet controller is unable to connect to the Ethernet.

Returns:
None.

9.2.1.23 ROM_EMACPHYPowerOn

Powers on the Ethernet PHY.

Prototype:
void
ROM_EMACPHYPowerOn(uint32_t ui32Base,

uint8_t ui8PhyAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPHYPowerOn is a function pointer located at ROM_EMACTABLE[14].

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to power up.

128 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function powers on the Ethernet PHY, enabling it return to normal operation. By default,
the PHY is powered on, so this function is only called if ROM_EMACPHYPowerOff() has pre-
viously been called.

Returns:
None.

9.2.1.24 ROM_EMACPHYRead

Reads from a PHY register.

Prototype:
uint16_t
ROM_EMACPHYRead(uint32_t ui32Base,

uint8_t ui8PhyAddr,
uint8_t ui8RegAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPHYRead is a function pointer located at ROM_EMACTABLE[15].

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to access.
ui8RegAddr is the address of the PHY register to be accessed.

Description:
This function returns the contents of the PHY register specified by ui8RegAddr .

Returns:
Returns the 16-bit value read from the PHY.

9.2.1.25 ROM_EMACPHYWrite

Writes to the PHY register.

Prototype:
void
ROM_EMACPHYWrite(uint32_t ui32Base,

uint8_t ui8PhyAddr,
uint8_t ui8RegAddr,
uint16_t ui16Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPHYWrite is a function pointer located at ROM_EMACTABLE[16].

May 14, 2014 129

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.
ui8PhyAddr is the physical address of the PHY to access.
ui8RegAddr is the address of the PHY register to be accessed.
ui16Data is the data to be written to the PHY register.

Description:
This function writes the ui16Data value to the PHY register specified by ui8RegAddr .

Returns:
None.

9.2.1.26 ROM_EMACPowerManagementControlGet

Queries the current Ethernet MAC remote wake-up configuration.

Prototype:
uint32_t
ROM_EMACPowerManagementControlGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPowerManagementControlGet is a function pointer located at
ROM_EMACTABLE[43].

Parameters:
ui32Base is the base address of the controller.

Description:
This function allows the MAC’s remote wake-up settings to be queried. These settings deter-
mine which types of frame should trigger a remote wake-up event

Returns:
Returns a logical OR of the following flags:

EMAC_PMT_GLOBAL_UNICAST_ENABLE indicates that the MAC wakes up when any uni-
cast frame matching the MAC destination address filter is received.

EMAC_PMT_WAKEUP_PACKET_ENABLE indicates that the MAC wakes up when
any received frame matches the remote wake-up filter configured via a call to
ROM_EMACRemoteWakeupFrameFilterSet().

EMAC_PMT_MAGIC_PACKET_ENABLE indicates that the MAC wakes up when a standard
Wake-on-LAN "magic packet" is received. The magic packet contains 6 bytes of 0xFF followed
immediately by 16 repetitions of the destination MAC address.

EMAC_PMT_POWER_DOWN indicates that the MAC is currently in power-down mode and
is waiting for an incoming frame matching the remote wake-up frames as described by other
returned flags and via the remote wake-up filter.

130 May 14, 2014

Tiva TM4C129x ROM User’s Guide

9.2.1.27 ROM_EMACPowerManagementControlSet

Sets the Ethernet MAC remote wake-up configuration.

Prototype:
void
ROM_EMACPowerManagementControlSet(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPowerManagementControlSet is a function pointer located at
ROM_EMACTABLE[44].

Parameters:
ui32Base is the base address of the controller.
ui32Flags defines which types of frame should trigger a remote wake-up and allows the MAC

to be put into power-down mode.

Description:
This function allows the MAC’s remote wake-up features to be configured, determining which
types of frame should trigger a wake-up event and allowing an application to place the MAC in
power-down mode. In this mode, the MAC will ignore all received frames until one matching
a configured remote wake-up frame is received, at which point the MAC will automatically exit
power-down mode and continue to receive frames.

The ui32Flags parameter is a logical OR of the following flags:

EMAC_PMT_GLOBAL_UNICAST_ENABLE instructs the MAC to wake up when any uni-
cast frame matching the MAC destination address filter is received.
EMAC_PMT_WAKEUP_PACKET_ENABLE instructs the MAC to wake up when
any received frame matches the remote wake-up filter configured via a call to
ROM_EMACRemoteWakeupFrameFilterSet().
EMAC_PMT_MAGIC_PACKET_ENABLE instructs the MAC to wake up when a standard
Wake-on-LAN "magic packet" is received. The magic packet contains 6 bytes of 0xFF
followed immediately by 16 repetitions of the destination MAC address.
EMAC_PMT_POWER_DOWN instructs the MAC to enter power-down mode and wait for
an incoming frame matching the remote wake-up frames as described by other flags and
via the remote wake-up filter. This flag should only set set if at least one other flag is
specified to configure a wake-up frame type.

When the MAC is in power-down mode, software may exit the mode by calling this func-
tion with the EMAC_PMT_POWER_DOWN flag absent from ui32Flags. If a configured
wake-up frame is received while in power-down mode, the EMAC_INT_POWER_MGMNT
interrupt will be signaled and this may be cleared by reading the status using
ROM_EMACPowerManagementStatusGet().

Note:
While it is possible to gate the clock to the MAC while it is in power-down mode, doing so
will prevent the reading of the registers required to determine the interrupt status and will also
prevent power-down mode from exiting via another call to this function.

Returns:
None.

May 14, 2014 131

Ethernet Controller

9.2.1.28 ROM_EMACPowerManagementStatusGet

Queries the current Ethernet MAC remote wake-up status.

Prototype:
uint32_t
ROM_EMACPowerManagementStatusGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACPowerManagementStatusGet is a function pointer located at
ROM_EMACTABLE[45].

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns information on the remote wake-up state of the Ethernet MAC. If the MAC
has been woken up since the last call, the returned value indicates the type of received frame
which caused the MAC to exit power-down state.

Returns:
Returns a logical OR of the following flags:

EMAC_PMT_POWER_DOWN indicates that the MAC is currently in power-down mode.

EMAC_PMT_WAKEUP_PACKET_RECEIVED indicates that the MAC exited power-down
mode due to a remote wake-up frame being received. This function call clears this flag.

EMAC_PMT_MAGIC_PACKET_RECEIVED indicates that the MAC exited power-down mode
due to a wake-on-LAN magic packet being received. This function call clears this flag.

9.2.1.29 ROM_EMACRemoteWakeUpFrameFilterGet

Returns the current remote wake-up frame filter configuration.

Prototype:
void
ROM_EMACRemoteWakeUpFrameFilterGet(uint32_t ui32Base,

tEMACWakeUpFrameFilter *pFilter)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRemoteWakeUpFrameFilterGet is a function pointer located at
ROM_EMACTABLE[46].

Parameters:
ui32Base is the base address of the controller.
pFilter points to the structure which is written with the current remote wake-up frame filter

information.

132 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function may be used to read the current wake-up frame filter settings. The data returned
by the function describes wake-up frames in terms of a CRC calculated on up to 31 payload
bytes in the frame. The actual bytes used in the CRC calculation are defined by means of a bit
mask where a “1” indicates that a byte in the frame should contribute to the CRC calculation
and a “0” indicates that the byte should be skipped, and an offset from the start of the frame to
payload byte which represents the first byte in the 31-byte CRC-checked sequence.

The pFilter parameter points to storage which is written with a structure containing the infor-
mation defining the frame filters. This structure contains the following fields, each of which is
replicated 4 times, once for each possible wake-up frame:

pui32ByteMask defines whether a given byte in the chosen 31-byte sequence within the
frame should contribute to the CRC calculation or not. A 1 indicates that the byte should
contribute to the calculation, a 0 causes the byte to be skipped.
pui8Command contains flags defining whether this filter is enabled and, if so,
whether it refers to unicast or multicast packets. Valid values are one of
EMAC_RWU_FILTER_MULTICAST or EMAC_RWU_FILTER_UNICAST ORed with one
of EMAC_RWU_FILTER_ENABLE or EMAC_RWU_FILTER_DISABLE.
pui8Offset defines the zero-based index of the byte within the frame at which CRC check-
ing defined by pui32ByteMask will begin. Alternatively, this value can be thought of as the
number of bytes in the that the MAC will skip before accumulating the CRC based on the
pattern in pui32ByteMask.
pui16CRC provides the value of the calculated CRC for a valid remote wake-up frame. If
the incoming frame is processed according to the filter values provided and the final CRC
calculation equals this value, the frame is considered to be a valid remote wake-up frame.

Note that this filter uses CRC16 rather than CRC32 as used in frame checksums.

Returns:
None.

9.2.1.30 ROM_EMACRemoteWakeUpFrameFilterSet

Sets values defining up to four frames use to trigger a remote wake-up.

Prototype:
void
ROM_EMACRemoteWakeUpFrameFilterSet(uint32_t ui32Base,

const tEMACWakeUpFrameFilter

*pFilter)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRemoteWakeUpFrameFilterSet is a function pointer located at
ROM_EMACTABLE[47].

Parameters:
ui32Base is the base address of the controller.
pFilter points to the structure containing remote wake-up frame filter information.

May 14, 2014 133

Ethernet Controller

Description:
This function may be used to define up to four different frames which are considered by the
Ethernet MAC to be remote wake-up signals. The data passed to the function describes a
wake-up frame in terms of a CRC calculated on up to 31 payload bytes in the frame. The
actual bytes used in the CRC calculation are defined by means of a bit mask where a “1”
indicates that a byte in the frame should contribute to the CRC calculation and a “0” indicates
that the byte should be skipped, and an offset from the start of the frame to payload byte which
represents the first byte in the 31-byte CRC-checked sequence.

The pFilter parameter points to a structure containing the information necessary to set up the
filters. This structure contains the following fields, each of which is replicated 4 times, once for
each possible wake-up frame:

pui32ByteMask defines whether a given byte in the chosen 31-byte sequence within the
frame should contribute to the CRC calculation or not. A 1 indicates that the byte should
contribute to the calculation, a 0 causes the byte to be skipped.
pui8Command contains flags defining whether this filter is enabled and, if so,
whether it refers to unicast or multicast packets. Valid values are one of
EMAC_RWU_FILTER_MULTICAST or EMAC_RWU_FILTER_UNICAST ORed with one
of EMAC_RWU_FILTER_ENABLE or EMAC_RWU_FILTER_DISABLE.
pui8Offset defines the zero-based index of the byte within the frame at which CRC check-
ing defined by pui32ByteMask will begin. Alternatively, this value can be thought of as the
number of bytes in the that the MAC will skip before accumulating the CRC based on the
pattern in pui32ByteMask.
pui16CRC provides the value of the calculated CRC for a valid remote wake-up frame. If
the incoming frame is processed according to the filter values provided and the final CRC
calculation equals this value, the frame is considered to be a valid remote wake-up frame.

Note that this filter uses CRC16 rather than CRC32 as used in frame checksums. The required
CRC uses a direct algorithm with polynomial 0x8005, initial seed value 0xFFFF, no final XOR
and reversed data order. CRCs for use in this function may be determined using the online
calculator found at http://www.zorc.breitbandkatze.de/crc.html.

Returns:
None.

9.2.1.31 ROM_EMACReset

Resets the Ethernet MAC.

Prototype:
void
ROM_EMACReset(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACReset is a function pointer located at ROM_EMACTABLE[17].

Parameters:
ui32Base is the base address of the Ethernet controller.

134 May 14, 2014

http://www.zorc.breitbandkatze.de/crc.html.

Tiva TM4C129x ROM User’s Guide

Description:
This function performs a reset of the Ethernet MAC, resets all logic and sets all registers to
their default values. The function returns only once the hardware indicates that the reset has
completed.

Note:
To ensure that the reset completes, the selected PHY clock must be enabled when this function
is called. If the PHY clock is absent, this function will hang.

Returns:
None.

9.2.1.32 ROM_EMACRxDisable

Disables the Ethernet controller receiver.

Prototype:
void
ROM_EMACRxDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRxDisable is a function pointer located at ROM_EMACTABLE[18].

Parameters:
ui32Base is the base address of the controller.

Description:
When terminating operations on the Ethernet interface, this function should be called. This
function disables the receiver.

Returns:
None.

9.2.1.33 ROM_EMACRxDMACurrentBufferGet

Returns the current DMA receive buffer pointer.

Prototype:
uint8_t *
ROM_EMACRxDMACurrentBufferGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRxDMACurrentBufferGet is a function pointer located at ROM_EMACTABLE[19].

Parameters:
ui32Base is the base address of the controller.

May 14, 2014 135

Ethernet Controller

Description:
This function may be called to determine which buffer the receive DMA engine is currently
writing to.

Returns:
Returns the receive buffer address currently being written by the DMA engine.

9.2.1.34 ROM_EMACRxDMACurrentDescriptorGet

Returns the current DMA receive descriptor pointer.

Prototype:
tEMACDMADescriptor *
ROM_EMACRxDMACurrentDescriptorGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRxDMACurrentDescriptorGet is a function pointer located at
ROM_EMACTABLE[20].

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the current Ethernet receive descriptor read by the DMA.

Returns:
Returns a pointer to the start of the current receive DMA descriptor.

9.2.1.35 ROM_EMACRxDMADescriptorListGet

Returns a pointer to the start of the DMA receive descriptor list.

Prototype:
tEMACDMADescriptor *
ROM_EMACRxDMADescriptorListGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRxDMADescriptorListGet is a function pointer located at
ROM_EMACTABLE[21].

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the head of the Ethernet MAC’s receive DMA de-
scriptor list. This value will correspond to the pointer originally set using a call to
ROM_EMACRxDMADescriptorListSet().

136 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
Returns a pointer to the start of the DMA receive descriptor list.

9.2.1.36 ROM_EMACRxDMADescriptorListSet

Sets the DMA receive descriptor list pointer.

Prototype:
void
ROM_EMACRxDMADescriptorListSet(uint32_t ui32Base,

tEMACDMADescriptor *pDescriptor)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRxDMADescriptorListSet is a function pointer located at
ROM_EMACTABLE[22].

Parameters:
ui32Base is the base address of the controller.
pDescriptor points to the first DMA descriptor in the list to be passed to the receive DMA

engine.

Description:
This function sets the Ethernet MAC’s receive DMA descriptor list pointer. The pDescriptor
pointer must point to one or more descriptor structures.

When multiple descriptors are provided, they can be either chained or unchained.
Chained descriptors are indicated by setting the flag DES0_TX_CTRL_CHAINED or
DES1_RX_CTRL_CHAINED bits in the relevant word of the transmit or receive descriptor.
If this bit is clear, unchained descriptors are assumed.

Chained descriptors use a link pointer in each descriptor to point to the next descriptor in the
chain.

Unchained descriptors are assumed to be contiguous in memory with a consistent offset be-
tween the start of one descriptor and the next. If unchained descriptors are used, the pvLink
field in the descriptor becomes available to store a second buffer pointer, allowing each de-
scriptor to point to two buffers rather than one. In this case, the ui32DescSkipSize parameter
to ROM_EMACInit() must previously have been set to the number of words between the end
of one descriptor and the start of the next. This value must be 0 in cases where a packed array
of tEMACDMADescriptor structures is used. If the application wishes to add new state fields
to the end of the descriptor structure, the skip size should be set to accommodate the newly
sized structure.

Applications are responsible for initializing all descriptor fields appropriately before passing the
descriptor list to the hardware.

Returns:
None.

May 14, 2014 137

Ethernet Controller

9.2.1.37 ROM_EMACRxDMAPollDemand

Orders the MAC DMA controller to attempt to acquire the next receive descriptor.

Prototype:
void
ROM_EMACRxDMAPollDemand(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRxDMAPollDemand is a function pointer located at ROM_EMACTABLE[23].

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function must be called to restart the receiver if it has been suspended due to the current
receive DMA descriptor being owned by the host. Once the application reads any data from the
descriptor and marks it as being owned by the MAC DMA, this function will cause the hardware
to attempt to acquire the descriptor before writing the next received packet into its buffer(s).

Returns:
None.

9.2.1.38 ROM_EMACRxEnable

Enables the Ethernet controller receiver.

Prototype:
void
ROM_EMACRxEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRxEnable is a function pointer located at ROM_EMACTABLE[24].

Parameters:
ui32Base is the base address of the controller.

Description:
When starting operations on the Ethernet interface, this function should be called to enable the
receiver after all configuration has been completed.

Returns:
None.

9.2.1.39 ROM_EMACRxWatchdogTimerSet

Sets the receive interrupt watchdog timer period.

138 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_EMACRxWatchdogTimerSet(uint32_t ui32Base,

uint8_t ui8Timeout)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACRxWatchdogTimerSet is a function pointer located at ROM_EMACTABLE[25].

Parameters:
ui32Base is the base address of the Ethernet controller.
ui8Timeout is the desired timeout expressed as a number of 256 system clock periods.

Description:
This function configures the receive interrupt watchdog timer. The uiTimeout parameter
specifies the number of 256 system clock periods that will elapse before the timer ex-
pires. In cases where the DMA has transferred a frame using a descriptor which has
DES1_RX_CTRL_DISABLE_INT set, the watchdog will cause a receive interrupt to be trig-
gered when it times out. The watchdog timer is reset whenever a packet is transferred to
memory using a DMA descriptor which does not disable the receive interrupt.

To disable the receive interrupt watchdog function, set ui8Timeout to 0.

Returns:
None.

9.2.1.40 ROM_EMACStatusGet

Returns the current Ethernet MAC status.

Prototype:
uint32_t
ROM_EMACStatusGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACStatusGet is a function pointer located at ROM_EMACTABLE[26].

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function returns information on the current status of all the main modules in the MAC
transmit and receive data paths.

Returns:
Returns the current MAC status as a logical OR of any of the following flags:

EMAC_STATUS_TX_NOT_EMPTY

EMAC_STATUS_TX_WRITING_FIFO

EMAC_STATUS_TX_PAUSED

May 14, 2014 139

Ethernet Controller

EMAC_STATUS_MAC_NOT_IDLE

EMAC_STATUS_RWC_ACTIVE

EMAC_STATUS_RPE_ACTIVE

The transmit frame controller status will be one of the following. This can be extracted from the
returned value by ANDing with EMAC_STATUS_TFC_STATE_MASK:

EMAC_STATUS_TFC_STATE_IDLE

EMAC_STATUS_TFC_STATE_WAITING

EMAC_STATUS_TFC_STATE_PAUSING

EMAC_STATUS_TFC_STATE_WRITING

The transmit FIFO read controller status will be one of the following. This can be extracted from the
returned value by ANDing with EMAC_STATUS_TRC_STATE_MASK:

EMAC_STATUS_TRC_STATE_IDLE

EMAC_STATUS_TRC_STATE_READING

EMAC_STATUS_TRC_STATE_WAITING

EMAC_STATUS_TRC_STATE_STATUS

The current receive FIFO level will be one of the following. This can be extracted from the returned
value by ANDing with EMAC_STATUS_RX_FIFO_LEVEL_MASK:

EMAC_STATUS_RX_FIFO_EMPTY indicating that the FIFO is empty.

EMAC_STATUS_RX_FIFO_BELOW indicating that the FIFO fill level is below the flow-control
deactivate threshold.

EMAC_STATUS_RX_FIFO_ABOVE indicating that the FIFO fill level is above the flow=control
activate threshold.

EMAC_STATUS_RX_FIFO_FULL indicating that the FIFO is full.

The current receive FIFO state will be one of the following. This can be extracted from the returned
value by ANDing with EMAC_STATUS_RX_FIFO_STATE_MASK:

EMAC_STATUS_RX_FIFO_IDLE

EMAC_STATUS_RX_FIFO_READING

EMAC_STATUS_RX_FIFO_STATUS

EMAC_STATUS_RX_FIFO_FLUSHING

9.2.1.41 ROM_EMACTimestampAddendSet

Adjusts the system time update rate when using the fine correction method.

Prototype:
void
ROM_EMACTimestampAddendSet(uint32_t ui32Base,

uint32_t ui32Increment)

140 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampAddendSet is a function pointer located at ROM_EMACTABLE[48].

Parameters:
ui32Base is the base address of the controller.
ui32Increment is the number to add to the accumulator register on each tick of the 25MHz

main oscillator.

Description:
This function is used to control the rate of update of the system time when in fine update mode.
Fine correction mode is selected if EMAC_TS_UPDATE_FINE is supplied in the ui32Config
parameter passed to a previous call to ROM_EMACTimestampConfigSet(). Fine update mode
is typically used when synchronizing the local clock to the IEEE-1588 master clock. The sub-
second counter is incremented by the number passed to ROM_EMACTimestampConfigSet()
in teh ui32SubSecondInc parameter each time a 32-bit accumulator register generates a carry.
The accumulator register is incremented by the "addend" value on each main oscillator tick
and this addend value is modified to allow fine control over the rate of change of the timestamp
counter. The addend value is calculated using the ratio of the main oscillator clock rate and
the desired IEEE-1588 clock rate and the ui32SubSecondInc value is set to correspond to the
desired IEEE-1588 clock rate.

As an example, using digital rollover mode and a 25MHz main oscillator clock with
a desired IEEE-1588 clock accuracy of 12.5MHz, and having made a previous call to
ROM_EMACTimestampConfigSet() with ui32SubSecondInc set to the 12.5MHz clock period
of 80nS and, the initial ui32Increment value would be set to 0x80000000 to generate a carry
on every second main oscillator tick. Because the system time updates each time the accu-
mulator overflows, small changes in the ui32Increment value can be used to very finely control
the system time rate.

Returns:
None.

See also:
ROM_EMACTimestampConfigSet()

9.2.1.42 ROM_EMACTimestampConfigGet

Returns the current IEEE1588 timestamping configuration.

Prototype:
uint32_t
ROM_EMACTimestampConfigGet(uint32_t ui32Base,

uint32_t *pui32SubSecondInc)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampConfigGet is a function pointer located at ROM_EMACTABLE[49].

Parameters:
ui32Base is the base address of the controller.

May 14, 2014 141

Ethernet Controller

pui32SubSecondInc points to storage which is written with the current subsecond increment
value for the IEEE-1588 clock.

Description:
This function may be used to retreive the current MAC timestamping configuration.

See also:
ROM_EMACTimestampConfigSet()

Returns:
Returns the current timestamping configuration as a logical OR of the following flags:

EMAC_TS_PTP_VERSION_2 indicates that the MAC is processing PTP version 2 messages.
If this flag is absent, PTP version 1 messages are expected.
EMAC_TS_DIGITAL_ROLLOVER causes the clock’s subsecond value to roll over at
0x3BA9C9FF (999999999 decimal). In this mode, it can be considered as a nanosecond
counter with each digit representing 1nS. If this flag is absent, the subsecond value rolls over
at 0x7FFFFFFF effectively counting increments of 0.465nS.
EMAC_TS_MAC_FILTER_ENABLE indicates that incoming PTP messages are filtered using
any of the configured MAC addresses. Messages with a destination address that has been
programmed into the MAC address filter will be passed, others will be discarded. If this flag is
absent, the MAC address is ignored
EMAC_TS_UPDATE_FINE indicates that the fine update method which causes the IEEE-
1588 clock to advance by the the value returned in the ∗pui32SubSecondInc parameter each
time a carry is generated from the addend accumulator register. If this flag is absent, the
coarse update method is in use and the clock is advanced by the ∗pui32SubSecondInc value
on each system clock tick.
EMAC_TS_SYNC_ONLY indicates that timestamps are only generated for SYNC messages.
EMAC_TS_DELAYREQ_ONLY indicates that timestamps are only generated for Delay_Req
messages.
EMAC_TS_ALL indicates that timestamps are generated for all IEEE-1588 messages.
EMAC_TS_SYNC_PDREQ_PDRESP timestamps only SYNC, Pdelay_Req and Pdelay_Resp
messages.
EMAC_TS_DREQ_PDREQ_PDRESP indicates that timestamps are only generated for De-
lay_Req, Pdelay_Req and Pdelay_Resp messages.
EMAC_TS_SYNC_DELAYREQ indicates that timestamps are only generated for Delay_Req
messages.
EMAC_TS_PDREQ_PDRESP indicates that timestamps are only generated for Pdelay_Req
and Pdelay_Resp messages.
EMAC_TS_PROCESS_IPV4_UDP indicates that PTP packets encapsulated in UDP over
IPv4 packets are being processed. If absent, the MAC ignores these frames.
EMAC_TS_PROCESS_IPV6_UDP indicates that PTP packets encapsulated in UDP over
IPv6 packets are being processed. If absent, the MAC ignores these frames.
EMAC_TS_PROCESS_ETHERNET indicates that PTP packets encapsulated directly in Eth-
ernet frames are being processd. If absent, the MAC ignores these frames.
EMAC_TS_ALL_RX_FRAMES indicates that timestamping is enabled for all frames received
by the MAC, regardless of type.

If EMAC_TS_ALL_RX_FRAMES and none of the options specifying subsets of PTP packets to
timestamp are set, the MAC is configured to timestamp SYNC, Follow_Up, Delay_Req and De-
lay_Resp messages only.

142 May 14, 2014

Tiva TM4C129x ROM User’s Guide

9.2.1.43 ROM_EMACTimestampConfigSet

Configures the Ethernet MAC’s IEEE-1588 timestamping options.

Prototype:
void
ROM_EMACTimestampConfigSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32SubSecondInc)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampConfigSet is a function pointer located at ROM_EMACTABLE[50].

Parameters:
ui32Base is the base address of the controller.
ui32Config contains flags selecting particular configuration options.
ui32SubSecondInc is the number that the IEEE-1588 subsecond clock should increment on

each tick.

Description:
This function is used to configure the operation of the Ethernet MAC’s internal timestamping
clock. This clock is used to timestamp incoming and outgoing packets and as an accurate
system time reference when IEEE-1588 Precision Time Protocol is in use.

The ui32Config parameter contains a collection of flags selecting the desired options. Valid
flags are:

One of the following to determine whether IEEE-1588 version 1 or version 2 packet format is
to be processed.

EMAC_TS_PTP_VERSION_2
EMAC_TS_PTP_VERSION_1

One or other of the following to determine how the IEEE-1588 clock’s subsecond value should
be interpreted and handled.

EMAC_TS_DIGITAL_ROLLOVER causes the clock’s subsecond value to roll over at
0x3BA9C9FF (999999999 decimal). In this mode, it can be considered as a nanosec-
ond counter with each digit representing 1nS.
EMAC_TS_BINARY_ROLLOVER causes the clock’s subsecond value to roll over at
0x7FFFFFFF. In this mode, the subsecond value counts 0.465nS periods.

One of the following to enable or disable MAC address filtering. When enabled, PTP frames are
filtered unless the destination MAC address matches any of the currently programmed MAC
addresses.

EMAC_TS_MAC_FILTER_ENABLE
EMAC_TS_MAC_FILTER_DISABLE

One of the following to determine how the clock is updated.

EMAC_TS_UPDATE_COARSE causes the IEEE-1588 clock to advance by the value sup-
plied in the ui32SubSecondInc parameter on each main oscillator clock cycle.

May 14, 2014 143

Ethernet Controller

EMAC_TS_UPDATE_FINE selects the fine update method which causes the IEEE-1588
clock to advance by the the value supplied in the ui32SubSecondInc parameter each time
a carry is generated from the addend accumulator register.

One of the following determines which IEEE-1588 messages are timestamped:

EMAC_TS_SYNC_FOLLOW_DREQ_DRESP timestamps SYNC, Follow_Up, Delay_Req
and Delay_Resp messages.
EMAC_TS_SYNC_ONLY timestamps only SYNC messages.
EMAC_TS_DELAYREQ_ONLY timestamps only Delay_Req messages.
EMAC_TS_ALL timestamps all IEEE-1588 messages.
EMAC_TS_SYNC_PDREQ_PDRESP timestamps only SYNC, Pdelay_Req and Pde-
lay_Resp messages.
EMAC_TS_DREQ_PDREQ_PDRESP timestamps only Delay_Req, Pdelay_Req and
Pdelay_Resp messages.
EMAC_TS_SYNC_DELAYREQ timestamps only Delay_Req messages.
EMAC_TS_PDREQ_PDRESP timestamps only Pdelay_Req and Pdelay_Resp mes-
sages.

Optional, additional flags are:

EMAC_TS_PROCESS_IPV4_UDP processes PTP packets encapsulated in UDP over
IPv4 packets. If absent, the MAC ignores these frames.
EMAC_TS_PROCESS_IPV6_UDP processes PTP packets encapsulated in UDP over
IPv6 packets. If absent, the MAC ignores these frames.
EMAC_TS_PROCESS_ETHERNET processes PTP packets encapsulated directly in Eth-
ernet frames. If absent, the MAC ignores these frames.
EMAC_TS_ALL_RX_FRAMES enables timestamping for all frames received by the MAC,
regardless of type.

The ui32SubSecondInc controls the rate at which the timestamp clock’s subsecond count
increments. Its meaning depends upon which of EMAC_TS_DIGITAL_ROLLOVER
or EMAC_TS_BINARY_ROLLOVER and EMAC_TS_UPDATE_FINE or
EMAC_TS_UPDATE_COARSE was included in ui32Config.

The timestamp second counter is incremented each time the subsecond counter rolls over. In
digital rollover mode, the subsecond counter acts as a simple 31-bit counter, rolling over to 0 af-
ter reaching 0x7FFFFFFF. In this case, each lsb of the subsecond counter represents 0.465nS
(assuming that we maintain the definition of 1 second resolution for the seconds counter).
When binary rollover mode is selected, the subsecond counter acts as a nanosecond counter
and rolls over to 0 after reaching 999,999,999 making each lsb represent 1 nanosecond.

In coarse update mode, the timestamp subsecond counter is incremented by
ui32SubSecondInc on each main oscillator clock tick. Setting ui32SubSecondInc to the
main oscillator clock period in either 1nS or 0.465nS units will ensure that the time stamp,
read as seconds and subseconds, increments at the same rate as the main oscillator clock.
For example, if the main oscillator is 25MHz, ui32SubSecondInc would be set to 40 if digital
rollover mode was selected or (40 / 0.465) = 86 in binary rollover mode.

In fine update mode, the subsecond increment value must be set according to the desired
accuracy of the recovered IEEE-1588 clock which must be lower than the system clock rate.
Fine update mode is typically used when synchronizing the local clock to the IEEE-1588 master
clock. The subsecond counter is incremented by ui32SubSecondInc counts each time a 32-
bit accumulator register generates a carry. The accumulator register is incremented by the

144 May 14, 2014

Tiva TM4C129x ROM User’s Guide

"addend" value on each main oscillator tick and this addend value is modified to allow fine
control over the rate of change of the timestamp counter. The addend value is calculated
using the ratio of the main oscillator clock rate and the desired IEEE-1588 clock rate and the
ui32SubSecondInc value is set to correspond to the desired IEEE-1588 clock rate. As an
example, using digital rollover mode and a 25MHz main oscillator clock with a desired IEEE-
1588 clock accuracy of 12.5MHz, we would set ui32SubSecondInc to the 12.5MHz clock period
of 80nS and set the initial addend value to 0x80000000 to generate a carry on every second
system clock.

See also:
ROM_EMACTimestampAddendSet()

Returns:
None.

9.2.1.44 ROM_EMACTimestampDisable

Disables packet timestamping and stops the system clock.

Prototype:
void
ROM_EMACTimestampDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampDisable is a function pointer located at ROM_EMACTABLE[51].

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to stop the system clock used to timestamp Ethernet frames and to
disable timestamping.

Returns:
None.

9.2.1.45 ROM_EMACTimestampEnable

Enables packet timestamping and starts the system clock running.

Prototype:
void
ROM_EMACTimestampEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampEnable is a function pointer located at ROM_EMACTABLE[52].

May 14, 2014 145

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to enable the system clock used to timestamp Ethernet frames and
to enable that timestamping.

Returns:
None.

9.2.1.46 ROM_EMACTimestampIntStatus

Reads the status of the Ethernet system time interrupt.

Prototype:
uint32_t
ROM_EMACTimestampIntStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampIntStatus is a function pointer located at ROM_EMACTABLE[53].

Parameters:
ui32Base is the base address of the controller.

Description:
When an Ethernet interrupt occurs and EMAC_INT_TIMESTAMP is reported by
ROM_EMACIntStatus(), this function must be called to read and clear the timer interrupt status.

Returns:
The return value is the logical OR of the values EMAC_TS_INT_TS_SEC_OVERFLOW and
EMAC_TS_INT_TARGET_REACHED.

EMAC_TS_INT_TS_SEC_OVERFLOW indicates that the second counter in the hardware
timer has rolled over.

EMAC_TS_INT_TARGET_REACHED indicates that the system time incremented past
the value set in an earlier call to ROM_EMACTimestampTargetSet(). When this oc-
curs, a new target time may be set and the interrupt re-enabled using calls to
ROM_EMACTimestampTargetSet() and ROM_EMACTimestampTargetIntEnable().

9.2.1.47 ROM_EMACTimestampPPSCommand

Sends a command to control the PPS output from the Ethernet MAC.

Prototype:
void
ROM_EMACTimestampPPSCommand(uint32_t ui32Base,

uint8_t ui8Cmd)

146 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampPPSCommand is a function pointer located at ROM_EMACTABLE[54].

Parameters:
ui32Base is the base address of the controller.
ui8Cmd identifies the command to be sent.

Description:
This function may be used to send a command to the MAC PPS (Pulse Per Second) con-
troller when it is operating in command mode. Command mode is selected by calling
ROM_EMACTimestampPPSCommandModeSet(). Valid commands are as follow:

EMAC_PPS_COMMAND_NONE indicates no command.
EMAC_PPS_COMMAND_START_SINGLE indicates that a single high pulse should be
generate when the system time reaches the current target time.
EMAC_PPS_COMMAND_START_TRAIN indicates that a train of pulses should be
started when the system time reaches the current target time.
EMAC_PPS_COMMAND_CANCEL_START cancels any pending start command if the
system time has not yet reached the programmed target time.
EMAC_PPS_COMMAND_STOP_AT_TIME indicates that the current pulse train should
be stopped when the system time reaches the current target time.
EMAC_PPS_COMMAND_STOP_NOW indicates that the current pulse train should be
stopped immediately.
EMAC_PPS_COMMAND_CANCEL_STOP cancels any pending stop command if the
system time has not yet reached the programmed target time.

In all cases, the width of the pulses generated is governed by the ui32Width parameter passed
to ROM_EMACTimestampPPSPeriodSet(). If a command starts a train of pulses, the period of
the pulses is governed by the ui32Period parameter passed to the same function. Target times
associated with PPS commands are set by calling ROM_EMACTimestampTargetSet().

Returns:
None.

9.2.1.48 ROM_EMACTimestampPPSCommandModeSet

Configures the Ethernet MAC PPS output in command mode.

Prototype:
void
ROM_EMACTimestampPPSCommandModeSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampPPSCommandModeSet is a function pointer located at
ROM_EMACTABLE[55].

May 14, 2014 147

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.
ui32Config determines how the system target time is used.

Description:
The simple mode of operation offered by the PPS (Pulse Per Second) engine may be too
restrictive for some applications. The second mode, however, allows complex pulse trains to
be generated using commands that tell the engine to send individual pulses or start and stop
trains if pulses. In this mode, the pulse width and period may be set arbitrarily based upon ticks
of the clock used to update the system time. Commands are triggered at specific times using
the target time last set using a call to ROM_EMACTimestampTargetSet().

The ui32Config parameter may be used to control whether the target time is used to trigger
commands only or can also generate an interrupt to the CPU. Valid values are:

EMAC_PPS_TARGET_INT configures the target time to only raise an interrupt and not to
trigger any pending PPS command.
EMAC_PPS_TARGET_PPS configures the target time to trigger a pending PPS command
but not raise an interrupt.
EMAC_PPS_TARGET_BOTH configures the target time to trigger any pending PPS com-
mand and also raise an interrupt.

To use command mode, an application must call this function to enable the mode, then call:

ROM_EMACTimestampPPSPeriodSet() to set the desired pulse width and period then
ROM_EMACTimestampTargetSet() to set the time at which the next command will be ex-
ecuted, and finally
ROM_EMACTimestampPPSCommand() to send a command to cause the pulse or pulse
train to be started at the required time.

Returns:
None.

9.2.1.49 ROM_EMACTimestampPPSPeriodSet

Sets the period and width of the pulses on the Ethernet MAC PPS output.

Prototype:
void
ROM_EMACTimestampPPSPeriodSet(uint32_t ui32Base,

uint32_t ui32Period,
uint32_t ui32Width)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampPPSPeriodSet is a function pointer located at ROM_EMACTABLE[56].

Parameters:
ui32Base is the base address of the controller.
ui32Period is the period of the PPS output expressed in terms of system time update ticks.
ui32Width is the width of the high portion of the PPS output expressed in terms of system

time update ticks.

148 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function may be used to control the period and duty cycle of the signal output on the
Ethernet MAC PPS pin when the PPS generator is operating in command mode and a com-
mand to send one or more pulses has been executed. Command mode is selected by calling
ROM_EMACTimestampPPSCommandModeSet().

In simple mode the PPS output signal frequency is controlled by the ui32FreqConfig parameter
passed to ROM_EMACTimestampPPSSimpleModeSet().

The ui32Period and ui32Width parameters are expressed in terms of system time update
ticks. When the system time is operating in coarse update mode, each tick is equivalent
to the system clock. In fine update mode, a tick occurs every time the 32-bit system time
accumulator overflows and this, in turn, is determined by the value passed to the function
ROM_EMACTimestampAddendSet(). Regardless of the tick source, each tick will increment
the actual system time, queried using ROM_EMACTimestampSysTimeGet() by the subsecond
increment value passed in the ui32SubSecondInc to ROM_EMACTimestampConfigSet().

Returns:
None.

9.2.1.50 ROM_EMACTimestampPPSSimpleModeSet

Configures the Ethernet MAC PPS output in simple mode.

Prototype:
void
ROM_EMACTimestampPPSSimpleModeSet(uint32_t ui32Base,

uint32_t ui32FreqConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampPPSSimpleModeSet is a function pointer located at
ROM_EMACTABLE[57].

Parameters:
ui32Base is the base address of the controller.
ui32FreqConfig determines the frequency of the output generated on the PPS pin.

Description:
This function configures the Ethernet MAC PPS (Pulse Per Second) engine to operate
in its simple mode which allows the generation of a few, fixed frequencies and pulse
widths on the PPS pin. If more complex pulse train generation is required, the MAC
also provides a command-based PPS control mode which may be selected by calling
ROM_EMACTimestampPPSCommandModeSet().

The ui32FreqConfig parameter may take one of the following values:

EMAC_PPS_SINGLE_PULSE generates a single high pulse on the PPS output once per
second. The pulse width is the same as the system clock period.
EMAC_PPS_1HZ generates a 1Hz signal on the PPS output. This option is not available
if the system time subsecond counter is currently configured to operate in binary rollover
mode.

May 14, 2014 149

Ethernet Controller

EMAC_PPS_2HZ, EMAC_PPS_4HZ, EMAC_PPS_8HZ, EMAC_PPS_16HZ,
EMAC_PPS_32HZ, EMAC_PPS_64HZ, EMAC_PPS_128HZ, EMAC_PPS_256HZ,
EMAC_PPS_512HZ, EMAC_PPS_1024HZ, EMAC_PPS_2048HZ, EMAC_PPS_4096HZ,
EMAC_PPS_8192HZ, EMAC_PPS_16384HZ generate the requested frequency on the
PPS output in both binary and digital rollover modes.
EMAC_PPS_32768HZ generates a 32KHz signal on the PPS output. This option is not
available if the system time subsecond counter is currently configured to operate in digital
rollover mode.

Except when EMAC_PPS_SINGLE_PULSE is specified, the signal generated on PPS will
have a duty cycle of 50% when binary rollover mode is used for the system time subsecond
count. In digital mode, the output frequency averages the value requested and is resynchro-
nized each second. For example, if EMAC_PPS_4HZ is selected in digital rollover mode, the
output will generate three clocks with 50 percent duty cycle and 268ms period followed by a
fourth clock of 195mS period, 134mS low and 61mS high.

Returns:
None.

9.2.1.51 ROM_EMACTimestampSysTimeGet

Gets the current system time.

Prototype:
void
ROM_EMACTimestampSysTimeGet(uint32_t ui32Base,

uint32_t *pui32Seconds,
uint32_t *pui32SubSeconds)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampSysTimeGet is a function pointer located at ROM_EMACTABLE[58].

Parameters:
ui32Base is the base address of the controller.
pui32Seconds points to storage for the current seconds value.
pui32SubSeconds points to storage for the current subseconds value.

Description:
This function may be used to get the current system time.

The meaning of ui32SubSeconds depends upon the current system time con-
figuration. If ROM_EMACTimestampConfigSet() was previously called with the
EMAC_TS_DIGITAL_ROLLOVER configuration option, each bit in the ui32SubSeconds value
represents 1nS. If EMAC_TS_BINARY_ROLLOVER was specified instead, a ui32SubSeconds
bit represents 0.46nS.

Returns:
None.

150 May 14, 2014

Tiva TM4C129x ROM User’s Guide

9.2.1.52 ROM_EMACTimestampSysTimeSet

Sets the current system time.

Prototype:
void
ROM_EMACTimestampSysTimeSet(uint32_t ui32Base,

uint32_t ui32Seconds,
uint32_t ui32SubSeconds)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampSysTimeSet is a function pointer located at ROM_EMACTABLE[59].

Parameters:
ui32Base is the base address of the controller.
ui32Seconds is the seconds value of the new system clock setting.
ui32SubSeconds is the subseconds value of the new system clock setting.

Description:
This function may be used to set the current system time. The system clock us set to the value
passed in the ui32Seconds and ui32SubSeconds parameters.

The meaning of ui32SubSeconds depends upon the current system time con-
figuration. If ROM_EMACTimestampConfigSet() was previously called with the
EMAC_TS_DIGITAL_ROLLOVER configuration option, each bit in the ui32SubSeconds value
represents 1nS. If EMAC_TS_BINARY_ROLLOVER was specified instead, a ui32SubSeconds
bit represents 0.46nS.

Returns:
None.

9.2.1.53 ROM_EMACTimestampSysTimeUpdate

Adjusts the current system time upwards or downwards by a given amount.

Prototype:
void
ROM_EMACTimestampSysTimeUpdate(uint32_t ui32Base,

uint32_t ui32Seconds,
uint32_t ui32SubSeconds,
bool bInc)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampSysTimeUpdate is a function pointer located at
ROM_EMACTABLE[60].

Parameters:
ui32Base is the base address of the controller.

May 14, 2014 151

Ethernet Controller

ui32Seconds is the seconds value of the time update to apply.
ui32SubSeconds is the subseconds value of the time update to apply.
bInc defines the direction of the update.

Description:
This function may be used to adjust the current system time either upwards or downwards by
a given amount. The size of the adjustment is given by the ui32Seconds and ui32SubSeconds
parameter and the direction by the bInc parameter. When bInc is true, the system time is
advanced by the interval given. When it is false, the time is retarded by the interval.

The meaning of ui32SubSeconds depends upon the current system time con-
figuration. If ROM_EMACTimestampConfigSet() was previously called with the
EMAC_TS_DIGITAL_ROLLOVER configuration option, each bit in the subsecond value
represents 1nS. If EMAC_TS_BINARY_ROLLOVER was specified instead, a subsecond bit
represents 0.46nS.

Returns:
None.

9.2.1.54 ROM_EMACTimestampTargetIntDisable

Disables the Ethernet system time interrupt.

Prototype:
void
ROM_EMACTimestampTargetIntDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampTargetIntDisable is a function pointer located at
ROM_EMACTABLE[61].

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to disable any pending Ethernet system time in-
terrupt previously scheduled using calls to ROM_EMACTimestampTargetSet() and
ROM_EMACTimestampTargetIntEnable().

Returns:
None.

9.2.1.55 ROM_EMACTimestampTargetIntEnable

Enables the Ethernet system time interrupt.

Prototype:
void
ROM_EMACTimestampTargetIntEnable(uint32_t ui32Base)

152 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampTargetIntEnable is a function pointer located at
ROM_EMACTABLE[62].

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used after ROM_EMACTimestampTargetSet() to schedule an interrupt
at some future time. The time reference for the function is the IEEE1588 time as returned
by ROM_EMACTimestampSysTimeGet(). To generate an interrupt when the system time ex-
ceeds a given value, call this function to set the desired time then EMACTimestampTarget-
IntEnable() to enable the interrupt. When the system time increments past the target time, an
Ethernet interrupt with status EMAC_INT_TIMESTAMP will be generated.

Returns:
None.

9.2.1.56 ROM_EMACTimestampTargetSet

Sets the target system time at which the next Ethernet timer interrupt will fire.

Prototype:
void
ROM_EMACTimestampTargetSet(uint32_t ui32Base,

uint32_t ui32Seconds,
uint32_t ui32SubSeconds)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTimestampTargetSet is a function pointer located at ROM_EMACTABLE[63].

Parameters:
ui32Base is the base address of the controller.
ui32Seconds is the second value of the desired target time.
ui32SubSeconds is the subseconds value of the desired target time.

Description:
This function may be used to schedule an interrupt at some future time. The time reference
for the function is the IEEE1588 time as returned by ROM_EMACTimestampSysTimeGet().
To generate an interrupt when the system time exceeds a given value, call this function to
set the desired time then ROM_EMACTimestampTargetIntEnable() to enable the interrupt.
When the system time increments past the target time, an Ethernet interrupt with status
EMAC_INT_TIMESTAMP will be generated.

The accuracy of the interrupt timing depends upon the Ethernet timer update frequency and
the subsecond increment value currently in use. The interrupt is generated on the first timer
increment which causes the system time to be greater than or equal to the target time set.

Returns:
None.

May 14, 2014 153

Ethernet Controller

9.2.1.57 ROM_EMACTxDisable

Disables the Ethernet controller transmitter.

Prototype:
void
ROM_EMACTxDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTxDisable is a function pointer located at ROM_EMACTABLE[27].

Parameters:
ui32Base is the base address of the controller.

Description:
When terminating operations on the Ethernet interface, this function should be called. This
function disables the transmitter.

Returns:
None.

9.2.1.58 ROM_EMACTxDMACurrentBufferGet

Returns the current DMA transmit buffer pointer.

Prototype:
uint8_t *
ROM_EMACTxDMACurrentBufferGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTxDMACurrentBufferGet is a function pointer located at ROM_EMACTABLE[28].

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be called to determine which buffer the transmit DMA engine is currently
reading from.

Returns:
Returns the transmit buffer address currently being read by the DMA engine.

9.2.1.59 ROM_EMACTxDMACurrentDescriptorGet

Returns the current DMA transmit descriptor pointer.

Prototype:
tEMACDMADescriptor *
ROM_EMACTxDMACurrentDescriptorGet(uint32_t ui32Base)

154 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTxDMACurrentDescriptorGet is a function pointer located at
ROM_EMACTABLE[29].

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the current Ethernet transmit descriptor read by the DMA.

Returns:
Returns a pointer to the start of the current transmit DMA descriptor.

9.2.1.60 ROM_EMACTxDMADescriptorListGet

Returns a pointer to the start of the DMA transmit descriptor list.

Prototype:
tEMACDMADescriptor *
ROM_EMACTxDMADescriptorListGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTxDMADescriptorListGet is a function pointer located at
ROM_EMACTABLE[30].

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the head of the Ethernet MAC’s transmit DMA de-
scriptor list. This value will correspond to the pointer originally set using a call to
ROM_EMACTxDMADescriptorListSet().

Returns:
Returns a pointer to the start of the DMA transmit descriptor list.

9.2.1.61 ROM_EMACTxDMADescriptorListSet

Sets the DMA transmit descriptor list pointer.

Prototype:
void
ROM_EMACTxDMADescriptorListSet(uint32_t ui32Base,

tEMACDMADescriptor *pDescriptor)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].

May 14, 2014 155

Ethernet Controller

ROM_EMACTxDMADescriptorListSet is a function pointer located at
ROM_EMACTABLE[31].

Parameters:
ui32Base is the base address of the controller.
pDescriptor points to the first DMA descriptor in the list to be passed to the transmit DMA

engine.

Description:
This function sets the Ethernet MAC’s transmit DMA descriptor list pointer. The pDescriptor
pointer must point to one or more descriptor structures.

When multiple descriptors are provided, they can be either chained or unchained.
Chained descriptors are indicated by setting the flag DES0_TX_CTRL_CHAINED or
DES1_RX_CTRL_CHAINED bits in the relevant word of the transmit or receive descriptor.
If this bit is clear, unchained descriptors are assumed.

Chained descriptors use a link pointer in each descriptor to point to the next descriptor in the
chain.

Unchained descriptors are assumed to be contiguous in memory with a consistent offset be-
tween the start of one descriptor and the next. If unchained descriptors are used, the pvLink
field in the descriptor becomes available to store a second buffer pointer, allowing each de-
scriptor to point to two buffers rather than one. In this case, the ui32DescSkipSize parameter
to ROM_EMACInit() must previously have been set to the number of words between the end
of one descriptor and the start of the next. This value must be 0 in cases where a packed array
of tEMACDMADescriptor structures is used. If the application wishes to add new state fields
to the end of the descriptor structure, the skip size should be set to accommodate the newly
sized structure.

Applications are responsible for initializing all descriptor fields appropriately before passing the
descriptor list to the hardware.

Returns:
None.

9.2.1.62 ROM_EMACTxDMAPollDemand

Orders the MAC DMA controller to attempt to acquire the next transmit descriptor.

Prototype:
void
ROM_EMACTxDMAPollDemand(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTxDMAPollDemand is a function pointer located at ROM_EMACTABLE[32].

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function must be called to restart the transmitter if it has been suspended due to the
current transmit DMA descriptor being owned by the host. Once the application writes new

156 May 14, 2014

Tiva TM4C129x ROM User’s Guide

values to the descriptor and marks it as being owned by the MAC DMA, this function will cause
the hardware to attempt to acquire the descriptor and start transmission of the new data.

Returns:
None.

9.2.1.63 ROM_EMACTxEnable

Enables the Ethernet controller transmitter.

Prototype:
void
ROM_EMACTxEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTxEnable is a function pointer located at ROM_EMACTABLE[33].

Parameters:
ui32Base is the base address of the controller.

Description:
When starting operations on the Ethernet interface, this function should be called to enable the
transmitter after all configuration has been completed.

Returns:
None.

9.2.1.64 ROM_EMACTxFlush

Flushes the Ethernet controller transmit FIFO.

Prototype:
void
ROM_EMACTxFlush(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACTxFlush is a function pointer located at ROM_EMACTABLE[34].

Parameters:
ui32Base is the base address of the controller.

Description:
This function will flush any data currently held in the Ethernet transmit FIFO. Data which has
already been passed to the MAC for transmission will be transmitted possibly resulting in a
transmit underflow or runt frame transmission.

Returns:
None.

May 14, 2014 157

Ethernet Controller

9.2.1.65 ROM_EMACVLANHashFilterBitCalculate

Returns the bit number to set in the VLAN hash filter corresponding to a given tag.

Prototype:
uint32_t
ROM_EMACVLANHashFilterBitCalculate(uint16_t ui16Tag)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACVLANHashFilterBitCalculate is a function pointer located at
ROM_EMACTABLE[64].

Parameters:
ui16Tag is the VLAN tag whose hash filter bit number is to be determined.

Description:
This function may be used to determine which bit in the VLAN hash filter to set to describe a
given 12- or 16-bit VLAN tag. The returned value is a 4 bit value indicating the bit number to
set within the 16-bit VLAN hash filter. For example, if 0x02 is returned, this indicates that bit 2
of the hash filter must be set to pass the supplied VLAN tag.

Returns:
Returns the bit number to set in the VLAN hash filter to describe the passed tag.

9.2.1.66 ROM_EMACVLANHashFilterGet

Returns the current value of the hash filter used to control reception of VLAN-tagged frames.

Prototype:
uint32_t
ROM_EMACVLANHashFilterGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACVLANHashFilterGet is a function pointer located at ROM_EMACTABLE[65].

Parameters:
ui32Base is the base address of the controller.

Description:
This function allows the current VLAN tag hash filter value to be returned. Ad-
ditional VLAN tags may be added to this filter by setting the appropriate bits,
determined by calling ROM_EMACVLANHashFilterBitCalculate(), and then calling
ROM_EMACVLANHashFilterSet() to set the new filter value.

Returns:
Returns the current value of the VLAN hash filter.

158 May 14, 2014

Tiva TM4C129x ROM User’s Guide

9.2.1.67 ROM_EMACVLANHashFilterSet

Sets the hash filter used to control reception of VLAN-tagged frames.

Prototype:
void
ROM_EMACVLANHashFilterSet(uint32_t ui32Base,

uint32_t ui32Hash)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACVLANHashFilterSet is a function pointer located at ROM_EMACTABLE[66].

Parameters:
ui32Base is the base address of the controller.
ui32Hash is the hash filter value to set.

Description:
This function allows the VLAG tag hash filter to be set. By using hash filtering, several different
VLAN tags can be filtered very easily at the cost of some false positive results which must be
removed by software.

The hash filter value passed in ui32Hash may be built up by calling
ROM_EMACVLANHashFilterBitCalculate() for each VLAN tag which is to pass the filter
and then setting each of the bits whose numbers are returned by that function. Care must
be taken when clearing bits in the hash filter due to the fact that there is a many-to-one
correspondence between VLAN tags and hash filter bits.

Returns:
None

9.2.1.68 ROM_EMACVLANRxConfigGet

Returns the currently-set options related to reception of VLAN-tagged frames.

Prototype:
uint32_t
ROM_EMACVLANRxConfigGet(uint32_t ui32Base,

uint16_t *pui16Tag)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACVLANRxConfigGet is a function pointer located at ROM_EMACTABLE[67].

Parameters:
ui32Base is the base address of the controller.
pui16Tag points to storage which is written with the currently configured VLAN tag used for

perfect filtering.

Description:
This function returns information on how the receiver is currently handling IEEE 802.1Q VLAN-
tagged frames.

May 14, 2014 159

Ethernet Controller

See also:
ROM_EMACVLANRxConfigSet()

Returns:
Returns flags defining how VLAN-tagged frames are handled. The value will be a logical OR
of the following flags:

EMAC_VLAN_RX_HASH_ENABLE indicates that hash filtering is enabled for VLAN tags. If
this flag is absent, perfect filtering using the tag returned in ∗pui16Tag is performed.

EMAC_VLAN_RX_SVLAN_ENABLE indicates that the receiver recognizes S-VLAN (Type =
0x88A8) frames as valid VLAN-tagged frames. If absent, only frames with type 0x8100 are
considered valid VLAN frames.

EMAC_VLAN_RX_INVERSE_MATCH indicates that the receiver passes all VLAN frames
whose tags do not match the ∗pui16Tag value. If this flag is absent, only tagged frames
matching ∗pui16Tag are passed.

EMAC_VLAN_RX_12BIT_TAG indicates that the receiver is comparing only the bottom 12
bits of ∗pui16Tag when performing either perfect or hash filtering of VLAN frames. If this
flag is absent, all 16 bits of the frame tag are examined when filtering. If this flag is set and
∗pui16Tag has all bottom 12 bits clear, the receiver will pass all frames with types 0x8100 or
0x88A8 regardless of the tag values they contain.

9.2.1.69 ROM_EMACVLANRxConfigSet

Sets options related to reception of VLAN-tagged frames.

Prototype:
void
ROM_EMACVLANRxConfigSet(uint32_t ui32Base,

uint16_t ui16Tag,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACVLANRxConfigSet is a function pointer located at ROM_EMACTABLE[68].

Parameters:
ui32Base is the base address of the controller.
ui16Tag is the IEEE 802.1Q VLAN tag expected for incoming frames.
ui32Config determines how the receiver handles VLAN-tagged frames.

Description:
This function configures the receiver’s handling of IEEE 802.1Q VLAN tagged frames. Incom-
ing tagged frames are filtered using either a perfect filter or a hash filter. When hash filtering
is disabled, VLAN frames tagged with the value of ui16Tag pass the filter and all others are
rejected. The tag comparison may involve all 16 bits or only the 12-bit VLAN ID portion of the
tag.

The ui32Config parameter is a logical OR of the following values:

160 May 14, 2014

Tiva TM4C129x ROM User’s Guide

EMAC_VLAN_RX_HASH_ENABLE enables hash filtering for VLAN tags. If
this flag is absent, perfect filtering using the tag supplied in ui16Tag is per-
formed. The hash filter may be set using ROM_EMACVLANHashFilterSet() and
ROM_EMACVLANHashFilterBitCalculate() may be used to determine which bits to set
in the filter for given VLAN tags.
EMAC_VLAN_RX_SVLAN_ENABLE causes the receiver to recognize S-VLAN (Type =
0x88A8) frames as valid VLAN-tagged frames. If absent, only frames with type 0x8100
are considered valid VLAN frames.
EMAC_VLAN_RX_INVERSE_MATCH causes the receiver to pass all VLAN frames
whose tags do not match the supplied ui16Tag value. If this flag is absent, only tagged
frames matching ui16Tag are passed.
EMAC_VLAN_RX_12BIT_TAG causes the receiver to compare only the bottom 12 bits
of ui16Tag when performing either perfect or hash filtering of VLAN frames. If this flag
is absent, all 16 bits of the frame tag are examined when filtering. If this flag is set and
ui16Tag has all bottom 12 bits clear, the receiver will pass all frames with types 0x8100 or
0x88A8 regardless of the tag values they contain.

Note:
To ensure that VLAN frames which fail the tag filter are dropped by the MAC,
ROM_EMACFrameFilterSet() must be called with the EMAC_FRMFILTER_VLAN flag set in
the ui32FilterOpts parameter. If this flag is not set, failing VLAN packets will be received by the
application but bit 10 of RDES0 (EMAC_FRMFILTER_VLAN) will be clear indicating that the
packet did not match the current VLAG tag filter.

See also:
ROM_EMACVLANRxConfigGet()

Returns:
None

9.2.1.70 ROM_EMACVLANTxConfigGet

Returns currently-selected options related to transmission of VLAN-tagged frames.

Prototype:
uint32_t
ROM_EMACVLANTxConfigGet(uint32_t ui32Base,

uint16_t *pui16Tag)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACVLANTxConfigGet is a function pointer located at ROM_EMACTABLE[69].

Parameters:
ui32Base is the base address of the controller.
pui16Tag points to storage which is written with the VLAN tag currently being used for insertion

or replacement.

Description:
This function returns information on the current settings related to VLAN tagging of transmitted
frames.

May 14, 2014 161

Ethernet Controller

See also:
ROM_EMACVLANTxConfigSet()

Returns:
Returns flags describing the current VLAN configuration relating to frame transmission. The
return value is a logical OR of the following values:

EMAC_VLAN_TX_SVLAN indicates that the S-VLAN type (0x88A8) is being used when in-
serting or replacing tags in transmitted frames. If this label is absent, C-VLAN type (0x8100)
is being used.

EMAC_VLAN_TX_USE_VLC indicates that the transmitter is processing VLAN frames ac-
cording to the VLAN control (VLC) value returned here. If this tag is absent, VLAN handling is
controlled by fields in the transmit descriptor.

If EMAC_VLAN_TX_USE_VLC is returned, one of the following four labels is also included to
define the transmit VLAN tag handling. Note that this value may be extracted from the return value
using the mask EMAC_VLAN_TX_VLC_MASK.

EMAC_VLAN_TX_VLC_NONE indicates that the transmitter is not performing VLAN tag in-
sertion, deletion or replacement.

EMAC_VLAN_TX_VLC_DELETE indicates that the transmitter is removing VLAN tags from
all transmitted frames which contain them.

EMAC_VLAN_TX_VLC_INSERT indicates that the transmitter is inserting a VLAN type and
tag into all outgoing frames regardless of whether or not they already contain a VLAN tag.

EMAC_VLAN_TX_VLC_REPLACE indicates that the transmitter is replacing the VLAN tag in
all transmitted frames of type 0x8100 or 0x88A8 with the value returned in ∗pui16Tag.

9.2.1.71 ROM_EMACVLANTxConfigSet

Sets options related to transmission of VLAN-tagged frames.

Prototype:
void
ROM_EMACVLANTxConfigSet(uint32_t ui32Base,

uint16_t ui16Tag,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_EMACVLANTxConfigSet is a function pointer located at ROM_EMACTABLE[70].

Parameters:
ui32Base is the base address of the controller.
ui16Tag is the VLAN tag to be used when inserting or replacing tags in transmitted frames.
ui32Config determines the VLAN-related processing performed by the transmitter.

Description:
This function is used to configure transmitter options relating to IEEE 802.1Q VLAN tagging.
The transmitter may be set to insert tagging into untagged frames or replace existing tags with
new values.

162 May 14, 2014

Tiva TM4C129x ROM User’s Guide

The ui16Tag parameter contains the VLAN tag that is to be used in outgoing tagged frames.
The ui32Config parameter is a logical OR of the following labels:

EMAC_VLAN_TX_SVLAN uses the S-VLAN type (0x88A8) when inserting or replacing
tags in transmitted frames. If this label is absent, C-VLAN type (0x8100) is used.
EMAC_VLAN_TX_USE_VLC informs the transmitter that the VLAN tag handling should
be defined by the VLAN control (VLC) value provided in this function call. If this tag is
absent, VLAN handling is controlled by fields in the transmit descriptor.

If EMAC_VLAN_TX_USE_VLC is set, one of the following four labels must also be included to
define the transmit VLAN tag handling:

EMAC_VLAN_TX_VLC_NONE instructs the transmitter to perform no VLAN tag insertion,
deletion or replacement.
EMAC_VLAN_TX_VLC_DELETE instructs the transmitter to remove VLAN tags from all
transmitted frames which contain them. This removes bytes 13, 14, 15 and 16 from all
frames with types 0x8100 or 0x88A8.
EMAC_VLAN_TX_VLC_INSERT instructs the transmitter to insert a VLAN type and tag
into all outgoing frames regardless of whether or not they already contain a VLAN tag.
EMAC_VLAN_TX_VLC_REPLACE instructs the transmitter to replace the VLAN tag in all
frames of type 0x8100 or 0x88A8 with the value provided to this function in the ui16Tag
parameter.

Returns:
None

9.2.1.72 ROM_UpdateEMAC

Starts an update over the Ethernet interface.

Prototype:
void
ROM_UpdateEMAC(uint32_t ui32Clock)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EMACTABLE is an array of pointers located at ROM_APITABLE[42].
ROM_UpdateEMAC is a function pointer located at ROM_EMACTABLE[71].

Parameters:
ui32Clock is the current system clock frequency in Hertz.

Description:
Calling this function commences an update of the firmware via the Ethernet interface. This
function assumes that the Ethernet interface has already been configured and is currently
operational.

Returns:
Never returns.

May 14, 2014 163

Ethernet Controller

164 May 14, 2014

Tiva TM4C129x ROM User’s Guide

10 External Peripheral Interface (EPI)
Introduction .165
Functions . 166

10.1 Introduction

The EPI API provides functions to use the EPI module available in the Tiva microcontroller. The
EPI module provides a physical interface for external peripherals and memories. The EPI can
be configured to support several types of external interfaces and different sized address and data
buses.

Some features of the EPI module are:

configurable interface modes including SDRAM, HostBus, and simple read/write protocols
configurable address and data sizes
configurable bus cycle timing
blocking and non-blocking reads and writes
FIFO for streaming reads
interrupt and uDMA support

The function ROM_EPIModeSet() is used to select the interface mode. The clock divider is
set with the ROM_EPIDividerSet() function which determines the speed of the external bus.
The external device is mapped into the processor memory or peripheral space using the
ROM_EPIAddressMapSet() function.

Once the mode is selected, the interface is configured with one of the configuration functions. If
SDRAM mode is chosen, then the function ROM_EPIConfigSDRAMSet() is used to configure the
SDRAM interface. If Host-Bus 8 mode is chosen, then ROM_EPIConfigHB8Set() is used. If Host-
Bus 16 mode is chosen, then ROM_EPIConfigHB16Set() is used. If General-Purpose mode is
chosen, then ROM_EPIConfigGPModeSet() is used.

After the mode has been selected and configured, then the device can be accessed by
reading and writing to the memory or peripheral address space that was programmed with
ROM_EPIAddressMapSet().

There are more sophisticated ways to use the read/write interface. When an application is writing
to the mapped memory or peripheral space, the writes stall the processor until the write to the
external interface is completed. However, the EPI contains an internal transaction FIFO and can
buffer up to 4 pending writes without stalling the processor. Prior to writing, the application can test
to see if the EPI can take more write operations without stalling the processor by using the function
ROM_EPINonBlockingWriteCount() which returns the number of non-blocking writes that can be
made.

For efficient reads from the external device, the EPI contains a programmable read FIFO.
After setting a starting address and a count, data from sequential reads from the de-
vice can be stored in the FIFO. The application can then periodically drain the FIFO
by polling or by interrupts, optionally using the uDMA controller. A non-blocking read
is configured by using the function ROM_EPINonBlockingReadConfigure(). The read op-
eration is started with ROM_EPINonBlockingReadStart() and can be stopped by call-
ing ROM_EPINonBlockingReadStop(). The function ROM_EPINonBlockingReadCount() can

May 14, 2014 165

External Peripheral Interface (EPI)

be used to determine the number of items remaining to be read, while the function
ROM_EPINonBlockingReadAvail() returns the number of items in the FIFO that can be read im-
mediately without stalling. There are 3 functions available for reading data from the FIFO and
into a buffer provided by the application. These functions are ROM_EPINonBlockingReadGet32(),
ROM_EPINonBlockingReadGet16(), ROM_EPINonBlockingReadGet8(), to read the data from the
FIFO as 32-bit, 16-bit, or 8-bit data items.

The read FIFO and write transaction FIFO can be configured with the function
ROM_EPIFIFOConfig(). This function is used to set the FIFO trigger levels and to enable
error interrupts to be generated when a read or write is stalled.

Interrupts are enabled or disabled with the functions ROM_EPIIntEnable() and
ROM_EPIIntDisable(). The interrupt status can be read by calling ROM_EPIIntStatus(). If
there is an error interrupt pending, the cause of the error can be determined with the function
ROM_EPIIntErrorStatus(). The error can then be cleared with ROM_EPIIntErrorClear().

/∗!

10.2 Functions

Functions
void ROM_EPIAddressMapSet (uint32_t ui32Base, uint32_t ui32Map)
void ROM_EPIConfigGPModeSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t
ui32FrameCount, uint32_t ui32MaxWait)
void ROM_EPIConfigHB16CSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void ROM_EPIConfigHB16Set (uint32_t ui32Base, uint32_t ui32Config, uint32_t
ui32MaxWait)
void ROM_EPIConfigHB16TimingSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t
ui32Config)
void ROM_EPIConfigHB8CSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void ROM_EPIConfigHB8Set (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32MaxWait)
void ROM_EPIConfigHB8TimingSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t
ui32Config)
void ROM_EPIConfigSDRAMSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t
ui32Refresh)
void ROM_EPIDividerCSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Divider)
void ROM_EPIDividerSet (uint32_t ui32Base, uint32_t ui32Divider)
void ROM_EPIDMATxCount (uint32_t ui32Base, uint32_t ui32Count)
void ROM_EPIFIFOConfig (uint32_t ui32Base, uint32_t ui32Config)
void ROM_EPIIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_EPIIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_EPIIntErrorClear (uint32_t ui32Base, uint32_t ui32ErrFlags)
uint32_t ROM_EPIIntErrorStatus (uint32_t ui32Base)
uint32_t ROM_EPIIntStatus (uint32_t ui32Base, bool bMasked)
void ROM_EPIModeSet (uint32_t ui32Base, uint32_t ui32Mode)
uint32_t ROM_EPINonBlockingReadAvail (uint32_t ui32Base)
void ROM_EPINonBlockingReadConfigure (uint32_t ui32Base, uint32_t ui32Channel,
uint32_t ui32DataSize, uint32_t ui32Address)

166 May 14, 2014

Tiva TM4C129x ROM User’s Guide

uint32_t ROM_EPINonBlockingReadCount (uint32_t ui32Base, uint32_t ui32Channel)
uint32_t ROM_EPINonBlockingReadGet16 (uint32_t ui32Base, uint32_t ui32Count, uint16_t
∗pui16Buf)
uint32_t ROM_EPINonBlockingReadGet32 (uint32_t ui32Base, uint32_t ui32Count, uint32_t
∗pui32Buf)
uint32_t ROM_EPINonBlockingReadGet8 (uint32_t ui32Base, uint32_t ui32Count, uint8_t
∗pui8Buf)
void ROM_EPINonBlockingReadStart (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Count)
void ROM_EPINonBlockingReadStop (uint32_t ui32Base, uint32_t ui32Channel)
uint32_t ROM_EPIPSRAMConfigRegGet (uint32_t ui32Base, uint32_t ui32CS)
bool ROM_EPIPSRAMConfigRegGetNonBlocking (uint32_t ui32Base, uint32_t ui32CS,
uint32_t ∗pui32CR)
void ROM_EPIPSRAMConfigRegRead (uint32_t ui32Base, uint32_t ui32CS)
void ROM_EPIPSRAMConfigRegSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32CR)
uint32_t ROM_EPIWriteFIFOCountGet (uint32_t ui32Base)

10.2.1 Function Documentation

10.2.1.1 ROM_EPIAddressMapSet

Configures the address map for the external interface.

Prototype:
void
ROM_EPIAddressMapSet(uint32_t ui32Base,

uint32_t ui32Map)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIAddressMapSet is a function pointer located at ROM_EPITABLE[7].

Parameters:
ui32Base is the EPI module base address.
ui32Map is the address mapping configuration.

Description:
This function is used to configure the address mapping for the external interface, which then
determines the base address of the external memory or device within the processor peripheral
and/or memory space.

The parameter ui32Map is the logical OR of the following:

Peripheral address space size, select one of:
• EPI_ADDR_PER_SIZE_256B sets the peripheral address space to 256 bytes.
• EPI_ADDR_PER_SIZE_64KB sets the peripheral address space to 64 Kbytes.
• EPI_ADDR_PER_SIZE_16MB sets the peripheral address space to 16 Mbytes.
• EPI_ADDR_PER_SIZE_256MB sets the peripheral address space to 256 Mbytes.

Peripheral base address, select one of:

May 14, 2014 167

External Peripheral Interface (EPI)

• EPI_ADDR_PER_BASE_NONE sets the peripheral base address to none.
• EPI_ADDR_PER_BASE_A sets the peripheral base address to 0xA0000000.
• EPI_ADDR_PER_BASE_C sets the peripheral base address to 0xC0000000.

RAM address space, select one of:
• EPI_ADDR_RAM_SIZE_256B sets the RAM address space to 256 bytes.
• EPI_ADDR_RAM_SIZE_64KB sets the RAM address space to 64 Kbytes.
• EPI_ADDR_RAM_SIZE_16MB sets the RAM address space to 16 Mbytes.
• EPI_ADDR_RAM_SIZE_256MB sets the RAM address space to 256 Mbytes.

RAM base address, select one of:
• EPI_ADDR_RAM_BASE_NONE sets the RAM space address to none.
• EPI_ADDR_RAM_BASE_6 sets the RAM space address to 0x60000000.
• EPI_ADDR_RAM_BASE_8 sets the RAM space address to 0x80000000.

EPI_ADDR_RAM_QUAD_MODE maps CS0n to 0x60000000, CS1n to 0x80000000,
CS2n to 0xA0000000, and CS3n to 0xC0000000.
EPI_ADDR_CODE_SIZE_256B sets an external code size of 256 bytes, range 0x00 to
0xFF.
EPI_ADDR_CODE_SIZE_64KB sets an external code size of 64 Kbytes, range 0x0000 to
0xFFFF.
EPI_ADDR_CODE_SIZE_16MB sets an external code size of 16 Mbytes, range 0x000000
to 0xFFFFFF.
EPI_ADDR_CODE_SIZE_256MB sets an external code size of 256 Mbytes, range
0x0000000 to 0xFFFFFFF.
EPI_ADDR_CODE_BASE_NONE sets external code base to not mapped.
EPI_ADDR_CODE_BASE_1 sets external code base to 0x10000000.

Note:
The availability of EPI_ADDR_RAM_QUAD_MODE and EPI_ADDR_CODE_∗ varies based
on the Tiva part in use. Please consult the data sheet to determine if these features are
available.

Returns:
None.

10.2.1.2 ROM_EPIConfigGPModeSet

Configures the interface for general-purpose mode operation.

Prototype:
void
ROM_EPIConfigGPModeSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32FrameCount,
uint32_t ui32MaxWait)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIConfigGPModeSet is a function pointer located at ROM_EPITABLE[4].

168 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the EPI module base address.
ui32Config is the interface configuration.
ui32FrameCount is the frame size in clocks, if the frame signal is used (0-15).
ui32MaxWait is the maximum number of external clocks to wait when the external clock enable

is holding off the transaction (0-255).

Description:
This function is used to configure the interface when used in general-purpose operation as
chosen with the function ROM_EPIModeSet(). The parameter ui32Config is the logical OR of
the following:

EPI_GPMODE_CLKPIN interface clock as output on a pin.
EPI_GPMODE_CLKGATE clock is stopped when there is no transaction, otherwise it is
free-running.
EPI_GPMODE_FRAMEPIN framing signal is emitted on a pin.
EPI_GPMODE_FRAME50 framing signal is 50/50 duty cycle, otherwise it is a pulse.
EPI_GPMODE_WRITE2CYCLE a two-cycle write is used, otherwise a single-cycle write
is used.
Address bus size, select one of:

• EPI_GPMODE_ASIZE_NONE sets no address bus.
• EPI_GPMODE_ASIZE_4 sets an address bus size of 4 bits.
• EPI_GPMODE_ASIZE_12 sets an address bus size of 12 bits.
• EPI_GPMODE_ASIZE_20 sets an address bus size of 20 bits.

Data bus size, select one of:
• EPI_GPMODE_DSIZE_8 sets a data bus size of 8 bits.
• EPI_GPMODE_DSIZE_16 sets a data bus size of 16 bits.
• EPI_GPMODE_DSIZE_24 sets a data bus size of 24 bits.
• EPI_GPMODE_DSIZE_32 sets a data bus size of 32 bits.

The parameter ui32FrameCount is the number of clocks used to form the framing signal, if
the framing signal is used. The behavior depends on whether the frame signal is a pulse or
a 50/50 duty cycle. This value is not used if the framing signal is not enabled with the option
EPI_GPMODE_FRAMEPIN.

The parameter ui32MaxWait is used if the external clock enable is turned on with the
EPI_GPMODE_CLKENA option is used. In the case that external clock enable is used, this
parameter determines the maximum number of clocks to wait when the external clock enable
signal is holding off a transaction. A value of 0 means to wait forever. If a non-zero value is
used and exceeded, an interrupt occurs and the transaction aborted.

Returns:
None.

10.2.1.3 ROM_EPIConfigHB16CSSet

Sets the individual chip select configuration for the Host-bus 16 interface.

Prototype:
void
ROM_EPIConfigHB16CSSet(uint32_t ui32Base,

May 14, 2014 169

External Peripheral Interface (EPI)

uint32_t ui32CS,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIConfigHB16CSSet is a function pointer located at ROM_EPITABLE[25].

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to configure individual chip select settings for the Host-bus 16 interface
mode. ROM_EPIConfigHB16Set() must have been set up with the EPI_HB16_CSBAUD flag
for the individual chip select configuration option to be available.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR the following:

Host-bus 16 submode, select one of:
• EPI_HB16_MODE_ADMUX sets data and address muxed, AD[15:0].
• EPI_HB16_MODE_ADDEMUX sets up data and address separate, D[15:0].
• EPI_HB16_MODE_SRAM same as EPI_HB8_MODE_ADDEMUX, but uses address

switch for multiple reads instead of OEn strobing, D[15:0].
• EPI_HB16_MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty,

D[15:0]. This is only available on CS0n and CS1n.
EPI_HB16_WRHIGH sets active high write strobe, otherwise it is active low.
EPI_HB16_RDHIGH sets active high read strobe, otherwise it is active low.
Write wait state when EPI_HB16_BAUD is used, select one of:

• EPI_HB16_WRWAIT_0 sets write wait state to 2 EPI clocks (default).
• EPI_HB16_WRWAIT_1 sets write wait state to 4 EPI clocks.
• EPI_HB16_WRWAIT_2 sets write wait state to 6 EPI clocks.
• EPI_HB16_WRWAIT_3 sets write wait state to 8 EPI clocks.

Read wait state when EPI_HB16_BAUD is used, select one of:
• EPI_HB16_RDWAIT_0 sets read wait state to 2 EPI clocks (default).
• EPI_HB16_RDWAIT_1 sets read wait state to 4 EPI clocks.
• EPI_HB16_RDWAIT_2 sets read wait state to 6 EPI clocks.
• EPI_HB16_RDWAIT_3 sets read wait state to 8 EPI clocks.

EPI_HB16_ALE_HIGH sets the address latch active high (default).
EPI_HB16_ALE_LOW sets address latch active low.
EPI_HB16_BURST_TRAFFIC enables burst traffic. Only valid with
EPI_HB16_MODE_ADMUX and a chip select configuration that utilizes an ALE.

Note:
The availability of the unique chip select configuration within the Host-bus 16 interface mode
varies based on the Tiva part in use. Please consult the data sheet to determine if this feature
is available.

Returns:
None.

170 May 14, 2014

Tiva TM4C129x ROM User’s Guide

10.2.1.4 ROM_EPIConfigHB16Set

Configures the interface for Host-bus 16 operation.

Prototype:
void
ROM_EPIConfigHB16Set(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32MaxWait)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIConfigHB16Set is a function pointer located at ROM_EPITABLE[6].

Parameters:
ui32Base is the EPI module base address.
ui32Config is the interface configuration.
ui32MaxWait is the maximum number of external clocks to wait if a FIFO ready signal is

holding off the transaction.

Description:
This function is used to configure the interface when used in Host-bus 16 operation as chosen
with the function ROM_EPIModeSet(). The parameter ui32Config is the logical OR of the
following:

Host-bus 16 submode, select one of:
• EPI_HB16_MODE_ADMUX sets data and address muxed, AD[15:0].
• EPI_HB16_MODE_ADDEMUX sets up data and address as separate, D[15:0].
• EPI_HB16_MODE_SRAM sets as EPI_HB16_MODE_ADDEMUX but uses address

switch for multiple reads instead of OEn strobing, D[15:0].
• EPI_HB16_MODE_FIFO addes XFIFO controls with sense of XFIFO full and XFIFO

empty, D[15:0]. This submode uses no address or ALE.

EPI_HB16_USE_TXEMPTY enables TXEMPTY signal with FIFO.
EPI_HB16_USE_RXFULL enables RXFULL signal with FIFO.
EPI_HB16_WRHIGH use active high write strobe, otherwise it is active low.
EPI_HB16_RDHIGH use active high read strobe, otherwise it is active low.
Write wait state, select one of:

• EPI_HB16_WRWAIT_0 sets write wait state to 2 EPI clocks.
• EPI_HB16_WRWAIT_1 sets write wait state to 4 EPI clocks.
• EPI_HB16_WRWAIT_2 sets write wait state to 6 EPI clocks.
• EPI_HB16_WRWAIT_3 sets write wait state to 8 EPI clocks.

Read wait state, select one of:
• EPI_HB16_RDWAIT_0 sets read wait state to 2 EPI clocks.
• EPI_HB16_RDWAIT_1 sets read wait state to 4 EPI clocks.
• EPI_HB16_RDWAIT_2 sets read wait state to 6 EPI clocks.
• EPI_HB16_RDWAIT_3 sets read wait state to 8 EPI clocks.

EPI_HB16_WORD_ACCESS use Word Access mode to route bytes to the correct byte
lanes allowing data to be stored in bits [31:16]. If absent, all data transfers use bits [15:0].

May 14, 2014 171

External Peripheral Interface (EPI)

Note:
EPI_HB16_WORD_ACCESS is not available on all parts. Please consult the data sheet to
determine if this feature is available.

EPI_HB16_CLOCK_GATE_IDLE holds the EPI clock low when no data is available to read or
write.

EPI_HB16_CLOCK_INVERT inverts the EPI clock.

EPI_HB16_IN_READY_EN sets EPIS032 as a ready/stall signal, active high.

EPI_HB16_IN_READY_EN_INVERTED sets EPIS032 as ready/stall signal, active low.

Address latch logic, select one of:

• EPI_HB16_ALE_HIGH sets the address latch active high (default).
• EPI_HB16_ALE_LOW sets address latch active low.

EPI_HB16_BURST_TRAFFIC enables burst traffic. Only valid with
EPI_HB16_MODE_ADMUX and a chip select configuration that utilizes an ALE.

EPI_HB16_BSEL enables byte selects. In this mode, two EPI signals operate as byte selects
allowing 8-bit transfers. If this flag is not specified, data must be read and written using only
16-bit transfers.

EPI_HB16_CSBAUD use different baud rates when accessing devices on each chip se-
lect. CS0n uses the baud rate specified by the lower 16 bits of the divider passed to
ROM_EPIDividerSet() and CS1n uses the divider passed in the upper 16 bits. If this op-
tion is absent, both chip selects use the baud rate resulting from the divider in the lower 16
bits of the parameter passed to ROM_EPIDividerSet().

In addition, CS2n and CS3n are supported for a total of 4 chip selects. If EPI_HB16_CSBAUD is
configured, ROM_EPIDividerCSSet() should be used to to configure the divider for CS2n and CS3n.
They both also use the lower 16 bits passed to ROM_EPIDividerSet() if this option is absent.

The use of EPI_HB16_CSBAUD also allows for unqiue chip select configurations. CS0n,
CS1n, CS2n, and CS3n can each be configured by calling ROM_EPIConfigHB16CSSet() if
EPI_HB16_CSBAUD is used. Otherwise, the configuration provided in ui32Config is used for all
chip selects.

Chip select configuration, select one of:

• EPI_HB16_CSCFG_CS sets EPIS030 to operate as a chip select signal.
• EPI_HB16_CSCFG_ALE sets EPIS030 to operate as an address latch (ALE).
• EPI_HB16_CSCFG_DUAL_CS sets EPIS030 to operate as CS0n and EPIS027 as CS1n

with the asserted chip select determined from the most significant address bit for the
respective external address map.

• EPI_HB16_CSCFG_ALE_DUAL_CS sets EPIS030 as an address latch (ALE), EPIS027
as CS0n and EPIS026 as CS1n with the asserted chip select determined from the most
significant address bit for the respective external address map.

• EPI_HB16_CSCFG_ALE_SINGLE_CS sets EPIS030 to operate as an address latch
(ALE) and EPIS027 is used as a chip select.

• EPI_HB16_CSCFG_QUAD_CS sets EPIS030 as CS0n, EPIS027 as CS1n, EPIS034 as
CS2n and EPIS033 as CS3n.

• EPI_HB16_CSCFG_ALE_QUAD_CS sets EPIS030 as an address latch (ALE), EPIS026
as CS0n, EPIS027 as CS1n, EPIS034 as CS2n and EPIS033 as CS3n.

172 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Note:
The availability of EPI_HB16_CSCFG_ALE_SINGLE_CS, EPI_HB16_CSCFG_QUAD_CS,
and EPI_HB16_CSFCG_ALE_QUAD_CS functionality varies based on the Tiva part in use.
Please consult the data sheet to determine if these! features are available.

The parameter ui32MaxWait is used if the FIFO mode is chosen. If a FIFO is used along with
RXFULL or TXEMPTY ready signals, then this parameter determines the maximum number of
clocks to wait when the transaction is being held off by by the FIFO using one of these ready
signals. A value of 0 means to wait forever.

Note:
Availability of configuration options varies based on the Tiva part in use. Please consult the
data sheet to determine if the features desired are available.

Returns:
None.

10.2.1.5 ROM_EPIConfigHB16TimingSet

Sets the individual chip select timing settings for the Host-bus 16 interface.

Prototype:
void
ROM_EPIConfigHB16TimingSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIConfigHB16TimingSet is a function pointer located at ROM_EPITABLE[27].

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to set individual chip select timings for the Host-bus 16 interface mode.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

Input ready stall delay, select one of:
• EPI_HB16_IN_READY_DELAY_1 sets the stall on input ready (EPIS032) to start 1

EPI clock after signaled.
• EPI_HB16_IN_READY_DELAY_2 sets the stall on input ready (EPIS032) to start 2

EPI clocks after signaled.
• EPI_HB16_IN_READY_DELAY_3 sets the stall on input ready (EPIS032) to start 3

EPI clocks after signaled.

PSRAM size limitation, select one of:

May 14, 2014 173

External Peripheral Interface (EPI)

• EPI_HB16_PSRAM_NO_LIMIT defines no row size limitation.
• EPI_HB16_PSRAM_128 defines the PSRAM row size to 128 bytes.
• EPI_HB16_PSRAM_256 defines the PSRAM row size to 256 bytes.
• EPI_HB16_PSRAM_512 defines the PSRAM row size to 512 bytes.
• EPI_HB16_PSRAM_1024 defines the PSRAM row size to 1024 bytes.
• EPI_HB16_PSRAM_2048 defines the PSRAM row size to 2048 bytes.
• EPI_HB16_PSRAM_4096 defines the PSRAM row size to 4096 bytes.
• EPI_HB16_PSRAM_8192 defines the PSRAM row size to 8192 bytes.

Host bus transfer delay, select one of:
• EPI_HB16_CAP_WIDTH_1 defines the inter-transfer capture width to create a delay

of 1 EPI clock.
• EPI_HB16_CAP_WIDTH_2 defines the inter-transfer capture width to create a delay

of 2 EPI clocks.

Write wait state timing reduction, select one of:
• EPI_HB16_WRWAIT_MINUS_DISABLE disables the additional write wait state reduc-

tion.
• EPI_HB16_WRWAIT_MINUS_ENABLE enables a 1 EPI clock write wait state reduc-

tion.

Read wait state timing reduction, select one of:
• EPI_HB16_RDWAIT_MINUS_DISABLE disables the additional read wait state reduc-

tion.
• EPI_HB16_RDWAIT_MINUS_ENABLE enables a 1 EPI clock read wait state reduc-

tion.

Note:
The availability of unique chip select timings within Host-bus 16 interface mode varies based
on the Tiva part in use. Please consult the data sheet to determine if this feature is available.

Returns:
None.

10.2.1.6 ROM_EPIConfigHB8CSSet

Sets the individual chip select configuration for the Host-bus 8 interface.

Prototype:
void
ROM_EPIConfigHB8CSSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIConfigHB8CSSet is a function pointer located at ROM_EPITABLE[24].

Parameters:
ui32Base is the EPI module base address.

174 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to configure individual chip select settings for the Host-bus 8 interface
mode. ROM_EPIConfigHB8Set() must have been set up with the EPI_HB8_CSBAUD flag for
the individual chip select configuration option to be available.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

Host-bus 8 submode, select one of:
• EPI_HB8_MODE_ADMUX sets data and address muxed, AD[7:0].
• EPI_HB8_MODE_ADDEMUX sets up data and address separate, D[7:0].
• EPI_HB8_MODE_SRAM as EPI_HB8_MODE_ADDEMUX, but uses address switch

for multiple reads instead of OEn strobing, D[7:0].
• EPI_HB8_MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty,

D[7:0]. This is only available for CS0n and CS1n.

EPI_HB8_WRHIGH sets active high write strobe, otherwise it is active low.
EPI_HB8_RDHIGH sets active high read strobe, otherwise it is active low.
Write wait state when EPI_HB8_BAUD is used, select one of:

• EPI_HB8_WRWAIT_0 sets write wait state to 2 EPI clocks (default).
• EPI_HB8_WRWAIT_1 sets write wait state to 4 EPI clocks.
• EPI_HB8_WRWAIT_2 sets write wait state to 6 EPI clocks.
• EPI_HB8_WRWAIT_3 sets write wait state to 8 EPI clocks.

Read wait state when EPI_HB8_BAUD is used, select one of:
• EPI_HB8_RDWAIT_0 sets read wait state to 2 EPI clocks (default).
• EPI_HB8_RDWAIT_1 sets read wait state to 4 EPI clocks.
• EPI_HB8_RDWAIT_2 sets read wait state to 6 EPI clocks.
• EPI_HB8_RDWAIT_3 sets read wait state to 8 EPI clocks.

EPI_HB8_ALE_HIGH sets the address latch active high (default).
EPI_HB8_ALE_LOW sets address latch active low.

Note:
The availability of a unique chip select configuration within Host-bus 8 interface mode varies
based on the Tiva part in use. Please consult the data sheet to determine if this feature is
available.

Returns:
None.

10.2.1.7 ROM_EPIConfigHB8Set

Configures the interface for Host-bus 8 operation.

Prototype:
void
ROM_EPIConfigHB8Set(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32MaxWait)

May 14, 2014 175

External Peripheral Interface (EPI)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIConfigHB8Set is a function pointer located at ROM_EPITABLE[5].

Parameters:
ui32Base is the EPI module base address.
ui32Config is the interface configuration.
ui32MaxWait is the maximum number of external clocks to wait if a FIFO ready signal is

holding off the transaction, 0-255.

Description:
This function is used to configure the interface when used in host-bus 8 operation as chosen
with the function ROM_EPIModeSet(). The parameter ui32Config is the logical OR of the
following:

Host-bus 8 submode, select one of:
• EPI_HB8_MODE_ADMUX sets data and address muxed, AD[7:0]
• EPI_HB8_MODE_ADDEMUX sets up data and address separate, D[7:0]
• EPI_HB8_MODE_SRAM as EPI_HB8_MODE_ADDEMUX, but uses address switch

for multiple reads instead of OEn strobing, D[7:0]
• EPI_HB8_MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty, D[7:0]

EPI_HB8_USE_TXEMPTY enables TXEMPTY signal with FIFO
EPI_HB8_USE_RXFULL enables RXFULL signal with FIFO
EPI_HB8_WRHIGH sets active high write strobe, otherwise it is active low
EPI_HB8_RDHIGH sets active high read strobe, otherwise it is active low

Write wait state when EPI_HB8_BAUD is used, select one of:
• EPI_HB8_WRWAIT_0 sets write wait state to 2 EPI clocks (default)
• EPI_HB8_WRWAIT_1 sets write wait state to 4 EPI clocks
• EPI_HB8_WRWAIT_2 sets write wait state to 6 EPI clocks
• EPI_HB8_WRWAIT_3 sets write wait state to 8 EPI clocks

Read wait state when EPI_HB8_BAUD is used, select one of:
• EPI_HB8_RDWAIT_0 sets read wait state to 2 EPI clocks (default)
• EPI_HB8_RDWAIT_1 sets read wait state to 4 EPI clocks
• EPI_HB8_RDWAIT_2 sets read wait state to 6 EPI clocks
• EPI_HB8_RDWAIT_3 sets read wait state to 8 EPI clocks

EPI_HB8_CLOCK_GATE_IDLE sets the EPI clock to be held low when no data is avail-
able to read or write
EPI_HB8_CLOCK_INVERT inverts the EPI clock
EPI_HB8_IN_READY_EN sets EPIS032 as a ready/stall signal, active high
EPI_HB8_IN_READY_EN_INVERT sets EPIS032 as ready/stall signal, active low
EPI_HB8_ALE_HIGH sets the address latch active high (default)
EPI_HB8_ALE_LOW sets address latch active low
EPI_HB8_CSBAUD use different baud rates when accessing devices on each chip se-
lect. CS0n uses the baud rate specified by the lower 16 bits of the divider passed to
ROM_EPIDividerSet() and CS1n uses the divider passed in the upper 16 bits. If this op-
tion is absent, both chip selects use the baud rate resulting from the divider in the lower 16
bits of the parameter passed to ROM_EPIDividerSet().

176 May 14, 2014

Tiva TM4C129x ROM User’s Guide

In addition, CS2n and CS3n are supported for a total of 4 chip selects. If EPI_HB8_CSBAUD
is configured, ROM_EPIDividerCSSet() should be used to to configure the divider for CS2n
and CS3n. They both also use the lower 16 bits passed to ROM_EPIDividerSet() if this option
is absent.

The use of EPI_HB8_CSBAUD also allows for unique chip select configurations. CS0n,
CS1n, CS2n, and CS3n can each be configured by calling ROM_EPIConfigHB8CSSet() if
EPI_HB8_CSBAUD is used. Otherwise, the configuration provided in ui32Config is used for
all chip selects enabled.

Chip select configuration, select one of:
• EPI_HB8_CSCFG_CS sets EPIS030 to operate as a chip select signal
• EPI_HB8_CSCFG_ALE sets EPIS030 to operate as an address latch (ALE)
• EPI_HB8_CSCFG_DUAL_CS sets EPIS030 to operate as CS0n and EPIS027 as

CS1n with the asserted chip select determined from the most significant address bit
for the respective external address map

• EPI_HB8_CSCFG_ALE_DUAL_CS sets EPIS030 as an address latch (ALE),
EPIS027 as CS0n and EPIS026 as CS1n with the asserted chip select determined
from the most significant address bit for the respective external address map

• EPI_HB8_CSCFG_ALE_SINGLE_CS sets EPIS030 to operate as an address latch
(ALE) and EPIS027 is used as a chip select

• EPI_HB8_CSCFG_QUAD_CS sets EPIS030 as CS0n, EPIS027 as CS1n, EPIS034
as CS2n and EPIS033 as CS3n

• EPI_HB8_CSCFG_ALE_QUAD_CS sets EPIS030 as an address latch (ALE),
EPIS026 as CS0n, EPIS027 as CS1n, EPIS034 as CS2n and EPIS033 as CS3n

The parameter ui32MaxWait is used if the FIFO mode is chosen. If a FIFO is used aint32_t with
RXFULL or TXEMPTY ready signals, then this parameter determines the maximum number of
clocks to wait when the transaction is being held off by by the FIFO using one of these ready
signals. A value of 0 means to wait forever.

Note:
Availability of configuration options varies based on the Tiva part in use. Please consult the
data sheet to determine if the features desired are available.

Returns:
None.

10.2.1.8 ROM_EPIConfigHB8TimingSet

Sets the individual chip select timing settings for the Host-bus 8 interface.

Prototype:
void
ROM_EPIConfigHB8TimingSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIConfigHB8TimingSet is a function pointer located at ROM_EPITABLE[26].

May 14, 2014 177

External Peripheral Interface (EPI)

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to set individual chip select timings for the Host-bus 8 interface mode.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

Input ready stall delay, select one of:
• EPI_HB8_IN_READY_DELAY_1 sets the stall on input ready (EPIS032) to start 1 EPI

clock after signaled.
• EPI_HB8_IN_READY_DELAY_2 sets the stall on input ready (EPIS032) to start 2 EPI

clocks after signaled.
• EPI_HB8_IN_READY_DELAY_3 sets the stall on input ready (EPIS032) to start 3 EPI

clocks after signaled.

Host bus transfer delay, select one of:
• EPI_HB8_CAP_WIDTH_1 defines the inter-transfer capture width to create a delay of

1 EPI clock.
• EPI_HB8_CAP_WIDTH_2 defines the inter-transfer capture width to create a delay of

2 EPI clocks.

EPI_HB8_WRWAIT_MINUS_DISABLE disables the additional write wait state reduction.
EPI_HB8_WRWAIT_MINUS_ENABLE enables a 1 EPI clock write wait state reduction.
EPI_HB8_RDWAIT_MINUS_DISABLE disables the additional read wait state reduction.
EPI_HB8_RDWAIT_MINUS_ENABLE enables a 1 EPI clock read wait state reduction.

Note:
The availability of unique chip select timings within Host-bus 8 interface mode varies based on
the Tiva part in use. Please consult the data sheet to determine if this feature is available.

Returns:
None.

10.2.1.9 ROM_EPIConfigSDRAMSet

Configures the SDRAM mode of operation.

Prototype:
void
ROM_EPIConfigSDRAMSet(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32Refresh)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIConfigSDRAMSet is a function pointer located at ROM_EPITABLE[3].

178 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the EPI module base address.
ui32Config is the SDRAM interface configuration.
ui32Refresh is the refresh count in core clocks (0-2047).

Description:
This function is used to configure the SDRAM interface, when the SDRAM mode is chosen
with the function ROM_EPIModeSet(). The parameter ui32Config is the logical OR of several
sets of choices:

The processor core frequency must be specified with one of the following:

EPI_SDRAM_CORE_FREQ_0_15 defines core clock as 0 MHz < clk <= 15 MHz
EPI_SDRAM_CORE_FREQ_15_30 defines core clock as 15 MHz < clk <= 30 MHz
EPI_SDRAM_CORE_FREQ_30_50 defines core clock as 30 MHz < clk <= 50 MHz
EPI_SDRAM_CORE_FREQ_50_100 defines core clock as 50 MHz < clk <= 100 MHz

The low power mode is specified with one of the following:

EPI_SDRAM_LOW_POWER enter low power, self-refresh state.
EPI_SDRAM_FULL_POWER normal operating state.

The SDRAM device size is specified with one of the following:

EPI_SDRAM_SIZE_64MBIT size is a 64 Mbit device (8 MB).
EPI_SDRAM_SIZE_128MBIT size is a 128 Mbit device (16 MB).
EPI_SDRAM_SIZE_256MBIT size is a 256 Mbit device (32 MB).
EPI_SDRAM_SIZE_512MBIT size is a 512 Mbit device (64 MB).

The parameter ui16Refresh sets the refresh counter in units of core clock ticks. It is an 11-bit
value with a range of 0 - 2047 counts.

Returns:
None.

10.2.1.10 ROM_EPIDividerCSSet

Sets the clock divider for the specified CS in the EPI module.

Prototype:
void
ROM_EPIDividerCSSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32Divider)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIDividerCSSet is a function pointer located at ROM_EPITABLE[22].

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select to modify and has a valid range of 0-3.

May 14, 2014 179

External Peripheral Interface (EPI)

ui32Divider is the value of the clock divider to be applied to the external interface (0-65535).

Description:
This function sets the clock divider(s) for the specified CS that is used to determine the clock
rate of the external interface. The ui32Divider value is used to derive the EPI clock rate from
the system clock based on the following formula.

EPIClk = (Divider == 0) ? SysClk : (SysClk / (((Divider / 2) + 1) ∗ 2))

For example, a divider value of 1 results in an EPI clock rate of half the system clock, value of
2 or 3 yields one quarter of the system clock and a value of 4 results in one sixth of the system
clock rate.

Note:
The availability of CS2n and CS3n varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
None.

10.2.1.11 ROM_EPIDividerSet

Sets the clock divider for the EPI module’s CS0n/CS1n.

Prototype:
void
ROM_EPIDividerSet(uint32_t ui32Base,

uint32_t ui32Divider)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIDividerSet is a function pointer located at ROM_EPITABLE[2].

Parameters:
ui32Base is the EPI module base address.
ui32Divider is the value of the clock divider to be applied to the external interface (0-65535).

Description:
This function sets the clock divider(s) that is used to determine the clock rate of the external
interface. The ui32Divider value is used to derive the EPI clock rate from the system clock
based on the following formula.

EPIClk = (Divider == 0) ? SysClk : (SysClk / (((Divider / 2) + 1) ∗ 2))

For example, a divider value of 1 results in an EPI clock rate of half the system clock, value of
2 or 3 yields one quarter of the system clock and a value of 4 results in one sixth of the system
clock rate.

In cases where a dual chip select mode is in use and different clock rates are required for each
chip select, the ui32Divider parameter must contain two dividers. The lower 16 bits define the
divider to be used with CS0n and the upper 16 bits define the divider for CS1n.

Returns:
None.

180 May 14, 2014

Tiva TM4C129x ROM User’s Guide

10.2.1.12 ROM_EPIDMATxCount

Sets the transfer count for uDMA transmit operations on EPI.

Prototype:
void
ROM_EPIDMATxCount(uint32_t ui32Base,

uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIDMATxCount is a function pointer located at ROM_EPITABLE[23].

Parameters:
ui32Base is the EPI module base address.
ui32Count is the number of units to transmit by uDMA to WRFIFO.

Description:
This function is used to help configure the EPI uDMA transmit operations. A non-zero transmit
count in combination with a FIFO threshold trigger asserts an EPI uDMA transmit.

Note:
The availability of the EPI DMA TX count varies based on the Tiva part in use. Please consult
the data sheet to determine if this feature is available.

Returns:
None.

10.2.1.13 ROM_EPIFIFOConfig

Configures the read FIFO.

Prototype:
void
ROM_EPIFIFOConfig(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIFIFOConfig is a function pointer located at ROM_EPITABLE[16].

Parameters:
ui32Base is the EPI module base address.
ui32Config is the FIFO configuration.

Description:
This function configures the FIFO trigger levels and error generation. The parameter
ui32Config is the logical OR of the following:

EPI_FIFO_CONFIG_WTFULLERR enables an error interrupt when a write is attempted
and the write FIFO is full

May 14, 2014 181

External Peripheral Interface (EPI)

EPI_FIFO_CONFIG_RSTALLERR enables an error interrupt when a read is stalled due
to an interleaved write or other reason
FIFO TX trigger level, select one of:

• EPI_FIFO_CONFIG_TX_EMPTY sets the FIFO TX trigger level to empty.
• EPI_FIFO_CONFIG_TX_1_4 sets the FIFO TX trigger level to 1/4.
• EPI_FIFO_CONFIG_TX_1_2 sets the FIFO TX trigger level to 1/2.
• EPI_FIFO_CONFIG_TX_3_4 sets the FIFO TX trigger level to 3/4.

FIFO RX trigger level, select one of:
• EPI_FIFO_CONFIG_RX_1_8 sets the FIFO RX trigger level to 1/8.
• EPI_FIFO_CONFIG_RX_1_4 sets the FIFO RX trigger level to 1/4.
• EPI_FIFO_CONFIG_RX_1_2 sets the FIFO RX trigger level to 1/2.
• EPI_FIFO_CONFIG_RX_3_4 sets the FIFO RX trigger level to 3/4.
• EPI_FIFO_CONFIG_RX_7_8 sets the FIFO RX trigger level to 7/8.
• EPI_FIFO_CONFIG_RX_FULL sets the FIFO RX trigger level to full.

Returns:
None.

10.2.1.14 ROM_EPIIntDisable

Disables EPI interrupt sources.

Prototype:
void
ROM_EPIIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIIntDisable is a function pointer located at ROM_EPITABLE[19].

Parameters:
ui32Base is the EPI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be disabled.

Description:
This function disables the specified EPI sources for interrupt generation. The ui32IntFlags
parameter can be the logical OR of any of the following values:

EPI_INT_TXREQ interrupt when transmit FIFO is below the trigger level.
EPI_INT_RXREQ interrupt when read FIFO is above the trigger level.
EPI_INT_ERR interrupt when an error condition occurrs.
EPI_INT_DMA_TX_DONE interrupt when the transmit DMA completes.
EPI_INT_DMA_RX_DONE interrupt when the read DMA completes.

Returns:
Returns None.

182 May 14, 2014

Tiva TM4C129x ROM User’s Guide

10.2.1.15 ROM_EPIIntEnable

Enables EPI interrupt sources.

Prototype:
void
ROM_EPIIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIIntEnable is a function pointer located at ROM_EPITABLE[18].

Parameters:
ui32Base is the EPI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be enabled.

Description:
This function enables the specified EPI sources to generate interrupts. The ui32IntFlags pa-
rameter can be the logical OR of any of the following values:

EPI_INT_TXREQ interrupt when transmit FIFO is below the trigger level.
EPI_INT_RXREQ interrupt when read FIFO is above the trigger level.
EPI_INT_ERR interrupt when an error condition occurs.
EPI_INT_DMA_TX_DONE interrupt when the transmit DMA completes.
EPI_INT_DMA_RX_DONE interrupt when the read DMA completes.

Returns:
Returns None.

10.2.1.16 ROM_EPIIntErrorClear

Clears pending EPI error sources.

Prototype:
void
ROM_EPIIntErrorClear(uint32_t ui32Base,

uint32_t ui32ErrFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIIntErrorClear is a function pointer located at ROM_EPITABLE[21].

Parameters:
ui32Base is the EPI module base address.
ui32ErrFlags is a bit mask of the error sources to be cleared.

Description:
This function clears the specified pending EPI errors. The ui32ErrFlags parameter can be the
logical OR of any of the following values:

May 14, 2014 183

External Peripheral Interface (EPI)

EPI_INT_ERR_DMAWRIC clears the EPI_INT_DMA_TX_DONE as an interrupt source
EPI_INT_ERR_DMARDIC clears the EPI_INT_DMA_RX_DONE as an interrupt source
EPI_INT_ERR_WTFULL occurs when a write stalled when the transaction FIFO was full
EPI_INT_ERR_RSTALL occurs when a read stalled
EPI_INT_ERR_TIMEOUT occurs when the external clock enable held off a transaction
longer than the configured maximum wait time

Returns:
Returns None.

10.2.1.17 ROM_EPIIntErrorStatus

Gets the EPI error interrupt status.

Prototype:
uint32_t
ROM_EPIIntErrorStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIIntErrorStatus is a function pointer located at ROM_EPITABLE[20].

Parameters:
ui32Base is the EPI module base address.

Description:
This function returns the error status of the EPI. If the return value of the function
ROM_EPIIntStatus() has the flag EPI_INT_ERR set, then this function can be used to de-
termine the cause of the error.

Returns:
Returns a bit mask of error flags, which can be the logical OR of any of the following:

EPI_INT_ERR_WTFULL occurs when a write stalled when the transaction FIFO was full

EPI_INT_ERR_RSTALL occurs when a read stalled

EPI_INT_ERR_TIMEOUT occurs when the external clock enable held off a transaction longer
than the configured maximum wait time

10.2.1.18 ROM_EPIIntStatus

Gets the EPI interrupt status.

Prototype:
uint32_t
ROM_EPIIntStatus(uint32_t ui32Base,

bool bMasked)

184 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIIntStatus is a function pointer located at ROM_EPITABLE[0].

Parameters:
ui32Base is the EPI module base address.
bMasked is set true to get the masked interrupt status, or false to get the raw interrupt status.

Description:
This function returns the EPI interrupt status. It can return either the raw or masked interrupt
status.

Returns:
Returns the masked or raw EPI interrupt status, as a bit field of any of the following values:

EPI_INT_TXREQ interrupt when transmit FIFO is below the trigger level.

EPI_INT_RXREQ interrupt when read FIFO is above the trigger level.

EPI_INT_ERR interrupt when an error condition occurrs.

EPI_INT_DMA_TX_DONE interrupt when the transmit DMA completes.

EPI_INT_DMA_RX_DONE interrupt when the read DMA completes.

10.2.1.19 ROM_EPIModeSet

Sets the usage mode of the EPI module.

Prototype:
void
ROM_EPIModeSet(uint32_t ui32Base,

uint32_t ui32Mode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIModeSet is a function pointer located at ROM_EPITABLE[1].

Parameters:
ui32Base is the EPI module base address.
ui32Mode is the usage mode of the EPI module.

Description:
This functions sets the operating mode of the EPI module. The parameter ui32Mode must be
one of the following:

EPI_MODE_GENERAL - use for general-purpose mode operation
EPI_MODE_SDRAM - use with SDRAM device
EPI_MODE_HB8 - use with host-bus 8-bit interface
EPI_MODE_HB16 - use with host-bus 16-bit interface
EPI_MODE_DISABLE - disable the EPI module

May 14, 2014 185

External Peripheral Interface (EPI)

Selection of any of the above modes enables the EPI module, except for EPI_MODE_DISABLE
which should be used to disable the module.

Returns:
None.

10.2.1.20 ROM_EPINonBlockingReadAvail

Get the count of items available in the read FIFO.

Prototype:
uint32_t
ROM_EPINonBlockingReadAvail(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPINonBlockingReadAvail is a function pointer located at ROM_EPITABLE[12].

Parameters:
ui32Base is the EPI module base address.

Description:
This function gets the number of items that are available to read in the read FIFO. The
read FIFO is filled by a non-blocking read transaction which is configured by the functions
ROM_EPINonBlockingReadConfigure() and ROM_EPINonBlockingReadStart().

Returns:
The number of items available to read in the read FIFO.

10.2.1.21 ROM_EPINonBlockingReadConfigure

Configures a non-blocking read transaction.

Prototype:
void
ROM_EPINonBlockingReadConfigure(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32DataSize,
uint32_t ui32Address)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPINonBlockingReadConfigure is a function pointer located at ROM_EPITABLE[8].

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).
ui32DataSize is the size of the data items to read.
ui32Address is the starting address to read.

186 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function is used to configure a non-blocking read channel for a transaction. Two chan-
nels are available which can be used in a ping-pong method for continuous reading. It is not
necessary to use both channels to perform a non-blocking read.

The parameter ui8DataSize is one of EPI_NBCONFIG_SIZE_8, EPI_NBCONFIG_SIZE_16,
or EPI_NBCONFIG_SIZE_32 for 8-bit, 16-bit, or 32-bit sized data transfers.

The parameter ui32Address is the starting address for the read, relative to the external device.
The start of the device is address 0.

Once configured, the non-blocking read is started by calling
ROM_EPINonBlockingReadStart(). If the addresses to be read from the device are in a
sequence, it is not necessary to call this function multiple times. Until it is changed, the EPI
module stores the last address that was used for a non-blocking read (per channel).

Returns:
None.

10.2.1.22 ROM_EPINonBlockingReadCount

Get the count remaining for a non-blocking transaction.

Prototype:
uint32_t
ROM_EPINonBlockingReadCount(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPINonBlockingReadCount is a function pointer located at ROM_EPITABLE[11].

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).

Description:
This function gets the remaining count of items for a non-blocking read transaction.

Returns:
The number of items remaining in the non-blocking read transaction.

10.2.1.23 ROM_EPINonBlockingReadGet16

Read available data from the read FIFO, as 16-bit data items.

Prototype:
uint32_t
ROM_EPINonBlockingReadGet16(uint32_t ui32Base,

uint32_t ui32Count,
uint16_t *pui16Buf)

May 14, 2014 187

External Peripheral Interface (EPI)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPINonBlockingReadGet16 is a function pointer located at ROM_EPITABLE[14].

Parameters:
ui32Base is the EPI module base address.
ui32Count is the maximum count of items to read.
pui16Buf is the caller-supplied buffer where the read data should be stored.

Description:
This function reads 16-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count . The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

10.2.1.24 ROM_EPINonBlockingReadGet32

Read available data from the read FIFO, as 32-bit data items.

Prototype:
uint32_t
ROM_EPINonBlockingReadGet32(uint32_t ui32Base,

uint32_t ui32Count,
uint32_t *pui32Buf)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPINonBlockingReadGet32 is a function pointer located at ROM_EPITABLE[13].

Parameters:
ui32Base is the EPI module base address.
ui32Count is the maximum count of items to read.
pui32Buf is the caller supplied buffer where the read data should be stored.

Description:
This function reads 32-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count . The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

10.2.1.25 ROM_EPINonBlockingReadGet8

Read available data from the read FIFO, as 8-bit data items.

188 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
uint32_t
ROM_EPINonBlockingReadGet8(uint32_t ui32Base,

uint32_t ui32Count,
uint8_t *pui8Buf)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPINonBlockingReadGet8 is a function pointer located at ROM_EPITABLE[15].

Parameters:
ui32Base is the EPI module base address.
ui32Count is the maximum count of items to read.
pui8Buf is the caller-supplied buffer where the read data should be stored.

Description:
This function reads 8-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count . The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

10.2.1.26 ROM_EPINonBlockingReadStart

Starts a non-blocking read transaction.

Prototype:
void
ROM_EPINonBlockingReadStart(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPINonBlockingReadStart is a function pointer located at ROM_EPITABLE[9].

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).
ui32Count is the number of items to read (1-4095).

Description:
This function starts a non-blocking read that was previously configured with the function
ROM_EPINonBlockingReadConfigure(). Once this function is called, the EPI module begins
reading data from the external device into the read FIFO. The EPI stops reading when the FIFO
fills up and resumes reading when the application drains the FIFO, until the total specified count
of data items has been read.

Once a read transaction is completed and the FIFO drained, another transaction can be started
from the next address by calling this function again.

May 14, 2014 189

External Peripheral Interface (EPI)

Returns:
None.

10.2.1.27 ROM_EPINonBlockingReadStop

Stops a non-blocking read transaction.

Prototype:
void
ROM_EPINonBlockingReadStop(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPINonBlockingReadStop is a function pointer located at ROM_EPITABLE[10].

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).

Description:
This function cancels a non-blocking read transaction that is already in progress.

Returns:
None.

10.2.1.28 ROM_EPIPSRAMConfigRegGet

Retrieves the contents of the EPI PSRAM configuration register.

Prototype:
uint32_t
ROM_EPIPSRAMConfigRegGet(uint32_t ui32Base,

uint32_t ui32CS)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIPSRAMConfigRegGet is a function pointer located at ROM_EPITABLE[31].

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select target.

Description:
This function retrieves the EPI PSRAM configuration register. The register is read once the
EPI PSRAM configuration register read enable signal is de-asserted.

The Host-bus 16 interface mode should be setup and ROM_EPIPSRAMConfigRegRead()
should be called prior to calling this function.

190 May 14, 2014

Tiva TM4C129x ROM User’s Guide

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
none.

10.2.1.29 ROM_EPIPSRAMConfigRegGetNonBlocking

Retrieves the contents of the EPI PSRAM configuration register.

Prototype:
bool
ROM_EPIPSRAMConfigRegGetNonBlocking(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t *pui32CR)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIPSRAMConfigRegGetNonBlocking is a function pointer located at
ROM_EPITABLE[30].

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select target.
pui32CR is the provided storage used to hold the register value.

Description:
This function copies the contents of the EPI PSRAM configuration register to the provided
storage if the PSRAM read configuration register enable is no longer asserted. Otherwise the
provided storage is not modified.

The Host-bus 16 interface mode should be setup and ROM_EPIPSRAMConfigRegRead()
should be called prior to calling this function.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The pui32CR
parameter is a pointer to provided storage used to hold the register value.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
true if the value was copied to the provided storage and false if it was not.

May 14, 2014 191

External Peripheral Interface (EPI)

10.2.1.30 ROM_EPIPSRAMConfigRegRead

Requests a configuration register read from the PSRAM.

Prototype:
void
ROM_EPIPSRAMConfigRegRead(uint32_t ui32Base,

uint32_t ui32CS)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIPSRAMConfigRegRead is a function pointer located at ROM_EPITABLE[29].

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select target.

Description:
This function requests a read of the PSRAM’s configuration register. The Host-bus 16 interface
mode should be configured prior to calling this function. The ROM_EPIPSRAMConfigRegGet()
and ROM_EPIPSRAMConfigRegGetNonBlocking() can be used to retrieve the configuration
register value.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
none.

10.2.1.31 ROM_EPIPSRAMConfigRegSet

Sets the PSRAM configuration register.

Prototype:
void
ROM_EPIPSRAMConfigRegSet(uint32_t ui32Base,

uint32_t ui32CS,
uint32_t ui32CR)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIPSRAMConfigRegSet is a function pointer located at ROM_EPITABLE[28].

Parameters:
ui32Base is the EPI module base address.
ui32CS is the chip select target.
ui32CR is the PSRAM configuration register value.

192 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function sets the PSRAM’s configuration register by using the PSRAM configuration reg-
ister enable signal. The Host-bus 16 interface mode should be configured prior to calling this
function.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32CR value is determined by consulting the PSRAM’s data sheet.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
None.

10.2.1.32 ROM_EPIWriteFIFOCountGet

Reads the number of empty slots in the write transaction FIFO.

Prototype:
uint32_t
ROM_EPIWriteFIFOCountGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_EPITABLE is an array of pointers located at ROM_APITABLE[23].
ROM_EPIWriteFIFOCountGet is a function pointer located at ROM_EPITABLE[17].

Parameters:
ui32Base is the EPI module base address.

Description:
This function returns the number of slots available in the transaction FIFO. It can be used in a
polling method to avoid attempting a write that would stall.

Returns:
The number of empty slots in the transaction FIFO.

May 14, 2014 193

External Peripheral Interface (EPI)

194 May 14, 2014

Tiva TM4C129x ROM User’s Guide

11 Flash
Introduction .195
Functions . 195

11.1 Introduction

The flash API provides a set of functions for dealing with the on-chip flash. Functions are provided
to program and erase the flash, configure the flash protection, and handle the flash interrupt.

The flash is organized as a set of 16 kB blocks that can be individually erased Erasing a block
causes the entire contents of the block to be reset to all ones. The memory protection registers
allow for 2-kB blocks to be marked as read-only. Additionally, 16-kB blocks can be marked as
execute-only, providing differing levels of code protection. Read-only blocks cannot be erased or
programmed, protecting the contents of those blocks from being modified. Execute-only blocks can-
not be erased or programmed, and can only be read by the processor instruction fetch mechanism,
protecting the contents of those blocks from being read by either the processor or by debuggers.

The flash can be programmed on a word-by-word basis. Programming causes 1 bits to become 0
bits (where appropriate); because of this, a word can be repeatedly programmed so long as each
programming operation only requires changing 1 bits to 0 bits.

The flash controller has the ability to generate an interrupt when an invalid access is attempted
(such as reading from execute-only flash). This capability can be used to validate the operation
of a program; the interrupt ensures that invalid accesses are not silently ignored, hiding potential
bugs. The flash protection can be applied without being permanently enabled; this, along with the
interrupt, allows the program to be debugged before the flash protection is permanently applied to
the device (which is a non-reversible operation). An interrupt can also be generated when an erase
or programming operation has completed.

11.2 Functions

Functions
int32_t ROM_FlashErase (uint32_t ui32Address)
void ROM_FlashIntClear (uint32_t ui32IntFlags)
void ROM_FlashIntDisable (uint32_t ui32IntFlags)
void ROM_FlashIntEnable (uint32_t ui32IntFlags)
uint32_t ROM_FlashIntStatus (bool bMasked)
int32_t ROM_FlashProgram (uint32_t ∗pui32Data, uint32_t ui32Address, uint32_t ui32Count)
tFlashProtection ROM_FlashProtectGet (uint32_t ui32Address)
int32_t ROM_FlashProtectSave (void)
int32_t ROM_FlashProtectSet (uint32_t ui32Address, tFlashProtection eProtect)
int32_t ROM_FlashUserGet (uint32_t ∗pui32User0, uint32_t ∗pui32User1)
int32_t ROM_FlashUserSave (void)
int32_t ROM_FlashUserSet (uint32_t ui32User0, uint32_t ui32User1)

May 14, 2014 195

Flash

11.2.1 Function Documentation

11.2.1.1 ROM_FlashErase

Erases a block of flash.

Prototype:
int32_t
ROM_FlashErase(uint32_t ui32Address)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashErase is a function pointer located at ROM_FLASHTABLE[3].

Parameters:
ui32Address is the start address of the flash block to be erased.

Description:
This function will erase a 16 kB block of the on-chip flash. After erasing the block is filled with
0xFF bytes. Read-only and execute-only blocks cannot be erased.

This function does not return until the block has been erased.

Returns:
Returns 0 on success, or -1 if an invalid block address was specified or the block is write-
protected.

11.2.1.2 ROM_FlashIntClear

Clears flash controller interrupt sources.

Prototype:
void
ROM_FlashIntClear(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashIntClear is a function pointer located at ROM_FLASHTABLE[13].

Parameters:
ui32IntFlags is the bit mask of the interrupt sources to be cleared. Can be any of the

FLASH_INT_PROGRAM or FLASH_INT_AMISC values.

Description:
The specified flash controller interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt

196 May 14, 2014

Tiva TM4C129x ROM User’s Guide

source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

11.2.1.3 ROM_FlashIntDisable

Disables individual flash controller interrupt sources.

Prototype:
void
ROM_FlashIntDisable(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashIntDisable is a function pointer located at ROM_FLASHTABLE[11].

Parameters:
ui32IntFlags is a bit mask of the interrupt sources to be disabled. Can be any of the

FLASH_INT_PROGRAM or FLASH_INT_ACCESS values.

Description:
This function disables the indicated flash controller interrupt sources. Only the sources that
are enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Returns:
None.

11.2.1.4 ROM_FlashIntEnable

Enables individual flash controller interrupt sources.

Prototype:
void
ROM_FlashIntEnable(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashIntEnable is a function pointer located at ROM_FLASHTABLE[10].

Parameters:
ui32IntFlags is a bit mask of the interrupt sources to be enabled. Can be any of the

FLASH_INT_PROGRAM or FLASH_INT_ACCESS values.

May 14, 2014 197

Flash

Description:
This function enables the indicated flash controller interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Returns:
None.

11.2.1.5 ROM_FlashIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ROM_FlashIntStatus(bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashIntStatus is a function pointer located at ROM_FLASHTABLE[12].

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the flash controller. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of FLASH_INT_PROGRAM and
FLASH_INT_ACCESS.

11.2.1.6 ROM_FlashProgram

Programs flash.

Prototype:
int32_t
ROM_FlashProgram(uint32_t *pui32Data,

uint32_t ui32Address,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashProgram is a function pointer located at ROM_FLASHTABLE[0].

Parameters:
pui32Data is a pointer to the data to be programmed.
ui32Address is the starting address in flash to be programmed. Must be a multiple of four.

198 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32Count is the number of bytes to be programmed. Must be a multiple of four.

Description:
This function programs a sequence of words into the on-chip flash. Because the flash is pro-
grammed one word at a time, the starting address and byte count must both be multiples of
four. It is up to the caller to verify the programmed contents, if such verification is required.

This function does not return until the data has been programmed.

Returns:
Returns 0 on success, or -1 if a programming error is encountered.

11.2.1.7 ROM_FlashProtectGet

Gets the protection setting for a block of flash.

Prototype:
tFlashProtection
ROM_FlashProtectGet(uint32_t ui32Address)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashProtectGet is a function pointer located at ROM_FLASHTABLE[4].

Parameters:
ui32Address is the start address of the flash block to be queried.

Description:
This function gets the current protection for the specified 2 kB block of flash. Each block can be
read/write, read-only, or execute-only. Read/write blocks can be read, executed, erased, and
programmed. Read-only blocks can be read and executed. Execute-only blocks can only be
executed; processor and debugger data reads are not allowed.

Returns:
Returns the protection setting for this block. See ROM_FlashProtectSet() for possible values.

11.2.1.8 ROM_FlashProtectSave

Saves the flash protection settings.

Prototype:
int32_t
ROM_FlashProtectSave(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashProtectSave is a function pointer located at ROM_FLASHTABLE[6].

May 14, 2014 199

Flash

Description:
This function makes the currently programmed flash protection settings permanent. This is a
non-reversible operation; a chip reset or power cycle does not change the flash protection.

This function does not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

11.2.1.9 ROM_FlashProtectSet

Sets the protection setting for a block of flash.

Prototype:
int32_t
ROM_FlashProtectSet(uint32_t ui32Address,

tFlashProtection eProtect)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashProtectSet is a function pointer located at ROM_FLASHTABLE[5].

Parameters:
ui32Address is the start address of the flash block to be protected.
eProtect is the protection to be applied to the block. Can be one of FlashReadWrite,

FlashReadOnly, or FlashExecuteOnly.

Description:
This function sets the protection for the specified 2 kB block of flash. Blocks that are read/write
can be made read-only or execute-only. Blocks that are read-only can be made execute-only.
Blocks that are execute-only cannot have their protection modified. Attempts to make the block
protection less stringent (that is, read-only to read/write) result in a failure (and are prevented
by the hardware).

Note:
FlashExecuteOnly applies to a 16-kB block. If this setting is used, an entire 16-kB block will
be affected, and not just a 2-kB block.

Changes to the flash protection are maintained only until the next reset. This protocol allows
the application to be executed in the desired flash protection environment to check for inappro-
priate flash access (via the flash interrupt). To make the flash protection permanent, use the
ROM_FlashProtectSave() function.

Returns:
Returns 0 on success, or -1 if an invalid address or an invalid protection was specified.

11.2.1.10 ROM_FlashUserGet

Gets the user registers.

200 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
int32_t
ROM_FlashUserGet(uint32_t *pui32User0,

uint32_t *pui32User1)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashUserGet is a function pointer located at ROM_FLASHTABLE[7].

Parameters:
pui32User0 is a pointer to the location to store USER Register 0.
pui32User1 is a pointer to the location to store USER Register 1.

Description:
This function reads the contents of user registers (0 and 1), and stores them in the specified
locations.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

11.2.1.11 ROM_FlashUserSave

Saves the user registers.

Prototype:
int32_t
ROM_FlashUserSave(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashUserSave is a function pointer located at ROM_FLASHTABLE[9].

Description:
This function makes the currently programmed user register settings permanent. This is a
non-reversible operation; a chip reset or power cycle does not change this setting.

This function does not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

11.2.1.12 ROM_FlashUserSet

Sets the user registers.

Prototype:
int32_t
ROM_FlashUserSet(uint32_t ui32User0,

uint32_t ui32User1)

May 14, 2014 201

Flash

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FLASHTABLE is an array of pointers located at ROM_APITABLE[7].
ROM_FlashUserSet is a function pointer located at ROM_FLASHTABLE[8].

Parameters:
ui32User0 is the value to store in USER Register 0.
ui32User1 is the value to store in USER Register 1.

Description:
This function sets the contents of the user registers (0 and 1) to the specified values.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

202 May 14, 2014

Tiva TM4C129x ROM User’s Guide

12 Floating-Point Unit (FPU)
Introduction .203
API Functions . 204

12.1 Introduction

The floating-point unit (FPU) driver provides methods for manipulating the behavior of the floating-
point unit in the Cortex-M processor. By default, the floating-point is disabled and must be enabled
prior to the execution of any floating-point instructions. If a floating-point instruction is executed
when the floating-point unit is disabled, a NOCP usage fault is generated. This feature can be
used by an RTOS, for example, to keep track of which tasks actually use the floating-point unit, and
therefore only perform floating-point context save/restore on task switches that involve those tasks.

There are three methods of handling the floating-point context when the processor executes an in-
terrupt handler: it can do nothing with the floating-point context, it can always save the floating-point
context, or it can perform a lazy save/restore of the floating-point context. If nothing is done with
the floating-point context, the interrupt stack frame is identical to a Cortex-M processor that does
not have a floating-point unit, containing only the volatile registers of the integer unit. This method
is useful for applications where the floating-point unit is used by the main thread of execution, but
not in any of the interrupt handlers. By not saving the floating-point context, stack usage is reduced
and interrupt latency is kept to a minimum.

Alternatively, the floating-point context can always be saved onto the stack. This method allows
floating-point operations to be performed inside interrupt handlers without any special precautions,
at the expense of increased stack usage (for the floating-point context) and increased interrupt
latency (due to the additional writes to the stack). The advantage to this method is that the stack
frame always contains the floating-point context when inside an interrupt handler.

The default handling of the floating-point context is to perform a lazy save/restore. When an in-
terrupt is taken, space is reserved on the stack for the floating-point context but the context is not
written. This method keeps the interrupt latency to a minimum because only the integer state is
written to the stack. Then, if a floating-point instruction is executed from within the interrupt handler,
the floating-point context is written to the stack prior to the execution of the floating-point instruction.
Finally, upon return from the interrupt, the floating-point context is restored from the stack only if
it was written. Using lazy save/restore provides a blend between fast interrupt response and the
ability to use floating-point instructions in the interrupt handler.

The floating-point unit can generate an interrupt when one of several exceptions occur. The ex-
ceptions are underflow, overflow, divide by zero, invalid operation, input denormal, and inexact
exception. The application can optionally choose to enable one or more of these interrupts and use
the interrupt handler to decide upon a course of action to be taken in each case.

The behavior of the floating-point unit can also be adjusted, specifying the format of half-precision
floating-point values, the handle of NaN values, the flush-to-zero mode (which sacrifices full IEEE
compliance for execution speed), and the rounding mode for results.

May 14, 2014 203

Floating-Point Unit (FPU)

12.2 API Functions

Functions
void ROM_FPUDisable (void)
void ROM_FPUEnable (void)
void ROM_FPUFlushToZeroModeSet (uint32_t ui32Mode)
void ROM_FPUHalfPrecisionModeSet (uint32_t ui32Mode)
void ROM_FPULazyStackingEnable (void)
void ROM_FPUNaNModeSet (uint32_t ui32Mode)
void ROM_FPURoundingModeSet (uint32_t ui32Mode)
void ROM_FPUStackingDisable (void)
void ROM_FPUStackingEnable (void)

12.2.1 Function Documentation

12.2.1.1 ROM_FPUDisable

Disables the floating-point unit.

Prototype:
void
ROM_FPUDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUDisable is a function pointer located at ROM_FPUTABLE[1].

Description:
This function disables the floating-point unit, preventing floating-point instructions from execut-
ing (generating a NOCP usage fault instead).

Returns:
None.

12.2.1.2 ROM_FPUEnable

Enables the floating-point unit.

Prototype:
void
ROM_FPUEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUEnable is a function pointer located at ROM_FPUTABLE[0].

204 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function enables the floating-point unit, allowing the floating-point instructions to be exe-
cuted. This function must be called prior to performing any hardware floating-point operations;
failure to do so results in a NOCP usage fault.

Returns:
None.

12.2.1.3 ROM_FPUFlushToZeroModeSet

Selects the flush-to-zero mode.

Prototype:
void
ROM_FPUFlushToZeroModeSet(uint32_t ui32Mode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUFlushToZeroModeSet is a function pointer located at ROM_FPUTABLE[2].

Parameters:
ui32Mode is the flush-to-zero mode; which is either FPU_FLUSH_TO_ZERO_DIS or

FPU_FLUSH_TO_ZERO_EN.

Description:
This function enables or disables the flush-to-zero mode of the floating-point unit. When dis-
abled (the default), the floating-point unit is fully IEEE compliant. When enabled, values close
to zero are treated as zero, greatly improving the execution speed at the expense of some
accuracy (as well as IEEE compliance).

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

12.2.1.4 ROM_FPUHalfPrecisionModeSet

Selects the format of half-precision floating-point values.

Prototype:
void
ROM_FPUHalfPrecisionModeSet(uint32_t ui32Mode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUHalfPrecisionModeSet is a function pointer located at ROM_FPUTABLE[3].

May 14, 2014 205

Floating-Point Unit (FPU)

Parameters:
ui32Mode is the format for half-precision floating-point values, which is either

FPU_HALF_IEEE or FPU_HALF_ALTERNATE.

Description:
This function selects between the IEEE half-precision floating-point representation and the
Cortex-M processor alternative representation. The alternative representation has a larger
range but does not have a way to encode infinity (positive or negative) or NaN (quiet or signal-
ing). The default setting is the IEEE format.

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

12.2.1.5 ROM_FPULazyStackingEnable

Enables the lazy stacking of floating-point registers.

Prototype:
void
ROM_FPULazyStackingEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPULazyStackingEnable is a function pointer located at ROM_FPUTABLE[4].

Description:
This function enables the lazy stacking of floating-point registers s0-s15 when an interrupt is
handled. When lazy stacking is enabled, space is reserved on the stack for the floating-point
context, but the floating-point state is not saved. If a floating-point instruction is executed from
within the interrupt context, the floating-point context is first saved into the space reserved on
the stack. On completion of the interrupt handler, the floating-point context is only restored if it
was saved (as the result of executing a floating-point instruction).

This method provides a compromise between fast interrupt response (because the floating-
point state is not saved on interrupt entry) and the ability to use floating-point in interrupt han-
dlers (because the floating-point state is saved if floating-point instructions are used).

Returns:
None.

12.2.1.6 ROM_FPUNaNModeSet

Selects the NaN mode.

Prototype:
void
ROM_FPUNaNModeSet(uint32_t ui32Mode)

206 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUNaNModeSet is a function pointer located at ROM_FPUTABLE[5].

Parameters:
ui32Mode is the mode for NaN results; which is either FPU_NAN_PROPAGATE or

FPU_NAN_DEFAULT.

Description:
This function selects the handling of NaN results during floating-point computations. NaNs can
either propagate (the default), or they can return the default NaN.

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

12.2.1.7 ROM_FPURoundingModeSet

Selects the rounding mode for floating-point results.

Prototype:
void
ROM_FPURoundingModeSet(uint32_t ui32Mode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPURoundingModeSet is a function pointer located at ROM_FPUTABLE[6].

Parameters:
ui32Mode is the rounding mode.

Description:
This function selects the rounding mode for floating-point results. After a floating-
point operation, the result is rounded toward the specified value. The default mode is
FPU_ROUND_NEAREST.

The following rounding modes are available (as specified by ui32Mode):

FPU_ROUND_NEAREST - round toward the nearest value
FPU_ROUND_POS_INF - round toward positive infinity
FPU_ROUND_NEG_INF - round toward negative infinity
FPU_ROUND_ZERO - round toward zero

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

May 14, 2014 207

Floating-Point Unit (FPU)

12.2.1.8 ROM_FPUStackingDisable

Disables the stacking of floating-point registers.

Prototype:
void
ROM_FPUStackingDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUStackingDisable is a function pointer located at ROM_FPUTABLE[7].

Description:
This function disables the stacking of floating-point registers s0-s15 when an interrupt is han-
dled. When floating-point context stacking is disabled, floating-point operations performed in
an interrupt handler destroy the floating-point context of the main thread of execution.

Returns:
None.

12.2.1.9 ROM_FPUStackingEnable

Enables the stacking of floating-point registers.

Prototype:
void
ROM_FPUStackingEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_FPUTABLE is an array of pointers located at ROM_APITABLE[26].
ROM_FPUStackingEnable is a function pointer located at ROM_FPUTABLE[8].

Description:
This function enables the stacking of floating-point registers s0-s15 when an interrupt is han-
dled. When enabled, space is reserved on the stack for the floating-point context and the
floating-point state is saved into this stack space. Upon return from the interrupt, the floating-
point context is restored.

If the floating-point registers are not stacked, floating-point instructions cannot be safely exe-
cuted in an interrupt handler because the values of s0-s15 are not likely to be preserved for
the interrupted code. On the other hand, stacking the floating-point registers increases the
stacking operation from 8 words to 26 words, also increasing the interrupt response latency.

Returns:
None.

208 May 14, 2014

Tiva TM4C129x ROM User’s Guide

13 GPIO
Introduction .209
Functions . 209

13.1 Introduction

The GPIO module provides control for up to eight independent GPIO pins (the actual number
present depend upon the GPIO port and part number). Each pin has the following capabilities:

Can be configured as an input or an output. On reset, GPIOs default to being an input.

In input mode, can generate interrupts on high level, low level, rising edge, falling edge, or
both edges.

In output mode, can be configured for 2-mA, 4-mA, 6-mA, 8-mA, 10-mA, or 12-mA drive
strength. The 8-mA drive strength configuration has optional slew rate control to limit the
rise and fall times of the signal. On reset, GPIOs default to 2-mA drive strength.

Optional weak pull-up or pull-down resistors. On reset, GPIOS default to no pull-up or pull-
down resistors.

Optional open-drain operation. On reset, GPIOs default to standard push/pull operation.

Can be configured to be a GPIO or a peripheral pin. On reset, the default is GPIOs. Note
that not all pins on all parts have peripheral functions, in which case the pin is only useful as a
GPIO (that is, when configured for peripheral function the pin does not do anything useful).

Most of the GPIO functions can operate on more than one GPIO pin (within a single module) at a
time. The ui8Pins parameter to these functions is used to specify the pins that are affected; only
the GPIO pins corresponding to the bits in this parameter that are set are affected (where pin 0 is
bit 0, pin 1 1 in bit 1, and so on). For example, if ui8Pins is 0x09, then pins 0 and 3 are affected by
the function.

This protocol is most useful for the ROM_GPIOPinRead() and ROM_GPIOPinWrite() functions; a
read returns only the values of the requested pins (with the other pin values masked out) and a
write only affects the requested pins simultaneously (that is, the state of multiple GPIO pins can
be changed at the same time). This data masking for the GPIO pin state occurs in the hardware;
a single read or write is issued to the hardware, which interprets some of the address bits as an
indication of the GPIO pins to operate on (and therefore the ones to not affect). See the part data
sheet for details of the GPIO data register address-based bit masking.

For functions that have a ui8Pin (singular) parameter, only a single pin is affected by the function.
In this case, the value specifies the pin number (that is, 0 through 7).

13.2 Functions

Functions
void ROM_GPIOADCTriggerDisable (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOADCTriggerEnable (uint32_t ui32Port, uint8_t ui8Pins)

May 14, 2014 209

GPIO

uint32_t ROM_GPIODirModeGet (uint32_t ui32Port, uint8_t ui8Pin)
void ROM_GPIODirModeSet (uint32_t ui32Port, uint8_t ui8Pins, uint32_t ui32PinIO)
void ROM_GPIODMATriggerDisable (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIODMATriggerEnable (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOIntClear (uint32_t ui32Port, uint32_t ui32IntFlags)
void ROM_GPIOIntDisable (uint32_t ui32Port, uint32_t ui32IntFlags)
void ROM_GPIOIntEnable (uint32_t ui32Port, uint32_t ui32IntFlags)
uint32_t ROM_GPIOIntStatus (uint32_t ui32Port, bool bMasked)
uint32_t ROM_GPIOIntTypeGet (uint32_t ui32Port, uint8_t ui8Pin)
void ROM_GPIOIntTypeSet (uint32_t ui32Port, uint8_t ui8Pins, uint32_t ui32IntType)
void ROM_GPIOPadConfigGet (uint32_t ui32Port, uint8_t ui8Pin, uint32_t ∗pui32Strength,
uint32_t ∗pui32PinType)
void ROM_GPIOPinConfigure (uint32_t ui32PinConfig)
int32_t ROM_GPIOPinRead (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeADC (uint32_t ui32Port, uint8_t ui8Pins)
endif if CIR void ROM_GPIOPinTypeCIR (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeComparator (uint32_t ui32Port, uint8_t ui8Pins)
if FAN void ROM_GPIOPinTypeFan (uint32_t ui32Port, uint8_t ui8Pins)
endif void ROM_GPIOPinTypeGPIOInput (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeGPIOOutput (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeGPIOOutputOD (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeI2C (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeI2CSCL (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeKBColumn (uint32_t ui32Port, uint8_t ui8Pins)
if KBSCAN void ROM_GPIOPinTypeKBRow (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeOneWire (uint32_t ui32Port, uint8_t ui8Pins)
if PECI void ROM_GPIOPinTypePECIAnalog (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypePECIRx (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypePECITx (uint32_t ui32Port, uint8_t ui8Pins)
endif if PS2 void ROM_GPIOPinTypePS2 (uint32_t ui32Port, uint8_t ui8Pins)
endif void ROM_GPIOPinTypePWM (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeQEI (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeSSI (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeTimer (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeUART (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeUSBAnalog (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeUSBDigital (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeWakeHigh (uint32_t ui32Port, uint8_t ui8Pins)
void ROM_GPIOPinTypeWakeLow (uint32_t ui32Port, uint8_t ui8Pins)
endif uint32_t ROM_GPIOPinWakeStatus (uint32_t ui32Port)
void ROM_GPIOPinWrite (uint32_t ui32Port, uint8_t ui8Pins, uint8_t ui8Val)

13.2.1 Function Documentation

13.2.1.1 ROM_GPIOADCTriggerDisable

Disable a GPIO pin as a trigger to start an ADC capture.

210 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_GPIOADCTriggerDisable(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOADCTriggerDisable is a function pointer located at ROM_GPIOTABLE[34].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
This function disables a GPIO pin to be used as a trigger to start an ADC se-
quence. This function can be used to disable this feature if it was enabled via a call to
ROM_GPIOADCTriggerEnable().

Note:
This function is not available on all devices, consult the data sheet to ensure that the device
you are using supports GPIO ADC Control.

Returns:
None.

13.2.1.2 ROM_GPIOADCTriggerEnable

Enables a GPIO pin as a trigger to start an ADC capture.

Prototype:
void
ROM_GPIOADCTriggerEnable(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOADCTriggerEnable is a function pointer located at ROM_GPIOTABLE[33].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
This function enables a GPIO pin to be used as a trigger to start an ADC sequence. Any
GPIO pin can be configured to be an external trigger for an ADC sequence. The GPIO pin still
generates interrupts if the interrupt is enabled for the selected pin. To enable the use of a GPIO
pin to trigger the ADC module, the ADCSequenceConfigure() function must be called with the
ADC_TRIGGER_EXTERNAL parameter.

Note:
This function is not available on all devices, consult the data sheet to ensure that the device
you are using supports GPIO ADC Control.

May 14, 2014 211

GPIO

Returns:
None.

13.2.1.3 ROM_GPIODirModeGet

Gets the direction and mode of a pin.

Prototype:
uint32_t
ROM_GPIODirModeGet(uint32_t ui32Port,

uint8_t ui8Pin)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODirModeGet is a function pointer located at ROM_GPIOTABLE[2].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pin is the pin number.

Description:
This function gets the direction and control mode for a specified pin on the selected GPIO port.
The pin can be configured as either an input or output under software control, or it can be under
hardware control. The type of control and direction are returned as an enumerated data type.

Returns:
Returns one of the enumerated data types described for ROM_GPIODirModeSet().

13.2.1.4 ROM_GPIODirModeSet

Sets the direction and mode of the specified pin(s).

Prototype:
void
ROM_GPIODirModeSet(uint32_t ui32Port,

uint8_t ui8Pins,
uint32_t ui32PinIO)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODirModeSet is a function pointer located at ROM_GPIOTABLE[1].

Parameters:
ui32Port is the base address of the GPIO port
ui8Pins is the bit-packed representation of the pin(s).
ui32PinIO is the pin direction and/or mode.

212 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function configures the specified pin(s) on the selected GPIO port as either input or output
under software control, or it configures the pin to be under hardware control.

The parameter ui32PinIO is an enumerated data type that can be one of the following values:

GPIO_DIR_MODE_IN
GPIO_DIR_MODE_OUT
GPIO_DIR_MODE_HW

where GPIO_DIR_MODE_IN specifies that the pin is programmed as a software controlled
input, GPIO_DIR_MODE_OUT specifies that the pin is programmed as a software controlled
output, and GPIO_DIR_MODE_HW specifies that the pin is placed under hardware control.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
GPIOPadConfigSet() must also be used to configure the corresponding pad(s) in order for them
to propagate the signal to/from the GPIO.

Returns:
None.

13.2.1.5 ROM_GPIODMATriggerDisable

Disables a GPIO pin as a trigger to start a DMA transaction.

Prototype:
void
ROM_GPIODMATriggerDisable(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODMATriggerDisable is a function pointer located at ROM_GPIOTABLE[32].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
This function disables a GPIO pin from being used as a trigger to start a uDMA trans-
action. This function can be used to disable this feature if it was enabled via a call to
ROM_GPIODMATriggerEnable().

Note:
This function is not available on all devices, consult the data sheet to ensure that the device
you are using supports GPIO DMA Control.

Returns:
None.

May 14, 2014 213

GPIO

13.2.1.6 ROM_GPIODMATriggerEnable

Enables a GPIO pin as a trigger to start a DMA transaction.

Prototype:
void
ROM_GPIODMATriggerEnable(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIODMATriggerEnable is a function pointer located at ROM_GPIOTABLE[31].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
This function enables a GPIO pin to be used as a trigger to start a uDMA transaction. Any GPIO
pin can be configured to be an external trigger for the uDMA. The GPIO pin still generates
interrupts if the interrupt is enabled for the selected pin.

Note:
This function is not available on all devices, consult the data sheet to ensure that the device
you are using supports GPIO DMA Control.

Returns:
None.

13.2.1.7 ROM_GPIOIntClear

Clears the specified interrupt sources.

Prototype:
void
ROM_GPIOIntClear(uint32_t ui32Port,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOIntClear is a function pointer located at ROM_GPIOTABLE[51].

Parameters:
ui32Port is the base address of the GPIO port.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
Clears the interrupt for the specified interrupt source(s).

The ui32IntFlags parameter is the logical OR of the GPIO_INT_∗ values.

214 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

13.2.1.8 ROM_GPIOIntDisable

Disables the specified GPIO interrupts.

Prototype:
void
ROM_GPIOIntDisable(uint32_t ui32Port,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOIntDisable is a function pointer located at ROM_GPIOTABLE[52].

Parameters:
ui32Port is the base address of the GPIO port.
ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function disables the indicated GPIO interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

GPIO_INT_PIN_0 - interrupt due to activity on Pin 0.
GPIO_INT_PIN_1 - interrupt due to activity on Pin 1.
GPIO_INT_PIN_2 - interrupt due to activity on Pin 2.
GPIO_INT_PIN_3 - interrupt due to activity on Pin 3.
GPIO_INT_PIN_4 - interrupt due to activity on Pin 4.
GPIO_INT_PIN_5 - interrupt due to activity on Pin 5.
GPIO_INT_PIN_6 - interrupt due to activity on Pin 6.
GPIO_INT_PIN_7 - interrupt due to activity on Pin 7.
GPIO_INT_DMA - interrupt due to DMA activity on this GPIO module.

Returns:
None.

May 14, 2014 215

GPIO

13.2.1.9 ROM_GPIOIntEnable

Enables the specified GPIO interrupts.

Prototype:
void
ROM_GPIOIntEnable(uint32_t ui32Port,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOIntEnable is a function pointer located at ROM_GPIOTABLE[53].

Parameters:
ui32Port is the base address of the GPIO port.
ui32IntFlags is the bit mask of the interrupt sources to enable.

Description:
This function enables the indicated GPIO interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

GPIO_INT_PIN_0 - interrupt due to activity on Pin 0.
GPIO_INT_PIN_1 - interrupt due to activity on Pin 1.
GPIO_INT_PIN_2 - interrupt due to activity on Pin 2.
GPIO_INT_PIN_3 - interrupt due to activity on Pin 3.
GPIO_INT_PIN_4 - interrupt due to activity on Pin 4.
GPIO_INT_PIN_5 - interrupt due to activity on Pin 5.
GPIO_INT_PIN_6 - interrupt due to activity on Pin 6.
GPIO_INT_PIN_7 - interrupt due to activity on Pin 7.
GPIO_INT_DMA - interrupt due to DMA activity on this GPIO module.

Returns:
None.

13.2.1.10 ROM_GPIOIntStatus

Gets interrupt status for the specified GPIO port.

Prototype:
uint32_t
ROM_GPIOIntStatus(uint32_t ui32Port,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOIntStatus is a function pointer located at ROM_GPIOTABLE[54].

216 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Port is the base address of the GPIO port.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the current interrupt status for the specified GPIO module. The value returned is the
logical OR of the GPIO_INT_∗ values that are currently active.

13.2.1.11 ROM_GPIOIntTypeGet

Gets the interrupt type for a pin.

Prototype:
uint32_t
ROM_GPIOIntTypeGet(uint32_t ui32Port,

uint8_t ui8Pin)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOIntTypeGet is a function pointer located at ROM_GPIOTABLE[4].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pin is the pin number.

Description:
This function gets the interrupt type for a specified pin on the selected GPIO port. The pin
can be configured as a falling-edge, rising-edge, or both-edges detected interrupt, or it can
be configured as a low-level or high-level detected interrupt. The type of interrupt detection
mechanism is returned and can include the GPIO_DISCRETE_INT flag.

Returns:
Returns one of the flags described for ROM_GPIOIntTypeSet().

13.2.1.12 ROM_GPIOIntTypeSet

Sets the interrupt type for the specified pin(s).

Prototype:
void
ROM_GPIOIntTypeSet(uint32_t ui32Port,

uint8_t ui8Pins,
uint32_t ui32IntType)

May 14, 2014 217

GPIO

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOIntTypeSet is a function pointer located at ROM_GPIOTABLE[3].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).
ui32IntType specifies the type of interrupt trigger mechanism.

Description:
This function sets up the various interrupt trigger mechanisms for the specified pin(s) on the
selected GPIO port.

One of the following flags can be used to define the ui32IntType parameter:

GPIO_FALLING_EDGE sets detection to edge and trigger to falling
GPIO_RISING_EDGE sets detection to edge and trigger to rising
GPIO_BOTH_EDGES sets detection to both edges
GPIO_LOW_LEVEL sets detection to low level
GPIO_HIGH_LEVEL sets detection to high level

In addition to the above flags, the following flag can be OR’d in to the ui32IntType parameter:

GPIO_DISCRETE_INT sets discrete interrupts for each pin on a GPIO port.

The GPIO_DISCRETE_INT is not available on all devices or all GPIO ports, consult the data
sheet to ensure that the device and the GPIO port supports discrete interrupts.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
In order to avoid any spurious interrupts, the user must ensure that the GPIO inputs remain
stable for the duration of this function.

Returns:
None.

13.2.1.13 ROM_GPIOPadConfigGet

Gets the pad configuration for a pin.

Prototype:
void
ROM_GPIOPadConfigGet(uint32_t ui32Port,

uint8_t ui8Pin,
uint32_t *pui32Strength,
uint32_t *pui32PinType)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPadConfigGet is a function pointer located at ROM_GPIOTABLE[6].

218 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pin is the pin number.
pui32Strength is a pointer to storage for the output drive strength.
pui32PinType is a pointer to storage for the output drive type.

Description:
This function gets the pad configuration for a specified pin on the selected GPIO port. The
values returned in pui32Strength and pui32PinType correspond to the values used in GPI-
OPadConfigSet(). This function also works for pin(s) configured as input pin(s); however, the
only meaningful data returned is whether the pin is terminated with a pull-up or down resistor.

Returns:
None

13.2.1.14 ROM_GPIOPinConfigure

Configures the alternate function of a GPIO pin.

Prototype:
void
ROM_GPIOPinConfigure(uint32_t ui32PinConfig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinConfigure is a function pointer located at ROM_GPIOTABLE[26].

Parameters:
ui32PinConfig is the pin configuration value, specified as only one of the GPIO_P??_???

values.

Description:
This function configures the pin mux that selects the peripheral function associated with a
particular GPIO pin. Only one peripheral function at a time can be associated with a GPIO
pin, and each peripheral function should only be associated with a single GPIO pin at a time
(despite the fact that many of them can be associated with more than one GPIO pin). To fully
configure a pin, a GPIOPinType∗() function should also be called.

The available mappings are supplied on a per-device basis in pin_map.h. The
PART_IS_<partno> define enables the appropriate set of defines for the device that is be-
ing used.

Note:
If the same signal is assigned to two different GPIO port pins, the signal is assigned to the port
with the lowest letter and the assignment to the higher letter port is ignored.

Returns:
None.

May 14, 2014 219

GPIO

13.2.1.15 ROM_GPIOPinRead

Reads the values present of the specified pin(s).

Prototype:
int32_t
ROM_GPIOPinRead(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinRead is a function pointer located at ROM_GPIOTABLE[11].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The values at the specified pin(s) are read, as specified by ui8Pins. Values are returned for
both input and output pin(s), and the value for pin(s) that are not specified by ui8Pins are set
to 0.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
Returns a bit-packed byte providing the state of the specified pin, where bit 0 of the byte
represents GPIO port pin 0, bit 1 represents GPIO port pin 1, and so on. Any bit that is not
specified by ui8Pins is returned as a 0. Bits 31:8 should be ignored.

13.2.1.16 ROM_GPIOPinTypeADC

Configures pin(s) for use as analog-to-digital converter inputs.

Prototype:
void
ROM_GPIOPinTypeADC(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeADC is a function pointer located at ROM_GPIOTABLE[23].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog-to-digital converter input pins must be properly configured for the analog-to-digital
peripheral to function correctly. This function provides the proper configuration for those pin(s).

220 May 14, 2014

Tiva TM4C129x ROM User’s Guide

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an ADC input; it only configures an ADC input
pin for proper operation.

Returns:
None.

13.2.1.17 ROM_GPIOPinTypeCIR

Configures pin(s) for use as Consumer Infrared inputs or outputs.

Prototype:
endif if CIR void
ROM_GPIOPinTypeCIR(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeCIR is a function pointer located at ROM_GPIOTABLE[40].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as Consumer Infrared
pins. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a CIR pin; it only configures a CIR pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

13.2.1.18 ROM_GPIOPinTypeComparator

Configures pin(s) for use as an analog comparator input.

Prototype:
void
ROM_GPIOPinTypeComparator(uint32_t ui32Port,

uint8_t ui8Pins)

May 14, 2014 221

GPIO

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeComparator is a function pointer located at ROM_GPIOTABLE[13].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog comparator input pins must be properly configured for the analog comparator to
function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an analog comparator input; it only configures
an analog comparator pin for proper operation. Devices with flexible pin muxing also require a
ROM_GPIOPinConfigure() function call.

Returns:
None.

13.2.1.19 ROM_GPIOPinTypeFan

Configures pin(s) for use by the fan module.

Prototype:
if FAN void
ROM_GPIOPinTypeFan(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeFan is a function pointer located at ROM_GPIOTABLE[35].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The fan pins must be properly configured for the fan controller to function correctly. This func-
tion provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

222 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Note:
This function cannot be used to turn any pin into a fan pin; it only configures a fan pin for proper
operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure() function
call.

Returns:
None.

13.2.1.20 ROM_GPIOPinTypeGPIOInput

Configures pin(s) for use as GPIO inputs.

Prototype:
endif void
ROM_GPIOPinTypeGPIOInput(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeGPIOInput is a function pointer located at ROM_GPIOTABLE[14].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO inputs. This
function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

13.2.1.21 ROM_GPIOPinTypeGPIOOutput

Configures pin(s) for use as GPIO outputs.

Prototype:
void
ROM_GPIOPinTypeGPIOOutput(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeGPIOOutput is a function pointer located at ROM_GPIOTABLE[15].

May 14, 2014 223

GPIO

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

13.2.1.22 ROM_GPIOPinTypeGPIOOutputOD

Configures pin(s) for use as GPIO open drain outputs.

Prototype:
void
ROM_GPIOPinTypeGPIOOutputOD(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeGPIOOutputOD is a function pointer located at ROM_GPIOTABLE[22].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

13.2.1.23 ROM_GPIOPinTypeI2C

Configures pin(s) for use by the I2C peripheral.

Prototype:
void
ROM_GPIOPinTypeI2C(uint32_t ui32Port,

uint8_t ui8Pins)

224 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeI2C is a function pointer located at ROM_GPIOTABLE[16].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The I2C pins must be properly configured for the I2C peripheral to function correctly. This
function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an I2C pin; it only configures an I2C pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

13.2.1.24 ROM_GPIOPinTypeI2CSCL

Configures pin(s) for use as SCL by the I2C peripheral.

Prototype:
void
ROM_GPIOPinTypeI2CSCL(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeI2CSCL is a function pointer located at ROM_GPIOTABLE[39].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The I2C pins must be properly configured for the I2C peripheral to function correctly. This
function provides the proper configuration for the SCL pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an I2C SCL pin; it only configures
an I2C SCL pin for proper operation. Devices with flexible pin muxing also require a
ROM_GPIOPinConfigure() function call.

May 14, 2014 225

GPIO

Returns:
None.

13.2.1.25 ROM_GPIOPinTypeKBColumn

Configures pin(s) for use as scan matrix keyboard columns (inputs).

Prototype:
void
ROM_GPIOPinTypeKBColumn(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeKBColumn is a function pointer located at ROM_GPIOTABLE[42].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as scan matrix key-
board inputs. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a scan matrix keyboard column pin; it only
configures a scan matrix keyboard column pin for proper operation. Devices with flexible pin
muxing also require a ROM_GPIOPinConfigure() function call.

Returns:
None.

13.2.1.26 ROM_GPIOPinTypeKBRow

Configures pin(s) for use as scan matrix keyboard rows (outputs).

Prototype:
if KBSCAN void
ROM_GPIOPinTypeKBRow(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeKBRow is a function pointer located at ROM_GPIOTABLE[41].

226 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as scan matrix key-
board outputs. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a scan matrix keyboard row pin; it only con-
figures a scan matrix keyboard row pin for proper operation. Devices with flexible pin muxing
also require a ROM_GPIOPinConfigure() function call.

Returns:
None.

13.2.1.27 ROM_GPIOPinTypeOneWire

Configures pin(s) for use by the 1-Wire module.

Prototype:
void
ROM_GPIOPinTypeOneWire(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeOneWire is a function pointer located at ROM_GPIOTABLE[44].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The 1-Wire pin must be properly configured for the 1-Wire peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a 1-Wire pin; it only configures a 1-Wire pin
for proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

May 14, 2014 227

GPIO

13.2.1.28 ROM_GPIOPinTypePECIAnalog

Configures a pin for analog transmit and receive use by the PECI module.

Prototype:
if PECI void
ROM_GPIOPinTypePECIAnalog(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypePECIAnalog is a function pointer located at ROM_GPIOTABLE[50].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog PECI pin must be properly configured for the PECI module to function correctly.
This function provides a typical configuration for that pin.

The pin is specified using a bit-packed byte, where each bit that is set identifies the pin to be
accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

Note:
This function cannot be used to turn any pin into an analog PECI pin; it only configures a PECI
pin for proper operation. Analog PECI pins are only available on some Tiva parts. Please
consult the datasheet for the part you are using to determine whether PECI pins are ana-
log or digital. Digital PECI pins must be configured using ROM_GPIOPinTypePECIRx() and
ROM_GPIOPinTypePECITx().

Returns:
None.

13.2.1.29 ROM_GPIOPinTypePECIRx

Configures a pin for receive use by the PECI module.

Prototype:
void
ROM_GPIOPinTypePECIRx(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypePECIRx is a function pointer located at ROM_GPIOTABLE[37].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

228 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
The PECI receive pin must be properly configured for the PECI module to function correctly.
This function provides a typical configuration for that pin.

The pin is specified using a bit-packed byte, where each bit that is set identifies the pin to be
accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

Note:
This function cannot be used to turn any pin into a PECI receive pin; it only configures
a PECI receive pin for proper operation. Devices with flexible pin muxing also require a
ROM_GPIOPinConfigure() function call.

Returns:
None.

13.2.1.30 ROM_GPIOPinTypePECITx

Configures a pin for transmit use by the PECI module.

Prototype:
void
ROM_GPIOPinTypePECITx(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypePECITx is a function pointer located at ROM_GPIOTABLE[38].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The PECI transmit pin must be properly configured for the PECI module to function correctly.
This function provides a typical configuration for that pin.

The pin is specified using a bit-packed byte, where each bit that is set identifies the pin to be
accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

Note:
This function cannot be used to turn any pin into a PECI transmit pin; it only configures
a PECI transmit pin for proper operation. Devices with flexible pin muxing also require a
ROM_GPIOPinConfigure() function call.

Returns:
None.

May 14, 2014 229

GPIO

13.2.1.31 ROM_GPIOPinTypePS2

Configures pin(s) for use by the HIM peripheral’s PS/2 module.

Prototype:
endif if PS2 void
ROM_GPIOPinTypePS2(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypePS2 is a function pointer located at ROM_GPIOTABLE[46].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The PS/2 pins must be properly configured for the PS/2 peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a PS/2 pin; it only configures a PS/2 pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

13.2.1.32 ROM_GPIOPinTypePWM

Configures pin(s) for use by the PWM peripheral.

Prototype:
endif void
ROM_GPIOPinTypePWM(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypePWM is a function pointer located at ROM_GPIOTABLE[17].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

230 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
The PWM pins must be properly configured for the PWM peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a PWM pin; it only configures a PWM pin for
proper operation. Devices wtih flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

13.2.1.33 ROM_GPIOPinTypeQEI

Configures pin(s) for use by the QEI peripheral.

Prototype:
void
ROM_GPIOPinTypeQEI(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeQEI is a function pointer located at ROM_GPIOTABLE[18].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The QEI pins must be properly configured for the QEI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, not using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a QEI pin; it only configures a QEI pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

May 14, 2014 231

GPIO

13.2.1.34 ROM_GPIOPinTypeSSI

Configures pin(s) for use by the SSI peripheral.

Prototype:
void
ROM_GPIOPinTypeSSI(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeSSI is a function pointer located at ROM_GPIOTABLE[19].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The SSI pins must be properly configured for the SSI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a SSI pin; it only configures a SSI pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

13.2.1.35 ROM_GPIOPinTypeTimer

Configures pin(s) for use by the Timer peripheral.

Prototype:
void
ROM_GPIOPinTypeTimer(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeTimer is a function pointer located at ROM_GPIOTABLE[20].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

232 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
The CCP pins must be properly configured for the timer peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a timer pin; it only configures a timer pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

13.2.1.36 ROM_GPIOPinTypeUART

Configures pin(s) for use by the UART peripheral.

Prototype:
void
ROM_GPIOPinTypeUART(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeUART is a function pointer located at ROM_GPIOTABLE[21].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The UART pins must be properly configured for the UART peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a UART pin; it only configures a UART pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

May 14, 2014 233

GPIO

13.2.1.37 ROM_GPIOPinTypeUSBAnalog

Configures pin(s) for use by the USB peripheral.

Prototype:
void
ROM_GPIOPinTypeUSBAnalog(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeUSBAnalog is a function pointer located at ROM_GPIOTABLE[28].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
Some USB analog pins must be properly configured for the USB peripheral to function correctly.
This function provides the proper configuration for any USB pin(s). This can also be used to
configure the EPEN and PFAULT pins so that they are no longer used by the USB controller.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a USB pin; it only configures a USB pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

13.2.1.38 ROM_GPIOPinTypeUSBDigital

Configures pin(s) for use by the USB peripheral.

Prototype:
void
ROM_GPIOPinTypeUSBDigital(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeUSBDigital is a function pointer located at ROM_GPIOTABLE[24].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

234 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
Some USB digital pins must be properly configured for the USB peripheral to function correctly.
This function provides a typical configuration for the digital USB pin(s); other configurations may
work as well depending upon the board setup (for example, using the on-chip pull-ups).

This function should only be used with EPEN and PFAULT pins as all other USB pins are
analog in nature or are not used in devices without OTG functionality.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a USB pin; it only configures a USB pin for
proper operation. Devices with flexible pin muxing also require a ROM_GPIOPinConfigure()
function call.

Returns:
None.

13.2.1.39 ROM_GPIOPinTypeWakeHigh

Configures pin(s) for use as a hibernate wake-on-high source.

Prototype:
void
ROM_GPIOPinTypeWakeHigh(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeWakeHigh is a function pointer located at ROM_GPIOTABLE[48].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as hibernate wake-
high inputs. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

13.2.1.40 ROM_GPIOPinTypeWakeLow

Configures pin(s) for use as a hibernate wake-on-low source.

May 14, 2014 235

GPIO

Prototype:
void
ROM_GPIOPinTypeWakeLow(uint32_t ui32Port,

uint8_t ui8Pins)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinTypeWakeLow is a function pointer located at ROM_GPIOTABLE[49].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as hibernate wake-low
inputs. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

13.2.1.41 ROM_GPIOPinWakeStatus

Retrieves the wake pins status.

Prototype:
endif uint32_t
ROM_GPIOPinWakeStatus(uint32_t ui32Port)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinWakeStatus is a function pointer located at ROM_GPIOTABLE[55].

Parameters:
ui32Port is the base address of the GPIO port.

Description:
This function returns the GPIO wake pin status values. The returned bitfield shows low or high
pin state via a value of 0 or 1.

Note:
This function is not available on all devices, consult the data sheet to ensure that the device
you are using supports GPIO wake pins.

Returns:
Returns the wake pin status.

236 May 14, 2014

Tiva TM4C129x ROM User’s Guide

13.2.1.42 ROM_GPIOPinWrite

Writes a value to the specified pin(s).

Prototype:
void
ROM_GPIOPinWrite(uint32_t ui32Port,

uint8_t ui8Pins,
uint8_t ui8Val)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_GPIOTABLE is an array of pointers located at ROM_APITABLE[4].
ROM_GPIOPinWrite is a function pointer located at ROM_GPIOTABLE[0].

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).
ui8Val is the value to write to the pin(s).

Description:
Writes the corresponding bit values to the output pin(s) specified by ui8Pins. Writing to a pin
configured as an input pin has no effect.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

May 14, 2014 237

GPIO

238 May 14, 2014

Tiva TM4C129x ROM User’s Guide

14 Hibernation Module
Introduction .239
Functions . 240

14.1 Introduction

The Hibernate API provides a set of functions for using the Hibernation module on the Tiva mi-
crocontroller. The Hibernation module allows the software application to remove power from the
microcontroller, and then be powered on later based on specific time or when the external WAKE
pin is asserted. The API provides functions to configure wake conditions, manage interrupts, read
status, save and restore program state information, and request hibernation mode.

Some of the features of the Hibernation module are:

32-bit real time clock, with 15-bit subseconds counter
Internal low frequency oscillator
Calendar mode for the hibernation counter
Tamper detection and response
Trim register for fine tuning the RTC rate
One RTC match register for generating RTC events
External WAKE pin to initiate a wake-up
External RST pin and/or four GPIO port pins as alternate wake-up sources.
Maintain GPIO state during hibernation.
Low-battery detection
16 32-bit words of battery-backed memory
Programmable interrupts for hibernation events

The Hibernation module must be enabled before it can be used. Use the
ROM_HibernateEnableExpClk() function to enable it. If a crystal is used for the clock
source, then the initializing code must allow time for the crystal to stabilize after calling the
ROM_HibernateEnableExpClk() function. Refer to the device data sheet for information about
crystal stabilization time. If an oscillator is used, then no delay is necessary. After the module is
enabled, the clock source must be configured by calling ROM_HibernateClockSelect().

In order to use the RTC feature of the Hibernation module, the RTC must be enabled by calling
ROM_HibernateRTCEnable(). It can be later disabled by calling ROM_HibernateRTCDisable().
These functions can be called at any time to start and stop the RTC. The RTC value can
be read or set by using the ROM_HibernateRTCGet() and ROM_HibernateRTCSet() functions.
The match register can be read and set by using the ROM_HibernateRTCMatchGet() and
ROM_HibernateRTCMatchSet() functions. The real-time clock rate can be adjusted by us-
ing the trim register. Use the ROM_HibernateRTCTrimGet() and ROM_HibernateRTCTrimSet()
functions for this purpose. The value of the subseconds counter can be read using
ROM_HibernateRTCSSGet(). The match value of the subseconds counter can be set and read
using the ROM_HibernateRTCSSMatchSet() and ROM_HibernateRTCSSMatchGet() functions.

The tamper feature provides mechanisms to detect, respond to, and log system tamper events. A
tamper event is detected by state transitions on select GPIOs (see processor datasheet for a list of
GPIOs that support this function) or the failure of the external oscillator if used as a clock source.

May 14, 2014 239

Hibernation Module

The tamper GPIOs are configured to use with ROM_HibernateTamperIOEnable() and
ROM_HibernateTamperIODisable(). None of the GPIO API functions are needed to con-
figure the tamper GPIOs. The tamper GPIOs configured by using these functions over-
ride any configuration by GPIO APIs. The external oscillator state can be retrieved with
ROM_HibernateTamperExtOscValid(). If an external oscillator failure is detected, a recovery at-
tempt can be triggered with ROM_HibernateTamperExtOscRecover().

The module always reponds to a tamper event by generating a tamper event signal to the
System Control module. The tamper feature can be also be configured to respond to a
tamper event by clearing all or part of the hibernate memory and/or waking from hiber-
nate via ROM_HibernateTamperEventsConfig(). The detected events are logged with a real-
time clock time stamp to allow investigation. The logged events can be managed with
ROM_HibernateTamperEventsGet() and ROM_HibernateTamperEventsClear().

The overall status of tamper retrieved with ROM_HibernateTamperStatusGet(). The
tamper feature can be enabled and disabled with ROM_HibernateTamperEnable() and
ROM_HibernateTamperDisable().

Application state information can be stored in the battery-backed memory of the Hiberna-
tion module when the processor is powered off. Use the ROM_HibernateDataSet() and
ROM_HibernateDataGet() functions to access the battery-backed memory area.

The module can be configured to wake when the external WAKE pin is asserted, when an RTC
match occurs, when the battery has reached a set level, when a GPIO pin is asserted, when the
RESET pin is asserted, when a tamper even is detected, or any combination of these events. Use
the ROM_HibernateWakeSet() function to configure the wake conditions. The present configuration
can be read by calling ROM_HibernateWakeGet().

The Hibernation module can detect a low battery and signal the processor. It can also be configured
to abort a hibernation request if the battery voltage is too low. Use the ROM_HibernateLowBatSet()
and ROM_HibernateLowBatGet() functions to configure this feature. The battery level can be mea-
sured using the ROM_HibernateBatCheckStart() and ROM_HibernateBatCheckDone() functions.

Several functions are provided for managing interrupts. Use the ROM_HibernateIntEnable() and
ROM_HibernateIntDisable() functions to enable and disable specific interrupt sources. The present
interrupt status can be found by calling ROM_HibernateIntStatus(). In the interrupt handler, all
pending interrupts must be be cleared. Use the ROM_HibernateIntClear() function to clear pending
interrupts.

Finally, once the module is appropriately configured, the state saved, and the software application
is ready to hibernate, call the ROM_HibernateRequest() function. This function initiates the se-
quence to remove power from the processor. At a power-on reset, the software application can
use the ROM_HibernateIsActive() function to determine if the Hibernation module is already active
and therefore does not need to be enabled. This function can provide a hint to the software that
the processor is waking from hibernation instead of a cold start. The software can then use the
ROM_HibernateIntStatus() and ROM_HibernateDataGet() functions to discover the cause of the
wake and to get the saved system state.

14.2 Functions

Functions
uint32_t ROM_HibernateBatCheckDone (void)

240 May 14, 2014

Tiva TM4C129x ROM User’s Guide

void ROM_HibernateBatCheckStart (void)
int ROM_HibernateCalendarGet (tTime ∗psTime)
void ROM_HibernateCalendarMatchGet (uint32_t ui32Index, tTime ∗psTime)
void ROM_HibernateCalendarMatchSet (uint32_t ui32Index, tTime ∗psTime)
void ROM_HibernateCalendarSet (tTime ∗psTime)
void ROM_HibernateClockConfig (uint32_t ui32Config)
void ROM_HibernateCounterMode (uint32_t ui32Config)
void ROM_HibernateDataGet (uint32_t ∗pui32Data, uint32_t ui32Count)
void ROM_HibernateDataSet (uint32_t ∗pui32Data, uint32_t ui32Count)
void ROM_HibernateDisable (void)
void ROM_HibernateEnableExpClk (uint32_t ui32HibClk)
void ROM_HibernateGPIORetentionDisable (void)
void ROM_HibernateGPIORetentionEnable (void)
bool ROM_HibernateGPIORetentionGet (void)
void ROM_HibernateIntClear (uint32_t ui32IntFlags)
void ROM_HibernateIntDisable (uint32_t ui32IntFlags)
void ROM_HibernateIntEnable (uint32_t ui32IntFlags)
uint32_t ROM_HibernateIntStatus (bool bMasked)
uint32_t ROM_HibernateIsActive (void)
uint32_t ROM_HibernateLowBatGet (void)
void ROM_HibernateLowBatSet (uint32_t ui32LowBatFlags)
void ROM_HibernateRequest (void)
void ROM_HibernateRTCDisable (void)
void ROM_HibernateRTCEnable (void)
uint32_t ROM_HibernateRTCGet (void)
uint32_t ROM_HibernateRTCMatchGet (uint32_t ui32Match)
void ROM_HibernateRTCMatchSet (uint32_t ui32Match, uint32_t ui32Value)
void ROM_HibernateRTCSet (uint32_t ui32RTCValue)
uint32_t ROM_HibernateRTCSSGet (void)
uint32_t ROM_HibernateRTCSSMatchGet (uint32_t ui32Match)
void ROM_HibernateRTCSSMatchSet (uint32_t ui32Match, uint32_t ui32Value)
uint32_t ROM_HibernateRTCTrimGet (void)
void ROM_HibernateRTCTrimSet (uint32_t ui32Trim)
void ROM_HibernateTamperDisable (void)
void ROM_HibernateTamperEnable (void)
void ROM_HibernateTamperEventsClear (void)
void ROM_HibernateTamperEventsConfig (uint32_t ui32Config)
bool ROM_HibernateTamperEventsGet (uint32_t ui32Index, uint32_t ∗pui32RTC, uint32_t
∗pui32Event)
void ROM_HibernateTamperExtOscRecover (void)
bool ROM_HibernateTamperExtOscValid (void)
void ROM_HibernateTamperIODisable (uint32_t ui32Input)
void ROM_HibernateTamperIOEnable (uint32_t ui32Input, uint32_t ui32Config)
uint32_t ROM_HibernateTamperStatusGet (void)
uint32_t ROM_HibernateWakeGet (void)
void ROM_HibernateWakeSet (uint32_t ui32WakeFlags)

May 14, 2014 241

Hibernation Module

14.2.1 Function Documentation

14.2.1.1 ROM_HibernateBatCheckDone

Returns if a forced battery check has completed.

Prototype:
uint32_t
ROM_HibernateBatCheckDone(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateBatCheckDone is a function pointer located at
ROM_HIBERNATETABLE[30].

Description:
This function returns if the forced battery check initiated by a call to the
ROM_HibernateBatCheckStart() function has completed. This function returns a non-zero
value until the battery level check has completed. Once this function returns a value of zero,
the hibernation module has completed the battery check and the ROM_HibernateIntStatus()
function can be used to check if the battery was low by checking if the value returned has the
HIBERNATE_INT_LOW_BAT set.

Returns:
The value is zero when the battery level check has completed or non-zero if the check is still in
process.

14.2.1.2 ROM_HibernateBatCheckStart

Forces the Hibernation module to initiate a check of the battery voltage.

Prototype:
void
ROM_HibernateBatCheckStart(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateBatCheckStart is a function pointer located at
ROM_HIBERNATETABLE[29].

Description:
This function forces the Hibernation module to initiate a check of the battery voltage imme-
diately rather than waiting for the next check interval to pass. After calling this function, the
application should call the ROM_HibernateBatCheckDone() function and wait for the function
to return a zero value before calling the ROM_HibernateIntStatus() to check if the return code
has the HIBERNATE_INT_LOW_BAT set. If HIBERNATE_INT_LOW_BAT is set, the battery
level is low. The application can also enable the HIBERNATE_INT_LOW_BAT interrupt and
wait for an interrupt to indicate that the battery level is low.

Note:
A hibernation request is held off if a battery check is in progress.

242 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

14.2.1.3 ROM_HibernateCalendarGet

Returns the Hibernation module’s date and time in calendar mode.

Prototype:
int
ROM_HibernateCalendarGet(tTime *psTime)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateCalendarGet is a function pointer located at ROM_HIBERNATETABLE[36].

Parameters:
psTime is the structure that is filled with the current date and time.

Description:
This function returns the current date and time in the structure provided by the psTime parame-
ter. Regardless of the calendar mode, the psTime parameter uses a 24-hour representation of
the time. This function can only be called when the Hibernation module is configured in calen-
dar mode using the ROM_HibernateCounterMode() function with one of the calendar modes.

The only case where this function fails and returns a non-zero value is when the function
detects that the counter is passing from the last second of the day to the first second of the
next day. This exception must be handled in the application by waiting at least one second
before calling again to get the updated calendar information.

Returns:
Returns zero if the time and date were read successfully and returns a non-zero value if the
psTime structure was not updated.

14.2.1.4 ROM_HibernateCalendarMatchGet

Returns the Hibernation module’s date and time match value in calendar mode.

Prototype:
void
ROM_HibernateCalendarMatchGet(uint32_t ui32Index,

tTime *psTime)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateCalendarMatchGet is a function pointer located at
ROM_HIBERNATETABLE[38].

Parameters:
ui32Index indicates which match register to access.
psTime is the structure to fill with the current date and time match value.

May 14, 2014 243

Hibernation Module

Description:
This function returns the current date and time match value in the structure provided by the
psTime parameter. Regardless of the mode, the psTime parameter uses a 24-hour clock rep-
resentation of time. This function can only be called when the Hibernation module is configured
in calendar mode using the ROM_HibernateCounterMode() function. The ui32Index value is
reserved for future use and should always be zero.

Returns:
Returns zero if the time and date match value were read successfully and returns a non-zero
value if the psTime structure was not updated.

14.2.1.5 ROM_HibernateCalendarMatchSet

Sets the Hibernation module’s date and time match value in calendar mode.

Prototype:
void
ROM_HibernateCalendarMatchSet(uint32_t ui32Index,

tTime *psTime)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateCalendarMatchSet is a function pointer located at
ROM_HIBERNATETABLE[37].

Parameters:
ui32Index indicates which match register to access.
psTime is the structure that holds all of the information to set the current date and time match

values.

Description:
This function uses the psTime parameter to set the current date and time match value in the
Hibernation module’s calendar. Regardless of the mode, the psTime parameter uses a 24-hour
clock representation of time. This function can only be called when the Hibernation module is
configured in calendar mode using the ROM_HibernateCounterMode() function. The ui32Index
value is reserved for future use and should always be zero.

Calendar match can be enabled for every day, every hour, every minute or every second,
setting any of these fields to 0xFF causes a match for that field. For example, setting the day
of month field to 0xFF results in a calendar match daily at the same time.

Returns:
None.

14.2.1.6 ROM_HibernateCalendarSet

Sets the Hibernation module’s date and time in calendar mode.

Prototype:
void
ROM_HibernateCalendarSet(tTime *psTime)

244 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateCalendarSet is a function pointer located at ROM_HIBERNATETABLE[35].

Parameters:
psTime is the structure that holds the information for the current date and time.

Description:
This function uses the psTime parameter to set the current date and time when the Hi-
bernation module is in calendar mode. Regardless of whether 24-hour or 12-hour mode
is in use, the psTime structure uses a 24-hour representation of the time. This function
can only be called when the hibernate counter is configured in calendar mode using the
ROM_HibernateCounterMode() function with one of the calendar modes.

Returns:
None.

14.2.1.7 ROM_HibernateClockConfig

Configures the clock input for the Hibernation module.

Prototype:
void
ROM_HibernateClockConfig(uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateClockConfig is a function pointer located at ROM_HIBERNATETABLE[28].

Parameters:
ui32Config is one of the possible configuration options for the clock input listed below.

Description:
This function is used to configure the clock input for the Hibernation module. The ui32Config
parameter can be one of the following values:

HIBERNATE_OSC_DISABLE specifies that the internal oscillator is powered off. This is
used when an externally supplied oscillator is connected to the XOSC0 pin or to save
power when the LFIOSC is used.
HIBERNATE_OSC_HIGHDRIVE specifies a higher drive strength when a 24 pF filter ca-
pacitor is used with a crystal.
HIBERNATE_OSC_LOWDRIVE specifies a lower drive strength when a 12 pF filter ca-
pacitor is used with a crystal.
HIBERNATE_OSC_LFIOSC will use the Hibernation module’s internal low precision oscil-
lator. Because of the low accuracy of this oscillator, this option should not be used when
the system requires a real time counter.

This ui32Config also configures how the clock output from the hibernation is used to clock other
peripherals in the system. The ALT clock settings allow clocking a subset of the peripherals.
See the hibernate section in the datasheet to determine which peripherals can be clocked by

May 14, 2014 245

Hibernation Module

the ALT clock outputs from the hibernation module. The ui32Config parameter can have any
combination of the following values:

HIBERNATE_OUT_SYSCLK enables the hibernate clock output to the system clock.
HIBERNATE_OUT_WRSTALL eanbles the automatic bus stall on writes to hibernate reg-
isters.

The HIBERNATE_OSC_DISABLE option is used to disable and power down the internal os-
cillator if an external clock source or no clock source is used instead of a 32.768-kHz crystal.
In the case where an external crystal is used, either the HIBERNATE_OSC_HIGHDRIVE or
HIBERNATE_OSC_LOWDRIVE is used. These settings optimize the oscillator drive strength
to match the size of the filter capacitor that is used with the external crystal circuit. The HIBER-
NATE_OUT_WRSTALL is used when the application wants writes to the Hibernation module
to stall the processor instead of waiting for the write to complete in software by polling the write
complete or waiting on an interrupt.

Returns:
None.

14.2.1.8 ROM_HibernateCounterMode

Configures the Hibernation module’s internal counter mode.

Prototype:
void
ROM_HibernateCounterMode(uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateCounterMode is a function pointer located at ROM_HIBERNATETABLE[34].

Parameters:
ui32Config is the configuration to use for the hibernation module’s counter.

Description:
This function configures the Hibernate module’s counter mode to operate as a standard RTC
counter or to operate in a calendar mode. The ui32Config parameter is used to provide the
configuration for the counter and must include only one of the following values:

HIBERNATE_COUNTER_24HR specifies 24-hour calendar mode.
HIBERNATE_COUNTER_12HR specifies 12-hour AM/PM calendar mode.
HIBERNATE_COUNTER_RTC specifies RTC counter mode.

The HibernateCalendar functions can only be called when either HIBER-
NATE_COUNTER_24HR or HIBERNATE_COUNTER_12HR is specified.

Returns:
None.

246 May 14, 2014

Tiva TM4C129x ROM User’s Guide

14.2.1.9 ROM_HibernateDataGet

Reads a set of data from the battery-backed memory of the Hibernation module.

Prototype:
void
ROM_HibernateDataGet(uint32_t *pui32Data,

uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateDataGet is a function pointer located at ROM_HIBERNATETABLE[19].

Parameters:
pui32Data points to a location where the data that is read from the Hibernation module is

stored.
ui32Count is the count of 32-bit words to read.

Description:
This function retrieves a set of data from the Hibernation module battery-backed memory that
was previously stored with the ROM_HibernateDataSet() function. The caller must ensure that
pui32Data points to a large enough memory block to hold all the data that is read from the
battery-backed memory.

Returns:
None.

14.2.1.10 ROM_HibernateDataSet

Stores data in the battery-backed memory of the Hibernation module.

Prototype:
void
ROM_HibernateDataSet(uint32_t *pui32Data,

uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateDataSet is a function pointer located at ROM_HIBERNATETABLE[18].

Parameters:
pui32Data points to the data that the caller wants to store in the memory of the Hibernation

module.
ui32Count is the count of 32-bit words to store.

Description:
Stores a set of data in the Hibernation module battery-backed memory. This memory is pre-
served when the power to the processor is turned off and can be used to store application state
information that is needed when the processor wakes. Up to 16 32-bit words can be stored in
the battery-backed memory. The data can be restored by calling the ROM_HibernateDataGet()
function.

May 14, 2014 247

Hibernation Module

Returns:
None.

14.2.1.11 ROM_HibernateDisable

Disables the Hibernation module for operation.

Prototype:
void
ROM_HibernateDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateDisable is a function pointer located at ROM_HIBERNATETABLE[2].

Description:
This function disables the Hibernation module. After this function is called, none of the Hiber-
nation module features are available.

Returns:
None.

14.2.1.12 ROM_HibernateEnableExpClk

Enables the Hibernation module for operation.

Prototype:
void
ROM_HibernateEnableExpClk(uint32_t ui32HibClk)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateEnableExpClk is a function pointer located at ROM_HIBERNATETABLE[1].

Parameters:
ui32HibClk is the rate of the clock supplied to the Hibernation module.

Description:
This function enables the Hibernation module for operation. This function should be called
before any of the Hibernation module features are used.

The peripheral clock is the same as the processor clock. This value is returned by
ROM_SysCtlClockFreqSet(), or it can be explicitly hard-coded if it is constant and known.

Returns:
None.

248 May 14, 2014

Tiva TM4C129x ROM User’s Guide

14.2.1.13 ROM_HibernateGPIORetentionDisable

Disables GPIO retention after wake from hibernation.

Prototype:
void
ROM_HibernateGPIORetentionDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateGPIORetentionDisable is a function pointer located at
ROM_HIBERNATETABLE[32].

Description:
This function disables the retention of the GPIO pin state during hibernation and allows the
GPIO pins to be controlled by the system. If the ROM_HibernateGPIORetentionEnable() func-
tion is called before entering hibernation, this function must be called after returning from hi-
bernation to allow the GPIO pins to be controlled by GPIO module.

Returns:
None.

14.2.1.14 ROM_HibernateGPIORetentionEnable

Enables GPIO retention after wake from hibernation.

Prototype:
void
ROM_HibernateGPIORetentionEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateGPIORetentionEnable is a function pointer located at
ROM_HIBERNATETABLE[31].

Description:
This function enables the GPIO pin state to be maintained during hibernation and remain
active even when waking from hibernation. The GPIO module itself is reset upon enter-
ing hibernation and no longer controls the output pins. To maintain the current output
level after waking from hibernation, the GPIO module must be reconfigured and then the
ROM_HibernateGPIORetentionDisable() function must be called to return control of the GPIO
pin to the GPIO module.

Returns:
None.

14.2.1.15 ROM_HibernateGPIORetentionGet

Returns the current setting for GPIO retention.

May 14, 2014 249

Hibernation Module

Prototype:
bool
ROM_HibernateGPIORetentionGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateGPIORetentionGet is a function pointer located at
ROM_HIBERNATETABLE[33].

Description:
This function returns the current setting for GPIO retention in the hibernate module.

Returns:
Returns true if GPIO retention is enabled and false if GPIO retention is disabled.

14.2.1.16 ROM_HibernateIntClear

Clears pending interrupts from the Hibernation module.

Prototype:
void
ROM_HibernateIntClear(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIntClear is a function pointer located at ROM_HIBERNATETABLE[0].

Parameters:
ui32IntFlags is the bit mask of the interrupts to be cleared.

Description:
This function clears the specified interrupt sources. This function must be called from within
the interrupt handler or else the handler is called again upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to the
ROM_HibernateIntEnable() function.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

250 May 14, 2014

Tiva TM4C129x ROM User’s Guide

14.2.1.17 ROM_HibernateIntDisable

Disables interrupts for the Hibernation module.

Prototype:
void
ROM_HibernateIntDisable(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIntDisable is a function pointer located at ROM_HIBERNATETABLE[22].

Parameters:
ui32IntFlags is the bit mask of the interrupts to be disabled.

Description:
This function disables the specified interrupt sources from the Hibernation module.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to the
ROM_HibernateIntEnable() function.

Returns:
None.

14.2.1.18 ROM_HibernateIntEnable

Enables interrupts for the Hibernation module.

Prototype:
void
ROM_HibernateIntEnable(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIntEnable is a function pointer located at ROM_HIBERNATETABLE[21].

Parameters:
ui32IntFlags is the bit mask of the interrupts to be enabled.

Description:
This function enables the specified interrupt sources from the Hibernation module.

The ui32IntFlags parameter must be the logical OR of any combination of the following:

HIBERNATE_INT_WR_COMPLETE - write complete interrupt
HIBERNATE_INT_PIN_WAKE - wake from pin interrupt
HIBERNATE_INT_LOW_BAT - low-battery interrupt
HIBERNATE_INT_RTC_MATCH_0 - RTC match 0 interrupt
HIBERNATE_INT_VDDFAIL - supply failure interrupt.
HIBERNATE_INT_RESET_WAKE - wake from reset pin interrupt
HIBERNATE_INT_GPIO_WAKE - wake from GPIO pin interrupt

May 14, 2014 251

Hibernation Module

Returns:
None.

14.2.1.19 ROM_HibernateIntStatus

Gets the current interrupt status of the Hibernation module.

Prototype:
uint32_t
ROM_HibernateIntStatus(bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIntStatus is a function pointer located at ROM_HIBERNATETABLE[23].

Parameters:
bMasked is false to retrieve the raw interrupt status, and true to retrieve the masked interrupt

status.

Description:
This function returns the interrupt status of the Hibernation module. The caller can use this
function to determine the cause of a hibernation interrupt. Either the masked or raw interrupt
status can be returned.

Returns:
Returns the interrupt status as a bit field with the values as described in the
ROM_HibernateIntEnable() function.

14.2.1.20 ROM_HibernateIsActive

Checks to see if the Hibernation module is already powered up.

Prototype:
uint32_t
ROM_HibernateIsActive(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateIsActive is a function pointer located at ROM_HIBERNATETABLE[24].

Description:
This function queries the control register to determine if the module is already active. This
function can be called at a power-on reset to help determine if the reset is due to a wake from
hibernation or a cold start. If the Hibernation module is already active, then it does not need to
be re-enabled, and its status can be queried immediately.

The software application should also use the ROM_HibernateIntStatus() function to read the
raw interrupt status to determine the cause of the wake. The ROM_HibernateDataGet() func-
tion can be used to restore state. These combinations of functions can be used by the software
to determine if the processor is waking from hibernation and the appropriate action to take as
a result.

252 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
Returns true if the module is already active, and false if not.

14.2.1.21 ROM_HibernateLowBatGet

Gets the currently configured low-battery detection behavior.

Prototype:
uint32_t
ROM_HibernateLowBatGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateLowBatGet is a function pointer located at ROM_HIBERNATETABLE[9].

Description:
This function returns a value representing the currently configured low battery detection be-
havior.

The return value is a combination of the values described in the ROM_HibernateLowBatSet()
function.

Returns:
Returns a value indicating the configured low-battery detection.

14.2.1.22 ROM_HibernateLowBatSet

Configures the low-battery detection.

Prototype:
void
ROM_HibernateLowBatSet(uint32_t ui32LowBatFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateLowBatSet is a function pointer located at ROM_HIBERNATETABLE[8].

Parameters:
ui32LowBatFlags specifies behavior of low-battery detection.

Description:
This function enables the low-battery detection and whether hibernation is allowed if a low
battery is detected. If low-battery detection is enabled, then a low-battery condition is indicated
in the raw interrupt status register, which can be enabled to trigger an interrupt. Optionally,
hibernation can be aborted if a low battery condition is detected.

The ui32LowBatFlags parameter is one of the following values:

HIBERNATE_LOW_BAT_DETECT - detect a low-battery condition

May 14, 2014 253

Hibernation Module

HIBERNATE_LOW_BAT_ABORT - detect a low-battery condition and abort hibernation if
low-battery is detected

The other setting in the ui32LowBatFlags allows the caller to set one of the following voltage
level trigger values :

HIBERNATE_LOW_BAT_1_9V - voltage low level is 1.9 V
HIBERNATE_LOW_BAT_2_1V - voltage low level is 2.1 V
HIBERNATE_LOW_BAT_2_3V - voltage low level is 2.3 V
HIBERNATE_LOW_BAT_2_5V - voltage low level is 2.5 V

Returns:
None.

14.2.1.23 ROM_HibernateRequest

Requests hibernation mode.

Prototype:
void
ROM_HibernateRequest(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRequest is a function pointer located at ROM_HIBERNATETABLE[20].

Description:
This function requests the Hibernation module to disable the external regulator, thus removing
power from the processor and all peripherals. The Hibernation module remains powered from
the battery or auxiliary power supply.

The Hibernation module re-enables the external regulator when one of the configured wake
conditions occurs (such as RTC match or external WAKE pin). When the power is restored, the
processor goes through a power-on reset although the Hibernation module is not reset. The
processor can retrieve saved state information with the ROM_HibernateDataGet() function.
Prior to calling the function to request hibernation mode, the conditions for waking must have
already been set by using the ROM_HibernateWakeSet() function.

Note that this function may return because some time may elapse before the power is actu-
ally removed, or it may not be removed at all. For this reason, the processor continues to
execute instructions for some time, and the caller should be prepared for this function to re-
turn. There are various reasons why the power may not be removed. For example, if the
ROM_HibernateLowBatSet() function was used to configure an abort if low battery is detected,
then the power is not removed if the battery voltage is too low. There may be other reasons
related to the external circuit design, that a request for hibernation may not actually occur.

For all these reasons, the caller must be prepared for this function to return. The simplest way
to handle it is to just enter an infinite loop and wait for the power to be removed.

Returns:
None.

254 May 14, 2014

Tiva TM4C129x ROM User’s Guide

14.2.1.24 ROM_HibernateRTCDisable

Disables the RTC feature of the Hibernation module.

Prototype:
void
ROM_HibernateRTCDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCDisable is a function pointer located at ROM_HIBERNATETABLE[5].

Description:
This function disables the RTC in the Hibernation module. After calling this function, the RTC
features of the Hibernation module are not available.

Returns:
None.

14.2.1.25 ROM_HibernateRTCEnable

Enables the RTC feature of the Hibernation module.

Prototype:
void
ROM_HibernateRTCEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCEnable is a function pointer located at ROM_HIBERNATETABLE[4].

Description:
This function enables the RTC in the Hibernation module. The RTC can be used to wake the
processor from hibernation at a certain time, or to generate interrupts at certain times. This
function must be called before using any of the RTC features of the Hibernation module.

Returns:
None.

14.2.1.26 ROM_HibernateRTCGet

Gets the value of the real time clock (RTC) counter.

Prototype:
uint32_t
ROM_HibernateRTCGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCGet is a function pointer located at ROM_HIBERNATETABLE[11].

May 14, 2014 255

Hibernation Module

Description:
This function gets the value of the RTC and returns it to the caller.

Returns:
Returns the value of the RTC counter in seconds.

14.2.1.27 ROM_HibernateRTCMatchGet

Gets the value of the requested RTC match register.

Prototype:
uint32_t
ROM_HibernateRTCMatchGet(uint32_t ui32Match)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCMatchGet is a function pointer located at ROM_HIBERNATETABLE[49].

Parameters:
ui32Match is the index of the match register.

Description:
This function gets the value of the match register for the RTC. The only value that can be used
with the ui32Match parameter is zero, other values are reserved for future use.

Returns:
Returns the value of the requested match register.

14.2.1.28 ROM_HibernateRTCMatchSet

Sets the value of the RTC match register.

Prototype:
void
ROM_HibernateRTCMatchSet(uint32_t ui32Match,

uint32_t ui32Value)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCMatchSet is a function pointer located at ROM_HIBERNATETABLE[50].

Parameters:
ui32Match is the index of the match register.
ui32Value is the value for the match register.

Description:
This function sets a match register for the RTC. The Hibernation module can be configured to
wake from hibernation, and/or generate an interrupt when the value of the RTC counter is the
same as the match register.

256 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

14.2.1.29 ROM_HibernateRTCSet

Sets the value of the real time clock (RTC) counter.

Prototype:
void
ROM_HibernateRTCSet(uint32_t ui32RTCValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCSet is a function pointer located at ROM_HIBERNATETABLE[10].

Parameters:
ui32RTCValue is the new value for the RTC.

Description:
This function sets the value of the RTC. The RTC counter contains the count in sec-
onds when a 32.768kHz clock source is in use. The RTC must be enabled by calling
ROM_HibernateRTCEnable() before calling this function.

Returns:
None.

14.2.1.30 ROM_HibernateRTCSSGet

Returns the current value of the RTC sub second count.

Prototype:
uint32_t
ROM_HibernateRTCSSGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCSSGet is a function pointer located at ROM_HIBERNATETABLE[27].

Description:
This function returns the current value of the sub second count for the RTC in 1/32768 of a
second increments.

Returns:
The current RTC sub second count in 1/32768 seconds.

May 14, 2014 257

Hibernation Module

14.2.1.31 ROM_HibernateRTCSSMatchGet

Returns the value of the requested RTC sub second match register.

Prototype:
uint32_t
ROM_HibernateRTCSSMatchGet(uint32_t ui32Match)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCSSMatchGet is a function pointer located at
ROM_HIBERNATETABLE[51].

Parameters:
ui32Match is the index of the match register.

Description:
This function returns the current value of the sub second match register for the RTC. The value
returned is in 1/32768 second increments. The only value that can be used with the ui32Match
parameter is zero, other values are reserved for future use.

Returns:
Returns the value of the requested sub section match register.

14.2.1.32 ROM_HibernateRTCSSMatchSet

Sets the value of the RTC sub second match register.

Prototype:
void
ROM_HibernateRTCSSMatchSet(uint32_t ui32Match,

uint32_t ui32Value)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCSSMatchSet is a function pointer located at
ROM_HIBERNATETABLE[52].

Parameters:
ui32Match is the index of the match register.
ui32Value is the value for the sub second match register.

Description:
This function sets the sub second match register for the RTC in 1/32768 of a second incre-
ments. The Hibernation module can be configured to wake from hibernation, and/or generate
an interrupt when the value of the RTC counter is the same as the match combined with the
sub second match register. The only value that can be used with the ui32Match parameter is
zero, other values are reserved for future use.

Returns:
None.

258 May 14, 2014

Tiva TM4C129x ROM User’s Guide

14.2.1.33 ROM_HibernateRTCTrimGet

Gets the value of the RTC pre-divider trim register.

Prototype:
uint32_t
ROM_HibernateRTCTrimGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCTrimGet is a function pointer located at ROM_HIBERNATETABLE[17].

Description:
This function gets the value of the pre-divider trim register. This function can be used
to get the current value of the trim register prior to making an adjustment by using the
ROM_HibernateRTCTrimSet() function.

Returns:
None.

14.2.1.34 ROM_HibernateRTCTrimSet

Sets the value of the RTC pre-divider trim register.

Prototype:
void
ROM_HibernateRTCTrimSet(uint32_t ui32Trim)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateRTCTrimSet is a function pointer located at ROM_HIBERNATETABLE[16].

Parameters:
ui32Trim is the new value for the pre-divider trim register.

Description:
This function sets the value of the pre-divider trim register. The input time source is divided
by the pre-divider to achieve a one-second clock rate. Once every 64 seconds, the value of
the pre-divider trim register is applied to the pre-divider to allow fine-tuning of the RTC rate, in
order to make corrections to the rate. The software application can make adjustments to the
pre-divider trim register to account for variations in the accuracy of the input time source. The
nominal value is 0x7FFF, and it can be adjusted up or down in order to fine-tune the RTC rate.

Returns:
None.

14.2.1.35 ROM_HibernateTamperDisable

Disables the tamper feature.

May 14, 2014 259

Hibernation Module

Prototype:
void
ROM_HibernateTamperDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperDisable is a function pointer located at
ROM_HIBERNATETABLE[39].

Description:
This function is used to disable the tamper feature functionality. All other configuration settings
are left unmodified, allowing a call to ROM_HibernateTamperEnable() to quickly enable the
tamper feature with its previous configuration.

Returns:
None.

14.2.1.36 ROM_HibernateTamperEnable

Enables the tamper feature.

Prototype:
void
ROM_HibernateTamperEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperEnable is a function pointer located at
ROM_HIBERNATETABLE[40].

Description:
This function is used to enable the tamper feature functionality. This function should only be
called after the global configuration is set with a call to ROM_HibernateTamperEventsConfig()
and the tamper inputs have been configured with a call to ROM_HibernateTamperIOEnable().

Returns:
None.

14.2.1.37 ROM_HibernateTamperEventsClear

Clears the tamper feature events.

Prototype:
void
ROM_HibernateTamperEventsClear(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].

260 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM_HibernateTamperEventsClear is a function pointer located at
ROM_HIBERNATETABLE[41].

Description:
This function is used to clear all tamper events. This function always clears the tamper feature
event state indicator along with all tamper log entries. Logged event data should be retrieved
with ROM_HibernateTamperEventsGet() prior to requesting a event clear.

ROM_HibernateTamperEventsClear() should be called prior to clearing the system control NMI
that resulted from the tamper event.

Returns:
None.

14.2.1.38 ROM_HibernateTamperEventsConfig

Configures the tamper feature event response.

Prototype:
void
ROM_HibernateTamperEventsConfig(uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperEventsConfig is a function pointer located at
ROM_HIBERNATETABLE[42].

Parameters:
ui32Config holds the configuration options for tamper events.

Description:
This function is used to configure the event response options for the tamper feature. The
ui32Config parameter provides a combination of the HIBERNATE_TAMPER_EVENTS_∗ fea-
tures to set these options. The application should choose from the following set of defines to
determine what happens to the system when a tamper event occurs:

HIBERNATE_TAMPER_EVENTS_ERASE_ALL_HIB_MEM all of the Hibernation mod-
ule’s battery-backed RAM is cleared due to a tamper event
HIBERNATE_TAMPER_EVENTS_ERASE_HIGH_HIB_MEM the upper half of the Hiber-
nation module’s battery-backed RAM is cleared due to a tamper event
HIBERNATE_TAMPER_EVENTS_ERASE_LOW_HIB_MEM the lower half of the Hiber-
nation module’s battery-backed RAM is cleared due to a tamper event
HIBERNATE_TAMPER_EVENTS_ERASE_NO_HIB_MEM the Hibernation module’s
battery-backed RAM is not changed due to a tamper event
HIBERNATE_TAMPER_EVENTS_HIB_WAKE a tamper event wakes the MCU from hi-
bernation
HIBERNATE_TAMPER_EVENTS_NO_HIB_WAKE a tamper event does not wake the
MCU from hibernation

Returns:
None.

May 14, 2014 261

Hibernation Module

14.2.1.39 ROM_HibernateTamperEventsGet

Returns a tamper log entry.

Prototype:
bool
ROM_HibernateTamperEventsGet(uint32_t ui32Index,

uint32_t *pui32RTC,
uint32_t *pui32Event)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperEventsGet is a function pointer located at
ROM_HIBERNATETABLE[43].

Parameters:
ui32Index is the index of the log entry to return.
pui32RTC is a pointer to the memory to store the logged RTC data.
pui32Event is a pointer to the memory to store the logged tamper event.

Description:
This function is used to return a tamper log entry from the hibernate feature. The ui32Index
specifies the zero-based index of the log entry to query and has a valid range of 0-3.

When this function returns, the pui32RTC value contains the time value and pui32Event pa-
rameter contains the tamper I/O event that triggered this log.

The format of the returned pui32RTC data is dependent on the configuration of the RTC within
the Hibernation module. If the RTC is configured for counter mode, the returned data contains
counted seconds from the RTC enable. If the RTC is configured for calendar mode, the data
returned is formatted as follows:

+--+
| 31:26 | 25:22 | 21:17 | 16:12 | 11:6 | 5:0 |
+--+
| year | month | day of month | hours | minutes | seconds |
+--+

The data returned in the pui32Events parameter could include any of the following flags:

HIBERNATE_TAMPER_EVENT_0 indicates a tamper event was triggered on I/O signal 0
HIBERNATE_TAMPER_EVENT_1 indicates a tamper event was triggered on I/O signal 1
HIBERNATE_TAMPER_EVENT_2 indicates a tamper event was triggered on I/O signal 2
HIBERNATE_TAMPER_EVENT_3 indicates a tamper event was triggered on I/O signal 3
HIBERNATE_TAMPER_EVENT_XOSC indicates an external oscillator failure triggered
the tamper event

Note:
Tamper event logs are not consumed when read and remain available until cleared. The event
log will be only cleared when the hibernation module is reset.

Returns:
Returns true if the pui32RTC and pui32Events were updated successfully and returns false if
the values were not updated.

262 May 14, 2014

Tiva TM4C129x ROM User’s Guide

14.2.1.40 ROM_HibernateTamperExtOscRecover

Attempts to recover the external oscillator.

Prototype:
void
ROM_HibernateTamperExtOscRecover(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperExtOscRecover is a function pointer located at
ROM_HIBERNATETABLE[45].

Description:
This function is used to attempt to recover the external oscillator after a HIBER-
NATE_TAMPER_STATUS_EXT_OSC_FAILED status is reported. This function must
not be called if the external oscillator is not used as the hibernation clock input.
ROM_HibernateTamperExtOscValid() should be called before calling this function.

Returns:
None.

14.2.1.41 ROM_HibernateTamperExtOscValid

Reports if the external oscillator signal is active and stable.

Prototype:
bool
ROM_HibernateTamperExtOscValid(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperExtOscValid is a function pointer located at
ROM_HIBERNATETABLE[44].

Description:
This function should be used to verify the external oscillator is active and valid before attempt-
ing to recover from a HIBERNATE_TAMPER_STATUS_EXT_OSC_FAILED status by calling
ROM_HibernateTamperExtOscRecover().

Returns:
Returns true if the external oscillator is both active and stable otherwise a false indicator is
returned.

14.2.1.42 ROM_HibernateTamperIODisable

Disables an input to the tamper feature.

May 14, 2014 263

Hibernation Module

Prototype:
void
ROM_HibernateTamperIODisable(uint32_t ui32Input)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperIODisable is a function pointer located at
ROM_HIBERNATETABLE[46].

Parameters:
ui32Input is the tamper input to disable.

Description:
This function is used to disable an input to the tamper feature. The ui32Input parameter spec-
ifies the tamper signal to disable and has a valid range of 0-3.

Returns:
None.

14.2.1.43 ROM_HibernateTamperIOEnable

Configures an input to the tamper feature.

Prototype:
void
ROM_HibernateTamperIOEnable(uint32_t ui32Input,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperIOEnable is a function pointer located at
ROM_HIBERNATETABLE[47].

Parameters:
ui32Input is the tamper input to configure.
ui32Config holds the configuration options for a given input to the tamper feature.

Description:
This function is used to configure an input to the tamper feature. The ui32Input parameter
specifies the tamper signal to configure and has a valid range of 0-3. The ui32Config parameter
provides the set of tamper features in the HIBERNATE_TAMPER_IO_∗ values. The values that
are valid in the ui32Config parameter are:

HIBERNATE_TAMPER_IO_MATCH_SHORT configures the trigger to match after 2 hiber-
nation clocks
HIBERNATE_TAMPER_IO_MATCH_LONG configures the trigger to match after 3071 hi-
bernation clocks
HIBERNATE_TAMPER_IO_WPU_ENABLED turns on an internal weak pull up
HIBERNATE_TAMPER_IO_WPU_DISABLED turns off an internal weak pull up
HIBERNATE_TAMPER_IO_TRIGGER_HIGH sets the tamper event to active high

264 May 14, 2014

Tiva TM4C129x ROM User’s Guide

HIBERNATE_TAMPER_IO_TRIGGER_LOW sets the tamper event to active low

Returns:
None.

14.2.1.44 ROM_HibernateTamperStatusGet

Returns the current tamper feature status.

Prototype:
uint32_t
ROM_HibernateTamperStatusGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateTamperStatusGet is a function pointer located at
ROM_HIBERNATETABLE[48].

Description:
This function is used to return the tamper feature status. This function returns one of the values
from this group of options:

HIBERNATE_TAMPER_STATUS_INACTIVE indicates tamper detection is disabled
HIBERNATE_TAMPER_STATUS_ACTIVE indicates tamper detection is enabled and
ready
HIBERNATE_TAMPER_STATUS_EVENT indicates tamper event was detected

In addition, one of the values is included from this group:

HIBERNATE_TAMPER_STATUS_EXT_OSC_INACTIVE indicates the external oscillator
is not active
HIBERNATE_TAMPER_STATUS_EXT_OSC_ACTIVE indicates the external oscillator is
active

And one of the values is included from this group:

HIBERNATE_TAMPER_STATUS_EXT_OSC_FAILED indicates the external oscillator
signal has transitioned from valid to invalid
HIBERNATE_TAMPER_STATUS_EXT_OSC_VALID indicates the external oscillator is
providing a valid signal

Returns:
Returns a combination of the HIBERNATE_TAMPER_STATUS_∗ values.

14.2.1.45 ROM_HibernateWakeGet

Gets the currently configured wake conditions for the Hibernation module.

Prototype:
uint32_t
ROM_HibernateWakeGet(void)

May 14, 2014 265

Hibernation Module

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateWakeGet is a function pointer located at ROM_HIBERNATETABLE[7].

Description:
This function returns the flags representing the wake configuration for the Hibernation module.
The return value is a combination of the following flags:

HIBERNATE_WAKE_PIN - wake when the external wake pin is asserted
HIBERNATE_WAKE_RTC - wake when the RTC matches occurs
HIBERNATE_WAKE_LOW_BAT - wake from hibernation due to a low-battery level being
detected
HIBERNATE_WAKE_GPIO - wake when a GPIO pin is asserted
HIBERNATE_WAKE_RESET - wake when a reset pin is asserted

Note:
Refer the function ROM_HibernateTamperEventsConfig() to wake from hibernation on a tam-
per event.

Returns:
Returns flags indicating the configured wake conditions.

14.2.1.46 ROM_HibernateWakeSet

Configures the wake conditions for the Hibernation module.

Prototype:
void
ROM_HibernateWakeSet(uint32_t ui32WakeFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_HIBERNATETABLE is an array of pointers located at ROM_APITABLE[19].
ROM_HibernateWakeSet is a function pointer located at ROM_HIBERNATETABLE[6].

Parameters:
ui32WakeFlags specifies which conditions should be used for waking.

Description:
This function enables the conditions under which the Hibernation module wakes. The
ui32WakeFlags parameter is the logical OR of any combination of the following:

HIBERNATE_WAKE_PIN - wake when the external wake pin is asserted.
HIBERNATE_WAKE_RTC - wake when the RTC match occurs.
HIBERNATE_WAKE_LOW_BAT - wake from hibernate due to a low-battery level being
detected.
HIBERNATE_WAKE_GPIO - wake when a GPIO pin is asserted.
HIBERNATE_WAKE_RESET - wake when a reset pin is asserted.

If the HIBERNATE_WAKE_GPIO flag is set, then one of the GPIO configuration functions
ROM_GPIOPinTypeWakeHigh() or ROM_GPIOPinTypeWakeLow() must be called to properly
configure and enable a GPIO as a wake source for hibernation.

266 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Note:
Refer the function ROM_HibernateTamperEventsConfig() to wake from hibernation on a tam-
per event.

Returns:
None.

May 14, 2014 267

Hibernation Module

268 May 14, 2014

Tiva TM4C129x ROM User’s Guide

15 Inter-Integrated Circuit (I2C)
Introduction .269
Functions . 270

15.1 Introduction

The Inter-Integrated Circuit (I2C) API provides a set of functions for using the Tiva I2C master and
slave modules. Functions are provided to initialize the I2C modules, to send and receive data,
obtain status, and to manage interrupts for the I2C modules.

The I2C master and slave modules provide the ability to communicate to other IC devices over an
I2C bus. The I2C bus is specified to support devices that can both transmit and receive (write and
read) data. Also, devices on the I2C bus can be designated as either a master or a slave. The
Tiva I2C modules support both sending and receiving data as either a master or a slave, and also
support the simultaneous operation as both a master and a slave. Finally, the Tiva I2C modules
can operate at four speeds: Standard (100 kbps), Fast (400 kbps), Fast Mode Plus (1 Mbps) and
High Speed (3.33 Mbps).

Both the master and slave I2C modules can generate interrupts. The I2C master module generates
interrupts when a transmit or receive operation is completed (or aborted due to an error); and on
some devices when a clock low timeout has occurred. The I2C slave module generates interrupts
when data has been sent or requested by a master; and on some devices, when a START or STOP
condition is present.

15.1.1 Master Operations

When using this API to drive the I2C master module, the user must first initialize the I2C master
module with a call to ROM_I2CMasterInitExpClk(). That function sets the bus speed and enables
the master module.

The user may transmit or receive data after the successful initialization of the I2C master module.
Data is transferred by first setting the slave address using ROM_I2CMasterSlaveAddrSet(). That
function is also used to define whether the transfer is a send (a write to the slave from the master) or
a receive (a read from the slave by the master). Then, if connected to an I2C bus that has multiple
masters, the Tiva I2C master must first call ROM_I2CMasterBusBusy() before attempting to initiate
the desired transaction. After determining that the bus is not busy, if trying to send data, the user
must call the ROM_I2CMasterDataPut() function. The transaction can then be initiated on the bus
by calling the I2CMasterControl() function with any of the following commands:

I2C_MASTER_CMD_SINGLE_SEND

I2C_MASTER_CMD_SINGLE_RECEIVE

I2C_MASTER_CMD_BURST_SEND_START

I2C_MASTER_CMD_BURST_RECEIVE_START

Any of those commands results in the master arbitrating for the bus, driving the start sequence
onto the bus, and sending the slave address and direction bit across the bus. The remainder of the
transaction can then be driven using either a polling or interrupt-driven method.

May 14, 2014 269

Inter-Integrated Circuit (I2C)

For the single send and receive cases, the polling method involves looping on the re-
turn from ROM_I2CMasterBusy(). Once that function indicates that the I2C master is
no longer busy, the bus transaction has been completed and can be checked for er-
rors using ROM_I2CMasterErr(). If there are no errors, then the data has been sent or
is ready to be read using I2CMasterDataGet(). For the burst send and receive cases,
the polling method also involves calling the ROM_I2CMasterControl() function for each
byte transmitted or received (using either the I2C_MASTER_CMD_BURST_SEND_CONT
or I2C_MASTER_CMD_BURST_RECEIVE_CONT commands), and for the last byte
sent or received (using either the I2C_MASTER_CMD_BURST_SEND_FINISH or
I2C_MASTER_CMD_BURST_RECEIVE_FINISH commands). If any error is detected
during the burst transfer, the ROM_I2CMasterControl() function should be called using
the appropriate stop command (I2C_MASTER_CMD_BURST_SEND_ERROR_STOP or
I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP).

For the interrupt-driven transaction, the user must register an interrupt handler for the I2C devices
and enable the I2C master interrupt; the interrupt occurs when the master is no longer busy.

15.1.2 Slave Operations

When using this API to drive the I2C slave module, the user must first initialize the I2C slave
module with a call to ROM_I2CSlaveInit(). This function enables the I2C slave module and ini-
tializes the slave’s own address. After the initialization is complete, the user may poll the slave
status using ROM_I2CSlaveStatus() to determine if a master requested a send or receive oper-
ation. Depending on the type of operation requested, the user can call ROM_I2CSlaveDataPut()
or ROM_I2CSlaveDataGet() to complete the transaction. Alternatively, the I2C slave can handle
transactions using an interrupt handler.

15.2 Functions

Functions
uint32_t ROM_I2CFIFODataGet (uint32_t ui32Base)
uint32_t ROM_I2CFIFODataGetNonBlocking (uint32_t ui32Base, uint8_t ∗pui8Data)
void ROM_I2CFIFODataPut (uint32_t ui32Base, uint8_t ui8Data)
uint32_t ROM_I2CFIFODataPutNonBlocking (uint32_t ui32Base, uint8_t ui8Data)
uint32_t ROM_I2CFIFOStatus (uint32_t ui32Base)
uint32_t ROM_I2CMasterBurstCountGet (uint32_t ui32Base)
void ROM_I2CMasterBurstLengthSet (uint32_t ui32Base, uint8_t ui8Length)
bool ROM_I2CMasterBusBusy (uint32_t ui32Base)
bool ROM_I2CMasterBusy (uint32_t ui32Base)
void ROM_I2CMasterControl (uint32_t ui32Base, uint32_t ui32Cmd)
uint32_t ROM_I2CMasterDataGet (uint32_t ui32Base)
void ROM_I2CMasterDataPut (uint32_t ui32Base, uint8_t ui8Data)
void ROM_I2CMasterDisable (uint32_t ui32Base)
void ROM_I2CMasterEnable (uint32_t ui32Base)
uint32_t ROM_I2CMasterErr (uint32_t ui32Base)
void ROM_I2CMasterGlitchFilterConfigSet (uint32_t ui32Base, uint32_t ui32Config)

270 May 14, 2014

Tiva TM4C129x ROM User’s Guide

void ROM_I2CMasterInitExpClk (uint32_t ui32Base, uint32_t ui32I2CClk, bool bFast)
void ROM_I2CMasterIntClear (uint32_t ui32Base)
void ROM_I2CMasterIntClearEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_I2CMasterIntDisable (uint32_t ui32Base)
void ROM_I2CMasterIntDisableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_I2CMasterIntEnable (uint32_t ui32Base)
void ROM_I2CMasterIntEnableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
bool ROM_I2CMasterIntStatus (uint32_t ui32Base, bool bMasked)
uint32_t ROM_I2CMasterIntStatusEx (uint32_t ui32Base, bool bMasked)
uint32_t ROM_I2CMasterLineStateGet (uint32_t ui32Base)
void ROM_I2CMasterSlaveAddrSet (uint32_t ui32Base, uint8_t ui8SlaveAddr, bool bReceive)
void ROM_I2CMasterTimeoutSet (uint32_t ui32Base, uint32_t ui32Value)
void ROM_I2CRxFIFOConfigSet (uint32_t ui32Base, uint32_t ui32Config)
void ROM_I2CRxFIFOFlush (uint32_t ui32Base)
void ROM_I2CSlaveACKOverride (uint32_t ui32Base, bool bEnable)
void ROM_I2CSlaveACKValueSet (uint32_t ui32Base, bool bACK)
void ROM_I2CSlaveAddressSet (uint32_t ui32Base, uint8_t ui8AddrNum, uint8_t
ui8SlaveAddr)
uint32_t ROM_I2CSlaveDataGet (uint32_t ui32Base)
void ROM_I2CSlaveDataPut (uint32_t ui32Base, uint8_t ui8Data)
void ROM_I2CSlaveDisable (uint32_t ui32Base)
void ROM_I2CSlaveEnable (uint32_t ui32Base)
void ROM_I2CSlaveFIFODisable (uint32_t ui32Base)
void ROM_I2CSlaveFIFOEnable (uint32_t ui32Base, uint32_t ui32Config)
void ROM_I2CSlaveInit (uint32_t ui32Base, uint8_t ui8SlaveAddr)
void ROM_I2CSlaveIntClear (uint32_t ui32Base)
void ROM_I2CSlaveIntClearEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_I2CSlaveIntDisable (uint32_t ui32Base)
void ROM_I2CSlaveIntDisableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_I2CSlaveIntEnable (uint32_t ui32Base)
void ROM_I2CSlaveIntEnableEx (uint32_t ui32Base, uint32_t ui32IntFlags)
bool ROM_I2CSlaveIntStatus (uint32_t ui32Base, bool bMasked)
uint32_t ROM_I2CSlaveIntStatusEx (uint32_t ui32Base, bool bMasked)
uint32_t ROM_I2CSlaveStatus (uint32_t ui32Base)
void ROM_I2CTxFIFOConfigSet (uint32_t ui32Base, uint32_t ui32Config)
void ROM_I2CTxFIFOFlush (uint32_t ui32Base)
void ROM_UpdateI2C (void)

15.2.1 Function Documentation

15.2.1.1 ROM_I2CFIFODataGet

Reads a byte from the I2C receive FIFO.

Prototype:
uint32_t
ROM_I2CFIFODataGet(uint32_t ui32Base)

May 14, 2014 271

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CFIFODataGet is a function pointer located at ROM_I2CTABLE[46].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function reads a byte of data from I2C receive FIFO. If there is no data available, this
function waits until data is received before returning.

Returns:
The data byte.

15.2.1.2 ROM_I2CFIFODataGetNonBlocking

Reads a byte from the I2C receive FIFO.

Prototype:
uint32_t
ROM_I2CFIFODataGetNonBlocking(uint32_t ui32Base,

uint8_t *pui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CFIFODataGetNonBlocking is a function pointer located at ROM_I2CTABLE[47].

Parameters:
ui32Base is the base address of the I2C module.
pui8Data is a pointer where the read data is stored.

Description:
This function reads a byte of data from I2C receive FIFO and places it in the location specified
by the pui8Data parameter. If there is no data available, this functions returns 0.

Returns:
The number of elements read from the I2C receive FIFO.

15.2.1.3 ROM_I2CFIFODataPut

Writes a data byte to the I2C transmit FIFO.

Prototype:
void
ROM_I2CFIFODataPut(uint32_t ui32Base,

uint8_t ui8Data)

272 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CFIFODataPut is a function pointer located at ROM_I2CTABLE[44].

Parameters:
ui32Base is the base address of the I2C module.
ui8Data is the data to be placed into the transmit FIFO.

Description:
This function adds a byte of data to the I2C transmit FIFO. If there is no space available in the
FIFO, this function waits for space to become available before returning.

Returns:
None.

15.2.1.4 ROM_I2CFIFODataPutNonBlocking

Writes a data byte to the I2C transmit FIFO.

Prototype:
uint32_t
ROM_I2CFIFODataPutNonBlocking(uint32_t ui32Base,

uint8_t ui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CFIFODataPutNonBlocking is a function pointer located at ROM_I2CTABLE[45].

Parameters:
ui32Base is the base address of the I2C module.
ui8Data is the data to be placed into the transmit FIFO.

Description:
This function adds a byte of data to the I2C transmit FIFO. If there is no space available in the
FIFO, this function returns a zero.

Returns:
The number of elements added to the I2C transmit FIFO.

15.2.1.5 ROM_I2CFIFOStatus

Gets the current FIFO status.

Prototype:
uint32_t
ROM_I2CFIFOStatus(uint32_t ui32Base)

May 14, 2014 273

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CFIFOStatus is a function pointer located at ROM_I2CTABLE[43].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function retrieves the status for both the transmit (TX) and receive (RX) FIFOs. The trigger
level for the transmit FIFO is set using ROM_I2CTxFIFOConfigSet() and for the receive FIFO
using ROM_I2CTxFIFOConfigSet().

Returns:
Returns the FIFO status, enumerated as a bit field containing
I2C_FIFO_RX_BELOW_TRIG_LEVEL, I2C_FIFO_RX_FULL, I2C_FIFO_RX_EMPTY,
I2C_FIFO_TX_BELOW_TRIG_LEVEL, I2C_FIFO_TX_FULL, and I2C_FIFO_TX_EMPTY.

15.2.1.6 ROM_I2CMasterBurstCountGet

Returns the current value of the burst transfer counter.

Prototype:
uint32_t
ROM_I2CMasterBurstCountGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterBurstCountGet is a function pointer located at ROM_I2CTABLE[49].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns the current value of the burst transfer counter that is used by the FIFO
mechanism. Software can use this value to determine how many bytes remain in a transfer, or
where in the transfer the burst operation was if an error has occurred.

Returns:
None.

15.2.1.7 ROM_I2CMasterBurstLengthSet

Set the burst length for a I2C master FIFO operation.

Prototype:
void
ROM_I2CMasterBurstLengthSet(uint32_t ui32Base,

uint8_t ui8Length)

274 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterBurstLengthSet is a function pointer located at ROM_I2CTABLE[48].

Parameters:
ui32Base is the base address of the I2C module.
ui8Length is the length of the burst transfer.

Description:
This function configures the burst length for a I2C Master FIFO operation. The burst length
is limited to 256 bytes. The burst length applies to a single I2CMCS BURST operation mean-
ing that it specifies the burst length for only the current operation (can be TX or RX). Each
burst operation must configure the burst length prior to requesting a burst operation using
ROM_I2CMasterControl().

Returns:
None.

15.2.1.8 ROM_I2CMasterBusBusy

Indicates whether or not the I2C bus is busy.

Prototype:
bool
ROM_I2CMasterBusBusy(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterBusBusy is a function pointer located at ROM_I2CTABLE[17].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns an indication of whether or not the I2C bus is busy. This function can be
used in a multi-master environment to determine if another master is currently using the bus.

Returns:
Returns true if the I2C bus is busy; otherwise, returns false.

15.2.1.9 ROM_I2CMasterBusy

Indicates whether or not the I2C Master is busy.

Prototype:
bool
ROM_I2CMasterBusy(uint32_t ui32Base)

May 14, 2014 275

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterBusy is a function pointer located at ROM_I2CTABLE[16].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns an indication of whether or not the I2C Master is busy transmitting or
receiving data.

Returns:
Returns true if the I2C Master is busy; otherwise, returns false.

15.2.1.10 ROM_I2CMasterControl

Controls the state of the I2C Master module.

Prototype:
void
ROM_I2CMasterControl(uint32_t ui32Base,

uint32_t ui32Cmd)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterControl is a function pointer located at ROM_I2CTABLE[18].

Parameters:
ui32Base is the base address of the I2C module.
ui32Cmd is the command to be issued to the I2C Master module.

Description:
This function is used to control the state of the Master module send and receive operations.
The ui32Cmd parameter can be one of the following values:

I2C_MASTER_CMD_SINGLE_SEND
I2C_MASTER_CMD_SINGLE_RECEIVE
I2C_MASTER_CMD_BURST_SEND_START
I2C_MASTER_CMD_BURST_SEND_CONT
I2C_MASTER_CMD_BURST_SEND_FINISH
I2C_MASTER_CMD_BURST_SEND_ERROR_STOP
I2C_MASTER_CMD_BURST_RECEIVE_START
I2C_MASTER_CMD_BURST_RECEIVE_CONT
I2C_MASTER_CMD_BURST_RECEIVE_FINISH
I2C_MASTER_CMD_BURST_RECEIVE_ERROR_STOP
I2C_MASTER_CMD_QUICK_COMMAND
I2C_MASTER_CMD_HS_MASTER_CODE_SEND
I2C_MASTER_CMD_FIFO_SINGLE_SEND
I2C_MASTER_CMD_FIFO_SINGLE_RECEIVE

276 May 14, 2014

Tiva TM4C129x ROM User’s Guide

I2C_MASTER_CMD_FIFO_BURST_SEND_START
I2C_MASTER_CMD_FIFO_BURST_SEND_CONT
I2C_MASTER_CMD_FIFO_BURST_SEND_FINISH
I2C_MASTER_CMD_FIFO_BURST_SEND_ERROR_STOP
I2C_MASTER_CMD_FIFO_BURST_RECEIVE_START
I2C_MASTER_CMD_FIFO_BURST_RECEIVE_CONT
I2C_MASTER_CMD_FIFO_BURST_RECEIVE_FINISH
I2C_MASTER_CMD_FIFO_BURST_RECEIVE_ERROR_STOP

Returns:
None.

15.2.1.11 ROM_I2CMasterDataGet

Receives a byte that has been sent to the I2C Master.

Prototype:
uint32_t
ROM_I2CMasterDataGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterDataGet is a function pointer located at ROM_I2CTABLE[20].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function reads a byte of data from the I2C Master Data Register.

Returns:
Returns the byte received from by the I2C Master, cast as an uint32_t.

15.2.1.12 ROM_I2CMasterDataPut

Transmits a byte from the I2C Master.

Prototype:
void
ROM_I2CMasterDataPut(uint32_t ui32Base,

uint8_t ui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterDataPut is a function pointer located at ROM_I2CTABLE[0].

Parameters:
ui32Base is the base address of the I2C module.

May 14, 2014 277

Inter-Integrated Circuit (I2C)

ui8Data is the data to be transmitted from the I2C Master.

Description:
This function places the supplied data into I2C Master Data Register.

Returns:
None.

15.2.1.13 ROM_I2CMasterDisable

Disables the I2C master block.

Prototype:
void
ROM_I2CMasterDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterDisable is a function pointer located at ROM_I2CTABLE[5].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables operation of the I2C master block.

Returns:
None.

15.2.1.14 ROM_I2CMasterEnable

Enables the I2C Master block.

Prototype:
void
ROM_I2CMasterEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterEnable is a function pointer located at ROM_I2CTABLE[3].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function enables operation of the I2C Master block.

Returns:
None.

278 May 14, 2014

Tiva TM4C129x ROM User’s Guide

15.2.1.15 ROM_I2CMasterErr

Gets the error status of the I2C Master module.

Prototype:
uint32_t
ROM_I2CMasterErr(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterErr is a function pointer located at ROM_I2CTABLE[19].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function is used to obtain the error status of the Master module send and receive opera-
tions.

Returns:
Returns the error status, as one of I2C_MASTER_ERR_NONE,
I2C_MASTER_ERR_ADDR_ACK, I2C_MASTER_ERR_DATA_ACK, or
I2C_MASTER_ERR_ARB_LOST.

15.2.1.16 ROM_I2CMasterGlitchFilterConfigSet

Configures the I2C Master glitch filter.

Prototype:
void
ROM_I2CMasterGlitchFilterConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterGlitchFilterConfigSet is a function pointer located at
ROM_I2CTABLE[54].

Parameters:
ui32Base is the base address of the I2C module.
ui32Config is the glitch filter configuration.

Description:
This function configures the I2C Master glitch filter. The value passed in to ui32Config deter-
mines the sampling range of the glitch filter, which is configurable between 1 and 32 system
clock cycles. The default configuration of the glitch filter is 0 system clock cycles, which means
that it’s disabled.

The ui32Config field should be any of the following values:

I2C_MASTER_GLITCH_FILTER_DISABLED

May 14, 2014 279

Inter-Integrated Circuit (I2C)

I2C_MASTER_GLITCH_FILTER_1
I2C_MASTER_GLITCH_FILTER_2
I2C_MASTER_GLITCH_FILTER_3
I2C_MASTER_GLITCH_FILTER_4
I2C_MASTER_GLITCH_FILTER_8
I2C_MASTER_GLITCH_FILTER_16
I2C_MASTER_GLITCH_FILTER_32

Returns:
None.

15.2.1.17 ROM_I2CMasterInitExpClk

Initializes the I2C Master block.

Prototype:
void
ROM_I2CMasterInitExpClk(uint32_t ui32Base,

uint32_t ui32I2CClk,
bool bFast)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterInitExpClk is a function pointer located at ROM_I2CTABLE[1].

Parameters:
ui32Base is the base address of the I2C module.
ui32I2CClk is the rate of the clock supplied to the I2C module.
bFast set up for fast data transfers.

Description:
This function initializes operation of the I2C Master block by configuring the bus speed for the
master and enabling the I2C Master block.

If the parameter bFast is true, then the master block is set up to transfer data at 400 Kbps;
otherwise, it is set up to transfer data at 100 Kbps. If Fast Mode Plus (1 Mbps) is desired, soft-
ware should manually write the I2CMTPR after calling this function. For High Speed (3.4 Mbps)
mode, a specific command is used to switch to the faster clocks after the initial communication
with the slave is done at either 100 Kbps or 400 Kbps.

The peripheral clock is the same as the processor clock. This value is returned by
ROM_SysCtlClockFreqSet(), or it can be explicitly hard-coded if it is constant and known.

Returns:
None.

15.2.1.18 ROM_I2CMasterIntClear

Clears I2C Master interrupt sources.

280 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_I2CMasterIntClear(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntClear is a function pointer located at ROM_I2CTABLE[13].

Parameters:
ui32Base is the base address of the I2C module.

Description:
The I2C Master interrupt source is cleared, so that it no longer asserts. This function must
be called in the interrupt handler to keep the interrupt from being triggered again immediately
upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

15.2.1.19 ROM_I2CMasterIntClearEx

Clears I2C Master interrupt sources.

Prototype:
void
ROM_I2CMasterIntClearEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntClearEx is a function pointer located at ROM_I2CTABLE[32].

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified I2C Master interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
ROM_I2CMasterIntEnableEx().

May 14, 2014 281

Inter-Integrated Circuit (I2C)

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

15.2.1.20 ROM_I2CMasterIntDisable

Disables the I2C Master interrupt.

Prototype:
void
ROM_I2CMasterIntDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntDisable is a function pointer located at ROM_I2CTABLE[9].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables the I2C Master interrupt source.

Returns:
None.

15.2.1.21 ROM_I2CMasterIntDisableEx

Disables individual I2C Master interrupt sources.

Prototype:
void
ROM_I2CMasterIntDisableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntDisableEx is a function pointer located at ROM_I2CTABLE[30].

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

282 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function disables the indicated I2C Master interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
ROM_I2CMasterIntEnableEx().

Returns:
None.

15.2.1.22 ROM_I2CMasterIntEnable

Enables the I2C Master interrupt.

Prototype:
void
ROM_I2CMasterIntEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntEnable is a function pointer located at ROM_I2CTABLE[7].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function enables the I2C Master interrupt source.

Returns:
None.

15.2.1.23 ROM_I2CMasterIntEnableEx

Enables individual I2C Master interrupt sources.

Prototype:
void
ROM_I2CMasterIntEnableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntEnableEx is a function pointer located at ROM_I2CTABLE[29].

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

May 14, 2014 283

Inter-Integrated Circuit (I2C)

Description:
This function enables the indicated I2C Master interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

I2C_MASTER_INT_RX_FIFO_FULL - RX FIFO Full interrupt
I2C_MASTER_INT_TX_FIFO_EMPTY - TX FIFO Empty interrupt
I2C_MASTER_INT_RX_FIFO_REQ - RX FIFO Request interrupt
I2C_MASTER_INT_TX_FIFO_REQ - TX FIFO Request interrupt
I2C_MASTER_INT_ARB_LOST - Arbitration Lost interrupt
I2C_MASTER_INT_STOP - Stop Condition interrupt
I2C_MASTER_INT_START - Start Condition interrupt
I2C_MASTER_INT_NACK - Address/Data NACK interrupt
I2C_MASTER_INT_TX_DMA_DONE - TX DMA Complete interrupt
I2C_MASTER_INT_RX_DMA_DONE - RX DMA Complete interrupt
I2C_MASTER_INT_TIMEOUT - Clock Timeout interrupt
I2C_MASTER_INT_DATA - Data interrupt

Returns:
None.

15.2.1.24 ROM_I2CMasterIntStatus

Gets the current I2C Master interrupt status.

Prototype:
bool
ROM_I2CMasterIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntStatus is a function pointer located at ROM_I2CTABLE[11].

Parameters:
ui32Base is the base address of the I2C module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This function returns the interrupt status for the I2C Master module. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, returned as true if active or false if not active.

284 May 14, 2014

Tiva TM4C129x ROM User’s Guide

15.2.1.25 ROM_I2CMasterIntStatusEx

Gets the current I2C Master interrupt status.

Prototype:
uint32_t
ROM_I2CMasterIntStatusEx(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterIntStatusEx is a function pointer located at ROM_I2CTABLE[31].

Parameters:
ui32Base is the base address of the I2C module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This function returns the interrupt status for the I2C Master module. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
ROM_I2CMasterIntEnableEx().

15.2.1.26 ROM_I2CMasterLineStateGet

Reads the state of the SDA and SCL pins.

Prototype:
uint32_t
ROM_I2CMasterLineStateGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterLineStateGet is a function pointer located at ROM_I2CTABLE[38].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns the state of the I2C bus by providing the real time values of the SDA and
SCL pins.

Returns:
Returns the state of the bus with SDA in bit position 1 and SCL in bit position 0.

May 14, 2014 285

Inter-Integrated Circuit (I2C)

15.2.1.27 ROM_I2CMasterSlaveAddrSet

Sets the address that the I2C Master will place on the bus.

Prototype:
void
ROM_I2CMasterSlaveAddrSet(uint32_t ui32Base,

uint8_t ui8SlaveAddr,
bool bReceive)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterSlaveAddrSet is a function pointer located at ROM_I2CTABLE[15].

Parameters:
ui32Base is the base address of the I2C module.
ui8SlaveAddr 7-bit slave address
bReceive flag indicating the type of communication with the slave

Description:
This function configures the address that the I2C Master places on the bus when initiating a
transaction. When the bReceive parameter is set to true, the address indicates that the I2C
Master is initiating a read from the slave; otherwise the address indicates that the I2C Master
is initiating a write to the slave.

Returns:
None.

15.2.1.28 ROM_I2CMasterTimeoutSet

Sets the Master clock timeout value.

Prototype:
void
ROM_I2CMasterTimeoutSet(uint32_t ui32Base,

uint32_t ui32Value)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CMasterTimeoutSet is a function pointer located at ROM_I2CTABLE[33].

Parameters:
ui32Base is the base address of the I2C module.
ui32Value is the number of I2C clocks before the timeout is asserted.

Description:
This function enables and configures the clock low timeout feature in the I2C peripheral. This
feature is implemented as a 12-bit counter, with the upper 8-bits being programmable. For
example, to program a timeout of 20ms with a 100kHz SCL frequency, ui32Value would be
0x7d.

286 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

15.2.1.29 ROM_I2CRxFIFOConfigSet

Configures the I2C receive (RX) FIFO.

Prototype:
void
ROM_I2CRxFIFOConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CRxFIFOConfigSet is a function pointer located at ROM_I2CTABLE[41].

Parameters:
ui32Base is the base address of the I2C module.
ui32Config is the configuration of the FIFO using specified macros.

Description:
This function configures the I2C peripheral’s receive FIFO. The receive FIFO can be used by
the master or slave, but not both. The following macros are used to configure the RX FIFO
behavior for master or slave, with or without DMA:

I2C_FIFO_CFG_RX_MASTER
I2C_FIFO_CFG_RX_SLAVE
I2C_FIFO_CFG_RX_MASTER_DMA
I2C_FIFO_CFG_RX_SLAVE_DMA

To select the trigger level, one of the following macros should be used:

I2C_FIFO_CFG_RX_TRIG_1
I2C_FIFO_CFG_RX_TRIG_2
I2C_FIFO_CFG_RX_TRIG_3
I2C_FIFO_CFG_RX_TRIG_4
I2C_FIFO_CFG_RX_TRIG_5
I2C_FIFO_CFG_RX_TRIG_6
I2C_FIFO_CFG_RX_TRIG_7
I2C_FIFO_CFG_RX_TRIG_8

Returns:
None.

15.2.1.30 ROM_I2CRxFIFOFlush

Flushes the receive (RX) FIFO.

May 14, 2014 287

Inter-Integrated Circuit (I2C)

Prototype:
void
ROM_I2CRxFIFOFlush(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CRxFIFOFlush is a function pointer located at ROM_I2CTABLE[42].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function flushes the I2C receive FIFO.

Returns:
None.

15.2.1.31 ROM_I2CSlaveACKOverride

Configures ACK override behavior of the I2C Slave.

Prototype:
void
ROM_I2CSlaveACKOverride(uint32_t ui32Base,

bool bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveACKOverride is a function pointer located at ROM_I2CTABLE[34].

Parameters:
ui32Base is the base address of the I2C module.
bEnable enables or disables ACK override.

Description:
This function enables or disables ACK override, allowing the user application to drive the value
on SDA during the ACK cycle.

Returns:
None.

15.2.1.32 ROM_I2CSlaveACKValueSet

Writes the ACK value.

Prototype:
void
ROM_I2CSlaveACKValueSet(uint32_t ui32Base,

bool bACK)

288 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveACKValueSet is a function pointer located at ROM_I2CTABLE[35].

Parameters:
ui32Base is the base address of the I2C module.
bACK chooses whether to ACK (true) or NACK (false) the transfer.

Description:
This function puts the desired ACK value on SDA during the ACK cycle. The value written is
only valid when ACK override is enabled using ROM_I2CSlaveACKOverride().

Returns:
None.

15.2.1.33 ROM_I2CSlaveAddressSet

Sets the I2C slave address.

Prototype:
void
ROM_I2CSlaveAddressSet(uint32_t ui32Base,

uint8_t ui8AddrNum,
uint8_t ui8SlaveAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveAddressSet is a function pointer located at ROM_I2CTABLE[37].

Parameters:
ui32Base is the base address of the I2C module.
ui8AddrNum determines which slave address is set.
ui8SlaveAddr is the 7-bit slave address

Description:
This function writes the specified slave address. The ui8AddrNum parameter dictates which
slave address is configured. For example, a value of 0 configures the primary address and a
value of 1 configures the secondary.

Returns:
None.

15.2.1.34 ROM_I2CSlaveDataGet

Receives a byte that has been sent to the I2C Slave.

Prototype:
uint32_t
ROM_I2CSlaveDataGet(uint32_t ui32Base)

May 14, 2014 289

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveDataGet is a function pointer located at ROM_I2CTABLE[23].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function reads a byte of data from the I2C Slave Data Register.

Returns:
Returns the byte received from by the I2C Slave, cast as an uint32_t.

15.2.1.35 ROM_I2CSlaveDataPut

Transmits a byte from the I2C Slave.

Prototype:
void
ROM_I2CSlaveDataPut(uint32_t ui32Base,

uint8_t ui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveDataPut is a function pointer located at ROM_I2CTABLE[22].

Parameters:
ui32Base is the base address of the I2C module.
ui8Data is the data to be transmitted from the I2C Slave.

Description:
This function places the supplied data into I2C Slave Data Register.

Returns:
None.

15.2.1.36 ROM_I2CSlaveDisable

Disables the I2C slave block.

Prototype:
void
ROM_I2CSlaveDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveDisable is a function pointer located at ROM_I2CTABLE[6].

290 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables operation of the I2C slave block.

Returns:
None.

15.2.1.37 ROM_I2CSlaveEnable

Enables the I2C Slave block.

Prototype:
void
ROM_I2CSlaveEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveEnable is a function pointer located at ROM_I2CTABLE[4].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function enables operation of the I2C Slave block.

Returns:
None.

15.2.1.38 ROM_I2CSlaveFIFODisable

Disable FIFO usage for the I2C Slave module.

Prototype:
void
ROM_I2CSlaveFIFODisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveFIFODisable is a function pointer located at ROM_I2CTABLE[50].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables the FIFOs for the I2C Slave. After calling this this function, the FIFOs
are disabled, but the Slave remains active.

Returns:
None.

May 14, 2014 291

Inter-Integrated Circuit (I2C)

15.2.1.39 ROM_I2CSlaveFIFOEnable

Enables FIFO usage for the I2C Slave module.

Prototype:
void
ROM_I2CSlaveFIFOEnable(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveFIFOEnable is a function pointer located at ROM_I2CTABLE[51].

Parameters:
ui32Base is the base address of the I2C module.
ui32Config is the desired FIFO configuration of the I2C Slave.

Description:
This function configures the I2C Slave module to use the FIFO(s). This function should be used
in combination with ROM_I2CTxFIFOConfigSet() and/or ROM_I2CRxFIFOConfigSet(), which
configure the FIFO trigger level and tell the FIFO hardware whether to interact with the I2C
Master or Slave. The application appropriate combination of I2C_SLAVE_TX_FIFO_ENABLE
and I2C_SLAVE_RX_FIFO_ENABLE should be passed in to the ui32Config field.

Because the Slave I2CSCSR register is write-only, any call to ROM_I2CSlaveEnable(),
ROM_I2CSlaveDisable() or ROM_I2CSlaveFIFOEnable() overwrites the slave configura-
tion. Therefore, application software should call ROM_I2CSlaveEnable() followed by
ROM_I2CSlaveFIFOEnable() with the desired FIFO configuration.

Returns:
None.

15.2.1.40 ROM_I2CSlaveInit

Initializes the I2C Slave block.

Prototype:
void
ROM_I2CSlaveInit(uint32_t ui32Base,

uint8_t ui8SlaveAddr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveInit is a function pointer located at ROM_I2CTABLE[2].

Parameters:
ui32Base is the base address of the I2C module.
ui8SlaveAddr 7-bit slave address

292 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function initializes operation of the I2C Slave block by configuring the slave address and
enabling the I2C Slave block.

The parameter ui8SlaveAddr is the value that is compared against the slave address sent by
an I2C master.

Returns:
None.

15.2.1.41 ROM_I2CSlaveIntClear

Clears I2C Slave interrupt sources.

Prototype:
void
ROM_I2CSlaveIntClear(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntClear is a function pointer located at ROM_I2CTABLE[14].

Parameters:
ui32Base is the base address of the I2C module.

Description:
The I2C Slave interrupt source is cleared, so that it no longer asserts. This function must
be called in the interrupt handler to keep the interrupt from being triggered again immediately
upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

15.2.1.42 ROM_I2CSlaveIntClearEx

Clears I2C Slave interrupt sources.

Prototype:
void
ROM_I2CSlaveIntClearEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

May 14, 2014 293

Inter-Integrated Circuit (I2C)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntClearEx is a function pointer located at ROM_I2CTABLE[28].

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified I2C Slave interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
ROM_I2CSlaveIntEnableEx().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

15.2.1.43 ROM_I2CSlaveIntDisable

Disables the I2C Slave interrupt.

Prototype:
void
ROM_I2CSlaveIntDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntDisable is a function pointer located at ROM_I2CTABLE[10].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function disables the I2C Slave interrupt source.

Returns:
None.

294 May 14, 2014

Tiva TM4C129x ROM User’s Guide

15.2.1.44 ROM_I2CSlaveIntDisableEx

Disables individual I2C Slave interrupt sources.

Prototype:
void
ROM_I2CSlaveIntDisableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntDisableEx is a function pointer located at ROM_I2CTABLE[26].

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated I2C Slave interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
ROM_I2CSlaveIntEnableEx().

Returns:
None.

15.2.1.45 ROM_I2CSlaveIntEnable

Enables the I2C Slave interrupt.

Prototype:
void
ROM_I2CSlaveIntEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntEnable is a function pointer located at ROM_I2CTABLE[8].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function enables the I2C Slave interrupt source.

Returns:
None.

May 14, 2014 295

Inter-Integrated Circuit (I2C)

15.2.1.46 ROM_I2CSlaveIntEnableEx

Enables individual I2C Slave interrupt sources.

Prototype:
void
ROM_I2CSlaveIntEnableEx(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntEnableEx is a function pointer located at ROM_I2CTABLE[25].

Parameters:
ui32Base is the base address of the I2C module.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated I2C Slave interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

I2C_SLAVE_INT_RX_FIFO_FULL - RX FIFO Full interrupt
I2C_SLAVE_INT_TX_FIFO_EMPTY - TX FIFO Empty interrupt
I2C_SLAVE_INT_RX_FIFO_REQ - RX FIFO Request interrupt
I2C_SLAVE_INT_TX_FIFO_REQ - TX FIFO Request interrupt
I2C_SLAVE_INT_TX_DMA_DONE - TX DMA Complete interrupt
I2C_SLAVE_INT_RX_DMA_DONE - RX DMA Complete interrupt
I2C_SLAVE_INT_STOP - Stop condition detected interrupt
I2C_SLAVE_INT_START - Start condition detected interrupt
I2C_SLAVE_INT_DATA - Data interrupt

Returns:
None.

15.2.1.47 ROM_I2CSlaveIntStatus

Gets the current I2C Slave interrupt status.

Prototype:
bool
ROM_I2CSlaveIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntStatus is a function pointer located at ROM_I2CTABLE[12].

296 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the I2C module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This function returns the interrupt status for the I2C Slave module. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, returned as true if active or false if not active.

15.2.1.48 ROM_I2CSlaveIntStatusEx

Gets the current I2C Slave interrupt status.

Prototype:
uint32_t
ROM_I2CSlaveIntStatusEx(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveIntStatusEx is a function pointer located at ROM_I2CTABLE[27].

Parameters:
ui32Base is the base address of the I2C module.
bMasked is false if the raw interrupt status is requested and true if the masked interrupt status

is requested.

Description:
This function returns the interrupt status for the I2C Slave module. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
ROM_I2CSlaveIntEnableEx().

15.2.1.49 ROM_I2CSlaveStatus

Gets the I2C Slave module status

Prototype:
uint32_t
ROM_I2CSlaveStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CSlaveStatus is a function pointer located at ROM_I2CTABLE[21].

May 14, 2014 297

Inter-Integrated Circuit (I2C)

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function returns the action requested from a master, if any. Possible values are:

I2C_SLAVE_ACT_NONE
I2C_SLAVE_ACT_RREQ
I2C_SLAVE_ACT_TREQ
I2C_SLAVE_ACT_RREQ_FBR
I2C_SLAVE_ACT_OWN2SEL
I2C_SLAVE_ACT_QCMD
I2C_SLAVE_ACT_QCMD_DATA

Returns:
Returns I2C_SLAVE_ACT_NONE to indicate that no action has been requested of the I2C
Slave module, I2C_SLAVE_ACT_RREQ to indicate that an I2C master has sent data to the
I2C Slave module, I2C_SLAVE_ACT_TREQ to indicate that an I2C master has requested
that the I2C Slave module send data, I2C_SLAVE_ACT_RREQ_FBR to indicate that an I2C
master has sent data to the I2C slave and the first byte following the slave’s own address has
been received, I2C_SLAVE_ACT_OWN2SEL to indicate that the second I2C slave address
was matched, I2C_SLAVE_ACT_QCMD to indicate that a quick command was received, and
I2C_SLAVE_ACT_QCMD_DATA to indicate that the data bit was set when the quick command
was received.

15.2.1.50 ROM_I2CTxFIFOConfigSet

Configures the I2C transmit (TX) FIFO.

Prototype:
void
ROM_I2CTxFIFOConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CTxFIFOConfigSet is a function pointer located at ROM_I2CTABLE[39].

Parameters:
ui32Base is the base address of the I2C module.
ui32Config is the configuration of the FIFO using specified macros.

Description:
This function configures the I2C peripheral’s transmit FIFO. The transmit FIFO can be used by
the master or slave, but not both. The following macros are used to configure the TX FIFO
behavior for master or slave, with or without DMA:

I2C_FIFO_CFG_TX_MASTER
I2C_FIFO_CFG_TX_SLAVE
I2C_FIFO_CFG_TX_MASTER_DMA

298 May 14, 2014

Tiva TM4C129x ROM User’s Guide

I2C_FIFO_CFG_TX_SLAVE_DMA

To select the trigger level, one of the following macros should be used:

I2C_FIFO_CFG_TX_TRIG_1
I2C_FIFO_CFG_TX_TRIG_2
I2C_FIFO_CFG_TX_TRIG_3
I2C_FIFO_CFG_TX_TRIG_4
I2C_FIFO_CFG_TX_TRIG_5
I2C_FIFO_CFG_TX_TRIG_6
I2C_FIFO_CFG_TX_TRIG_7
I2C_FIFO_CFG_TX_TRIG_8

Returns:
None.

15.2.1.51 ROM_I2CTxFIFOFlush

Flushes the transmit (TX) FIFO.

Prototype:
void
ROM_I2CTxFIFOFlush(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_I2CTxFIFOFlush is a function pointer located at ROM_I2CTABLE[40].

Parameters:
ui32Base is the base address of the I2C module.

Description:
This function flushes the I2C transmit FIFO.

Returns:
None.

15.2.1.52 ROM_UpdateI2C

Starts an update over the I2C0 interface.

Prototype:
void
ROM_UpdateI2C(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_I2CTABLE is an array of pointers located at ROM_APITABLE[3].
ROM_UpdateI2C is a function pointer located at ROM_I2CTABLE[24].

May 14, 2014 299

Inter-Integrated Circuit (I2C)

Description:
Calling this function commences an update of the firmware via the I2C0 interface. This function
assumes that the I2C0 interface has already been configured and is currently operational. The
I2C0 slave is used for data transfer, and the I2C0 master is used to monitor bus busy conditions
(therefore, both must be enabled).

Returns:
Never returns.

300 May 14, 2014

Tiva TM4C129x ROM User’s Guide

16 Interrupt Controller (NVIC)
Introduction .301
Functions . 301

16.1 Introduction

The interrupt controller API provides a set of functions for dealing with the Nested Vectored Inter-
rupt Controller (NVIC). Functions are provided to enable and disable interrupts, register interrupt
handlers, and set the priority of interrupts.

The NVIC provides global interrupt masking, prioritization, and handler dispatching. Devices within
the Tiva TM4C129x family support up to 113 interrupt sources and eight priority levels. Individual
interrupt sources can be masked, and the processor interrupt can be globally masked as well
(without affecting the individual source masks).

The NVIC is tightly coupled with the Cortex-M microprocessor. When the processor responds to
an interrupt, the NVIC supplies the address of the function to handle the interrupt directly to the
processor. This action eliminates the need for a global interrupt handler that queries the interrupt
controller to determine the cause of the interrupt and branch to the appropriate handler, reducing
interrupt response time.

The interrupt prioritization in the NVIC allows higher priority interrupts to be handled before lower
priority interrupts, as well as allowing preemption of lower priority interrupt handlers by higher prior-
ity interrupts. Again, this helps reduce interrupt response time (for example, a 1 ms system control
interrupt is not held off by the execution of a lower priority 1 second housekeeping interrupt handler).

Sub-prioritization is also possible; instead of having N bits of preemptable prioritization, the NVIC
can be configured (via software) for N - M bits of preemptable prioritization and M bits of sub-priority.
In this scheme, two interrupts with the same preemptable prioritization but different sub-priorities
do not cause a preemption; tail chaining is used instead to process the two interrupts back-to-back.

If two interrupts with the same priority (and sub-priority if so configured) are asserted at the same
time, the one with the lower interrupt number is processed first. The NVIC keeps track of the nesting
of interrupt handlers, allowing the processor to return from interrupt context only once all nested
and pending interrupts have been handled.

16.2 Functions

Functions
void ROM_IntDisable (uint32_t ui32Interrupt)
void ROM_IntEnable (uint32_t ui32Interrupt)
uint32_t ROM_IntIsEnabled (uint32_t ui32Interrupt)
bool ROM_IntMasterDisable (void)
bool ROM_IntMasterEnable (void)
void ROM_IntPendClear (uint32_t ui32Interrupt)
void ROM_IntPendSet (uint32_t ui32Interrupt)

May 14, 2014 301

Interrupt Controller (NVIC)

int32_t ROM_IntPriorityGet (uint32_t ui32Interrupt)
uint32_t ROM_IntPriorityGroupingGet (void)
void ROM_IntPriorityGroupingSet (uint32_t ui32Bits)
uint32_t ROM_IntPriorityMaskGet (void)
void ROM_IntPriorityMaskSet (uint32_t ui32PriorityMask)
void ROM_IntPrioritySet (uint32_t ui32Interrupt, uint8_t ui8Priority)
void ROM_IntTrigger (uint32_t ui32Interrupt)

16.2.1 Function Documentation

16.2.1.1 ROM_IntDisable

Disables an interrupt.

Prototype:
void
ROM_IntDisable(uint32_t ui32Interrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntDisable is a function pointer located at ROM_INTERRUPTTABLE[3].

Parameters:
ui32Interrupt specifies the interrupt to be disabled.

Description:
The specified interrupt is disabled in the interrupt controller. Other enables for the interrupt
(such as at the peripheral level) are unaffected by this function.

Returns:
None.

16.2.1.2 ROM_IntEnable

Enables an interrupt.

Prototype:
void
ROM_IntEnable(uint32_t ui32Interrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntEnable is a function pointer located at ROM_INTERRUPTTABLE[0].

Parameters:
ui32Interrupt specifies the interrupt to be enabled.

302 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
The specified interrupt is enabled in the interrupt controller. Other enables for the interrupt
(such as at the peripheral level) are unaffected by this function.

Returns:
None.

16.2.1.3 ROM_IntIsEnabled

Returns if a peripheral interrupt is enabled.

Prototype:
uint32_t
ROM_IntIsEnabled(uint32_t ui32Interrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntIsEnabled is a function pointer located at ROM_INTERRUPTTABLE[12].

Parameters:
ui32Interrupt specifies the interrupt to check.

Description:
This function checks if the specified interrupt is enabled in the interrupt controller.

Returns:
A non-zero value if the interrupt is enabled.

16.2.1.4 ROM_IntMasterDisable

Disables the processor interrupt.

Prototype:
bool
ROM_IntMasterDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntMasterDisable is a function pointer located at ROM_INTERRUPTTABLE[2].

Description:
This function prevents the processor from receiving interrupts. This function does not affect
the set of interrupts enabled in the interrupt controller; it just gates the single interrupt from the
controller to the processor.

Returns:
Returns true if interrupts were already disabled when the function was called or false if they
were initially enabled.

May 14, 2014 303

Interrupt Controller (NVIC)

16.2.1.5 ROM_IntMasterEnable

Enables the processor interrupt.

Prototype:
bool
ROM_IntMasterEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntMasterEnable is a function pointer located at ROM_INTERRUPTTABLE[1].

Description:
This function allows the processor to respond to interrupts. This function does not affect the
set of interrupts enabled in the interrupt controller; it just gates the single interrupt from the
controller to the processor.

Returns:
Returns true if interrupts were disabled when the function was called or false if they were
initially enabled.

16.2.1.6 ROM_IntPendClear

Un-pends an interrupt.

Prototype:
void
ROM_IntPendClear(uint32_t ui32Interrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPendClear is a function pointer located at ROM_INTERRUPTTABLE[9].

Parameters:
ui32Interrupt specifies the interrupt to be un-pended.

Description:
The specified interrupt is un-pended in the interrupt controller. This causes any previously
generated interrupts that have not been handled yet (due to higher priority interrupts or the
interrupt not having been enabled yet) to be discarded.

Returns:
None.

16.2.1.7 ROM_IntPendSet

Pends an interrupt.

304 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_IntPendSet(uint32_t ui32Interrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPendSet is a function pointer located at ROM_INTERRUPTTABLE[8].

Parameters:
ui32Interrupt specifies the interrupt to be pended.

Description:
The specified interrupt is pended in the interrupt controller. Pending an interrupt causes the
interrupt controller to execute the corresponding interrupt handler at the next available time,
based on the current interrupt state priorities. For example, if called by a higher priority interrupt
handler, the specified interrupt handler is not called until after the current interrupt handler has
completed execution. The interrupt must have been enabled for it to be called.

Returns:
None.

16.2.1.8 ROM_IntPriorityGet

Gets the priority of an interrupt.

Prototype:
int32_t
ROM_IntPriorityGet(uint32_t ui32Interrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityGet is a function pointer located at ROM_INTERRUPTTABLE[7].

Parameters:
ui32Interrupt specifies the interrupt in question.

Description:
This function gets the priority of an interrupt. See ROM_IntPrioritySet() for a definition of the
priority value.

Returns:
Returns the interrupt priority, or -1 if an invalid interrupt was specified.

16.2.1.9 ROM_IntPriorityGroupingGet

Gets the priority grouping of the interrupt controller.

Prototype:
uint32_t
ROM_IntPriorityGroupingGet(void)

May 14, 2014 305

Interrupt Controller (NVIC)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityGroupingGet is a function pointer located at
ROM_INTERRUPTTABLE[5].

Description:
This function returns the split between preemptable priority levels and sub-priority levels in the
interrupt priority specification.

Returns:
The number of bits of preemptable priority.

16.2.1.10 ROM_IntPriorityGroupingSet

Sets the priority grouping of the interrupt controller.

Prototype:
void
ROM_IntPriorityGroupingSet(uint32_t ui32Bits)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityGroupingSet is a function pointer located at
ROM_INTERRUPTTABLE[4].

Parameters:
ui32Bits specifies the number of bits of preemptable priority.

Description:
This function specifies the split between preemptable priority levels and sub-priority levels in
the interrupt priority specification. The range of the grouping values are dependent upon the
hardware implementation; on this device, three bits are available for hardware interrupt priori-
tization and therefore priority grouping values of three through seven have the same effect.

Returns:
None.

16.2.1.11 ROM_IntPriorityMaskGet

Gets the priority masking level

Prototype:
uint32_t
ROM_IntPriorityMaskGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityMaskGet is a function pointer located at ROM_INTERRUPTTABLE[11].

306 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function gets the current setting of the interrupt priority masking level. The value returned
is the priority level such that all interrupts of that and lesser priority are masked. A value of 0
means that priority masking is disabled.

Smaller numbers correspond to higher interrupt priorities. So for example a priority level mask
of 4 allows interrupts of priority level 0-3, and interrupts with a numerical priority of 4 and greater
are blocked.

The hardware priority mechanism only looks at the upper N bits of the priority level (where N is
3 for this device), so any prioritization must be performed in those bits.

Returns:
Returns the value of the interrupt priority level mask.

16.2.1.12 ROM_IntPriorityMaskSet

Sets the priority masking level

Prototype:
void
ROM_IntPriorityMaskSet(uint32_t ui32PriorityMask)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPriorityMaskSet is a function pointer located at ROM_INTERRUPTTABLE[10].

Parameters:
ui32PriorityMask is the priority level that is masked.

Description:
This function sets the interrupt priority masking level so that all interrupts at the specified or
lesser priority level are masked. Masking interrupts can be used to globally disable a set of
interrupts with priority below a predetermined threshold. A value of 0 disables priority masking.

Smaller numbers correspond to higher interrupt priorities. So for example a priority level mask
of 4 allows interrupts of priority level 0-3, and interrupts with a numerical priority of 4 and greater
are blocked.

The hardware priority mechanism only looks at the upper N bits of the priority level (where N is
3 for this device), so any prioritization must be performed in those bits.

Returns:
None.

16.2.1.13 ROM_IntPrioritySet

Sets the priority of an interrupt.

Prototype:
void
ROM_IntPrioritySet(uint32_t ui32Interrupt,

uint8_t ui8Priority)

May 14, 2014 307

Interrupt Controller (NVIC)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntPrioritySet is a function pointer located at ROM_INTERRUPTTABLE[6].

Parameters:
ui32Interrupt specifies the interrupt in question.
ui8Priority specifies the priority of the interrupt.

Description:
This function is used to set the priority of an interrupt. When multiple interrupts are asserted
simultaneously, the ones with the highest priority are processed before the lower priority in-
terrupts. Smaller numbers correspond to higher interrupt priorities; priority 0 is the highest
interrupt priority.

The hardware priority mechanism only looks at the upper N bits of the priority level (where N
is 3 for this device), so any prioritization must be performed in those bits. The remaining bits
can be used to sub-prioritize the interrupt sources, and may be used by the hardware priority
mechanism on a future part. This arrangement allows priorities to migrate to different NVIC
implementations without changing the gross prioritization of the interrupts.

Returns:
None.

16.2.1.14 ROM_IntTrigger

Triggers an interrupt.

Prototype:
void
ROM_IntTrigger(uint32_t ui32Interrupt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_INTERRUPTTABLE is an array of pointers located at ROM_APITABLE[14].
ROM_IntTrigger is a function pointer located at ROM_INTERRUPTTABLE[13].

Parameters:
ui32Interrupt specifies the interrupt to be triggered.

Description:
This function performs a software trigger of an interrupt. The interrupt controller behaves as if
the corresponding interrupt line was asserted, and the interrupt is handled in the same manner
(meaning that it must be enabled in order to be processed, and the processing is based on its
priority with respect to other unhandled interrupts).

Returns:
None.

308 May 14, 2014

Tiva TM4C129x ROM User’s Guide

17 LCD Controller (LCD)
Introduction .309
API Functions . 309

17.1 Introduction

The LCD Controller allows a variety of different character and graphic displays to be connected
to and driven by the microcontroller. The LCD module contains two independent controllers, one
supporting LCD Interface Display Driver (LIDD) mode command and data transactions to character
displays as well as displays containing an integrated controller with a packet-based interface, and
the other driving clock, syncs and data suitable for RGB raster displays. Up to two simultaneous
LIDD displays or a single RGB raster mode display may be driven.

The LCD API provides functions to configure the interface type and timing for the attached display
or displays. For LIDD mode displays, functions allow an application to send commands or data to
the display or read back status or data. For raster displays, functions allow the pixel clock, HSYNC,
VSYNC and ACTIVE timings to be set. Additional functions allow the frame buffer memory to be
configured and the color palette to be set.

17.2 API Functions

Functions
void ROM_LCDClockReset (uint32_t ui32Base, uint32_t ui32Clocks)
void ROM_LCDDMAConfigSet (uint32_t ui32Base, uint32_t ui32Config)
void ROM_LCDIDDCommandWrite (uint32_t ui32Base, uint32_t ui32CS, uint16_t ui16Cmd)
void ROM_LCDIDDConfigSet (uint32_t ui32Base, uint32_t ui32Config)
uint16_t ROM_LCDIDDDataRead (uint32_t ui32Base, uint32_t ui32CS)
void ROM_LCDIDDDataWrite (uint32_t ui32Base, uint32_t ui32CS, uint16_t ui16Data)
void ROM_LCDIDDDMADisable (uint32_t ui32Base)
void ROM_LCDIDDDMAWrite (uint32_t ui32Base, uint32_t ui32CS, const uint32_t
∗pui32Data, uint32_t ui32Count)
uint16_t ROM_LCDIDDIndexedRead (uint32_t ui32Base, uint32_t ui32CS, uint16_t ui16Addr)
void ROM_LCDIDDIndexedWrite (uint32_t ui32Base, uint32_t ui32CS, uint16_t ui16Addr,
uint16_t ui16Data)
uint16_t ROM_LCDIDDStatusRead (uint32_t ui32Base, uint32_t ui32CS)
void ROM_LCDIDDTimingSet (uint32_t ui32Base, uint32_t ui32CS, const tLCDIDDTiming
∗psTiming)
void ROM_LCDIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_LCDIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_LCDIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_LCDIntStatus (uint32_t ui32Base, bool bMasked)
uint32_t ROM_LCDModeSet (uint32_t ui32Base, uint8_t ui8Mode, uint32_t ui32PixClk,
uint32_t ui32SysClk)

May 14, 2014 309

LCD Controller (LCD)

void ROM_LCDRasterACBiasIntCountSet (uint32_t ui32Base, uint8_t ui8Count)
void ROM_LCDRasterConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint8_t
ui8PalLoadDelay)
void ROM_LCDRasterDisable (uint32_t ui32Base)
void ROM_LCDRasterEnable (uint32_t ui32Base)
bool ROM_LCDRasterEnabled (uint32_t ui32Base)
void ROM_LCDRasterFrameBufferSet (uint32_t ui32Base, uint8_t ui8Buffer, uint32_t
∗pui32Addr, uint32_t ui32NumBytes)
void ROM_LCDRasterPaletteSet (uint32_t ui32Base, uint32_t ui32Type, uint32_t ∗pui32Addr,
const uint32_t ∗pui32SrcColors, uint32_t ui32Start, uint32_t ui32Count)
void ROM_LCDRasterSubPanelConfigSet (uint32_t ui32Base, uint32_t ui32Flags, uint32_t
ui32BottomLines, uint32_t ui32DefaultPixel)
void ROM_LCDRasterSubPanelDisable (uint32_t ui32Base)
void ROM_LCDRasterSubPanelEnable (uint32_t ui32Base)
void ROM_LCDRasterTimingSet (uint32_t ui32Base, const tLCDRasterTiming ∗psTiming)

17.2.1 Function Documentation

17.2.1.1 ROM_LCDClockReset

Resets one or more of the LCD controller clock domains.

Prototype:
void
ROM_LCDClockReset(uint32_t ui32Base,

uint32_t ui32Clocks)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDClockReset is a function pointer located at ROM_LCDTABLE[1].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32Clocks defines the subset of clock domains to be reset.

Description:
This function allows sub-modules of the LCD controller to be reset under software control. The
ui32Clocks parameter is the logical OR of the following clocks:

LCD_CLOCK_MAIN causes the entire LCD controller module to be reset.
LCD_CLOCK_DMA causes the DMA controller submodule to be reset.
LCD_CLOCK_LIDD causes the LIDD submodule to be reset.
LCD_CLOCK_CORE causes the code module, including the raster logic to be reset.

In all cases, LCD controller register values are preserved across these resets.

Returns:
None.

310 May 14, 2014

Tiva TM4C129x ROM User’s Guide

17.2.1.2 ROM_LCDDMAConfigSet

Configures the LCD controller DMA engine.

Prototype:
void
ROM_LCDDMAConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDDMAConfigSet is a function pointer located at ROM_LCDTABLE[2].

Parameters:
ui32Base is the base address of the controller.
ui32Config provides flags defining the desired DMA parameters.

Description:
This function is used to configure the DMA engine within the LCD controller. This engine is re-
sponsible for performing bulk data transfers to the display when in LIDD mode or for transferring
palette and pixel data from SRAM to the display panel when in raster mode.

The ui32Config parameter is a logical OR of various flags. It must contain one value from each
of the following groups. The first group sets the DMA engine’s bus priority with higher numbers
representing higher priorities:

LCD_DMA_PRIORITY_0
LCD_DMA_PRIORITY_1
LCD_DMA_PRIORITY_2
LCD_DMA_PRIORITY_3
LCD_DMA_PRIORITY_4
LCD_DMA_PRIORITY_5
LCD_DMA_PRIORITY_6
LCD_DMA_PRIORITY_7

The second group of flags set the number of words that have to be in the FIFO before it signals
that it is ready:

LCD_DMA_FIFORDY_8_WORDS
LCD_DMA_FIFORDY_16_WORDS
LCD_DMA_FIFORDY_32_WORDS
LCD_DMA_FIFORDY_64_WORDS
LCD_DMA_FIFORDY_128_WORDS
LCD_DMA_FIFORDY_256_WORDS
LCD_DMA_FIFORDY_512_WORDS

The third group of flags set the number of 32-bit words in each DMA burst transfer:

LCD_DMA_BURST_1
LCD_DMA_BURST_2
LCD_DMA_BURST_4

May 14, 2014 311

LCD Controller (LCD)

LCD_DMA_BURST_8
LCD_DMA_BURST_16

The final group of flags set internal byte lane controls and allows byte swapping within the DMA
engine. The label represents the output byte order for an input 32-bit word ordered “0123”.

LCD_DMA_BYTE_ORDER_0123
LCD_DMA_BYTE_ORDER_1023
LCD_DMA_BYTE_ORDER_3210
LCD_DMA_BYTE_ORDER_2301

Additionally, LCD_DMA_PING_PONG may be specified. This flag configures the controller
to operate in double-buffered mode. When data is scanned out from the first frame buffer, the
DMA engine immediately moves to the second frame buffer and scan from there before moving
back to the first. If this flag is clear, the DMA engine uses a single frame buffer, restarting the
scan from the beginning of the buffer each time it completes a frame.

Note:
DMA burst sizes LCD_DMA_BURST_1 and LCD_DMA_BURST_2 are only supported when
the source data is in external, EPI-connected memory. If used when the source is internal
SRAM, the DMA operation does not complete correctly.

Returns:
None.

17.2.1.3 ROM_LCDIDDCommandWrite

Writes a command to the display when the LCD controller is in LIDD mode.

Prototype:
void
ROM_LCDIDDCommandWrite(uint32_t ui32Base,

uint32_t ui32CS,
uint16_t ui16Cmd)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDCommandWrite is a function pointer located at ROM_LCDTABLE[3].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
ui16Cmd is the 16 bit command word to write.

Description:
This function writes a 16 bit command word to the display when the LCD controller is in LIDD
mode. A command write occurs with the ALE signal active.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, ROM_LCDIDDDMADisable()
must be called before this function can be used.

312 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

17.2.1.4 ROM_LCDIDDConfigSet

Sets the LCD controller communication parameters when in LIDD mode.

Prototype:
void
ROM_LCDIDDConfigSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDConfigSet is a function pointer located at ROM_LCDTABLE[4].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32Config defines the display interface configuration.

Description:
This function is used when the LCD controller is configured in LIDD mode and specifies the
configuration of the interface between the controller and the display panel. The ui32Config
parameter is comprised of one of the following modes:

LIDD_CONFIG_SYNC_MPU68 selects Sync MPU68 mode. LCDCP = EN, LCDLP = DIR,
LCDFP = ALE, LCDAC = CS0, LCDMCLK = MCLK.
LIDD_CONFIG_ASYNC_MPU68 selects Async MPU68 mode. LCDCP = EN, LCDLP =
DIR, LCDFP = ALE, LCDAC = CS0, LCDMCLK = CS1.
LIDD_CONFIG_SYNC_MPU80 selects Sync MPU80 mode. LCDCP = RS, LCDLP = WS,
LCDFP = ALE, LCDAC = CS0, LCDMCLK = MCLK.
LIDD_CONFIG_ASYNC_MPU80 selects Async MPU80 mode. LCDCP = RS, LCDLP =
WS, LCDFP = ALE, LCDAC = CS0, LCDMCLK = CS1.
LIDD_CONFIG_ASYNC_HITACHI selects Hitachi (async) mode. LCDCP = N/C, LCDLP
= DIR, LCDFP = ALE, LCDAC = E0, LCDMCLK = E1.

Additional flags may be ORed into ui32Config to control the polarities of various control signals:

LIDD_CONFIG_INVERT_ALE - Address Latch Enable (ALE) polarity control. By default,
ALE is active low. If this flag is set, it becomes active high.
LIDD_CONFIG_INVERT_RS_EN - Read Strobe/Enable polarity control. By default, RS is
active low and Enable is active high. If this flag is set, RS becomes active high and Enable
active low.
LIDD_CONFIG_INVERT_WS_DIR - Write Strobe/Direction polarity control. By default,
WS is active low and Direction write low/read high. If this flag is set, WS becomes active
high and Direction becomes write high/read low.
LIDD_CONFIG_INVERT_CS0 - Chip Select 0/Enable 0 polarity control. By default, CS0
and E0 are active high. If this flag is set, they become active low.

May 14, 2014 313

LCD Controller (LCD)

LIDD_CONFIG_INVERT_CS1 - Chip Select 1/Enable 1 polarity control. By default, CS1
and E1 are active high. If this flag is set, they become active low.

Returns:
None.

17.2.1.5 ROM_LCDIDDDataRead

Reads a data word from the display when the LCD controller is in LIDD mode.

Prototype:
uint16_t
ROM_LCDIDDDataRead(uint32_t ui32Base,

uint32_t ui32CS)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDDataRead is a function pointer located at ROM_LCDTABLE[5].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.

Description:
This function reads the 16 bit data word from the display when the LCD controller is in LIDD
mode. A data read occurs with the ALE signal inactive.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, ROM_LCDIDDDMADisable()
must be called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
Returns the status word read from the display panel.

17.2.1.6 ROM_LCDIDDDataWrite

Writes a data value to the display when the LCD controller is in LIDD mode.

Prototype:
void
ROM_LCDIDDDataWrite(uint32_t ui32Base,

uint32_t ui32CS,
uint16_t ui16Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDDataWrite is a function pointer located at ROM_LCDTABLE[6].

314 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
ui16Data is the 16 bit data word to write.

Description:
This function writes a 16 bit data word to the display when the LCD controller is in LIDD mode.
A data write occurs with the ALE signal inactive.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, ROM_LCDIDDDMADisable()
must be called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

17.2.1.7 ROM_LCDIDDDMADisable

Disables DMA operation when the LCD controller is in LIDD mode.

Prototype:
void
ROM_LCDIDDDMADisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDDMADisable is a function pointer located at ROM_LCDTABLE[7].

Parameters:
ui32Base specifies the LCD controller module base address.

Description:
When the LCD controller is operating in LCD Interface Display Driver mode, this
function must be called after completion of a DMA transaction and before call-
ing ROM_LCDIDDCommandWrite(), ROM_LCDIDDDataWrite(), ROM_LCDIDDStatusRead(),
ROM_LCDIDDIndexedWrite(), ROM_LCDIDDIndexedRead() or ROM_LCDIDDDataRead() to
disable DMA mode and allow CPU-initiated transactions to the display.

Note:
LIDD DMA mode is enabled automatically when ROM_LCDIDDDMAWrite() is called.

Returns:
None.

17.2.1.8 ROM_LCDIDDDMAWrite

Writes a block of data to the display using DMA when the LCD controller is in LIDD mode.

May 14, 2014 315

LCD Controller (LCD)

Prototype:
void
ROM_LCDIDDDMAWrite(uint32_t ui32Base,

uint32_t ui32CS,
const uint32_t *pui32Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDDMAWrite is a function pointer located at ROM_LCDTABLE[8].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
pui32Data is the address of the first 16-bit word to write. This address must be aligned on a

32-bit word boundary.
ui32Count is the number of 16-bit words to write. This value must be a multiple of 2.

Description:
This function writes a block of 16-bit data words to the display using DMA. It is only valid
when the LCD controller is in LIDD mode. Completion of the DMA transfer is signaled by the
LCD_INT_DMA_DONE interrupt.

This function enables DMA mode prior to starting the transfer. The caller is responsible for
ensuring that any earlier DMA transfer has completed before initiating another transfer.

During the time that DMA is enabled, none of the other LCD LIDD data transfer functions
may be called. When the DMA transfer is complete and the application wishes to use the
CPU to communicate with the display, ROM_LCDIDDDMADisable() must be called to dis-
able DMA access prior to calling ROM_LCDIDDCommandWrite(), ROM_LCDIDDDataWrite(),
ROM_LCDIDDStatusRead(), ROM_LCDIDDIndexedWrite(), ROM_LCDIDDIndexedRead() or
ROM_LCDIDDDataRead().

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

17.2.1.9 ROM_LCDIDDIndexedRead

Reads a given display register when the LCD controller is in LIDD mode.

Prototype:
uint16_t
ROM_LCDIDDIndexedRead(uint32_t ui32Base,

uint32_t ui32CS,
uint16_t ui16Addr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDIndexedRead is a function pointer located at ROM_LCDTABLE[9].

316 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
ui16Addr is the address of the display register to read.

Description:
This function reads 16 bit word from a register in the display when the LCD controller is in
LIDD mode and configured to use either the Motorola (LIDD_CONFIG_SYNC_MPU68
or LIDD_CONFIG_ASYNC_MPU68) or Intel (LIDD_CONFIG_SYNC_MPU80 or
LIDD_CONFIG_ASYNC_MPU80) modes which employ an external address latch.

When configured in Hitachi mode (LIDD_CONFIG_ASYNC_HITACHI), this function should not
be used. In this case the functions ROM_LCDIDDStatusRead() and ROM_LCDIDDDataRead()
may be used to read status and data bytes from the panel.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, ROM_LCDIDDDMADisable()
must be called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

17.2.1.10 ROM_LCDIDDIndexedWrite

Writes data to a given display register when the LCD controller is in LIDD mode.

Prototype:
void
ROM_LCDIDDIndexedWrite(uint32_t ui32Base,

uint32_t ui32CS,
uint16_t ui16Addr,
uint16_t ui16Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDIndexedWrite is a function pointer located at ROM_LCDTABLE[10].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.
ui16Addr is the address of the display register to write.
ui16Data is the data to write.

Description:
This function writes a 16 bit data word to a register in the display when the LCD controller is in
LIDD mode and configured to use either the Motorola (LIDD_CONFIG_SYNC_MPU68
or LIDD_CONFIG_ASYNC_MPU68) or Intel (LIDD_CONFIG_SYNC_MPU80 or
LIDD_CONFIG_ASYNC_MPU80) modes which employ an external address latch.

May 14, 2014 317

LCD Controller (LCD)

When configured in Hitachi mode (LIDD_CONFIG_ASYNC_HITACHI), this function
should not be used. In this case the functions ROM_LCDIDDCommandWrite() and
ROM_LCDIDDDataWrite() may be used to transfer command and data bytes to the panel.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, ROM_LCDIDDDMADisable()
must be called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None.

17.2.1.11 ROM_LCDIDDStatusRead

Reads a status word from the display when the LCD controller is in LIDD mode.

Prototype:
uint16_t
ROM_LCDIDDStatusRead(uint32_t ui32Base,

uint32_t ui32CS)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDStatusRead is a function pointer located at ROM_LCDTABLE[11].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select to use. Valid values are 0 and 1.

Description:
This function reads the 16 bit status word from the display when the LCD controller is in LIDD
mode. A status read occurs with the ALE signal active. If the interface is configured in Hitachi
mode (LIDD_CONFIG_ASYNC_HITACHI), this operation corresponds to a command mode
read.

This function must not be called if the LIDD interface is currently configured to expect DMA
transactions. If DMA was previously used to write to the panel, ROM_LCDIDDDMADisable()
must be called before this function can be used.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
Returns the status word read from the display panel.

17.2.1.12 ROM_LCDIDDTimingSet

Sets the LCD controller interface timing when in LIDD mode.

318 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_LCDIDDTimingSet(uint32_t ui32Base,

uint32_t ui32CS,
const tLCDIDDTiming *psTiming)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIDDTimingSet is a function pointer located at ROM_LCDTABLE[12].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32CS specifies the chip select whose timings are to be set.
psTiming points to a structure containing the desired timing parameters.

Description:
This function is used in LIDD mode to set the setup, strobe and hold times for the various
interface control signals. Independent timings are stored for each of the two supported chip
selects offered by the LCD controller.

For a definition of the timing parameters required, see the definition of tLCDIDDTiming.

Note:
CS1 is not available when operating in Sync MPU68 or Sync MPU80 modes.

Returns:
None

17.2.1.13 ROM_LCDIntClear

Clears LCD controller interrupt sources.

Prototype:
void
ROM_LCDIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIntClear is a function pointer located at ROM_LCDTABLE[13].

Parameters:
ui32Base is the base address of the controller.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified LCD controller interrupt sources are cleared so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter is the logical OR of any of the following:

May 14, 2014 319

LCD Controller (LCD)

LCD_INT_DMA_DONE - This interrupt indicates that a LIDD DMA transfer is complete.
LCD_INT_RASTER_FRAME_DONE - This interrupt indicates that a raster-mode frame is
complete.
LCD_INT_SYNC_LOST - This interrupt indicates that frame synchronization was lost.
LCD_INT_AC_BIAS_CNT - This interrupt is valid for passive matrix panels only and indi-
cates that that AC bias transition counter has decremented to zero. The counter, set by
a call to ROM_LCDRasterACBiasIntCountSet(), is reloaded but remains disabled until this
interrupt is cleared.
LCD_INT_UNDERFLOW - This interrupt indicates that a data underflow occurred. The
internal FIFO was empty when the output logic attempted to read data to send to the
display.
LCD_INT_PAL_LOAD - This interrupt indicates that the color palette has been loaded.
LCD_INT_EOF0 - This interrupt indicates that the raw End-of-Frame 0 has been signaled.
LCD_INT_EOF2 - This interrupt indicates that the raw End-of-Frame 1 has been signaled.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

17.2.1.14 ROM_LCDIntDisable

Disables individual LCD controller interrupt sources.

Prototype:
void
ROM_LCDIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIntDisable is a function pointer located at ROM_LCDTABLE[14].

Parameters:
ui32Base is the base address of the controller.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated LCD controller interrupt sources. Only the sources that
are enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

LCD_INT_DMA_DONE - This interrupt indicates that a LIDD DMA transfer is complete.

320 May 14, 2014

Tiva TM4C129x ROM User’s Guide

LCD_INT_RASTER_FRAME_DONE - This interrupt indicates that a raster-mode frame is
complete.
LCD_INT_SYNC_LOST - This interrupt indicates that frame synchronization was lost.
LCD_INT_AC_BIAS_CNT - This interrupt is valid for passive matrix panels only and indi-
cates that that AC bias transition counter has decremented to zero. The counter, set by
a call to ROM_LCDRasterACBiasIntCountSet(), is reloaded but remains disabled until this
interrupt is cleared.
LCD_INT_UNDERFLOW - This interrupt indicates that a data underflow occurred. The
internal FIFO was empty when the output logic attempted to read data to send to the
display.
LCD_INT_PAL_LOAD - This interrupt indicates that the color palette has been loaded.
LCD_INT_EOF0 - This interrupt indicates that the raw End-of-Frame 0 has been signaled.
LCD_INT_EOF2 - This interrupt indicates that the raw End-of-Frame 1 has been signaled.

Returns:
None.

17.2.1.15 ROM_LCDIntEnable

Enables individual LCD controller interrupt sources.

Prototype:
void
ROM_LCDIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIntEnable is a function pointer located at ROM_LCDTABLE[15].

Parameters:
ui32Base is the base address of the controller.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated LCD controller interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

LCD_INT_DMA_DONE - This interrupt indicates that a LIDD DMA transfer is complete.
LCD_INT_RASTER_FRAME_DONE - This interrupt indicates that a raster-mode frame is
complete.
LCD_INT_SYNC_LOST - This interrupt indicates that frame synchronization was lost.
LCD_INT_AC_BIAS_CNT - This interrupt is valid for passive matrix panels only and indi-
cates that that AC bias transition counter has decremented to zero. The counter, set by
a call to ROM_LCDRasterACBiasIntCountSet(), is reloaded but remains disabled until this
interrupt is cleared.

May 14, 2014 321

LCD Controller (LCD)

LCD_INT_UNDERFLOW - This interrupt indicates that a data underflow occurred. The
internal FIFO was empty when the output logic attempted to read data to send to the
display.
LCD_INT_PAL_LOAD - This interrupt indicates that the color palette has been loaded.
LCD_INT_EOF0 - This interrupt indicates that the raw End-of-Frame 0 has been signaled.
LCD_INT_EOF1 - This interrupt indicates that the raw End-of-Frame 1 has been signaled.

Returns:
None.

17.2.1.16 ROM_LCDIntStatus

Gets the current LCD controller interrupt status.

Prototype:
uint32_t
ROM_LCDIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDIntStatus is a function pointer located at ROM_LCDTABLE[0].

Parameters:
ui32Base is the base address of the controller.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the LCD controller. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status as the logical OR of any of the following:

LCD_INT_DMA_DONE - This interrupt indicates that a LIDD DMA transfer is complete.

LCD_INT_RASTER_FRAME_DONE - This interrupt indicates that a raster-mode frame is
complete.

LCD_INT_SYNC_LOST - This interrupt indicates that frame synchronization was lost.

LCD_INT_AC_BIAS_CNT - This interrupt is valid for passive matrix panels only and indicates
that that AC bias transition counter has decremented to zero. The counter, set by a call to
ROM_LCDRasterACBiasIntCountSet(), is reloaded but remains disabled until this interrupt is
cleared.

LCD_INT_UNDERFLOW - This interrupt indicates that a data underflow occurred. The inter-
nal FIFO was empty when the output logic attempted to read data to send to the display.

LCD_INT_PAL_LOAD - This interrupt indicates that the color palette has been loaded.

LCD_INT_EOF0 - This interrupt indicates that the raw End-of-Frame 0 has been signaled.

LCD_INT_EOF2 - This interrupt indicates that the raw End-of-Frame 1 has been signaled.

322 May 14, 2014

Tiva TM4C129x ROM User’s Guide

17.2.1.17 ROM_LCDModeSet

Configures the basic operating mode and clock rate for the LCD controller.

Prototype:
uint32_t
ROM_LCDModeSet(uint32_t ui32Base,

uint8_t ui8Mode,
uint32_t ui32PixClk,
uint32_t ui32SysClk)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDModeSet is a function pointer located at ROM_LCDTABLE[16].

Parameters:
ui32Base specifies the LCD controller module base address.
ui8Mode specifies the basic operating mode to be used.
ui32PixClk specifies the desired LCD controller pixel or master clock rate in Hz.
ui32SysClk specifies the current system clock rate in Hz.

Description:
This function sets the basic operating mode of the LCD controller and also its master clock.
The ui8Mode parameter may be set to either LCD_MODE_LIDD or LCD_MODE_RASTER.
LCD_MODE_LIDD is used to select LCD Interface Display Driver mode for character panels
connected via an asynchronous interface (CS, WE, OE, ALE, data) and LCD_MODE_RASTER
is used to communicate with panels via a synchronous video interface using data and sync
signals. Additionally, LIDD_MODE_AUTO_UFLOW_RESTART may be ORed with either of
these modes to indicate that the hardware should restart automatically if a data underflow
occurs.

The ui32PixClk parameter specifies the desired master clock for the the LCD controller. In
LIDD mode, this value controls the MCLK used in communication with the display and valid
values are between ui32SysClk and ui32SysClk/255. In raster mode, ui32PixClk specifies
the pixel clock rate for the raster interface and valid values are between ui32SysClk/2 and
ui32SysClk/255. The actual clock rate set may differ slightly from the desired rate due to the
fact that only integer dividers are supported. The rate set will, however, be no higher than the
requested value.

The ui32SysClk parameter provides the current system clock rate and is used to allow the LCD
controller clock rate divisor to be correctly set to give the desired ui32PixClk rate.

Returns:
Returns the actual LCD controller pixel clock or MCLK rate set.

17.2.1.18 ROM_LCDRasterACBiasIntCountSet

Sets the number of AC bias pin transitions per interrupt.

Prototype:
void

May 14, 2014 323

LCD Controller (LCD)

ROM_LCDRasterACBiasIntCountSet(uint32_t ui32Base,
uint8_t ui8Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterACBiasIntCountSet is a function pointer located at ROM_LCDTABLE[17].

Parameters:
ui32Base is the base address of the controller.
ui8Count is the number of AC bias pin transitions to count before the AC bias count interrupt

is asserted. Valid values are from 0 to 15.

Description:
This function is used to set the number of AC bias transitions between each AC bias count
interrupt (LCD_INT_AC_BIAS_CNT). If ui8Count is 0, no AC bias count interrupt is generated.

Returns:
None.

17.2.1.19 ROM_LCDRasterConfigSet

Sets the LCD controller interface timing when in raster mode.

Prototype:
void
ROM_LCDRasterConfigSet(uint32_t ui32Base,

uint32_t ui32Config,
uint8_t ui8PalLoadDelay)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterConfigSet is a function pointer located at ROM_LCDTABLE[18].

Parameters:
ui32Base specifies the LCD controller module base address.
ui32Config specifies properties of the raster interface and the attached display panel.
ui8PalLoadDelay specifies the number of system clocks to wait between each 16 halfword

(16-bit) burst when loading the palette from SRAM into the internal palette RAM of the
controller.

Description:
This function configures the basic operating mode of the raster interface and specifies the type
of panel that the controller is to drive.

The ui32Config parameter must defined one of the following to select the required target panel
type and output pixel format:

RASTER_FMT_ACTIVE_24BPP_PACKED selects an active matrix display and uses a
packed 24-bit per pixel packet frame buffer where 4 pixels are described within 3 consec-
utive 32-bit words.

324 May 14, 2014

Tiva TM4C129x ROM User’s Guide

RASTER_FMT_ACTIVE_24BPP_UNPACKED selects an active matrix display and uses
an unpacked 24-bit per pixel packet frame buffer where each 32-bit word contains a single
pixel and 8 bits of padding.
RASTER_FMT_ACTIVE_16BPP selects an active matrix display and uses a 16-bit per
pixel frame buffer with 2 pixels in each 32-bit word.
RASTER_FMT_ACTIVE_PALETTIZED_12BIT selects an active matrix display and uses
a 1, 2, 4 or 8bpp frame buffer with palette lookup. Output color data is described in 12-bit
format using bits 11:0 of the data bus. The frame buffer pixel format is defined by the value
passed in the ui32Type parameter to ROM_LCDRasterPaletteSet().
RASTER_FMT_ACTIVE_PALETTIZED_16BIT selects an active matrix display and uses
a 1, 2, 4 or 8bpp frame buffer with palette lookup. Output color data is described in 16-bit
5:6:5 format. The frame buffer pixel format is defined by the value passed in the ui32Type
parameter to ROM_LCDRasterPaletteSet().
RASTER_FMT_PASSIVE_MONO_4PIX selects a monochrome, passive matrix display
which outputs 4 pixels on each pixel clock.
RASTER_FMT_PASSIVE_MONO_8PIX selects a monochrome, passive matrix display
which outputs 8 pixels on each pixel clock.
RASTER_FMT_PASSIVE_COLOR_12BIT selects a passive matrix display and uses a
12bpp frame buffer. The palette is bypassed and 12-bit pixel data is sent to the grayscaler
for the display.
RASTER_FMT_PASSIVE_COLOR_16BIT selects a passive matrix display and uses a
16bpp frame buffer with pixels in 5:6:5 format. Only the 4 most significant bits of each
color component are sent to the grayscaler for the display.

Additionally, the following flags may be ORed into ui32Config:

RASTER_ACTVID_DURING_BLANK sets Actvid to toggle during vertical blanking.
RASTER_NIBBLE_MODE_ENABLED enables nibble mode. This works with
RASTER_READ_ORDER_REVERSED to determine how 1, 2 and 4bpp pixels are ex-
tracted from words read from the frame buffer. If specified, words read from the frame
buffer are byte swapped prior to individual pixels being parsed from them.
RASTER_LOAD_DATA_ONLY tells the controller to read only pixel data from the frame
buffer and to use the last palette read. No palette load is performed.
RASTER_LOAD_PALETTE_ONLY tells the controller to read only the palette data from
the frame buffer.
RASTER_READ_ORDER_REVERSED when using 1, 2, 4 and 8bpp frame buffers, this
option reverses the order in which frame buffer words are parsed. When this option is
specified, the leftmost pixel in a word is taken from the most significant bits. When absent,
the leftmost pixel is parsed from the least significant bits.

If the LCD controller’s raster engine is enabled when this function is called, it is disabled as a
side effect of the call.

Returns:
None.

17.2.1.20 ROM_LCDRasterDisable

Disables the raster output.

May 14, 2014 325

LCD Controller (LCD)

Prototype:
void
ROM_LCDRasterDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterDisable is a function pointer located at ROM_LCDTABLE[19].

Parameters:
ui32Base is the base address of the controller.

Description:
This function disables the LCD controller raster output and stops driving the attached display.

Note:
Once disabled, the raster engine continues to scan data until the end of the current
frame. If the display is to be re-enabled, this must not be done until after the final
LCD_INT_RASTER_FRAME_DONE has been received, indicating that the raster engine has
stopped.

Returns:
None.

17.2.1.21 ROM_LCDRasterEnable

Enables the raster output.

Prototype:
void
ROM_LCDRasterEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterEnable is a function pointer located at ROM_LCDTABLE[20].

Parameters:
ui32Base is the base address of the controller.

Description:
This function enables the LCD controller raster output and starts displaying
the content of the current frame buffer on the attached panel. Prior to en-
abling the raster output, ROM_LCDModeSet(), ROM_LCDRasterConfigSet(),
ROM_LCDDMAConfigSet(), ROM_LCDRasterTimingSet(), ROM_LCDRasterPaletteSet()
and ROM_LCDRasterFrameBufferSet() must have been called.

Returns:
None.

326 May 14, 2014

Tiva TM4C129x ROM User’s Guide

17.2.1.22 ROM_LCDRasterEnabled

Determines whether or not the raster output is currently enabled.

Prototype:
bool
ROM_LCDRasterEnabled(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterEnabled is a function pointer located at ROM_LCDTABLE[27].

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to query whether or not the raster output is currently enabled.

Returns:
Returns true if the raster is enabled or false if it is disabled.

17.2.1.23 ROM_LCDRasterFrameBufferSet

Sets the LCD controller frame buffer start address and size in raster mode.

Prototype:
void
ROM_LCDRasterFrameBufferSet(uint32_t ui32Base,

uint8_t ui8Buffer,
uint32_t *pui32Addr,
uint32_t ui32NumBytes)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterFrameBufferSet is a function pointer located at ROM_LCDTABLE[21].

Parameters:
ui32Base is the base address of the controller.
ui8Buffer specifies which frame buffer to configure. Valid values are 0 and 1.
pui32Addr points to the first byte of the frame buffer. This pointer must be aligned on a 32-bit

(word) boundary.
ui32NumBytes specifies the size of the frame buffer in bytes. This value must be a multiple

of 4.

Description:
This function is used to configure the position and size of one of the two supported frame
buffers while in raster mode. The second frame buffer (configured when ui8Buffer is set
to 1) is only used if the controller is set to operate in ping-pong mode (by specifying the
LCD_DMA_PING_PONG configuration flag on a call to ROM_LCDDMAConfigSet()).

May 14, 2014 327

LCD Controller (LCD)

The format of the frame buffer depends upon the image type in use and the current raster
configuration settings. If RASTER_LOAD_DATA_ONLY was specified in a previous call to
ROM_LCDRasterConfigSet(), the frame buffer contains only packed pixel data in the required
bit depth and format. In other cases, the frame buffer comprises a palette of either 8 or 128
32-bit words followed by the packed pixel data. The palette size is 8 words (16 16-bit entries)
for all pixel formats other than 8bpp which uses a palette of 128 words (256 16-bit entries).
Note that the 8 word palette is still present even for 12, 16 and 24-bit formats which do not use
the lookup table.

The frame buffer size, specified using the ui32NumBytes parameter, must be the palette size (if
any) plus the size of the image bitmap required for the currently configured display resolution.

ui32NumBytes = (Palette Size) + ((Width ∗ Height) ∗ BPP) / 8)

If RASTER_LOAD_DATA_ONLY is not specified, frame buffers passed to this function must
be initialized using a call to ROM_LCDRasterPaletteSet() prior to enabling the raster output.
If this is not done, the pixel format identifier and color table required by the hardware is not
present and the results are unpredictable.

Returns:
None.

17.2.1.24 ROM_LCDRasterPaletteSet

Initializes the color palette in a frame buffer.

Prototype:
void
ROM_LCDRasterPaletteSet(uint32_t ui32Base,

uint32_t ui32Type,
uint32_t *pui32Addr,
const uint32_t *pui32SrcColors,
uint32_t ui32Start,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterPaletteSet is a function pointer located at ROM_LCDTABLE[22].

Parameters:
ui32Base is the base address of the controller.
ui32Type specifies the type of pixel data to be held in the frame buffer and also the format of

the source color values passed.
pui32Addr points to the start of the frame buffer into which the palette information is to be

written.
pui32SrcColors points to the first color value which is to be written into the frame buffer

palette.
ui32Start specifies the index of the first color in the palette to update.
ui32Count specifies the number of source colors to be copied into the frame buffer palette.

328 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function is used to initialize the color palette stored at the beginning of a frame buffer. It
writes the relevant pixel type into the first entry of the frame buffer and copies the requested
number of colors from a source buffer into the palette starting at the required index, optionally
converting them from 24-bit color format into the 12-bit format used by the LCD controller.

ui32Type must be set to one of the following values to indicate the type of frame buffer whose
palette is being initialized:

LCD_PALETTE_TYPE_1BPP configures this as a 1 bit per pixel (monochrome) frame
buffer. This format requires a 2 entry palette.
LCD_PALETTE_TYPE_2BPP configures this as a 2 bit per pixel frame buffer. This format
requires a 4 entry palette.
LCD_PALETTE_TYPE_4BPP configures this as a 4 bit per pixel frame buffer. This format
requires a 4 entry palette.
LCD_PALETTE_TYPE_8BPP configures this as an 8 bit per pixel frame buffer. This format
requires a 256 entry palette.
LCD_PALETTE_TYPE_DIRECT configures this as a direct color (12, 16 or 24 bit per
pixel). The color palette is not used in these modes but the frame buffer type must still
be initialized to ensure that the hardware uses the correct pixel type. When this value is
used, the format of the pixels in the frame buffer is defined by the ui32Config parameter
previously passed to ROM_LCDRasterConfigSet().

Optionally, the LCD_PALETTE_SRC_24BIT flag may be ORed into ui32Type to indicate that
the supplied colors in the pui32SrcColors array are in the 24-bit format as used by the TivaWare
Graphics Library with one color stored in each 32-bit word. In this case, the colors read from
the source array are converted to the 12-bit format used by the LCD controller before being
written into the frame buffer palette.

If LCD_PALETTE_SRC_24BIT is not present, it is assumed that the pui32SrcColors array
contains 12-bit colors in the format required by the LCD controller with 2 colors stored in each
32-bit word. In this case the values are copied directly into the frame buffer palette without any
reformatting.

Returns:
None.

17.2.1.25 ROM_LCDRasterSubPanelConfigSet

Sets the position and size of the subpanel on the raster display.

Prototype:
void
ROM_LCDRasterSubPanelConfigSet(uint32_t ui32Base,

uint32_t ui32Flags,
uint32_t ui32BottomLines,
uint32_t ui32DefaultPixel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterSubPanelConfigSet is a function pointer located at ROM_LCDTABLE[23].

May 14, 2014 329

LCD Controller (LCD)

Parameters:
ui32Base is the base address of the controller.
ui32Flags may be either LCD_SUBPANEL_AT_TOP to show frame buffer image data

in the top portion of the display and default color in the bottom portion, or
LCD_SUBPANEL_AT_BOTTOM to show image data at the bottom of the display and
default color at the top.

ui32BottomLines defines the number of lines comprising the bottom portion of the display. If
LCD_SUBPANEL_AT_TOP is set in ui32Flags, these lines contain the default pixel color
when the subpanel is enabled, otherwise they contain image data.

ui32DefaultPixel is the 24-bit RGB color to show in the portion of the display not configured
to show image data.

Description:
The LCD controller provides a feature which allows a portion of the display to be filled with a
default color rather than image data from the frame buffer. This may be used to reduce SRAM
bandwidth requirements since no data is fetched for lines containing the default color. This
feature is only available when the LCD controller is in raster mode and configured to drive an
active matrix display.

The subpanel area containing image data from the frame buffer may be positioned either at the
top or bottom of the display as controlled by the value of ui32Flags. The height of the bottom
portion of the display is defined by ui32BottomLines.

When a subpanel is configured, the application must also reconfigure the frame buffer to ensure
that it contains the correct number of lines for the subpanel size in use. This can be achieved by
calling ROM_LCDRasterFrameBufferSet() with the ui32NumBytes parameter set appropriately
to describe the required number of active video lines in the subpanel area.

The subpanel display mode is not enabled using this function. To enable the subpanel once it
has been configured, call ROM_LCDRasterSubPanelEnable().

Returns:
None.

17.2.1.26 ROM_LCDRasterSubPanelDisable

Disables subpanel display mode.

Prototype:
void
ROM_LCDRasterSubPanelDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterSubPanelDisable is a function pointer located at ROM_LCDTABLE[24].

Parameters:
ui32Base is the base address of the controller.

Description:
This function disables subpanel display mode and reverts to showing the entire frame buffer
image on the display. After the subpanel is disabled, the frame buffer size must be reconfigured

330 May 14, 2014

Tiva TM4C129x ROM User’s Guide

to match the full dimensions of the display area by calling ROM_LCDRasterFrameBufferSet()
with an appropriate value for the ui32NumBytes parameter.

Returns:
None.

17.2.1.27 ROM_LCDRasterSubPanelEnable

Enables subpanel display mode.

Prototype:
void
ROM_LCDRasterSubPanelEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterSubPanelEnable is a function pointer located at ROM_LCDTABLE[25].

Parameters:
ui32Base is the base address of the controller.

Description:
This function enables subpanel display mode and displays a default color rather than
image data in the number of lines and at the position specified by a previous call to
ROM_LCDRasterSubPanelConfigSet(). Prior to calling ROM_LCDRasterSubPanelEnable(),
the frame buffer should have been reconfigured to match the desired subpanel size using a
call to ROM_LCDRasterFrameBufferSet().

Subpanel display is only possible when the LCD controller is in raster mode and is configured
to drive an active matrix display.

Returns:
None.

17.2.1.28 ROM_LCDRasterTimingSet

Sets the LCD controller interface timing when in raster mode.

Prototype:
void
ROM_LCDRasterTimingSet(uint32_t ui32Base,

const tLCDRasterTiming *psTiming)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_LCDTABLE is an array of pointers located at ROM_APITABLE[41].
ROM_LCDRasterTimingSet is a function pointer located at ROM_LCDTABLE[26].

Parameters:
ui32Base specifies the LCD controller module base address.

May 14, 2014 331

LCD Controller (LCD)

psTiming points to a structure containing the desired timing parameters.

Description:
This function is used in raster mode to set the panel size and sync timing parameters.

For a definition of the timing parameters required, see the definition of tLCDRasterTiming.

Returns:
None

332 May 14, 2014

Tiva TM4C129x ROM User’s Guide

18 Memory Protection Unit (MPU)
Introduction .333
Functions . 334

18.1 Introduction

The Memory Protection Unit (MPU) API provides functions to configure the MPU. The MPU is tightly
coupled to the Cortex-M processor core and provides a means to establish access permissions on
regions of memory.

Up to eight memory regions can be defined. Each region has a base address and a size. The size
is specified as a power of 2 between 32 bytes and 4 GB, inclusive. The region’s base address must
be aligned to the size of the region. Each region also has access permissions. Code execution can
be allowed or disallowed for a region. A region can be configured for read-only access, read/write
access, or no access for both privileged and user modes. Access permissions can be used to
create an environment where only kernel or system code can access certain hardware registers or
sections of code.

The MPU creates 8 sub-regions within each region. Any sub-region or combination of sub-regions
can be disabled, allowing creation of “holes” or complex overlaying regions with different permis-
sions. The sub-regions can also be used to create an unaligned beginning or ending of a region by
disabling one or more of the leading or trailing sub-regions.

Once the regions are defined and the MPU is enabled, any access violation of a region causes a
memory management fault, and the fault handler is activated.

Generally, the memory protection regions should be defined before enabling the MPU. The regions
can be configured by calling ROM_MPURegionSet() once for each region to be configured.

A region that is defined by ROM_MPURegionSet() can be initially enabled or disabled. If the region
is not initially enabled, it can be enabled later by calling ROM_MPURegionEnable(). An enabled
region can be disabled by calling ROM_MPURegionDisable(). When a region is disabled, its con-
figuration is preserved as long as it is not overwritten. In this case, it can be enabled again with
ROM_MPURegionEnable() without the need to reconfigure the region.

Care must be taken when setting up a protection region using ROM_MPURegionSet(). The function
writes to multiple registers and is not protected from interrupts. Therefore, it is possible that an
interrupt which accesses a region may occur while that region is in the process of being changed.
The safest way to protect against this is to make sure that a region is always disabled before making
any changes. Otherwise, it is up to the caller to ensure that ROM_MPURegionSet() is always called
from within code that cannot be interrupted, or from code that is not affected if an interrupt occurs
while the region attributes are being changed.

The attributes of a region that have already been programmed can be retrieved and saved using
the ROM_MPURegionGet() function. This function is intended to save the attributes in a format
that can be used later to reload the regionusing the ROM_MPURegionSet() function. Note that the
enable state of the region is saved with the attributes and takes effect when the region is reloaded.

When one or more regions are defined, the MPU can be enabled by calling ROM_MPUEnable().
This function turns on the MPU and also defines the behavior in privileged mode and in the Hard
Fault and NMI fault handlers. The MPU can be configured so that when in privileged mode and
no regions are enabled, a default memory map is applied. If this feature is not enabled, then a

May 14, 2014 333

Memory Protection Unit (MPU)

memory management fault is generated if the MPU is enabled and no regions are configured and
enabled. The MPU can also be set to use a default memory map when in the Hard Fault or NMI
handlers, instead of using the configured regions. All of these features are selected when calling
ROM_MPUEnable(). When the MPU is enabled, it can be disabled by calling ROM_MPUDisable().

18.2 Functions

Functions
void ROM_MPUDisable (void)
void ROM_MPUEnable (uint32_t ui32MPUConfig)
uint32_t ROM_MPURegionCountGet (void)
void ROM_MPURegionDisable (uint32_t ui32Region)
void ROM_MPURegionEnable (uint32_t ui32Region)
void ROM_MPURegionGet (uint32_t ui32Region, uint32_t ∗pui32Addr, uint32_t ∗pui32Flags)
void ROM_MPURegionSet (uint32_t ui32Region, uint32_t ui32Addr, uint32_t ui32Flags)

18.2.1 Function Documentation

18.2.1.1 ROM_MPUDisable

Disables the MPU for use.

Prototype:
void
ROM_MPUDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPUDisable is a function pointer located at ROM_MPUTABLE[1].

Description:
This function disables the Cortex-M memory protection unit. When the MPU is disabled, the
default memory map is used and memory management faults are not generated.

Returns:
None.

18.2.1.2 ROM_MPUEnable

Enables and configures the MPU for use.

Prototype:
void
ROM_MPUEnable(uint32_t ui32MPUConfig)

334 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPUEnable is a function pointer located at ROM_MPUTABLE[0].

Parameters:
ui32MPUConfig is the logical OR of the possible configurations.

Description:
This function enables the Cortex-M memory protection unit. It also configures the default be-
havior when in privileged mode and while handling a hard fault or NMI. Prior to enabling the
MPU, at least one region must be set by calling ROM_MPURegionSet() or else by enabling
the default region for privileged mode by passing the MPU_CONFIG_PRIV_DEFAULT flag to
ROM_MPUEnable(). Once the MPU is enabled, a memory management fault is generated for
memory access violations.

The ui32MPUConfig parameter should be the logical OR of any of the following:

MPU_CONFIG_PRIV_DEFAULT enables the default memory map when in privileged
mode and when no other regions are defined. If this option is not enabled, then there
must be at least one valid region already defined when the MPU is enabled.
MPU_CONFIG_HARDFLT_NMI enables the MPU while in a hard fault or NMI exception
handler. If this option is not enabled, then the MPU is disabled while in one of these
exception handlers and the default memory map is applied.
MPU_CONFIG_NONE chooses none of the above options. In this case, no default mem-
ory map is provided in privileged mode, and the MPU is not enabled in the fault handlers.

Returns:
None.

18.2.1.3 ROM_MPURegionCountGet

Gets the count of regions supported by the MPU.

Prototype:
uint32_t
ROM_MPURegionCountGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionCountGet is a function pointer located at ROM_MPUTABLE[2].

Description:
This function is used to get the total number of regions that are supported by the MPU, including
regions that are already programmed.

Returns:
The number of memory protection regions that are available for programming using
ROM_MPURegionSet().

May 14, 2014 335

Memory Protection Unit (MPU)

18.2.1.4 ROM_MPURegionDisable

Disables a specific region.

Prototype:
void
ROM_MPURegionDisable(uint32_t ui32Region)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionDisable is a function pointer located at ROM_MPUTABLE[4].

Parameters:
ui32Region is the region number to disable.

Description:
This function is used to disable a previously enabled memory protection region. The region
remains configured if it is not overwritten with another call to ROM_MPURegionSet(), and can
be enabled again by calling ROM_MPURegionEnable().

Returns:
None.

18.2.1.5 ROM_MPURegionEnable

Enables a specific region.

Prototype:
void
ROM_MPURegionEnable(uint32_t ui32Region)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionEnable is a function pointer located at ROM_MPUTABLE[3].

Parameters:
ui32Region is the region number to enable.

Description:
This function is used to enable a memory protection region. The region should already be
configured with the ROM_MPURegionSet() function. Once enabled, the memory protection
rules of the region are applied and access violations cause a memory management fault.

Returns:
None.

18.2.1.6 ROM_MPURegionGet

Gets the current settings for a specific region.

336 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_MPURegionGet(uint32_t ui32Region,

uint32_t *pui32Addr,
uint32_t *pui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionGet is a function pointer located at ROM_MPUTABLE[6].

Parameters:
ui32Region is the region number to get.
pui32Addr points to storage for the base address of the region.
pui32Flags points to the attribute flags for the region.

Description:
This function retrieves the configuration of a specific region. The meanings and format of the
parameters is the same as that of the ROM_MPURegionSet() function.

This function can be used to save the configuration of a region for later use with the
ROM_MPURegionSet() function. The region’s enable state is preserved in the attributes that
are saved.

Returns:
None.

18.2.1.7 ROM_MPURegionSet

Sets up the access rules for a specific region.

Prototype:
void
ROM_MPURegionSet(uint32_t ui32Region,

uint32_t ui32Addr,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_MPUTABLE is an array of pointers located at ROM_APITABLE[20].
ROM_MPURegionSet is a function pointer located at ROM_MPUTABLE[5].

Parameters:
ui32Region is the region number to set up.
ui32Addr is the base address of the region. It must be aligned according to the size of the

region specified in ui32Flags.
ui32Flags is a set of flags to define the attributes of the region.

Description:
This function sets up the protection rules for a region. The region has a base address and a
set of attributes including the size. The base address parameter, ui32Addr , must be aligned
according to the size, and the size must be a power of 2.

May 14, 2014 337

Memory Protection Unit (MPU)

The ui32Flags parameter is the logical OR of all of the attributes of the region. It is a com-
bination of choices for region size, execute permission, read/write permissions, disabled sub-
regions, and a flag to determine if the region is enabled.

The size flag determines the size of a region and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K
MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC enables the region for execution of code
MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user modes.
The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode
MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, user no access
MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only
MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write
MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, user no access
MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

338 May 14, 2014

Tiva TM4C129x ROM User’s Guide

The region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-regions
can only be used in regions of size 256 bytes or larger. Any of these 8 sub-regions can be
disabled, allowing for creation of “holes” in a region which can be left open, or overlaid by
another region with different attributes. Any of the 8 sub-regions can be disabled with a logical
OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

As an example, to set a region with the following attributes: size of 32 KB, execution en-
abled, read-only for both privileged and user, one sub-region disabled, and initially enabled;
the ui32Flags parameter would have the following value:

(MPU_RGN_SIZE_32K | MPU_RGN_PERM_EXEC | MPU_RGN_PERM_PRV_RO_USR_RO |
MPU_SUB_RGN_DISABLE_2 | MPU_RGN_ENABLE)

Note:
This function writes to multiple registers and is not protected from interrupts. It is possible that
an interrupt which accesses a region may occur while that region is in the process of being
changed. The safest way to handle this is to disable a region before changing it. Refer to the
discussion of this in the introduction.

Returns:
None.

May 14, 2014 339

Memory Protection Unit (MPU)

340 May 14, 2014

Tiva TM4C129x ROM User’s Guide

19 1-Wire Master Module
Introduction .341
API Functions . 341

19.1 Introduction

The 1-Wire API provides functions to use the 1-Wire Master module in the Tiva microcontroller.

The 1-Wire specification defines a bi-directional serial communication protocol that provides both
power and data over a single wire. The 1-Wire Master module can interface with one or more
slave devices. Typical slave devices include thermometers, mixed-signal devices, memory, and
authentication devices.

Some features of the 1-Wire Master module include:

Support for standard and overdrive speeds, including a late-sample mechanism

Data size transfers of 1, 2, 3, or 4 bytes with sub-byte support

Interrupt capability for transaction pacing and line error

19.2 API Functions

Functions
void ROM_OneWireBusReset (uint32_t ui32Base)
uint32_t ROM_OneWireBusStatus (uint32_t ui32Base)
void ROM_OneWireDataGet (uint32_t ui32Base, uint32_t ∗pui32Data)
bool ROM_OneWireDataGetNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Data)
void ROM_OneWireDMADisable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void ROM_OneWireDMAEnable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void ROM_OneWireInit (uint32_t ui32Base, uint32_t ui32InitFlags)
void ROM_OneWireIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_OneWireIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_OneWireIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_OneWireIntStatus (uint32_t ui32Base, bool bMasked)
void ROM_OneWireTransaction (uint32_t ui32Base, uint32_t ui32OpMode, uint32_t ui32Data,
uint32_t ui32BitCnt)

19.2.1 Function Documentation

19.2.1.1 ROM_OneWireBusReset

Issues a reset on the 1-Wire bus.

May 14, 2014 341

1-Wire Master Module

Prototype:
void
ROM_OneWireBusReset(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireBusReset is a function pointer located at ROM_ONEWIRETABLE[1].

Parameters:
ui32Base specifies the base address of the 1-Wire module.

Description:
This function causes the 1-Wire module to generate a reset signal on the 1-Wire bus.

Returns:
None.

19.2.1.2 ROM_OneWireBusStatus

Retrieves the 1-Wire bus condition status.

Prototype:
uint32_t
ROM_OneWireBusStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireBusStatus is a function pointer located at ROM_ONEWIRETABLE[2].

Parameters:
ui32Base specifies the base address of the 1-Wire module.

Description:
This function returns the 1-Wire bus conditions reported by the 1-Wire module. These condi-
tions could be a logical OR of any of the following:

ONEWIRE_BUS_STATUS_BUSY - A read, write, or reset is active.
ONEWIRE_BUS_STATUS_NO_SLAVE - No slave presence pulses detected.
ONEWIRE_BUS_STATUS_STUCK - The bus is being held low by non-master.

Returns:
Returns the 1-Wire bus conditions if detected else zero.

19.2.1.3 ROM_OneWireDataGet

Retrieves data from the 1-Wire interface.

Prototype:
void
ROM_OneWireDataGet(uint32_t ui32Base,

uint32_t *pui32Data)

342 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireDataGet is a function pointer located at ROM_ONEWIRETABLE[3].

Parameters:
ui32Base specifies the base address of the 1-Wire module.
pui32Data is a pointer to storage to hold the read data.

Description:
This function reads data from the 1-Wire module once all active bus operations are completed.
By protocol definition, bit data will default to a 1. Thus if a slave did not signal any 0 bit data,
this read will return 0xffffffff.

Returns:
None.

19.2.1.4 ROM_OneWireDataGetNonBlocking

Retrieves data from the 1-Wire interface.

Prototype:
bool
ROM_OneWireDataGetNonBlocking(uint32_t ui32Base,

uint32_t *pui32Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireDataGetNonBlocking is a function pointer located at
ROM_ONEWIRETABLE[4].

Parameters:
ui32Base specifies the base address of the 1-Wire module.
pui32Data is a pointer to storage to hold the read data.

Description:
This function reads data from the 1-Wire module if there are no active operations on the bus.
Otherwise it returns without reading the data from the module.

By protocol definition, bit data will default to a 1. Thus if a slave did not signal any 0 bit data,
this read will return 0xffffffff.

Returns:
Returns true if a data read was performed, or false if the bus was not idle and no data was
read.

19.2.1.5 ROM_OneWireDMADisable

Disables 1-Wire DMA operations.

May 14, 2014 343

1-Wire Master Module

Prototype:
void
ROM_OneWireDMADisable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireDMADisable is a function pointer located at ROM_ONEWIRETABLE[10].

Parameters:
ui32Base is the base address of the 1-Wire module.
ui32DMAFlags is a bit mask of the DMA features to disable.

Description:
This function is used to disable 1-Wire DMA features that were enabled by
ROM_OneWireDMAEnable(). The specified 1-Wire DMA features are disabled. The
ui32DMAFlags parameter is a combination of the following:

ONEWIRE_DMA_BUS_RESET - Issue a 1-Wire bus reset before starting
ONEWIRE_DMA_OP_READ - Read after each module transaction
ONEWIRE_DMA_OP_MULTI_WRITE - Write after each previous write
ONEWIRE_DMA_OP_MULTI_READ - Read after each previous read
ONEWIRE_DMA_MODE_SG - Start DMA on enable then repeat on each completion
ONEWIRE_DMA_OP_SZ_8 - Bus read/write of 8 bits
ONEWIRE_DMA_OP_SZ_16 - Bus read/write of 16 bits
ONEWIRE_DMA_OP_SZ_32 - Bus read/write of 32 bits

Returns:
None.

19.2.1.6 ROM_OneWireDMAEnable

Enables 1-Wire DMA operations.

Prototype:
void
ROM_OneWireDMAEnable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireDMAEnable is a function pointer located at ROM_ONEWIRETABLE[11].

Parameters:
ui32Base is the base address of the 1-Wire module.
ui32DMAFlags is a bit mask of the DMA features to enable.

Description:
This function enables the specified 1-Wire DMA features. The 1-Wire module can be config-
ured for write operations, read operations, small write and read operations, and scatter-gather
support of mixed operations.

344 May 14, 2014

Tiva TM4C129x ROM User’s Guide

The ui32DMAFlags parameter is a combination of the following:

ONEWIRE_DMA_BUS_RESET - Issue a 1-Wire bus reset before starting
ONEWIRE_DMA_OP_READ - Read after each module transaction
ONEWIRE_DMA_OP_MULTI_WRITE - Write after each previous write
ONEWIRE_DMA_OP_MULTI_READ - Read after each previous read
ONEWIRE_DMA_MODE_SG - Start DMA on enable then repeat on each completion
ONEWIRE_DMA_OP_SZ_8 - Bus read/write of 8 bits
ONEWIRE_DMA_OP_SZ_16 - Bus read/write of 16 bits
ONEWIRE_DMA_OP_SZ_32 - Bus read/write of 32 bits

Note:
The uDMA controller must be properly configured before DMA can be used with the 1-Wire
module.

Returns:
None.

19.2.1.7 ROM_OneWireInit

Initializes the 1-Wire module.

Prototype:
void
ROM_OneWireInit(uint32_t ui32Base,

uint32_t ui32InitFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireInit is a function pointer located at ROM_ONEWIRETABLE[5].

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32InitFlags provides the initialization flags.

Description:
This function configures and initializes the 1-Wire interface for use.

The ui32InitFlags parameter is a combination of the following:

ONEWIRE_INIT_SPD_STD - standard speed bus timings
ONEWIRE_INIT_SPD_OD - overdrive speed bus timings
ONEWIRE_INIT_READ_STD - standard read sampling timing
ONEWIRE_INIT_READ_LATE - late read sampling timing
ONEWIRE_INIT_ATR - standard answer-to-reset presence detect
ONEWIRE_INIT_NO_ATR - no answer-to-reset presence detect
ONEWIRE_INIT_STD_POL - normal signal polarity
ONEWIRE_INIT_ALT_POL - alternate (reverse) signal polarity
ONEWIRE_INIT_1_WIRE_CFG - standard 1-Wire (1 data pin) setup
ONEWIRE_INIT_2_WIRE_CFG - alternate 2-Wire (2 data pin) setup

May 14, 2014 345

1-Wire Master Module

Returns:
None.

19.2.1.8 ROM_OneWireIntClear

Clears the 1-Wire module interrupt sources.

Prototype:
void
ROM_OneWireIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireIntClear is a function pointer located at ROM_ONEWIRETABLE[6].

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
This function clears the specified 1-Wire interrupt sources so that they no longer assert. This
function must be called in the interrupt handler to keep the interrupts from being triggered again
immediately upon exit. The ui32IntFlags parameter can be a logical OR of any of the following:

ONEWIRE_INT_RESET_DONE - Bus reset has just completed.
ONEWIRE_INT_OP_DONE - Read or write operation completed. If a combined write and
read operation was setup, the interrupt signals the read is done.
ONEWIRE_INT_NO_SLAVE - No presence detect was signaled by a slave.
ONEWIRE_INT_STUCK - Bus is being held low by non-master.
ONEWIRE_INT_DMA_DONE - DMA operation has completed.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

19.2.1.9 ROM_OneWireIntDisable

Disables individual 1-Wire module interrupt sources.

346 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_OneWireIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireIntDisable is a function pointer located at ROM_ONEWIRETABLE[7].

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32IntFlags is a bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated 1-Wire interrupt sources. The ui32IntFlags parameter can
be a logical OR of any of the following:

ONEWIRE_INT_RESET_DONE - Bus reset has just completed.
ONEWIRE_INT_OP_DONE - Read or write operation completed. If a combined write and
read operation was setup, the interrupt signals the read is done.
ONEWIRE_INT_NO_SLAVE - No presence detect was signaled by a slave.
ONEWIRE_INT_STUCK - Bus is being held low by non-master.
ONEWIRE_INT_DMA_DONE - DMA operation has completed

Returns:
None.

19.2.1.10 ROM_OneWireIntEnable

Enables individual 1-Wire module interrupt sources.

Prototype:
void
ROM_OneWireIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireIntEnable is a function pointer located at ROM_ONEWIRETABLE[8].

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32IntFlags is a bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated 1-Wire interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.
The ui32IntFlags parameter can be a logical OR of any of the following:

ONEWIRE_INT_RESET_DONE - Bus reset has just completed.

May 14, 2014 347

1-Wire Master Module

ONEWIRE_INT_OP_DONE - Read or write operation completed. If a combined write and
read operation was setup, the interrupt signals the read is done.
ONEWIRE_INT_NO_SLAVE - No presence detect was signaled by a slave.
ONEWIRE_INT_STUCK - Bus is being held low by non-master.
ONEWIRE_INT_DMA_DONE - DMA operation has completed

Returns:
None.

19.2.1.11 ROM_OneWireIntStatus

Gets the current 1-Wire interrupt status.

Prototype:
uint32_t
ROM_OneWireIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireIntStatus is a function pointer located at ROM_ONEWIRETABLE[0].

Parameters:
ui32Base specifies the base address of the 1-Wire module.
bMasked is false if the raw interrupt status is required or true if the masked interrupt status is

required.

Description:
This function returns the interrupt status for the 1-Wire module. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the masked or raw 1-Wire interrupt status, as a bit field of any of the following values:

ONEWIRE_INT_RESET_DONE - Bus reset has just completed.

ONEWIRE_INT_OP_DONE - Read or write operation completed.

ONEWIRE_INT_NO_SLAVE - No presence detect was signaled by a slave.

ONEWIRE_INT_STUCK - Bus is being held low by non-master.

ONEWIRE_INT_DMA_DONE - DMA operation has completed

19.2.1.12 ROM_OneWireTransaction

Performs a 1-Wire protocol transaction on the bus.

Prototype:
void
ROM_OneWireTransaction(uint32_t ui32Base,

348 May 14, 2014

Tiva TM4C129x ROM User’s Guide

uint32_t ui32OpMode,
uint32_t ui32Data,
uint32_t ui32BitCnt)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_ONEWIRETABLE is an array of pointers located at ROM_APITABLE[34].
ROM_OneWireTransaction is a function pointer located at ROM_ONEWIRETABLE[9].

Parameters:
ui32Base specifies the base address of the 1-Wire module.
ui32OpMode sets the transaction type.
ui32Data is the data for a write operation.
ui32BitCnt specifies the number of valid bits (1-32) for the operation.

Description:
This function performs a 1-Wire protocol transaction, read and/or write, on the bus. The appli-
cation should confirm the bus is idle before starting a read or write transaction.

The ui32OpMode defines the activity for the bus operations and is a logical OR of the following:

ONEWIRE_OP_RESET - Indicates the operation should be started with a bus reset.
ONEWIRE_OP_WRITE - A write operation
ONEWIRE_OP_READ - A read operation

Note:
If both a read and write operation are requested, the write will be performed prior to the read.

Returns:
None.

May 14, 2014 349

1-Wire Master Module

350 May 14, 2014

Tiva TM4C129x ROM User’s Guide

20 Pulse Width Modulator (PWM)
Introduction .351
Functions . 351

20.1 Introduction

The PWM module provides up to four instances of a PWM generator block, and an output control
block. Each generator block has two PWM output signals, which can be operated independently
or as a pair of signals with dead band delays inserted. Each generator block also has an interrupt
output and a trigger output. The control block determines the polarity of the PWM signals and which
signals are passed through to the pins.

Some of the features of the Tiva PWM module are:

Up to four generator blocks, each containing:
• One 16-bit down or up/down counter
• Two comparators
• PWM generator
• Dead band generator
• Control block
• PWM output enable
• Output polarity control
• Synchronization
• Fault handling
• Interrupt status

When discussing the various components of the PWM module, the following conventions are used:

The generator blocks are called Gen0, Gen1, Gen2 and Gen3.
The two PWM output signals associated with each generator block are called OutA and OutB.
The output signals are called PWM0, PWM1, PWM2, PWM3, PWM4, PWM5, PWM6 and
PWM7.
PWM0 and PWM1 are associated with Gen0, PWM2 and PWM3 are associated with Gen1,
PWM4 and PWM5 are associated with Gen2 and PWM6 and PWM7 are associated with
Gen3.

Also, as a simplifying assumption for this API, comparator A for each generator block is used ex-
clusively to adjust the pulse width of the even numbered PWM outputs (PWM0, PWM2, PWM4 and
PWM6). In addition, comparator B is used exclusively for the odd numbered PWM outputs (PWM1,
PWM3, PWM5 and PWM7).

20.2 Functions

Functions
uint32_t ROM_PWMClockGet (uint32_t ui32Base)

May 14, 2014 351

Pulse Width Modulator (PWM)

void ROM_PWMClockSet (uint32_t ui32Base, uint32_t ui32Config)
void ROM_PWMDeadBandDisable (uint32_t ui32Base, uint32_t ui32Gen)
void ROM_PWMDeadBandEnable (uint32_t ui32Base, uint32_t ui32Gen, uint16_t ui16Rise,
uint16_t ui16Fall)
void ROM_PWMFaultIntClear (uint32_t ui32Base)
void ROM_PWMFaultIntClearExt (uint32_t ui32Base, uint32_t ui32FaultInts)
void ROM_PWMGenConfigure (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Config)
void ROM_PWMGenDisable (uint32_t ui32Base, uint32_t ui32Gen)
void ROM_PWMGenEnable (uint32_t ui32Base, uint32_t ui32Gen)
void ROM_PWMGenFaultClear (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Group,
uint32_t ui32FaultTriggers)
void ROM_PWMGenFaultConfigure (uint32_t ui32Base, uint32_t ui32Gen, uint32_t
ui32MinFaultPeriod, uint32_t ui32FaultSenses)
uint32_t ROM_PWMGenFaultStatus (uint32_t ui32Base, uint32_t ui32Gen, uint32_t
ui32Group)
uint32_t ROM_PWMGenFaultTriggerGet (uint32_t ui32Base, uint32_t ui32Gen, uint32_t
ui32Group)
void ROM_PWMGenFaultTriggerSet (uint32_t ui32Base, uint32_t ui32Gen, uint32_t
ui32Group, uint32_t ui32FaultTriggers)
void ROM_PWMGenIntClear (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Ints)
uint32_t ROM_PWMGenIntStatus (uint32_t ui32Base, uint32_t ui32Gen, bool bMasked)
void ROM_PWMGenIntTrigDisable (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32IntTrig)
void ROM_PWMGenIntTrigEnable (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32IntTrig)
uint32_t ROM_PWMGenPeriodGet (uint32_t ui32Base, uint32_t ui32Gen)
void ROM_PWMGenPeriodSet (uint32_t ui32Base, uint32_t ui32Gen, uint32_t ui32Period)
void ROM_PWMIntDisable (uint32_t ui32Base, uint32_t ui32GenFault)
void ROM_PWMIntEnable (uint32_t ui32Base, uint32_t ui32GenFault)
uint32_t ROM_PWMIntStatus (uint32_t ui32Base, bool bMasked)
void ROM_PWMOutputFault (uint32_t ui32Base, uint32_t ui32PWMOutBits, bool bFaultSup-
press)
void ROM_PWMOutputFaultLevel (uint32_t ui32Base, uint32_t ui32PWMOutBits, bool bDrive-
High)
void ROM_PWMOutputInvert (uint32_t ui32Base, uint32_t ui32PWMOutBits, bool bInvert)
void ROM_PWMOutputState (uint32_t ui32Base, uint32_t ui32PWMOutBits, bool bEnable)
void ROM_PWMOutputUpdateMode (uint32_t ui32Base, uint32_t ui32PWMOutBits, uint32_t
ui32Mode)
uint32_t ROM_PWMPulseWidthGet (uint32_t ui32Base, uint32_t ui32PWMOut)
void ROM_PWMPulseWidthSet (uint32_t ui32Base, uint32_t ui32PWMOut, uint32_t
ui32Width)
void ROM_PWMSyncTimeBase (uint32_t ui32Base, uint32_t ui32GenBits)
void ROM_PWMSyncUpdate (uint32_t ui32Base, uint32_t ui32GenBits)

20.2.1 Function Documentation

20.2.1.1 ROM_PWMClockGet

Gets the current PWM clock configuration.

352 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
uint32_t
ROM_PWMClockGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMClockGet is a function pointer located at ROM_PWMTABLE[30].

Parameters:
ui32Base is the base address of the PWM module.

Description:
This function returns the current PWM clock configuration.

Returns:
Returns the current PWM clock configuration; is one of PWM_SYSCLK_DIV_1,
PWM_SYSCLK_DIV_2, PWM_SYSCLK_DIV_4, PWM_SYSCLK_DIV_8,
PWM_SYSCLK_DIV_16, PWM_SYSCLK_DIV_32, or PWM_SYSCLK_DIV_64.

20.2.1.2 ROM_PWMClockSet

Sets the PWM clock configuration.

Prototype:
void
ROM_PWMClockSet(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMClockSet is a function pointer located at ROM_PWMTABLE[29].

Parameters:
ui32Base is the base address of the PWM module.
ui32Config is the configuration for the PWM clock; it must be one of PWM_SYSCLK_DIV_1,

PWM_SYSCLK_DIV_2, PWM_SYSCLK_DIV_4, PWM_SYSCLK_DIV_8,
PWM_SYSCLK_DIV_16, PWM_SYSCLK_DIV_32, or PWM_SYSCLK_DIV_64.

Description:
This function sets the PWM clock divider as the PWM clock source. It also configures the clock
frequency to the PWM module as a division of the system clock. This clock is used by the
PWM module to generate PWM signals; its rate forms the basis for all PWM signals.

Note:
The clocking of the PWM is dependent upon the system clock rate as configured by
ROM_SysCtlClockFreqSet().

Returns:
None.

May 14, 2014 353

Pulse Width Modulator (PWM)

20.2.1.3 ROM_PWMDeadBandDisable

Disables the PWM dead band output.

Prototype:
void
ROM_PWMDeadBandDisable(uint32_t ui32Base,

uint32_t ui32Gen)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMDeadBandDisable is a function pointer located at ROM_PWMTABLE[8].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to modify. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

Description:
This function disables the dead band mode for the specified PWM generator. Doing so decou-
ples the OutA and OutB signals.

Returns:
None.

20.2.1.4 ROM_PWMDeadBandEnable

Enables the PWM dead band output and sets the dead band delays.

Prototype:
void
ROM_PWMDeadBandEnable(uint32_t ui32Base,

uint32_t ui32Gen,
uint16_t ui16Rise,
uint16_t ui16Fall)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMDeadBandEnable is a function pointer located at ROM_PWMTABLE[7].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to modify. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui16Rise specifies the width of delay from the rising edge.
ui16Fall specifies the width of delay from the falling edge.

Description:
This function sets the dead bands for the specified PWM generator, where the dead bands
are defined as the number of PWM clock ticks from the rising or falling edge of the generator’s
OutA signal. Note that this function causes the coupling of OutB to OutA.

354 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

20.2.1.5 ROM_PWMFaultIntClear

Clears the fault interrupt for a PWM module.

Prototype:
void
ROM_PWMFaultIntClear(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMFaultIntClear is a function pointer located at ROM_PWMTABLE[20].

Parameters:
ui32Base is the base address of the PWM module.

Description:
This function clears the fault interrupt by writing to the appropriate bit of the interrupt status
register for the selected PWM module.

This function clears only the FAULT0 interrupt and is retained for backwards compatibility. It is
recommended that ROM_PWMFaultIntClearExt() be used instead because it supports all fault
interrupts supported on devices with and without extended PWM fault handling support.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

20.2.1.6 ROM_PWMFaultIntClearExt

Clears the fault interrupt for a PWM module.

Prototype:
void
ROM_PWMFaultIntClearExt(uint32_t ui32Base,

uint32_t ui32FaultInts)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMFaultIntClearExt is a function pointer located at ROM_PWMTABLE[23].

May 14, 2014 355

Pulse Width Modulator (PWM)

Parameters:
ui32Base is the base address of the PWM module.
ui32FaultInts specifies the fault interrupts to clear.

Description:
This function clears one or more fault interrupts by writing to the appropriate bit of the PWM
interrupt status register. The parameter ui32FaultInts must be the logical OR of any of
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

The fault interrupts are derived by performing a logical OR of each of the configured fault
trigger signals for a given generator. Therefore, these interrupts are not directly related to the
four possible FAULTn inputs to the device but indicate that a fault has been signaled to one
of the four possible PWM generators. On a device without extended PWM fault handling, the
interrupt is directly related to the state of the single FAULT pin.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

20.2.1.7 ROM_PWMGenConfigure

Configures a PWM generator.

Prototype:
void
ROM_PWMGenConfigure(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenConfigure is a function pointer located at ROM_PWMTABLE[1].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to configure. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Config is the configuration for the PWM generator.

Description:
This function is used to set the mode of operation for a PWM generator. The counting mode,
synchronization mode, and debug behavior are all configured. After configuration, the genera-
tor is left in the disabled state.

356 May 14, 2014

Tiva TM4C129x ROM User’s Guide

A PWM generator can count in two different modes: count down mode or count up/down mode.
In count down mode, it counts from a value down to zero, and then resets to the preset value,
producing left-aligned PWM signals (that is, the rising edge of the two PWM signals produced
by the generator occur at the same time). In count up/down mode, it counts up from zero to
the preset value, counts back down to zero, and then repeats the process, producing center-
aligned PWM signals (that is, the middle of the high/low period of the PWM signals produced
by the generator occurs at the same time).

When the PWM generator parameters (period and pulse width) are modified, their effect on
the output PWM signals can be delayed. In synchronous mode, the parameter updates are
not applied until a synchronization event occurs. This mode allows multiple parameters to be
modified and take effect simultaneously, instead of one at a time. Additionally, parameters to
multiple PWM generators in synchronous mode can be updated simultaneously, allowing them
to be treated as if they were a unified generator. In non-synchronous mode, the parameter
updates are not delayed until a synchronization event. In either mode, the parameter updates
only occur when the counter is at zero to help prevent oddly formed PWM signals during the
update (that is, a PWM pulse that is too short or too long).

The PWM generator can either pause or continue running when the processor is stopped via
the debugger. If configured to pause, it continues to count until it reaches zero, at which point
it pauses until the processor is restarted. If configured to continue running, it keeps counting
as if nothing had happened.

The ui32Config parameter contains the desired configuration. It is the logical OR of the follow-
ing:

PWM_GEN_MODE_DOWN or PWM_GEN_MODE_UP_DOWN to specify the counting
mode
PWM_GEN_MODE_SYNC or PWM_GEN_MODE_NO_SYNC to specify the counter load
and comparator update synchronization mode
PWM_GEN_MODE_DBG_RUN or PWM_GEN_MODE_DBG_STOP to specify the debug
behavior
PWM_GEN_MODE_GEN_NO_SYNC, PWM_GEN_MODE_GEN_SYNC_LOCAL, or
PWM_GEN_MODE_GEN_SYNC_GLOBAL to specify the update synchronization mode
for generator counting mode changes
PWM_GEN_MODE_DB_NO_SYNC, PWM_GEN_MODE_DB_SYNC_LOCAL, or
PWM_GEN_MODE_DB_SYNC_GLOBAL to specify the deadband parameter syn-
chronization mode
PWM_GEN_MODE_FAULT_LATCHED or PWM_GEN_MODE_FAULT_UNLATCHED to
specify whether fault conditions are latched or not
PWM_GEN_MODE_FAULT_MINPER or PWM_GEN_MODE_FAULT_NO_MINPER to
specify whether minimum fault period support is required
PWM_GEN_MODE_FAULT_EXT or PWM_GEN_MODE_FAULT_LEGACY to specify
whether extended fault source selection support is enabled or not

Setting PWM_GEN_MODE_FAULT_MINPER allows an application to set the minimum dura-
tion of a PWM fault signal. Faults are signaled for at least this time even if the external fault
pin deasserts earlier. Care should be taken when using this mode because during the fault
signal period, the fault interrupt from the PWM generator remains asserted. The fault interrupt
handler may, therefore, reenter immediately if it exits prior to expiration of the fault timer.

Note:
Changes to the counter mode affect the period of the PWM signals produced.
ROM_PWMGenPeriodSet() and ROM_PWMPulseWidthSet() should be called after any

May 14, 2014 357

Pulse Width Modulator (PWM)

changes to the counter mode of a generator.

Returns:
None.

20.2.1.8 ROM_PWMGenDisable

Disables the timer/counter for a PWM generator block.

Prototype:
void
ROM_PWMGenDisable(uint32_t ui32Base,

uint32_t ui32Gen)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenDisable is a function pointer located at ROM_PWMTABLE[5].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to be disabled. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

Description:
This function blocks the PWM clock from driving the timer/counter for the specified generator
block.

Returns:
None.

20.2.1.9 ROM_PWMGenEnable

Enables the timer/counter for a PWM generator block.

Prototype:
void
ROM_PWMGenEnable(uint32_t ui32Base,

uint32_t ui32Gen)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenEnable is a function pointer located at ROM_PWMTABLE[4].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to be enabled. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

358 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function allows the PWM clock to drive the timer/counter for the specified generator block.

Returns:
None.

20.2.1.10 ROM_PWMGenFaultClear

Clears one or more latched fault triggers for a given PWM generator.

Prototype:
void
ROM_PWMGenFaultClear(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Group,
uint32_t ui32FaultTriggers)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultClear is a function pointer located at ROM_PWMTABLE[28].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault trigger states are being queried. This parameter

must be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Group indicates the subset of faults that are being queried. This parameter must be

PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.
ui32FaultTriggers is the set of fault triggers which are to be cleared.

Description:
This function allows an application to clear the fault triggers for a given PWM generator. This
function is only required if ROM_PWMGenConfigure() has previously been called with flag
PWM_GEN_MODE_FAULT_LATCHED in parameter ui32Config.

Returns:
None.

20.2.1.11 ROM_PWMGenFaultConfigure

Configures the minimum fault period and fault pin senses for a given PWM generator.

Prototype:
void
ROM_PWMGenFaultConfigure(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32MinFaultPeriod,
uint32_t ui32FaultSenses)

May 14, 2014 359

Pulse Width Modulator (PWM)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultConfigure is a function pointer located at ROM_PWMTABLE[24].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault configuration is being set. This function must

be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32MinFaultPeriod is the minimum fault active period expressed in PWM clock cycles.
ui32FaultSenses indicates which sense of each FAULT input should be considered the “as-

serted” state. Valid values are logical OR combinations of PWM_FAULTn_SENSE_HIGH
and PWM_FAULTn_SENSE_LOW.

Description:
This function configures the minimum fault period for a given generator along with the
sense of each of the 4 possible fault inputs. The minimum fault period is expressed in
PWM clock cycles and takes effect only if ROM_PWMGenConfigure() is called with flag
PWM_GEN_MODE_FAULT_PER set in the ui32Config parameter. When a fault input is as-
serted, the minimum fault period timer ensures that it remains asserted for at least the number
of clock cycles specified.

Returns:
None.

20.2.1.12 ROM_PWMGenFaultStatus

Returns the current state of the fault triggers for a given PWM generator.

Prototype:
uint32_t
ROM_PWMGenFaultStatus(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Group)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultStatus is a function pointer located at ROM_PWMTABLE[27].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault trigger states are being queried. This parameter

must be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Group indicates the subset of faults that are being queried. This parameter must be

PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.

Description:
This function allows an application to query the current state of each of the fault trig-
ger inputs to a given PWM generator. The current state of each fault trigger in-
put is returned unless ROM_PWMGenConfigure() has previously been called with flag

360 May 14, 2014

Tiva TM4C129x ROM User’s Guide

PWM_GEN_MODE_FAULT_LATCHED in the ui32Config parameter, in which case the re-
turned status is the latched fault trigger status.

If latched faults are configured, the application must call ROM_PWMGenFaultClear() to clear
each trigger.

Returns:
Returns the current state of the fault triggers for the given PWM generator. A set bit indicates
that the associated trigger is active. For PWM_FAULT_GROUP_0, the returned value is
a logical OR of PWM_FAULT_FAULT0, PWM_FAULT_FAULT1, PWM_FAULT_FAULT2,
or PWM_FAULT_FAULT3. For PWM_FAULT_GROUP_1, the return value is the log-
ical OR of PWM_FAULT_DCMP0, PWM_FAULT_DCMP1, PWM_FAULT_DCMP2,
PWM_FAULT_DCMP3, PWM_FAULT_DCMP4, PWM_FAULT_DCMP5,
PWM_FAULT_DCMP6, or PWM_FAULT_DCMP7.

20.2.1.13 ROM_PWMGenFaultTriggerGet

Returns the set of fault triggers currently configured for a given PWM generator.

Prototype:
uint32_t
ROM_PWMGenFaultTriggerGet(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Group)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultTriggerGet is a function pointer located at ROM_PWMTABLE[26].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault triggers are being queried. This parameter must

be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Group indicates the subset of faults that are being queried. This parameter must be

PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.

Description:
This function allows an application to query the current set of inputs that contribute to the
generation of a fault condition to a given PWM generator.

Returns:
Returns the current fault triggers configured for the fault group provided. For
PWM_FAULT_GROUP_0, the returned value is a logical OR of PWM_FAULT_FAULT0,
PWM_FAULT_FAULT1, PWM_FAULT_FAULT2, or PWM_FAULT_FAULT3. For
PWM_FAULT_GROUP_1, the return value is the logical OR of PWM_FAULT_DCMP0,
PWM_FAULT_DCMP1, PWM_FAULT_DCMP2, PWM_FAULT_DCMP3,
PWM_FAULT_DCMP4, PWM_FAULT_DCMP5, PWM_FAULT_DCMP6, or
PWM_FAULT_DCMP7.

May 14, 2014 361

Pulse Width Modulator (PWM)

20.2.1.14 ROM_PWMGenFaultTriggerSet

Configures the set of fault triggers for a given PWM generator.

Prototype:
void
ROM_PWMGenFaultTriggerSet(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Group,
uint32_t ui32FaultTriggers)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenFaultTriggerSet is a function pointer located at ROM_PWMTABLE[25].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator for which fault triggers are being set. This parameter must be

one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Group indicates the subset of possible faults that are to be configured. This parameter

must be PWM_FAULT_GROUP_0 or PWM_FAULT_GROUP_1.
ui32FaultTriggers defines the set of inputs that are to contribute towards generation of the

fault signal to the given PWM generator. For PWM_FAULT_GROUP_0, this is the log-
ical OR of PWM_FAULT_FAULT0, PWM_FAULT_FAULT1, PWM_FAULT_FAULT2,
or PWM_FAULT_FAULT3. For PWM_FAULT_GROUP_1, this is the logical
OR of PWM_FAULT_DCMP0, PWM_FAULT_DCMP1, PWM_FAULT_DCMP2,
PWM_FAULT_DCMP3, PWM_FAULT_DCMP4, PWM_FAULT_DCMP5,
PWM_FAULT_DCMP6, or PWM_FAULT_DCMP7.

Description:
This function allows selection of the set of fault inputs that is combined to gener-
ate a fault condition to a given PWM generator. By default, all generators use only
FAULT0 (for backwards compatibility) but if ROM_PWMGenConfigure() is called with flag
PWM_GEN_MODE_FAULT_SRC in the ui32Config parameter, extended fault handling is en-
abled and this function must be called to configure the fault triggers.

The fault signal to the PWM generator is generated by ORing together each of the signals
specified in the ui32FaultTriggers parameter after having adjusted the sense of each FAULTn
input based on the configuration previously set using a call to ROM_PWMGenFaultConfigure().

Returns:
None.

20.2.1.15 ROM_PWMGenIntClear

Clears the specified interrupt(s) for the specified PWM generator block.

Prototype:
void
ROM_PWMGenIntClear(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Ints)

362 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenIntClear is a function pointer located at ROM_PWMTABLE[17].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to query. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Ints specifies the interrupts to be cleared.

Description:
This function clears the specified interrupt(s) by writing a 1 to the specified bits of the interrupt
status register for the specified PWM generator. The ui32Ints parameter is the logical OR of
PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU, PWM_INT_CNT_AD,
PWM_INT_CNT_BU, or PWM_INT_CNT_BD.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

20.2.1.16 ROM_PWMGenIntStatus

Gets interrupt status for the specified PWM generator block.

Prototype:
uint32_t
ROM_PWMGenIntStatus(uint32_t ui32Base,

uint32_t ui32Gen,
bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenIntStatus is a function pointer located at ROM_PWMTABLE[16].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to query. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

May 14, 2014 363

Pulse Width Modulator (PWM)

Returns:
Returns the contents of the interrupt status register or the contents of the raw interrupt status
register for the specified PWM generator.

20.2.1.17 ROM_PWMGenIntTrigDisable

Disables interrupts for the specified PWM generator block.

Prototype:
void
ROM_PWMGenIntTrigDisable(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32IntTrig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenIntTrigDisable is a function pointer located at ROM_PWMTABLE[15].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to have interrupts and triggers disabled. This parameter must

be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32IntTrig specifies the interrupts and triggers to be disabled.

Description:
This function masks the specified interrupt(s) and trigger(s) by clearing the specified bits of the
interrupt/trigger enable register for the specified PWM generator. The ui32IntTrig parameter
is the logical OR of PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU,
PWM_INT_CNT_AD, PWM_INT_CNT_BU, PWM_INT_CNT_BD, PWM_TR_CNT_ZERO,
PWM_TR_CNT_LOAD, PWM_TR_CNT_AU, PWM_TR_CNT_AD, PWM_TR_CNT_BU, or
PWM_TR_CNT_BD.

Returns:
None.

20.2.1.18 ROM_PWMGenIntTrigEnable

Enables interrupts and triggers for the specified PWM generator block.

Prototype:
void
ROM_PWMGenIntTrigEnable(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32IntTrig)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenIntTrigEnable is a function pointer located at ROM_PWMTABLE[14].

364 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to have interrupts and triggers enabled. This parameter must

be one of PWM_GEN_0, PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32IntTrig specifies the interrupts and triggers to be enabled.

Description:
This function unmasks the specified interrupt(s) and trigger(s) by setting the specified bits of
the interrupt/trigger enable register for the specified PWM generator. The ui32IntTrig parame-
ter is the logical OR of PWM_INT_CNT_ZERO, PWM_INT_CNT_LOAD, PWM_INT_CNT_AU,
PWM_INT_CNT_AD, PWM_INT_CNT_BU, PWM_INT_CNT_BD, PWM_TR_CNT_ZERO,
PWM_TR_CNT_LOAD, PWM_TR_CNT_AU, PWM_TR_CNT_AD, PWM_TR_CNT_BU, or
PWM_TR_CNT_BD.

Returns:
None.

20.2.1.19 ROM_PWMGenPeriodGet

Gets the period of a PWM generator block.

Prototype:
uint32_t
ROM_PWMGenPeriodGet(uint32_t ui32Base,

uint32_t ui32Gen)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenPeriodGet is a function pointer located at ROM_PWMTABLE[3].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to query. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.

Description:
This function gets the period of the specified PWM generator block. The period of the generator
block is defined as the number of PWM clock ticks between pulses on the generator block zero
signal.

If the update of the counter for the specified PWM generator has yet to be completed, the
value returned may not be the active period. The value returned is the programmed period,
measured in PWM clock ticks.

Returns:
Returns the programmed period of the specified generator block in PWM clock ticks.

20.2.1.20 ROM_PWMGenPeriodSet

Sets the period of a PWM generator.

May 14, 2014 365

Pulse Width Modulator (PWM)

Prototype:
void
ROM_PWMGenPeriodSet(uint32_t ui32Base,

uint32_t ui32Gen,
uint32_t ui32Period)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMGenPeriodSet is a function pointer located at ROM_PWMTABLE[2].

Parameters:
ui32Base is the base address of the PWM module.
ui32Gen is the PWM generator to be modified. This parameter must be one of PWM_GEN_0,

PWM_GEN_1, PWM_GEN_2, or PWM_GEN_3.
ui32Period specifies the period of PWM generator output, measured in clock ticks.

Description:
This function sets the period of the specified PWM generator block, where the period of the
generator block is defined as the number of PWM clock ticks between pulses on the generator
block zero signal.

Note:
Any subsequent calls made to this function before an update occurs cause the previous values
to be overwritten.

Returns:
None.

20.2.1.21 ROM_PWMIntDisable

Disables generator and fault interrupts for a PWM module.

Prototype:
void
ROM_PWMIntDisable(uint32_t ui32Base,

uint32_t ui32GenFault)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMIntDisable is a function pointer located at ROM_PWMTABLE[19].

Parameters:
ui32Base is the base address of the PWM module.
ui32GenFault contains the interrupts to be disabled. This parameter must be a logical OR of

any of PWM_INT_GEN_0, PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3,
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

Description:
This function masks the specified interrupt(s) by clearing the specified bits of the interrupt
enable register for the selected PWM module.

366 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

20.2.1.22 ROM_PWMIntEnable

Enables generator and fault interrupts for a PWM module.

Prototype:
void
ROM_PWMIntEnable(uint32_t ui32Base,

uint32_t ui32GenFault)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMIntEnable is a function pointer located at ROM_PWMTABLE[18].

Parameters:
ui32Base is the base address of the PWM module.
ui32GenFault contains the interrupts to be enabled. This parameter must be a logical OR of

any of PWM_INT_GEN_0, PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3,
PWM_INT_FAULT0, PWM_INT_FAULT1, PWM_INT_FAULT2, or PWM_INT_FAULT3.

Description:
This function unmasks the specified interrupt(s) by setting the specified bits of the interrupt
enable register for the selected PWM module.

Returns:
None.

20.2.1.23 ROM_PWMIntStatus

Gets the interrupt status for a PWM module.

Prototype:
uint32_t
ROM_PWMIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMIntStatus is a function pointer located at ROM_PWMTABLE[21].

Parameters:
ui32Base is the base address of the PWM module.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

May 14, 2014 367

Pulse Width Modulator (PWM)

Returns:
The current interrupt status, enumerated as a bit field of PWM_INT_GEN_0,
PWM_INT_GEN_1, PWM_INT_GEN_2, PWM_INT_GEN_3, PWM_INT_FAULT0,
PWM_INT_FAULT1, PWM_INT_FAULT2, and PWM_INT_FAULT3.

20.2.1.24 ROM_PWMOutputFault

Specifies the state of PWM outputs in response to a fault condition.

Prototype:
void
ROM_PWMOutputFault(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
bool bFaultSuppress)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputFault is a function pointer located at ROM_PWMTABLE[13].

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bFaultSuppress determines if the signal is suppressed or passed through during an active
fault condition.

Description:
This function sets the fault handling characteristics of the selected PWM outputs. The outputs
are selected using the parameter ui32PWMOutBits. The parameter bFaultSuppress deter-
mines the fault handling characteristics for the selected outputs. If bFaultSuppress is true,
then the selected outputs are made inactive. If bFaultSuppress is false, then the selected
outputs are unaffected by the detected fault.

On devices supporting extended PWM fault handling, the state the affected output pins are
driven to can be configured with ROM_PWMOutputFaultLevel(). If not configured, affected
outputs are driven low on a fault condition.

Returns:
None.

20.2.1.25 ROM_PWMOutputFaultLevel

Specifies the level of PWM outputs suppressed in response to a fault condition.

Prototype:
void
ROM_PWMOutputFaultLevel(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
bool bDriveHigh)

368 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputFaultLevel is a function pointer located at ROM_PWMTABLE[22].

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bDriveHigh determines if the signal is driven high or low during an active fault condition.

Description:
This function determines whether a PWM output pin that is suppressed in response to a
fault condition is driven high or low. The affected outputs are selected using the parameter
ui32PWMOutBits. The parameter bDriveHigh determines the output level for the pins identi-
fied by ui32PWMOutBits. If bDriveHigh is true then the selected outputs are driven high when
a fault is detected. If it is false, the pins are driven low.

In a fault condition, pins which have not been configured to be suppressed via a call to
ROM_PWMOutputFault() are unaffected by this function.

Returns:
None.

20.2.1.26 ROM_PWMOutputInvert

Selects the inversion mode for PWM outputs.

Prototype:
void
ROM_PWMOutputInvert(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
bool bInvert)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputInvert is a function pointer located at ROM_PWMTABLE[12].

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bInvert determines if the signal is inverted or passed through.

Description:
This function is used to select the inversion mode for the selected PWM outputs. The outputs
are selected using the parameter ui32PWMOutBits. The parameter bInvert determines the
inversion mode for the selected outputs. If bInvert is true, this function causes the specified
PWM output signals to be inverted or made active low. If bInvert is false, the specified outputs
are passed through as is or made active high.

May 14, 2014 369

Pulse Width Modulator (PWM)

Returns:
None.

20.2.1.27 ROM_PWMOutputState

Enables or disables PWM outputs.

Prototype:
void
ROM_PWMOutputState(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
bool bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputState is a function pointer located at ROM_PWMTABLE[11].

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR

of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

bEnable determines if the signal is enabled or disabled.

Description:
This function enables or disables the selected PWM outputs. The outputs are selected using
the parameter ui32PWMOutBits. The parameter bEnable determines the state of the selected
outputs. If bEnable is true, then the selected PWM outputs are enabled, or placed in the active
state. If bEnable is false, then the selected outputs are disabled or placed in the inactive state.

Returns:
None.

20.2.1.28 ROM_PWMOutputUpdateMode

Sets the update mode or synchronization mode to the PWM outputs.

Prototype:
void
ROM_PWMOutputUpdateMode(uint32_t ui32Base,

uint32_t ui32PWMOutBits,
uint32_t ui32Mode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMOutputUpdateMode is a function pointer located at ROM_PWMTABLE[31].

Parameters:
ui32Base is the base address of the PWM module.

370 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32PWMOutBits are the PWM outputs to be modified. This parameter must be the logical OR
of any of PWM_OUT_0_BIT, PWM_OUT_1_BIT, PWM_OUT_2_BIT, PWM_OUT_3_BIT,
PWM_OUT_4_BIT, PWM_OUT_5_BIT, PWM_OUT_6_BIT, or PWM_OUT_7_BIT.

ui32Mode specifies the enable update mode to use when enabling or disabling PWM outputs.

Description:
This function sets one of three possible update modes to enable or disable the re-
quested PWM outputs. The ui32Mode parameter controls when changes made via calls to
ROM_PWMOutputState() take effect. Possible values are:

PWM_OUTPUT_MODE_NO_SYNC, which enables/disables changes to take effect imme-
diately.
PWM_OUTPUT_MODE_SYNC_LOCAL, which causes changes to take effect when the
local PWM generator’s count next reaches 0.
PWM_OUTPUT_MODE_SYNC_GLOBAL, which causes changes to take effect when the
local PWM generator’s count next reaches 0 following a call to ROM_PWMSyncUpdate()
which specifies the same generator in its ui32GenBits parameter.

Returns:
None.

20.2.1.29 ROM_PWMPulseWidthGet

Gets the pulse width of a PWM output.

Prototype:
uint32_t
ROM_PWMPulseWidthGet(uint32_t ui32Base,

uint32_t ui32PWMOut)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMPulseWidthGet is a function pointer located at ROM_PWMTABLE[6].

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOut is the PWM output to query. This parameter must be one of PWM_OUT_0,

PWM_OUT_1, PWM_OUT_2, PWM_OUT_3, PWM_OUT_4, PWM_OUT_5,
PWM_OUT_6, or PWM_OUT_7.

Description:
This function gets the currently programmed pulse width for the specified PWM output. If the
update of the comparator for the specified output has yet to be completed, the value returned
may not be the active pulse width. The value returned is the programmed pulse width, mea-
sured in PWM clock ticks.

Returns:
Returns the width of the pulse in PWM clock ticks.

May 14, 2014 371

Pulse Width Modulator (PWM)

20.2.1.30 ROM_PWMPulseWidthSet

Sets the pulse width for the specified PWM output.

Prototype:
void
ROM_PWMPulseWidthSet(uint32_t ui32Base,

uint32_t ui32PWMOut,
uint32_t ui32Width)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMPulseWidthSet is a function pointer located at ROM_PWMTABLE[0].

Parameters:
ui32Base is the base address of the PWM module.
ui32PWMOut is the PWM output to modify. This parameter must be one of PWM_OUT_0,

PWM_OUT_1, PWM_OUT_2, PWM_OUT_3, PWM_OUT_4, PWM_OUT_5,
PWM_OUT_6, or PWM_OUT_7.

ui32Width specifies the width of the positive portion of the pulse.

Description:
This function sets the pulse width for the specified PWM output, where the pulse width is
defined as the number of PWM clock ticks.

Note:
Any subsequent calls made to this function before an update occurs cause the previous values
to be overwritten.

Returns:
None.

20.2.1.31 ROM_PWMSyncTimeBase

Synchronizes the counters in one or multiple PWM generator blocks.

Prototype:
void
ROM_PWMSyncTimeBase(uint32_t ui32Base,

uint32_t ui32GenBits)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMSyncTimeBase is a function pointer located at ROM_PWMTABLE[10].

Parameters:
ui32Base is the base address of the PWM module.
ui32GenBits are the PWM generator blocks to be synchronized. This parameter must be

the logical OR of any of PWM_GEN_0_BIT, PWM_GEN_1_BIT, PWM_GEN_2_BIT, or
PWM_GEN_3_BIT.

372 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
For the selected PWM module, this function synchronizes the time base of the generator blocks
by causing the specified generator counters to be reset to zero.

Returns:
None.

20.2.1.32 ROM_PWMSyncUpdate

Synchronizes all pending updates.

Prototype:
void
ROM_PWMSyncUpdate(uint32_t ui32Base,

uint32_t ui32GenBits)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_PWMTABLE is an array of pointers located at ROM_APITABLE[8].
ROM_PWMSyncUpdate is a function pointer located at ROM_PWMTABLE[9].

Parameters:
ui32Base is the base address of the PWM module.
ui32GenBits are the PWM generator blocks to be updated. This parameter must be

the logical OR of any of PWM_GEN_0_BIT, PWM_GEN_1_BIT, PWM_GEN_2_BIT, or
PWM_GEN_3_BIT.

Description:
For the selected PWM generators, this function causes all queued updates to the period or
pulse width to be applied the next time the corresponding counter becomes zero.

Returns:
None.

May 14, 2014 373

Pulse Width Modulator (PWM)

374 May 14, 2014

Tiva TM4C129x ROM User’s Guide

21 Quadrature Encoder (QEI)
Introduction .375
Functions . 375

21.1 Introduction

The quadrature encoder API provides a set of functions for dealing with the Quadrature Encoder
with Index (QEI). Functions are provided to configure and read the position and velocity captures,
register a QEI interrupt handler, and handle QEI interrupt masking/clearing.

The quadrature encoder module provides hardware encoding of the two channels and the index
signal from a quadrature encoder device into an absolute or relative position. There is additional
hardware for capturing a measure of the encoder velocity, which is simply a count of encoder pulses
during a fixed time period; the number of pulses is directly proportional to the encoder speed. Note
that the velocity capture can only operate when the position capture is enabled.

The QEI module supports two modes of operation: phase mode and clock/direction mode. In phase
mode, the encoder produces two clocks that are 90 degrees out of phase; the edge relationship is
used to determine the direction of rotation. In clock/direction mode, the encoder produces a clock
signal to indicate steps and a direction signal to indicate the direction of rotation.

When in phase mode, edges on the first channel or edges on both channels can be counted;
counting edges on both channels provides higher encoder resolution if required. In either mode,
the input signals can be swapped before being processed, allowing wiring mistakes to be corrected
without modifying the circuit board.

The index pulse can be used to reset the position counter, allowing the position counter to maintain
the absolute encoder position. Otherwise, the position counter maintains the relative position and
is never reset.

The velocity capture has a timer to measure equal periods of time. The number of encoder pulses
over each time period is accumulated as a measure of the encoder velocity. The running total for
the current time period and the final count for the previous time period are available to be read. The
final count for the previous time period is usually used as the velocity measure.

The QEI module generates interrupts when the index pulse is detected, when the velocity timer
expires, when the encoder direction changes, and when a phase signal error is detected. These
interrupt sources can be individually masked so that only the events of interest cause a processor
interrupt.

21.2 Functions

Functions
void ROM_QEIConfigure (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32MaxPosition)
long ROM_QEIDirectionGet (uint32_t ui32Base)
void ROM_QEIDisable (uint32_t ui32Base)
void ROM_QEIEnable (uint32_t ui32Base)

May 14, 2014 375

Quadrature Encoder (QEI)

bool ROM_QEIErrorGet (uint32_t ui32Base)
void ROM_QEIIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_QEIIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_QEIIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_QEIIntStatus (uint32_t ui32Base, bool bMasked)
uint32_t ROM_QEIPositionGet (uint32_t ui32Base)
void ROM_QEIPositionSet (uint32_t ui32Base, uint32_t ui32Position)
void ROM_QEIVelocityConfigure (uint32_t ui32Base, uint32_t ui32PreDiv, uint32_t
ui32Period)
void ROM_QEIVelocityDisable (uint32_t ui32Base)
void ROM_QEIVelocityEnable (uint32_t ui32Base)
uint32_t ROM_QEIVelocityGet (uint32_t ui32Base)

21.2.1 Function Documentation

21.2.1.1 ROM_QEIConfigure

Configures the quadrature encoder.

Prototype:
void
ROM_QEIConfigure(uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32MaxPosition)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIConfigure is a function pointer located at ROM_QEITABLE[3].

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32Config is the configuration for the quadrature encoder. See below for a description of this

parameter.
ui32MaxPosition specifies the maximum position value.

Description:
This function configures the operation of the quadrature encoder. The ui32Config parameter
provides the configuration of the encoder and is the logical OR of several values:

QEI_CONFIG_CAPTURE_A or QEI_CONFIG_CAPTURE_A_B specify if edges on chan-
nel A or on both channels A and B should be counted by the position integrator and velocity
accumulator.
QEI_CONFIG_NO_RESET or QEI_CONFIG_RESET_IDX specify if the position integrator
should be reset when the index pulse is detected.
QEI_CONFIG_QUADRATURE or QEI_CONFIG_CLOCK_DIR specify if quadrature sig-
nals are being provided on ChA and ChB, or if a direction signal and a clock are being
provided instead.
QEI_CONFIG_NO_SWAP or QEI_CONFIG_SWAP to specify if the signals provided on
ChA and ChB should be swapped before being processed.

376 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32MaxPosition is the maximum value of the position integrator and is the value used to reset
the position capture when in index reset mode and moving in the reverse (negative) direction.

Returns:
None.

21.2.1.2 ROM_QEIDirectionGet

Gets the current direction of rotation.

Prototype:
long
ROM_QEIDirectionGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIDirectionGet is a function pointer located at ROM_QEITABLE[5].

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function returns the current direction of rotation. In this case, current means the most re-
cently detected direction of the encoder; it may not be presently moving but this is the direction
it last moved before it stopped.

Returns:
Returns 1 if moving in the forward direction or -1 if moving in the reverse direction.

21.2.1.3 ROM_QEIDisable

Disables the quadrature encoder.

Prototype:
void
ROM_QEIDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIDisable is a function pointer located at ROM_QEITABLE[2].

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function disables operation of the quadrature encoder module.

Returns:
None.

May 14, 2014 377

Quadrature Encoder (QEI)

21.2.1.4 ROM_QEIEnable

Enables the quadrature encoder.

Prototype:
void
ROM_QEIEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIEnable is a function pointer located at ROM_QEITABLE[1].

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function enables operation of the quadrature encoder module. The module must be con-
figured before it is enabled.

See also:
ROM_QEIConfigure()

Returns:
None.

21.2.1.5 ROM_QEIErrorGet

Gets the encoder error indicator.

Prototype:
bool
ROM_QEIErrorGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIErrorGet is a function pointer located at ROM_QEITABLE[6].

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function returns the error indicator for the quadrature encoder. It is an error for both of the
signals of the quadrature input to change at the same time.

Returns:
Returns true if an error has occurred and false otherwise.

378 May 14, 2014

Tiva TM4C129x ROM User’s Guide

21.2.1.6 ROM_QEIIntClear

Clears quadrature encoder interrupt sources.

Prototype:
void
ROM_QEIIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIIntClear is a function pointer located at ROM_QEITABLE[14].

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared. This parameter can be any

of the QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
The specified quadrature encoder interrupt sources are cleared, so that they no longer assert.
This function must be called in the interrupt handler to keep the interrupt from being triggered
again immediately upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

21.2.1.7 ROM_QEIIntDisable

Disables individual quadrature encoder interrupt sources.

Prototype:
void
ROM_QEIIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIIntDisable is a function pointer located at ROM_QEITABLE[12].

Parameters:
ui32Base is the base address of the quadrature encoder module.

May 14, 2014 379

Quadrature Encoder (QEI)

ui32IntFlags is a bit mask of the interrupt sources to be disabled. This parameter can be any
of the QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
This function disables the indicated quadrature encoder interrupt sources. Only the sources
that are enabled can be reflected to the processor interrupt; disabled sources have no effect
on the processor.

Returns:
None.

21.2.1.8 ROM_QEIIntEnable

Enables individual quadrature encoder interrupt sources.

Prototype:
void
ROM_QEIIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIIntEnable is a function pointer located at ROM_QEITABLE[11].

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32IntFlags is a bit mask of the interrupt sources to be enabled. Can be any of the

QEI_INTERROR, QEI_INTDIR, QEI_INTTIMER, or QEI_INTINDEX values.

Description:
This function enables the indicated quadrature encoder interrupt sources. Only the sources
that are enabled can be reflected to the processor interrupt; disabled sources have no effect
on the processor.

Returns:
None.

21.2.1.9 ROM_QEIIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ROM_QEIIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIIntStatus is a function pointer located at ROM_QEITABLE[13].

380 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the quadrature encoder module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the quadrature encoder module. Either the raw
interrupt status or the status of interrupts that are allowed to reflect to the processor can be
returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of QEI_INTERROR,
QEI_INTDIR, QEI_INTTIMER, and QEI_INTINDEX.

21.2.1.10 ROM_QEIPositionGet

Gets the current encoder position.

Prototype:
uint32_t
ROM_QEIPositionGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIPositionGet is a function pointer located at ROM_QEITABLE[0].

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function returns the current position of the encoder. Depending upon the configuration of
the encoder, and the incident of an index pulse, this value may or may not contain the expected
data (that is, if in reset on index mode, if an index pulse has not been encountered, the position
counter is not yet aligned with the index pulse).

Returns:
The current position of the encoder.

21.2.1.11 ROM_QEIPositionSet

Sets the current encoder position.

Prototype:
void
ROM_QEIPositionSet(uint32_t ui32Base,

uint32_t ui32Position)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIPositionSet is a function pointer located at ROM_QEITABLE[4].

May 14, 2014 381

Quadrature Encoder (QEI)

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32Position is the new position for the encoder.

Description:
This function sets the current position of the encoder; the encoder position is then measured
relative to this value.

Returns:
None.

21.2.1.12 ROM_QEIVelocityConfigure

Configures the velocity capture.

Prototype:
void
ROM_QEIVelocityConfigure(uint32_t ui32Base,

uint32_t ui32PreDiv,
uint32_t ui32Period)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIVelocityConfigure is a function pointer located at ROM_QEITABLE[9].

Parameters:
ui32Base is the base address of the quadrature encoder module.
ui32PreDiv specifies the predivider applied to the input quadrature signal before it is counted;

can be one of QEI_VELDIV_1, QEI_VELDIV_2, QEI_VELDIV_4, QEI_VELDIV_8,
QEI_VELDIV_16, QEI_VELDIV_32, QEI_VELDIV_64, or QEI_VELDIV_128.

ui32Period specifies the number of clock ticks over which to measure the velocity; must be
non-zero.

Description:
This function configures the operation of the velocity capture portion of the quadrature encoder.
The position increment signal is predivided as specified by ui32PreDiv before being accumu-
lated by the velocity capture. The divided signal is accumulated over ui32Period system clock
before being saved and resetting the accumulator.

Returns:
None.

21.2.1.13 ROM_QEIVelocityDisable

Disables the velocity capture.

Prototype:
void
ROM_QEIVelocityDisable(uint32_t ui32Base)

382 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIVelocityDisable is a function pointer located at ROM_QEITABLE[8].

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function disables operation of the velocity capture in the quadrature encoder module.

Returns:
None.

21.2.1.14 ROM_QEIVelocityEnable

Enables the velocity capture.

Prototype:
void
ROM_QEIVelocityEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIVelocityEnable is a function pointer located at ROM_QEITABLE[7].

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function enables operation of the velocity capture in the quadrature encoder module. The
module must be configured before velocity capture is enabled.

See also:
ROM_QEIVelocityConfigure() and ROM_QEIEnable()

Returns:
None.

21.2.1.15 ROM_QEIVelocityGet

Gets the current encoder speed.

Prototype:
uint32_t
ROM_QEIVelocityGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_QEITABLE is an array of pointers located at ROM_APITABLE[9].
ROM_QEIVelocityGet is a function pointer located at ROM_QEITABLE[10].

May 14, 2014 383

Quadrature Encoder (QEI)

Parameters:
ui32Base is the base address of the quadrature encoder module.

Description:
This function returns the current speed of the encoder. The value returned is the number of
pulses detected in the specified time period; this number can be multiplied by the number
of time periods per second and divided by the number of pulses per revolution to obtain the
number of revolutions per second.

Returns:
Returns the number of pulses captured in the given time period.

384 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22 SMBus Stack
Introduction .385
API Functions . 386

22.1 Introduction

The SMBus stack takes advantage of the SMBus extensions present on the I2C module. All stan-
dard SMBus protocols are supported in the SMBus stack, including Packet Error Checking (PEC)
and Address Resolution Protocol (ARP). PEC can be enabled or disabled on a per transfer basis
by using the SMBusPECEnable() and SMBusPECDisable() functions.

The stack uses a per instance configuration data structure to define various settings for each bus.
The data structure has both public and private members, and software should take care not to
modify members that it does not need to. For example, the interrupt state machine is tracked
via the configuration structure and can be adversely affected by modifications made by the user
application. Public members include information such as the base address of the I2C peripheral
being used, transmit/receive buffer pointers, transfer sizes, etc.

User application software is responsible for doing basic configuration of each I2C peripheral be-
ing used for SMBus before attempting to do any bus transactions. For example, user code must
enable the GPIO ports, configure the pins, set up the functional IO mux, and enable the clock to
the I2C peripheral. Everything else, including initialization of the specific I2C peripheral and inter-
rupts, is handled via SMBus stack calls such as ROM_SMBusMasterInit(), ROM_SMBusSlaveInit(),
ROM_SMBusMasterIntEnable() and ROM_SMBusSlaveIntEnable(). When using ARP, software
can optionally define a Unique Device Identification (UDID) structure to be used by the slave during
the configuration phase.

As mentioned above, the SMBus stack is based on an interrupt-driven state machine. When per-
forming master operations, an application can choose to either poll the status of a transaction using
ROM_SMBusStatusGet() or look at the return code from any of the SMBusMaster functions that
initiate new transactions. If the SMBus instance is busy, it will return without impacting the ongoing
transfer. Slave operations can also use ROM_SMBusStatusGet() to query the status of an ongoing
transfer. This implementation is RTOS-friendly.

On the master side, things are very straightforward, with user code needing only a call to
ROM_SMBusMasterIntProcess() in the simplest case. Return codes can be tracked for events
such as slave NACK or other error conditions if desired. Once the stack is configured at initial-
ization time, the user code makes calls to the various SMBusMaster functions to initiate transfers
using specific SMBus protocols.

The SMBus slave requires much more interaction from the user application. Since the slave is
“dumb”, meaning that it doesn’t know which protocol to use until software tells it, the slave interrupt
service routine requires much more code than the master case. The typical flow would be a call to
ROM_SMBusSlaveIntProcess() followed by code that analyses the return code and the first data
byte received. The typical SMBus flow is to have the master send a command byte first. Once the
ISR analyzes the first data byte, it must set stack-specific flags for things such as process call or
block transfers so that the state machine functions correctly.

May 14, 2014 385

SMBus Stack

22.2 API Functions

Functions
void ROM_SMBusARPDisable (tSMBus ∗psSMBus)
void ROM_SMBusARPEnable (tSMBus ∗psSMBus)
void ROM_SMBusARPUDIDPacketDecode (tSMBusUDID ∗psUDID, uint8_t ∗pui8Address,
uint8_t ∗pui8Data)
void ROM_SMBusARPUDIDPacketEncode (tSMBusUDID ∗psUDID, uint8_t ui8Address,
uint8_t ∗pui8Data)
void ROM_SMBusDMADisable (tSMBus ∗psSMBus)
void ROM_SMBusDMAEnable (tSMBus ∗psSMBus, uint8_t ui8TxChannel, uint8_t
ui8RxChannel)
void ROM_SMBusFIFODisable (tSMBus ∗psSMBus)
void ROM_SMBusFIFOEnable (tSMBus ∗psSMBus)
tSMBusStatus ROM_SMBusMasterARPAssignAddress (tSMBus ∗psSMBus, uint8_t
∗pui8Data)
tSMBusStatus ROM_SMBusMasterARPNotifyMaster (tSMBus ∗psSMBus, uint8_t ∗pui8Data)
tSMBusStatus ROM_SMBusMasterARPPrepareToARP (tSMBus ∗psSMBus)
tSMBusStatus ROM_SMBusMasterBlockProcessCall (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, uint8_t ui8Command, uint8_t ∗pui8TxData, uint8_t ui8TxSize, uint8_t
∗pui8RxData)
tSMBusStatus ROM_SMBusMasterBlockRead (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, uint8_t ui8Command, uint8_t ∗pui8Data)
tSMBusStatus ROM_SMBusMasterBlockWrite (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, uint8_t ui8Command, uint8_t ∗pui8Data, uint8_t ui8Size)
tSMBusStatus ROM_SMBusMasterByteReceive (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, uint8_t ∗pui8Data)
tSMBusStatus ROM_SMBusMasterByteSend (tSMBus ∗psSMBus, uint8_t ui8TargetAddress,
uint8_t ui8Data)
tSMBusStatus ROM_SMBusMasterByteWordRead (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, uint8_t ui8Command, uint8_t ∗pui8Data, uint8_t ui8Size)
tSMBusStatus ROM_SMBusMasterByteWordWrite (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, uint8_t ui8Command, uint8_t ∗pui8Data, uint8_t ui8Size)
tSMBusStatus ROM_SMBusMasterHostNotify (tSMBus ∗psSMBus, uint8_t
ui8OwnSlaveAddress, uint8_t ∗pui8Data)
tSMBusStatus ROM_SMBusMasterI2CRead (tSMBus ∗psSMBus, uint8_t ui8TargetAddress,
uint8_t ∗pui8Data, uint8_t ui8Size)
tSMBusStatus ROM_SMBusMasterI2CWrite (tSMBus ∗psSMBus, uint8_t ui8TargetAddress,
uint8_t ∗pui8Data, uint8_t ui8Size)
tSMBusStatus ROM_SMBusMasterI2CWriteRead (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, uint8_t ∗pui8TxData, uint8_t ui8TxSize, uint8_t ∗pui8RxData, uint8_t
ui8RxSize)
void ROM_SMBusMasterInit (tSMBus ∗psSMBus, uint32_t ui32I2CBase, uint32_t
ui32SMBusClock)
void ROM_SMBusMasterIntEnable (tSMBus ∗psSMBus)
tSMBusStatus ROM_SMBusMasterIntProcess (tSMBus ∗psSMBus)

386 May 14, 2014

Tiva TM4C129x ROM User’s Guide

tSMBusStatus ROM_SMBusMasterProcessCall (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, uint8_t ui8Command, uint8_t ∗pui8TxData, uint8_t ∗pui8RxData)
tSMBusStatus ROM_SMBusMasterQuickCommand (tSMBus ∗psSMBus, uint8_t
ui8TargetAddress, bool bData)
void ROM_SMBusPECDisable (tSMBus ∗psSMBus)
void ROM_SMBusPECEnable (tSMBus ∗psSMBus)
uint8_t ROM_SMBusRxPacketSizeGet (tSMBus ∗psSMBus)
void ROM_SMBusSlaveACKSend (tSMBus ∗psSMBus, bool bACK)
void ROM_SMBusSlaveAddressSet (tSMBus ∗psSMBus, uint8_t ui8AddressNum, uint8_t
ui8SlaveAddress)
bool ROM_SMBusSlaveARPFlagARGet (tSMBus ∗psSMBus)
void ROM_SMBusSlaveARPFlagARSet (tSMBus ∗psSMBus, bool bValue)
bool ROM_SMBusSlaveARPFlagAVGet (tSMBus ∗psSMBus)
void ROM_SMBusSlaveARPFlagAVSet (tSMBus ∗psSMBus, bool bValue)
void ROM_SMBusSlaveBlockTransferDisable (tSMBus ∗psSMBus)
void ROM_SMBusSlaveBlockTransferEnable (tSMBus ∗psSMBus)
uint8_t ROM_SMBusSlaveCommandGet (tSMBus ∗psSMBus)
tSMBusStatus ROM_SMBusSlaveDataSend (tSMBus ∗psSMBus)
void ROM_SMBusSlaveI2CDisable (tSMBus ∗psSMBus)
void ROM_SMBusSlaveI2CEnable (tSMBus ∗psSMBus)
void ROM_SMBusSlaveInit (tSMBus ∗psSMBus, uint32_t ui32I2CBase)
tSMBusStatus ROM_SMBusSlaveIntAddressGet (tSMBus ∗psSMBus)
void ROM_SMBusSlaveIntEnable (tSMBus ∗psSMBus)
tSMBusStatus ROM_SMBusSlaveIntProcess (tSMBus ∗psSMBus)
void ROM_SMBusSlaveManualACKDisable (tSMBus ∗psSMBus)
void ROM_SMBusSlaveManualACKEnable (tSMBus ∗psSMBus)
bool ROM_SMBusSlaveManualACKStatusGet (tSMBus ∗psSMBus)
void ROM_SMBusSlaveProcessCallDisable (tSMBus ∗psSMBus)
void ROM_SMBusSlaveProcessCallEnable (tSMBus ∗psSMBus)
void ROM_SMBusSlaveRxBufferSet (tSMBus ∗psSMBus, uint8_t ∗pui8Data, uint8_t ui8Size)
void ROM_SMBusSlaveTransferInit (tSMBus ∗psSMBus)
void ROM_SMBusSlaveTxBufferSet (tSMBus ∗psSMBus, uint8_t ∗pui8Data, uint8_t ui8Size)
void ROM_SMBusSlaveUDIDSet (tSMBus ∗psSMBus, tSMBusUDID ∗psUDID)
tSMBusStatus ROM_SMBusStatusGet (tSMBus ∗psSMBus)

22.2.1 Function Documentation

22.2.1.1 ROM_SMBusARPDisable

Clears the ARP flag in the configuration structure.

Prototype:
void
ROM_SMBusARPDisable(tSMBus *psSMBus)

May 14, 2014 387

SMBus Stack

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusARPDisable is a function pointer located at ROM_SMBUSTABLE[1].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function clears the Address Resolution Protocol (ARP) flag in the configuration structure.
This flag can be used to track the state of a device during the ARP process.

Returns:
None.

22.2.1.2 ROM_SMBusARPEnable

Sets the ARP flag in the configuration structure.

Prototype:
void
ROM_SMBusARPEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusARPEnable is a function pointer located at ROM_SMBUSTABLE[2].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function sets the Address Resolution Protocol (ARP) flag in the configuration structure.
This flag can be used to track the state of a device during the ARP process.

Returns:
None.

22.2.1.3 ROM_SMBusARPUDIDPacketDecode

Decodes an SMBus packet into a UDID structure and address.

Prototype:
void
ROM_SMBusARPUDIDPacketDecode(tSMBusUDID *psUDID,

uint8_t *pui8Address,
uint8_t *pui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusARPUDIDPacketDecode is a function pointer located at ROM_SMBUSTABLE[3].

388 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
psUDID specifies the structure that is updated with new data.
pui8Address specifies the location of the variable that holds the the address sent with the

UDID (byte 17).
pui8Data specifies the location of the source data.

Description:
This function takes a data buffer and decodes it into a tSMBusUDID structure and an address
variable. It is assumed that there are 17 bytes in the data buffer.

Returns:
None.

22.2.1.4 ROM_SMBusARPUDIDPacketEncode

Encodes a UDID structure and address into SMBus-transferable byte order.

Prototype:
void
ROM_SMBusARPUDIDPacketEncode(tSMBusUDID *psUDID,

uint8_t ui8Address,
uint8_t *pui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusARPUDIDPacketEncode is a function pointer located at ROM_SMBUSTABLE[4].

Parameters:
psUDID specifies the structure to encode.
ui8Address specifies the address to send with the UDID (byte 17).
pui8Data specifies the location of the destination data buffer.

Description:
This function takes a tSMBusUDID structure and re-orders the bytes so that it can be trans-
ferred on the bus. The destination data buffer must contain at least 17 bytes.

Returns:
None.

22.2.1.5 ROM_SMBusDMADisable

Disables use of the transmit and receive DMA and FIFOs.

Prototype:
void
ROM_SMBusDMADisable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusDMADisable is a function pointer located at ROM_SMBUSTABLE[59].

May 14, 2014 389

SMBus Stack

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function disables the transmit and receive FIFOs and use of the DMA for the specified
I2C/SMBus interface and disables the TX and RX FIFO request interrupts.

Returns:
None.

22.2.1.6 ROM_SMBusDMAEnable

Enables use of the transmit and receive DMA.

Prototype:
void
ROM_SMBusDMAEnable(tSMBus *psSMBus,

uint8_t ui8TxChannel,
uint8_t ui8RxChannel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusDMAEnable is a function pointer located at ROM_SMBUSTABLE[58].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TxChannel is the DMA channel number for I2C transmit.
ui8RxChannel is the DMA channel number for I2C receive.

Description:
This function enables the use of the on-chip DMA engine for the I2C/SMBus inter-
face and enables the appropriate interrupts. The only SMBus APIs that support us-
ing the DMA are ROM_SMBusMasterBlockWrite(), ROM_SMBusMasterBlockRead(),
ROM_SMBusMasterBlockProcessCall(), ROM_SMBusMasterI2CWrite(),
ROM_SMBusMasterI2CRead(), and ROM_SMBusMasterI2CWriteRead() due to the DMA
configuration overhead. To maximize the efficiency of all other SMBus APIs that transfer fewer
bytes, when this function is called, the FIFO flag is also set. This allows other APIs to benefit
from the use of the FIFO without needing to call ROM_SMBusFIFOEnable(). Once the DMA
flag is set (using this function), all SMBus transfers that support using the DMA will do so, and
those that don’t will not use the DMA. If DMA usage is no longer required, software should call
ROM_SMBusDMADisable().

Only the SMBus master interface is allowed to use DMA transfers. All slave operations with
the DMA flag set will use the FIFO interface only. If a I2C/SMBus peripheral is both master and
slave, software must ensure that both master and slave are not both configured to use DMA
or the FIFOs. The DMA utilizes the I2C peripheral’s FIFOs and there is a single transmit and
single receive FIFO for each I2C interface (that includes a master and a slave). Each FIFO
can be used by the master or the slave, but not both. This function sets both the transmit and
receive FIFO for the specified I2C peripheral to the master or slave, depending on the base
address.

Returns:
None.

390 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22.2.1.7 ROM_SMBusFIFODisable

Disables use of the transmit and receive FIFO.

Prototype:
void
ROM_SMBusFIFODisable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusFIFODisable is a function pointer located at ROM_SMBUSTABLE[57].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function disables the transmit and receive FIFOs for the specified I2C/SMBus interface
and disables the TX and RX FIFO request interrupts.

Returns:
None.

22.2.1.8 ROM_SMBusFIFOEnable

Enables use of the transmit and receive FIFOs.

Prototype:
void
ROM_SMBusFIFOEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusFIFOEnable is a function pointer located at ROM_SMBUSTABLE[56].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function enables the transmit and receive FIFOs for the I2C/SMBus interface and enables
the TX and RX FIFO request interrupts. Only SMBus APIs that send at least two bytes of data
have access to the FIFO. The FIFO trigger levels are fixed at a value of 4. Once the FIFO flags
are set (using this function), all SMBus transfers that support using the FIFOs will do so, and
those that don’t will not use the FIFO. If FIFO usage is no longer required, software should call
ROM_SMBusFIFODisable().

If a I2C/SMBus peripheral is both master and slave, software must ensure that both master
and slave are not configured to use the FIFOs. There is a single transmit and single receive
FIFO for each I2C interface (that includes a master and a slave). Each FIFO can be used by
the master or the slave, but not both. This function sets both the transmit and receive FIFO for
the specified I2C peripheral to the master or slave, depending on the base address.

May 14, 2014 391

SMBus Stack

Returns:
None.

22.2.1.9 ROM_SMBusMasterARPAssignAddress

Sends an ARP Assign Address packet.

Prototype:
tSMBusStatus
ROM_SMBusMasterARPAssignAddress(tSMBus *psSMBus,

uint8_t *pui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterARPAssignAddress is a function pointer located at
ROM_SMBUSTABLE[5].

Parameters:
psSMBus specifies the SMBus configuration structure.
pui8Data is a pointer to the transmit data buffer. This buffer should be correctly formatted

using ROM_SMBusARPUDIDPacketEncode() and should contain the UDID data and the
address for the slave.

Description:
This function sends an Assign Address packet, used during Address Resolution
Protocol (ARP). Because SMBus requires data bytes be sent out MSB first, the
UDID and target address should be formatted correctly by the application or using
ROM_SMBusARPUDIDPacketEncode() and placed into a data buffer pointed to by pui8Data.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.10 ROM_SMBusMasterARPNotifyMaster

Sends a Notify ARP Master packet.

Prototype:
tSMBusStatus
ROM_SMBusMasterARPNotifyMaster(tSMBus *psSMBus,

uint8_t *pui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterARPNotifyMaster is a function pointer located at
ROM_SMBUSTABLE[8].

392 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
psSMBus specifies the SMBus configuration structure.
pui8Data is a pointer to the transmit data buffer. The data payload should be 0x0000 for this

packet.

Description:
This function sends a Notify ARP Master packet, used during Address Resolution Protocol
(ARP). This packet is used by a slave to indicate to the ARP Master that it needs attention.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.11 ROM_SMBusMasterARPPrepareToARP

Sends a Prepare to ARP packet.

Prototype:
tSMBusStatus
ROM_SMBusMasterARPPrepareToARP(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterARPPrepareToARP is a function pointer located at
ROM_SMBUSTABLE[9].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function sends a Prepare to ARP packet, used during Address Resolution Protocol (ARP).
This packet is used by an ARP Master to alert devices on the bus that ARP is about to begin.
All ARP-capable devices must acknowledge all bytes in this packet and clear their Address
Resolved (AR) flag.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.12 ROM_SMBusMasterBlockProcessCall

Initiates a master Block Process Call transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterBlockProcessCall(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t ui8Command,

May 14, 2014 393

SMBus Stack

uint8_t *pui8TxData,
uint8_t ui8TxSize,
uint8_t *pui8RxData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterBlockProcessCall is a function pointer located at
ROM_SMBUSTABLE[12].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
ui8Command is the command byte sent before the data is requested.
pui8TxData is a pointer to the transmit data buffer.
ui8TxSize is the number of bytes to send to the slave.
pui8RxData is a pointer to the receive data buffer.

Description:
This function supports the Block Write/Block Read Process Call protocol. The amount
of data sent to the slave is user defined but limited to 32 data bytes. The amount of
data read is defined by the slave device, but should never exceed 32 bytes per the SM-
Bus spec. The receive size is the first data byte returned by the slave, so the actual
size is populated in ROM_SMBusMasterIntProcess(). In the application interrupt handler,
ROM_SMBusRxPacketSizeGet() can be used to obtain the amount of data sent by the slave.

This protocol supports the optional PEC byte for error checking. To use PEC,
ROM_SMBusPECEnable() must be called before this function.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, SMBUS_DATA_SIZE_ERROR if ui8TxSize is
greater than 32, or SMBUS_OK if the transfer has successfully been initiated.

22.2.1.13 ROM_SMBusMasterBlockRead

Initiates a master Block Read transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterBlockRead(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t ui8Command,
uint8_t *pui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterBlockRead is a function pointer located at ROM_SMBUSTABLE[13].

Parameters:
psSMBus specifies the SMBus configuration structure.

394 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui8TargetAddress specifies the slave address of the target device.
ui8Command is the command byte sent before the data is requested.
pui8Data is a pointer to the receive data buffer.

Description:
This function supports the Block Read protocol. The amount of data read is defined by the
slave device, but should never exceed 32 bytes per the SMBus spec. The receive size is the
first data byte returned by the slave, so this function assumes a size of 3 until the actual number
is sent by the slave. In the application interrupt handler, ROM_SMBusRxPacketSizeGet() can
be used to obtain the amount of data sent by the slave.

This protocol supports the optional PEC byte for error checking. To use PEC,
ROM_SMBusPECEnable() must be called before this function.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.14 ROM_SMBusMasterBlockWrite

Initiates a master Block Write transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterBlockWrite(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t ui8Command,
uint8_t *pui8Data,
uint8_t ui8Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterBlockWrite is a function pointer located at ROM_SMBUSTABLE[14].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
ui8Command is the command byte sent before the data is requested.
pui8Data is a pointer to the transmit data buffer.
ui8Size is the number of bytes to send to the slave.

Description:
This function supports the Block Write protocol. The amount of data sent to the slave is user
defined, but limited to 32 bytes per the SMBus spec.

This protocol supports the optional PEC byte for error checking. To use PEC,
ROM_SMBusPECEnable() must be called before this function.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, SMBUS_DATA_SIZE_ERROR if ui8Size is
greater than 32, or SMBUS_OK if the transfer has successfully been initiated.

May 14, 2014 395

SMBus Stack

22.2.1.15 ROM_SMBusMasterByteReceive

Initiates a master Receive Byte transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterByteReceive(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t *pui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterByteReceive is a function pointer located at ROM_SMBUSTABLE[15].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
pui8Data is a pointer to the location to store the received data byte.

Description:
The Receive Byte protocol is a basic SMBus protocol that receives a single data byte from the
slave. Unlike most of the other SMBus protocols, Receive Byte does not send a “command”
byte before the data payload and is intended for basic communication.

This protocol supports the optional PEC byte for error checking. To use PEC,
ROM_SMBusPECEnable() must be called before this function.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.16 ROM_SMBusMasterByteSend

Initiates a master Send Byte transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterByteSend(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t ui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterByteSend is a function pointer located at ROM_SMBUSTABLE[16].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
ui8Data is the data byte to send to the slave.

396 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
The Send Byte protocol is a basic SMBus protocol that sends a single data byte to the slave.
Unlike most of the other SMBus protocols, Send Byte does not send a “command” byte before
the data payload and is intended for basic communication.

This protocol supports the optional PEC byte for error checking. To use PEC,
ROM_SMBusPECEnable() must be called before this function.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.17 ROM_SMBusMasterByteWordRead

Initiates a master Read Byte or Read Word transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterByteWordRead(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t ui8Command,
uint8_t *pui8Data,
uint8_t ui8Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterByteWordRead is a function pointer located at ROM_SMBUSTABLE[17].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
ui8Command is the command byte sent before the data is requested.
pui8Data is a pointer to the receive data buffer.
ui8Size is the number of bytes to receive from the slave.

Description:
This function supports both the Read Byte and Read Word protocols. The amount of data to
receive is user defined, but limited to 1 or 2 bytes.

This protocol supports the optional PEC byte for error checking. To use PEC,
ROM_SMBusPECEnable() must be called before this function.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, SMBUS_DATA_SIZE_ERROR if ui8Size is
greater than 2, or SMBUS_OK if the transfer has successfully been initiated.

May 14, 2014 397

SMBus Stack

22.2.1.18 ROM_SMBusMasterByteWordWrite

Initiates a master Write Byte or Write Word transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterByteWordWrite(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t ui8Command,
uint8_t *pui8Data,
uint8_t ui8Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterByteWordWrite is a function pointer located at ROM_SMBUSTABLE[18].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
ui8Command is the command byte sent before the data payload.
pui8Data is a pointer to the transmit data buffer.
ui8Size is the number of bytes to send to the slave.

Description:
This function supports both the Write Byte and Write Word protocols. The amount of data to
send is user defined, but limited to 1 or 2 bytes.

This protocol supports the optional PEC byte for error checking. To use PEC,
ROM_SMBusPECEnable() must be called before this function.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, SMBUS_DATA_SIZE_ERROR if ui8Size is
greater than 2, or SMBUS_OK if the transfer has successfully been initiated.

22.2.1.19 ROM_SMBusMasterHostNotify

Initiates a master Host Notify transfer to the SMBus Host.

Prototype:
tSMBusStatus
ROM_SMBusMasterHostNotify(tSMBus *psSMBus,

uint8_t ui8OwnSlaveAddress,
uint8_t *pui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterHostNotify is a function pointer located at ROM_SMBUSTABLE[19].

Parameters:
psSMBus specifies the SMBus configuration structure.

398 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui8OwnSlaveAddress specifies the peripheral’s own slave address.
pui8Data is a pointer to the two byte data payload.

Description:
The Host Notify protocol is used by SMBus slaves to alert the bus Host about an event. Most
slave devices that operate in this environment only become a bus master when this packet type
is used. Host Notify always sends two data bytes to the host along with the peripheral’s own
slave address so that the Host knows which peripheral requested the Host’s attention.

This protocol does not support PEC. The PEC flag is explicitly cleared within this function, so
if PEC is enabled prior to calling it, it must be re-enabled afterwards.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.20 ROM_SMBusMasterI2CRead

Initiates a “raw” I2C read transfer to a slave device.

Prototype:
tSMBusStatus
ROM_SMBusMasterI2CRead(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t *pui8Data,
uint8_t ui8Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterI2CRead is a function pointer located at ROM_SMBUSTABLE[20].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
pui8Data is a pointer to the receive data buffer.
ui8Size is the number of bytes to send to the slave.

Description:
This function receives a user-defined number of bytes from an I2C slave without using an
SMBus protocol. The data size is only limited to the size of the ui8Size parameter.

Because this function uses “raw” I2C, PEC is not supported.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

May 14, 2014 399

SMBus Stack

22.2.1.21 ROM_SMBusMasterI2CWrite

Initiates a “raw” I2C write transfer to a slave device.

Prototype:
tSMBusStatus
ROM_SMBusMasterI2CWrite(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t *pui8Data,
uint8_t ui8Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterI2CWrite is a function pointer located at ROM_SMBUSTABLE[21].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
pui8Data is a pointer to the transmit data buffer.
ui8Size is the number of bytes to send to the slave.

Description:
This function sends a user-defined number of bytes to an I2C slave without using an SMBus
protocol. The data size is only limited to the size of the ui8Size parameter.

Because this function uses “raw” I2C, PEC is not supported.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.22 ROM_SMBusMasterI2CWriteRead

Initiates a “raw” I2C write-read transfer to a slave device.

Prototype:
tSMBusStatus
ROM_SMBusMasterI2CWriteRead(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t *pui8TxData,
uint8_t ui8TxSize,
uint8_t *pui8RxData,
uint8_t ui8RxSize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterI2CWriteRead is a function pointer located at ROM_SMBUSTABLE[22].

Parameters:
psSMBus specifies the SMBus configuration structure.

400 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui8TargetAddress specifies the slave address of the target device.
pui8TxData is a pointer to the transmit data buffer.
ui8TxSize is the number of bytes to send to the slave.
pui8RxData is a pointer to the receive data buffer.
ui8RxSize is the number of bytes to receive from the slave.

Description:
This function initiates a write-read transfer to an I2C slave without using an SMBus protocol.
The user-defined number of bytes is written to the slave first, followed by the reception of the
user-defined number of bytes. The transmit and receive data sizes are only limited to the size
of the ui8TxSize and ui8RxSize parameters.

Because this function uses “raw” I2C, PEC is not supported.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.23 ROM_SMBusMasterInit

Initializes an I2C master peripheral for SMBus functionality.

Prototype:
void
ROM_SMBusMasterInit(tSMBus *psSMBus,

uint32_t ui32I2CBase,
uint32_t ui32SMBusClock)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterInit is a function pointer located at ROM_SMBUSTABLE[23].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui32I2CBase specifies the base address of the I2C peripheral.
ui32SMBusClock specifies the system clock speed of the MCU.

Description:
This function initializes an I2C peripheral for SMBus master use. The instance-specific config-
uration structure is initialized to a set of known values and the I2C peripheral is configured for
100kHz use, which is required by the SMBus specification.

Returns:
None.

22.2.1.24 ROM_SMBusMasterIntEnable

Enables the appropriate master interrupts for stack processing.

May 14, 2014 401

SMBus Stack

Prototype:
void
ROM_SMBusMasterIntEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterIntEnable is a function pointer located at ROM_SMBUSTABLE[24].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function enables the I2C interrupts used by the SMBus master. Both the peripheral-level
and NVIC-level interrupts are enabled. ROM_SMBusMasterInit() must be called before this
function because this function relies on the I2C base address being defined.

Returns:
None.

22.2.1.25 ROM_SMBusMasterIntProcess

Master ISR processing function for the SMBus application.

Prototype:
tSMBusStatus
ROM_SMBusMasterIntProcess(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterIntProcess is a function pointer located at ROM_SMBUSTABLE[0].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function must be called in the application interrupt service routine (ISR) to process SMBus
master interrupts.

Returns:
Returns SMBUS_TIMEOUT if a bus timeout is detected, SMBUS_ARB_LOST if I2C bus ar-
bitration lost is detected, SMBUS_ADDR_ACK_ERROR if the address phase of a transfer
results in a NACK, SMBUS_DATA_ACK_ERROR if the data phase of a transfer results in a
NACK, SMBUS_DATA_SIZE_ERROR if a receive buffer overrun is detected or if a transmit
operation tries to write more data than is allowed, SMBUS_MASTER_ERROR if an unknown
error occurs, SMBUS_PEC_ERROR if the received PEC byte does not match the locally cal-
culated value, or SMBUS_OK if processing finished successfully.

402 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22.2.1.26 ROM_SMBusMasterProcessCall

Initiates a master Process Call transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterProcessCall(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
uint8_t ui8Command,
uint8_t *pui8TxData,
uint8_t *pui8RxData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterProcessCall is a function pointer located at ROM_SMBUSTABLE[25].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8TargetAddress specifies the slave address of the target device.
ui8Command is the command byte sent before the data is requested.
pui8TxData is a pointer to the transmit data buffer.
pui8RxData is a pointer to the receive data buffer.

Description:
This function supports the Process Call protocol. The amount of data sent to and received
from the slave is fixed to 2 bytes per direction (2 sent, 2 received).

This protocol supports the optional PEC byte for error checking. To use PEC,
ROM_SMBusPECEnable() must be called before this function.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.27 ROM_SMBusMasterQuickCommand

Initiates a master Quick Command transfer to an SMBus slave.

Prototype:
tSMBusStatus
ROM_SMBusMasterQuickCommand(tSMBus *psSMBus,

uint8_t ui8TargetAddress,
bool bData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusMasterQuickCommand is a function pointer located at ROM_SMBUSTABLE[26].

Parameters:
psSMBus specifies the SMBus configuration structure.

May 14, 2014 403

SMBus Stack

ui8TargetAddress specifies the slave address of the target device.
bData is the value of the single data bit sent to the slave.

Description:
Quick Command is an SMBus protocol that sends a single data bit using the I2C R/S bit. This
function issues a single I2C transfer with the slave address and data bit.

This protocol does not support PEC. The PEC flag is explicitly cleared within this function, so
if PEC is enabled prior to calling it, it must be re-enabled afterwards.

Returns:
Returns SMBUS_PERIPHERAL_BUSY if the I2C peripheral is currently active, SM-
BUS_BUS_BUSY if the bus is already in use, or SMBUS_OK if the transfer has successfully
been initiated.

22.2.1.28 ROM_SMBusPECDisable

Disables Packet Error Checking (PEC).

Prototype:
void
ROM_SMBusPECDisable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusPECDisable is a function pointer located at ROM_SMBUSTABLE[27].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function disables the transmission and checking of a PEC byte in SMBus transactions.

Returns:
None.

22.2.1.29 ROM_SMBusPECEnable

Enables Packet Error Checking (PEC).

Prototype:
void
ROM_SMBusPECEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusPECEnable is a function pointer located at ROM_SMBUSTABLE[28].

Parameters:
psSMBus specifies the SMBus configuration structure.

404 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function enables the transmission and checking of a PEC byte in SMBus transactions.

Returns:
None.

22.2.1.30 ROM_SMBusRxPacketSizeGet

Returns the number of bytes in the receive buffer.

Prototype:
uint8_t
ROM_SMBusRxPacketSizeGet(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusRxPacketSizeGet is a function pointer located at ROM_SMBUSTABLE[29].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function returns the number of bytes in the active receive buffer. It can be used to deter-
mine how many bytes have been received in the slave receive or master block read configura-
tions.

Returns:
Number of bytes in the buffer.

22.2.1.31 ROM_SMBusSlaveACKSend

Sets the value of the ACK bit when using manual acknowledgement.

Prototype:
void
ROM_SMBusSlaveACKSend(tSMBus *psSMBus,

bool bACK)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveACKSend is a function pointer located at ROM_SMBUSTABLE[30].

Parameters:
psSMBus specifies the SMBus configuration structure.
bACK specifies whether to ACK (true) or NACK (false).

Description:
This function sets the value of the ACK bit. In order for the ACK bit to take effect, manual ac-
knowledgement must be enabled on the slave using ROM_SMBusSlaveManualACKEnable().

May 14, 2014 405

SMBus Stack

Returns:
None.

22.2.1.32 ROM_SMBusSlaveAddressSet

Sets the slave address for an SMBus slave peripheral.

Prototype:
void
ROM_SMBusSlaveAddressSet(tSMBus *psSMBus,

uint8_t ui8AddressNum,
uint8_t ui8SlaveAddress)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveAddressSet is a function pointer located at ROM_SMBUSTABLE[31].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui8AddressNum specifies which address (primary or secondary).
ui8SlaveAddress is the address of the slave.

Description:
This function sets the slave address. Both the primary and secondary addresses can be set
using this function. To set the primary address (stored in I2CSOAR), ui8AddressNum should
be ’0’. To set the secondary address (stored in I2CSOAR2), ui8AddressNum should be ’1’.

Returns:
None.

22.2.1.33 ROM_SMBusSlaveARPFlagARGet

Returns the current value of the AR (Address Resolved) flag.

Prototype:
bool
ROM_SMBusSlaveARPFlagARGet(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveARPFlagARGet is a function pointer located at ROM_SMBUSTABLE[32].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This returns the value of the AR (Address Resolved) flag.

Returns:
Returns true if set, or false if cleared.

406 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22.2.1.34 ROM_SMBusSlaveARPFlagARSet

Sets the value of the AR (Address Resolved) flag.

Prototype:
void
ROM_SMBusSlaveARPFlagARSet(tSMBus *psSMBus,

bool bValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveARPFlagARSet is a function pointer located at ROM_SMBUSTABLE[33].

Parameters:
psSMBus specifies the SMBus configuration structure.
bValue is the value to set the flag.

Description:
This function allows the application to set the value of the AR flag. All SMBus slaves must
support the AR and AV flags. On POR, the AR flag is cleared. It is also cleared when a slave
receives the ARP Reset Device command.

Returns:
None.

22.2.1.35 ROM_SMBusSlaveARPFlagAVGet

Returns the current value of the AV (Address Valid) flag.

Prototype:
bool
ROM_SMBusSlaveARPFlagAVGet(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveARPFlagAVGet is a function pointer located at ROM_SMBUSTABLE[34].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This returns the value of the AV (Address Valid) flag.

Returns:
Returns true if set, or false if cleared.

May 14, 2014 407

SMBus Stack

22.2.1.36 ROM_SMBusSlaveARPFlagAVSet

Sets the value of the AV (Address Valid) flag.

Prototype:
void
ROM_SMBusSlaveARPFlagAVSet(tSMBus *psSMBus,

bool bValue)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveARPFlagAVSet is a function pointer located at ROM_SMBUSTABLE[35].

Parameters:
psSMBus specifies the SMBus configuration structure.
bValue is the value to set the flag.

Description:
This function allows the application to set the value of the AV flag. All SMBus slaves must
support the AR and AV flags. On POR, the AV flag is cleared. It is also cleared when a slave
receives the ARP Reset Device command.

Returns:
None.

22.2.1.37 ROM_SMBusSlaveBlockTransferDisable

Clears the block transfer flag for an SMBus slave transfer.

Prototype:
void
ROM_SMBusSlaveBlockTransferDisable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveBlockTransferDisable is a function pointer located at
ROM_SMBUSTABLE[36].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
Clears the block transfer flag in the configuration structure. The user application can either call
this function to clear the flag, or use ROM_SMBusSlaveTransferInit() to clear out all transfer-
specific flags.

Returns:
None.

408 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22.2.1.38 ROM_SMBusSlaveBlockTransferEnable

Sets the block transfer flag for an SMBus slave transfer.

Prototype:
void
ROM_SMBusSlaveBlockTransferEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveBlockTransferEnable is a function pointer located at
ROM_SMBUSTABLE[37].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
Sets the block transfer flag in the configuration structure so that the SMBus slave can respond
correctly to a Block Write or Block Read request. This flag must be set prior to the data portion
of the packet.

Returns:
None.

22.2.1.39 ROM_SMBusSlaveCommandGet

Get the current command byte.

Prototype:
uint8_t
ROM_SMBusSlaveCommandGet(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveCommandGet is a function pointer located at ROM_SMBUSTABLE[38].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
Returns the current value of the ui8CurrentCommand variable in the SMBus configuration
structure. This can be used to help the user application set up the SMBus slave transmit and
receive buffers.

Returns:
None.

May 14, 2014 409

SMBus Stack

22.2.1.40 ROM_SMBusSlaveDataSend

Sends data outside of the interrupt processing function.

Prototype:
tSMBusStatus
ROM_SMBusSlaveDataSend(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveDataSend is a function pointer located at ROM_SMBUSTABLE[55].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function sends data outside the interrupt processing function, and should only be used
when ROM_SMBusSlaveIntProcess() returns SMBUS_SLAVE_NOT_READY. At this point,
the application should set up the transfer and call this function (it assumes that the transmit
buffer has already been populated when called). When called, this function updates the slave
state machine as if ROM_SMBusSlaveIntProcess() were called.

Returns:
Returns SMBUS_SLAVE_NOT_READY if the slave’s transmit buffer is not yet initialized
(ui8TxSize is 0), or SMBUS_OK if processing finished successfully.

22.2.1.41 ROM_SMBusSlaveI2CDisable

Clears the “raw” I2C flag for an SMBus slave transfer.

Prototype:
void
ROM_SMBusSlaveI2CDisable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveI2CDisable is a function pointer located at ROM_SMBUSTABLE[39].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
Clears the raw I2C flag in the configuration structure. This flag is a global setting similar to the
PEC flag and cannot be cleared using ROM_SMBusSlaveTransferInit().

Returns:
None.

410 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22.2.1.42 ROM_SMBusSlaveI2CEnable

Sets the “raw” I2C flag for an SMBus slave transfer.

Prototype:
void
ROM_SMBusSlaveI2CEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveI2CEnable is a function pointer located at ROM_SMBUSTABLE[40].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
Sets the raw I2C flag in the configuration structure so that the SMBus slave can respond
correctly to raw I2C (non-SMBus protocol) requests. This flag must be set prior to the transfer,
and is a global setting.

Returns:
None.

22.2.1.43 ROM_SMBusSlaveInit

Initializes an I2C slave peripheral for SMBus functionality.

Prototype:
void
ROM_SMBusSlaveInit(tSMBus *psSMBus,

uint32_t ui32I2CBase)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveInit is a function pointer located at ROM_SMBUSTABLE[41].

Parameters:
psSMBus specifies the SMBus configuration structure.
ui32I2CBase specifies the base address of the I2C peripheral.

Description:
This function initializes an I2C peripheral for SMBus slave use. The instance-specific configu-
ration structure is initialized to a set of known values and the I2C peripheral is configured based
on the input arguments.

The default configuration of the SMBus slave uses automatic acknowledgement. If manual
acknowledgement is required, call ROM_SMBusSlaveManualACKEnable().

Returns:
None.

May 14, 2014 411

SMBus Stack

22.2.1.44 ROM_SMBusSlaveIntAddressGet

Determine whether primary or secondary slave address has been requested by the master.

Prototype:
tSMBusStatus
ROM_SMBusSlaveIntAddressGet(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveIntAddressGet is a function pointer located at ROM_SMBUSTABLE[42].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
Tells the caller whether the I2C slave address requested by the master or SMBus Host is
the primary or secondary I2C slave address of the peripheral. The primary is defined as
the address programmed into I2CSOAR, and the secondary as the address programmed into
I2CSOAR2.

Returns:
Returns SMBUS_SLAVE_ADDR_PRIMARY if the primary address is called out or SM-
BUS_SLAVE_ADDR_SECONDARY if the secondary address is called out.

22.2.1.45 ROM_SMBusSlaveIntEnable

Enables the appropriate slave interrupts for stack processing.

Prototype:
void
ROM_SMBusSlaveIntEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveIntEnable is a function pointer located at ROM_SMBUSTABLE[43].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function enables the I2C interrupts used by the SMBus slave. Both the peripheral-level and
NVIC-level interrupts are enabled. ROM_SMBusSlaveInit() must be called before this function
because this function relies on the I2C base address being defined.

Returns:
None.

412 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22.2.1.46 ROM_SMBusSlaveIntProcess

Slave ISR processing function for the SMBus application.

Prototype:
tSMBusStatus
ROM_SMBusSlaveIntProcess(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveIntProcess is a function pointer located at ROM_SMBUSTABLE[44].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function must be called in the application interrupt service routine (ISR) to process SMBus
slave interrupts.

If manual acknowledge is enabled using ROM_SMBusSlaveManualACKEnable(), this function
processes the data byte, but does not send the ACK/NACK value. In this case, the user
application is responsible for sending the acknowledge bit based on the return code of this
function.

When receiving a Quick Command from the master, the slave has some set-up requirements.
When the master sends the R/S (data) bit as ’0’, nothing additional needs to be done in the
slave and ROM_SMBusSlaveIntProcess() returns SMBUS_SLAVE_QCMD_0. However, when
the master sends the R/S (data) bit as ’1’, the slave must write the data register with data con-
taining a ’1’ in bit 7. This means that when receiving a Quick Command, the slave must set up
the TX buffer to either have 1 data byte with bit 7 set to ’1’ or set up the TX buffer to be zero
length. In the case where 1 data byte is put in the TX buffer, ROM_SMBusSlaveIntProcess()
returns SMBUS_OK the first time its called and SMBUS_SLAVE_QCMD_0 the second. In
the case where the TX buffer has no data, ROM_SMBusSlaveIntProcess() will return SM-
BUS_SLAVE_ERROR the first time its called, and SMBUS_SLAVE_QCMD_1 the second
time.

Returns:
Returns SMBUS_SLAVE_FIRST_BYTE if the first byte (typically the SMBus command) has
been received; SMBUS_SLAVE_NOT_READY if the slave’s transmit buffer is not yet initial-
ized when the master requests data from the slave; SMBUS_DATA_SIZE_ERROR if during a
master block write, the size sent by the master is greater than the amount of available space in
the receive buffer; SMBUS_SLAVE_ERROR if a buffer overrun is detected during a slave re-
ceive operation or if data is sent and was not expected; SMBUS_SLAVE_QCMD_0 if a Quick
Command was received with data ’0’; SMBUS_SLAVE_QCMD_1 if a Quick Command was
received with data ’1’; SMBUS_TRANSFER_COMPLETE if a STOP is detected on the bus,
marking the end of a transfer; SMBUS_PEC_ERROR if the received PEC byte does not match
the locally calculated value; or SMBUS_OK if processing finished successfully.

22.2.1.47 ROM_SMBusSlaveManualACKDisable

Disables manual acknowledgement for the SMBus slave.

May 14, 2014 413

SMBus Stack

Prototype:
void
ROM_SMBusSlaveManualACKDisable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveManualACKDisable is a function pointer located at
ROM_SMBUSTABLE[45].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function disables manual acknowledge capability in the slave. When manual acknowl-
edgement is disabled, the slave automatically ACKs every byte sent by the master.

Returns:
None.

22.2.1.48 ROM_SMBusSlaveManualACKEnable

Enables manual acknowledgement for the SMBus slave.

Prototype:
void
ROM_SMBusSlaveManualACKEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveManualACKEnable is a function pointer located at
ROM_SMBUSTABLE[46].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function enables manual acknowledge capability in the slave. If the application requires
that the slave NACK on a bad command or a bad PEC calculation, manual acknowledgement
allows this to happen.

In the case of responding to a bad command with a NACK, the application should use
ROM_SMBusSlaveACKSend() to ACK/NACK the command. The slave ISR should check
for the SMBUS_SLAVE_FIRST_BYTE return code from ROM_SMBusSlaveIntProcess() and
ACK/NACK accordingly. All other cases should be handled in the application based on the
return code of ROM_SMBusSlaveIntProcess().

Returns:
None.

414 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22.2.1.49 ROM_SMBusSlaveManualACKStatusGet

Returns the manual acknowledgement status of the SMBus slave.

Prototype:
bool
ROM_SMBusSlaveManualACKStatusGet(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveManualACKStatusGet is a function pointer located at
ROM_SMBUSTABLE[47].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function returns the state of the I2C ACKOEN bit in the I2CSACKCTL register. This feature
is disabled out of reset and must be enabled using ROM_SMBusSlaveManualACKEnable().

Returns:
Returns true if manual acknowledge is enabled, or false if manual acknowledge is disabled.

22.2.1.50 ROM_SMBusSlaveProcessCallDisable

Clears the process call flag for an SMBus slave transfer.

Prototype:
void
ROM_SMBusSlaveProcessCallDisable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveProcessCallDisable is a function pointer located at
ROM_SMBUSTABLE[48].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
Clears the process call flag in the configuration structure. The user application can either call
this function to clear the flag, or use ROM_SMBusSlaveTransferInit() to clear out all transfer-
specific flags.

Returns:
None.

May 14, 2014 415

SMBus Stack

22.2.1.51 ROM_SMBusSlaveProcessCallEnable

Sets the process call flag for an SMBus slave transfer.

Prototype:
void
ROM_SMBusSlaveProcessCallEnable(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveProcessCallEnable is a function pointer located at
ROM_SMBUSTABLE[49].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
Sets the process call flag in the configuration structure so that the SMBus slave can respond
correctly to a Process Call request. This flag must be set prior to the data portion of the packet.

Returns:
None.

22.2.1.52 ROM_SMBusSlaveRxBufferSet

Set the address and size of the slave receive buffer.

Prototype:
void
ROM_SMBusSlaveRxBufferSet(tSMBus *psSMBus,

uint8_t *pui8Data,
uint8_t ui8Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveRxBufferSet is a function pointer located at ROM_SMBUSTABLE[50].

Parameters:
psSMBus specifies the SMBus configuration structure.
pui8Data is a pointer to the receive data buffer.
ui8Size is the number of bytes in the buffer.

Description:
This function sets the address and size of the slave receive buffer.

Returns:
None.

416 May 14, 2014

Tiva TM4C129x ROM User’s Guide

22.2.1.53 ROM_SMBusSlaveTransferInit

Sets up the SMBus slave for a new transfer.

Prototype:
void
ROM_SMBusSlaveTransferInit(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveTransferInit is a function pointer located at ROM_SMBUSTABLE[51].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function is used to re-initialize the configuration structure for a new transfer. Once a
transfer is complete and the data has been processed, unused flags, states, the data buffers
and buffer indexes should be reset to a known state before a new transfer.

Returns:
None.

22.2.1.54 ROM_SMBusSlaveTxBufferSet

Set the address and size of the slave transmit buffer.

Prototype:
void
ROM_SMBusSlaveTxBufferSet(tSMBus *psSMBus,

uint8_t *pui8Data,
uint8_t ui8Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveTxBufferSet is a function pointer located at ROM_SMBUSTABLE[52].

Parameters:
psSMBus specifies the SMBus configuration structure.
pui8Data is a pointer to the transmit data buffer.
ui8Size is the number of bytes in the buffer.

Description:
This function sets the address and size of the slave transmit buffer.

Returns:
None.

May 14, 2014 417

SMBus Stack

22.2.1.55 ROM_SMBusSlaveUDIDSet

Sets a slave’s UDID structure.

Prototype:
void
ROM_SMBusSlaveUDIDSet(tSMBus *psSMBus,

tSMBusUDID *psUDID)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusSlaveUDIDSet is a function pointer located at ROM_SMBUSTABLE[53].

Parameters:
psSMBus specifies the SMBus configuration structure.
psUDID is a pointer to the UDID configuration for the slave. This is only needed if the slave is

on a bus that uses ARP.

Description:
This function sets the UDID for a slave instance.

Returns:
None.

22.2.1.56 ROM_SMBusStatusGet

Returns the state of an SMBus transfer.

Prototype:
tSMBusStatus
ROM_SMBusStatusGet(tSMBus *psSMBus)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SMBUSTABLE is an array of pointers located at ROM_APITABLE[29].
ROM_SMBusStatusGet is a function pointer located at ROM_SMBUSTABLE[54].

Parameters:
psSMBus specifies the SMBus configuration structure.

Description:
This function returns the status of an SMBus transaction. It can be used to determine whether
a transfer is ongoing or complete.

Returns:
Returns SMBUS_TRANSFER_IN_PROGRESS if transfer is ongoing, or SM-
BUS_TRANSFER_COMPLETE if transfer has completed.

418 May 14, 2014

Tiva TM4C129x ROM User’s Guide

23 Software AES Data Tables
Introduction .419
Functions . 419

23.1 Introduction

The Advanced Encryption Standard (AES) is a publicly defined encryption standard used by the
U.S. Government. It is a strong encryption method with reasonable performance and size. AES
is fast in both hardware and software, is fairly easy to implement, and requires little memory. AES
is ideal for applications that can use pre-arranged keys, such as setup during manufacturing or
configuration.

Four data tables used by the XySSL AES implementation are provided in the ROM. The first is
the forward S-box substitution table, the second is the reverse S-box substitution table, the third is
the forward polynomial table, and the final is the reverse polynomial table. The meanings of these
tables and their use can be found in the XySSL AES code.

23.2 Data Structures

Data Structures
ROM_pvAESTable

23.2.1 Data Structure Documentation

23.2.1.1 ROM_pvAESTable

This structure describes the AES tables that are available in the ROM.

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_pvAESTable is an array located at &ROM_SOFTWARETABLE[7].

Definition:
typedef struct
{

uint8_t ui8ForwardSBox[256];
uint32_t ui32ForwardTable[256];
uint8_t ui8ReverseSBox[256];
uint32_t ui32ReverseTable[256];

}
ROM_pvAESTable

Members:
ui8ForwardSBox This table contains the forward S-Box, as defined by the AES standard.

May 14, 2014 419

Software AES Data Tables

ui32ForwardTable This table contains the forward polynomial table, as used by the XySSL
AES implementation.

ui8ReverseSBox This table contains the reverse S-Box, as defined by the AES standard. This
is simply the reverse of ui8ForwardSBox.

ui32ReverseTable This table contains the reverse polynomial table, as used by the XySSL
AES implementation.

420 May 14, 2014

Tiva TM4C129x ROM User’s Guide

24 Software CRC
Introduction .421
Functions . 421

24.1 Introduction

CRC (Cyclic Redundancy Check) is a technique to validate a span of data has the same contents
as when previously checked. This technique can be used to validate correct receipt of messages
(nothing lost or modified in transit), to validate data after decompression, to validate that Flash
memory contents have not been changed, and for other cases where the data must be validated. A
CRC is preferred over a simple checksum (for example, XOR all bits) because it catches changes
more readily.

The CRC API provides functions to compute the CRC-8-CCITT, CRC-16, and CRC-32 of a buffer
of data. Support is provided for computing a running CRC, where a partial CRC is computed on
one portion of the data, and then continued at a later time on another portion of the data. A running
CRC is useful when computing the CRC on a stream of data that is coming in via a serial link (for
example).

The CRC-32 API implements the standard CRC-32 polynomial:

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 1

The CRC-16 APIs implement the standard CRC-16 polynomial (also known as CRC-16-IBM):

x16 + x15 + x2 + 1

The CRC-8-CCITT API implements the standard CRC-8-CCITT polynomial:

x8 + x2 + x+ 1

The ROM_Crc16Array3() function performs three separate CRC-16 calculations; one across all
bytes in the input data array, one across the even bytes, and one across the odd bytes. The ability
of a CRC to detect errors decreases as the size of the data array increases. The triple CRC-16
function tries to slow this decrease in error detection rate as it is more difficult for a data error (or
errors) to result in all three CRC-16 calculations being correct.

24.2 Functions

Functions
uint16_t ROM_Crc16 (uint16_t ui16Crc, const uint8_t ∗pui8Data, uint32_t ui32Count)
uint16_t ROM_Crc16Array (uint32_t ui32WordLen, uint32_t ∗pui32Data)
void ROM_Crc16Array3 (uint32_t ui32WordLen, uint32_t ∗pui32Data, uint16_t ∗pui16Crc3)
uint32_t ROM_Crc32 (uint32_t ui32Crc, const uint8_t ∗pui8Data, uint32_t ui32Count)
uint8_t ROM_Crc8CCITT (uint8_t ui8Crc, const uint8_t ∗pui8Data, uint32_t ui32Count)

May 14, 2014 421

Software CRC

24.2.1 Function Documentation

24.2.1.1 ROM_Crc16

Calculates the CRC-16 of an array of bytes.

Prototype:
uint16_t
ROM_Crc16(uint16_t ui16Crc,

const uint8_t *pui8Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc16 is a function pointer located at ROM_SOFTWARETABLE[3].

Parameters:
ui16Crc is the starting CRC-16 value.
pui8Data is a pointer to the data buffer.
ui32Count is the number of bytes in the data buffer.

Description:
This function is used to calculate the CRC-16 of the input buffer. The CRC-16 is computed in a
running fashion, meaning that the entire data block that is to have its CRC-16 computed does
not need to be supplied all at once. If the input buffer contains the entire block of data, then
ui16Crc should be set to 0. If, however, the entire block of data is not available, then ui16Crc
should be set to 0 for the first portion of the data, and then the returned value should be passed
back in as ui16Crc for the next portion of the data.

For example, to compute the CRC-16 of a block that has been split into three pieces, use the
following:

ui16Crc = ROM_Crc16(0, pui8Data1, ui32Len1);
ui16Crc = ROM_Crc16(ui16Crc, pui8Data2, ui32Len2);
ui16Crc = ROM_Crc16(ui16Crc, pui8Data3, ui32Len3);

Computing a CRC-16 in a running fashion is useful in cases where the data is arriving via a
serial link (for example) and is therefore not all available at one time.

Returns:
The CRC-16 of the input data.

24.2.1.2 ROM_Crc16Array

Calculates the CRC-16 of an array of words.

Prototype:
uint16_t
ROM_Crc16Array(uint32_t ui32WordLen,

uint32_t *pui32Data)

422 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc16Array is a function pointer located at ROM_SOFTWARETABLE[1].

Parameters:
ui32WordLen is the length of the array in words (the number of bytes divided by 4).
pui32Data is a pointer to the data buffer.

Description:
This function is a wrapper around the running CRC-16 function, providing the CRC-16 for a
single block of data.

Returns:
The CRC-16 of the input data.

24.2.1.3 ROM_Crc16Array3

Calculates three CRC-16s of an array of words.

Prototype:
void
ROM_Crc16Array3(uint32_t ui32WordLen,

uint32_t *pui32Data,
uint16_t *pui16Crc3)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc16Array3 is a function pointer located at ROM_SOFTWARETABLE[2].

Parameters:
ui32WordLen is the length of the array in words (the number of bytes divided by 4).
pui32Data is a pointer to the data buffer.
pui16Crc3 is a pointer to an array in which to place the three CRC-16 values.

Description:
This function is used to calculate three CRC-16s of the input buffer; the first uses every byte
from the array, the second uses only the even-index bytes from the array (in other words, bytes
0, 2, 4, etc.), and the third uses only the odd-index bytes from the array (in other words, bytes
1, 3, 5, etc.).

Returns:
None

24.2.1.4 ROM_Crc32

Calculates the CRC-32 of an array of bytes.

May 14, 2014 423

Software CRC

Prototype:
uint32_t
ROM_Crc32(uint32_t ui32Crc,

const uint8_t *pui8Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc32 is a function pointer located at ROM_SOFTWARETABLE[5].

Parameters:
ui32Crc is the starting CRC-32 value.
pui8Data is a pointer to the data buffer.
ui32Count is the number of bytes in the data buffer.

Description:
This function is used to calculate the CRC-32 of the input buffer. The CRC-32 is computed in a
running fashion, meaning that the entire data block that is to have its CRC-32 computed does
not need to be supplied all at once. If the input buffer contains the entire block of data, then
ui32Crc should be set to 0xFFFFFFFF. If, however, the entire block of data is not available, then
ui32Crc should be set to 0xFFFFFFFF for the first portion of the data, and then the returned
value should be passed back in as ui32Crc for the next portion of the data. Once all data has
been passed to the function, the final CRC-32 can be obtained by inverting the last returned
value.

For example, to compute the CRC-32 of a block that has been split into three pieces, use the
following:

ui32Crc = ROM_Crc32(0xffffffff, pui8Data1, ui32Len1);
ui32Crc = ROM_Crc32(ui32Crc, pui8Data2, ui32Len2);
ui32Crc = ROM_Crc32(ui32Crc, pui8Data3, ui32Len3);
ui32Crc ^= 0xFFFFFFFF;

Computing a CRC-32 in a running fashion is useful in cases where the data is arriving via a
serial link (for example) and is therefore not all available at one time.

Returns:
The accumulated CRC-32 of the input data.

24.2.1.5 ROM_Crc8CCITT

Calculates the CRC-8-CCITT of an array of bytes.

Prototype:
uint8_t
ROM_Crc8CCITT(uint8_t ui8Crc,

const uint8_t *pui8Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SOFTWARETABLE is an array of pointers located at ROM_APITABLE[21].
ROM_Crc8CCITT is a function pointer located at ROM_SOFTWARETABLE[4].

424 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui8Crc is the starting CRC-8-CCITT value.
pui8Data is a pointer to the data buffer.
ui32Count is the number of bytes in the data buffer.

Description:
This function is used to calculate the CRC-8-CCITT of the input buffer. The CRC-8-CCITT is
computed in a running fashion, meaning that the entire data block that is to have its CRC-8-
CCITT computed does not need to be supplied all at once. If the input buffer contains the
entire block of data, then ui8Crc should be set to 0. If, however, the entire block of data is not
available, then ui8Crc should be set to 0 for the first portion of the data, and then the returned
value should be passed back in as ui8Crc for the next portion of the data.

For example, to compute the CRC-8-CCITT of a block that has been split into three pieces, use
the following:

ui8Crc = ROM_Crc8CCITT(0, pui8Data1, ui32Len1);
ui8Crc = ROM_Crc8CCITT(ui8Crc, pui8Data2, ui32Len2);
ui8Crc = ROM_Crc8CCITT(ui8Crc, pui8Data3, ui32Len3);

Computing a CRC-8-CCITT in a running fashion is useful in cases where the data is arriving
via a serial link (for example) and is therefore not all available at one time.

Returns:
The CRC-8-CCITT of the input data.

May 14, 2014 425

Software CRC

426 May 14, 2014

Tiva TM4C129x ROM User’s Guide

25 SPI Flash Module
Introduction .427
API Functions . 427

25.1 Introduction

This module provides for configuring, reading and programming an external memory device that is
connected to an SSI port (SPI flash).

Prior to using the SPI Flash API, the application must enable the SSI peripheral and configure the
appropriate GPIO pins for use by the SSI. Once that has been done, then the SSI peripheral is
configured for use with external flash by calling ROM_SPIFlashInit(). The status of the external
memory can be checked by calling ROM_SPIFlashReadStatus() and the ID of the device can be
read with ROM_SPIFlashReadID().

ROM_SPIFlashRead(), ROM_SPIFlashFastRead(), ROM_SPIFlashDualRead() and
ROM_SPIFlashQuadRead() are used for reading flash using normal, fast, Bi-SPI and Quad-
SPI modes, respectively.

The external flash can be erased using ROM_SPIFlashSectorErase(), ROM_SPIFlashChipErase(),
ROM_SPIFlashBlockErase32() and ROM_SPIFlashBlockErase64().

The flash can be programmed using ROM_SPIFlashPageProgram().

The previous reading and programming functions mentioned are “blocking”, meaning that when
the function is called it does not return until the operation is complete. These functions uti-
lize polling loops during which no other processing takes place. Each of these functions
have a non-blocking form using the same name with “NonBlocking” appended. For example
ROM_SPIFlashReadNonBlocking() is used to perform reads in a non-blocking manner.

To perform non-blocking operation, the uDMA controller is used to perform transfers in the back-
ground, with SSI interrupt occurring after each segment of data has been transferred. The applica-
tion must implement an interrupt handler for the SSI peripheral, and whenever it is triggered, must
call the SPI flash handler named ROM_SPIFlashIntHandler(). This function processes an ongoing
non-blocking transfer and then returns to the caller with an indication that the transfer is still ongoing
or is complete. While a non-blocking transfer is taking place, other non-SSI related code can be
executed.

25.2 API Functions

Functions
void ROM_SPIFlashBlockErase32 (uint32_t ui32Base, uint32_t ui32Addr)
void ROM_SPIFlashBlockErase64 (uint32_t ui32Base, uint32_t ui32Addr)
void ROM_SPIFlashChipErase (uint32_t ui32Base)
void ROM_SPIFlashDualRead (uint32_t ui32Base, uint32_t ui32Addr, uint8_t ∗pui8Data,
uint32_t ui32Count)

May 14, 2014 427

SPI Flash Module

void ROM_SPIFlashDualReadNonBlocking (tSPIFlashState ∗psState, uint32_t ui32Base,
uint32_t ui32Addr, uint8_t ∗pui8Data, uint32_t ui32Count, bool bUseDMA, uint32_t
ui32TxChannel, uint32_t ui32RxChannel)
void ROM_SPIFlashFastRead (uint32_t ui32Base, uint32_t ui32Addr, uint8_t ∗pui8Data,
uint32_t ui32Count)
void ROM_SPIFlashFastReadNonBlocking (tSPIFlashState ∗psState, uint32_t ui32Base,
uint32_t ui32Addr, uint8_t ∗pui8Data, uint32_t ui32Count, bool bUseDMA, uint32_t
ui32TxChannel, uint32_t ui32RxChannel)
void ROM_SPIFlashInit (uint32_t ui32Base, uint32_t ui32Clock, uint32_t ui32BitRate)
uint32_t ROM_SPIFlashIntHandler (tSPIFlashState ∗psState)
void ROM_SPIFlashPageProgram (uint32_t ui32Base, uint32_t ui32Addr, const uint8_t
∗pui8Data, uint32_t ui32Count)
void ROM_SPIFlashPageProgramNonBlocking (tSPIFlashState ∗psState, uint32_t ui32Base,
uint32_t ui32Addr, const uint8_t ∗pui8Data, uint32_t ui32Count, bool bUseDMA, uint32_t
ui32TxChannel)
void ROM_SPIFlashQuadRead (uint32_t ui32Base, uint32_t ui32Addr, uint8_t ∗pui8Data,
uint32_t ui32Count)
void ROM_SPIFlashQuadReadNonBlocking (tSPIFlashState ∗psState, uint32_t ui32Base,
uint32_t ui32Addr, uint8_t ∗pui8Data, uint32_t ui32Count, bool bUseDMA, uint32_t
ui32TxChannel, uint32_t ui32RxChannel)
void ROM_SPIFlashRead (uint32_t ui32Base, uint32_t ui32Addr, uint8_t ∗pui8Data, uint32_t
ui32Count)
void ROM_SPIFlashReadID (uint32_t ui32Base, uint8_t ∗pui8ManufacturerID, uint16_t
∗pui16DeviceID)
void ROM_SPIFlashReadNonBlocking (tSPIFlashState ∗psState, uint32_t ui32Base, uint32_t
ui32Addr, uint8_t ∗pui8Data, uint32_t ui32Count, bool bUseDMA, uint32_t ui32TxChannel,
uint32_t ui32RxChannel)
uint8_t ROM_SPIFlashReadStatus (uint32_t ui32Base)
void ROM_SPIFlashSectorErase (uint32_t ui32Base, uint32_t ui32Addr)
void ROM_SPIFlashWriteDisable (uint32_t ui32Base)
void ROM_SPIFlashWriteEnable (uint32_t ui32Base)
void ROM_SPIFlashWriteStatus (uint32_t ui32Base, uint8_t ui8Status)

25.2.1 Function Documentation

25.2.1.1 ROM_SPIFlashBlockErase32

Erases a 32 KB block of the SPI flash.

Prototype:
void
ROM_SPIFlashBlockErase32(uint32_t ui32Base,

uint32_t ui32Addr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashBlockErase32 is a function pointer located at ROM_SPIFLASHTABLE[15].

428 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to erase.

Description:
This function erases a 32 KB block of the SPI flash. Each 32 KB block has a 32 KB alignment;
the SPI flash will ignore the lower 15 bits of the address provided. The 32 KB block erase
command is issued by this function; ROM_SPIFlashReadStatus() must be used to query the
SPI flash to determine when the 32 KB block erase operation has completed. This uses the
0x52 SPI flash command.

Returns:
None.

25.2.1.2 ROM_SPIFlashBlockErase64

Erases a 64 KB block of the SPI flash.

Prototype:
void
ROM_SPIFlashBlockErase64(uint32_t ui32Base,

uint32_t ui32Addr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashBlockErase64 is a function pointer located at ROM_SPIFLASHTABLE[20].

Parameters:
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to erase.

Description:
This function erases a 64 KB block of the SPI flash. Each 64 KB block has a 64 KB alignment;
the SPI flash will ignore the lower 16 bits of the address provided. The 64 KB block erase
command is issued by this function; ROM_SPIFlashReadStatus() must be used to query the
SPI flash to determine when the 64 KB block erase operation has completed. This uses the
0xd8 SPI flash command.

Returns:
None.

25.2.1.3 ROM_SPIFlashChipErase

Erases the entire SPI flash.

Prototype:
void
ROM_SPIFlashChipErase(uint32_t ui32Base)

May 14, 2014 429

SPI Flash Module

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashChipErase is a function pointer located at ROM_SPIFLASHTABLE[19].

Parameters:
ui32Base is the SSI module base address.

Description:
This command erase the entire SPI flash. The chip erase command is issued by this function;
ROM_SPIFlashReadStatus() must be used to query the SPI flash to determine when the chip
erase operation has completed. This uses the 0xc7 SPI flash command.

Returns:
None.

25.2.1.4 ROM_SPIFlashDualRead

Reads data from the SPI flash using Bi-SPI.

Prototype:
void
ROM_SPIFlashDualRead(uint32_t ui32Base,

uint32_t ui32Addr,
uint8_t *pui8Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashDualRead is a function pointer located at ROM_SPIFLASHTABLE[13].

Parameters:
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to read.
pui8Data is a pointer to the data buffer to into which to read the data.
ui32Count is the number of bytes to read.

Description:
This function reads data from the SPI flash with Bi-SPI, using PIO mode. This function will not
return until the read has completed. This uses the 0x3b SPI flash command.

Returns:
None.

25.2.1.5 ROM_SPIFlashDualReadNonBlocking

Reads data from the SPI flash using Bi-SPI in the background.

430 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_SPIFlashDualReadNonBlocking(tSPIFlashState *psState,

uint32_t ui32Base,
uint32_t ui32Addr,
uint8_t *pui8Data,
uint32_t ui32Count,
bool bUseDMA,
uint32_t ui32TxChannel,
uint32_t ui32RxChannel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashDualReadNonBlocking is a function pointer located at
ROM_SPIFLASHTABLE[14].

Parameters:
psState is a pointer to the SPI flash state structure.
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to read.
pui8Data is a pointer to the data buffer to into which to read the data.
ui32Count is the number of bytes to read.
bUseDMA is true if uDMA should be used and false otherwise.
ui32TxChannel is the uDMA channel to be used for writing to the SSI module.
ui32RxChannel is the uDMA channel to be used for reading from the SSI module.

Description:
This function reads data from the SPI flash with Bi-SPI, using either interrupts or uDMA to
transfer the data. This function will return immediately and read the data in the background. In
order for this to complete successfully, several conditions must be satisfied:

Prior to calling this function:
• The SSI module must be enabled in SysCtl.
• The SSI pins must be configured for use by the SSI module.
• The SSI module interrupt must be enabled in NVIC.
• The uDMA module must be enabled in SysCtl and the control table set (if using uDMA).
• The uDMA channels must be assigned to the SSI module.

After calling this function:
• The interrupt handler for the SSI module must call ROM_SPIFlashIntHandler(), pass-

ing the same psState structure pointer that was supplied to this function.
• No other SPI flash operation can be called until this operation has completed.

Completion of the read operation is indicated when ROM_SPIFlashIntHandler() returns
SPI_FLASH_DONE.

Like ROM_SPIFlashDualRead(), this uses the 0x3b SPI flash command.

Returns:
None.

May 14, 2014 431

SPI Flash Module

25.2.1.6 ROM_SPIFlashFastRead

Reads data from the SPI flash using the fast read command.

Prototype:
void
ROM_SPIFlashFastRead(uint32_t ui32Base,

uint32_t ui32Addr,
uint8_t *pui8Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashFastRead is a function pointer located at ROM_SPIFLASHTABLE[10].

Parameters:
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to read.
pui8Data is a pointer to the data buffer to into which to read the data.
ui32Count is the number of bytes to read.

Description:
This function reads data from the SPI flash with the fast read command, using PIO mode. The
fast read command allows the SPI flash to be read at a higher SPI clock rate because of the
addition of a dummy cycle during the command setup. This function will not return until the
read has completed. This uses the 0x0b SPI flash command.

Returns:
None.

25.2.1.7 ROM_SPIFlashFastReadNonBlocking

Reads data from the SPI flash using the fast read command in the background.

Prototype:
void
ROM_SPIFlashFastReadNonBlocking(tSPIFlashState *psState,

uint32_t ui32Base,
uint32_t ui32Addr,
uint8_t *pui8Data,
uint32_t ui32Count,
bool bUseDMA,
uint32_t ui32TxChannel,
uint32_t ui32RxChannel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashFastReadNonBlocking is a function pointer located at
ROM_SPIFLASHTABLE[11].

432 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
psState is a pointer to the SPI flash state structure.
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to read.
pui8Data is a pointer to the data buffer to into which to read the data.
ui32Count is the number of bytes to read.
bUseDMA is true if uDMA should be used and false otherwise.
ui32TxChannel is the uDMA channel to be used for writing to the SSI module.
ui32RxChannel is the uDMA channel to be used for reading from the SSI module.

Description:
This function reads data from the SPI flash with the fast read command, using either interrupts
or uDMA to transfer the data. The fast read command allows the SPI flash to be read at a
higher SPI clock rate because of the addition of a dummy cycle during the command setup.
This function will return immediately and read the data in the background. In order for this to
complete successfully, several conditions must be satisfied:

Prior to calling this function:
• The SSI module must be enabled in SysCtl.
• The SSI pins must be configured for use by the SSI module.
• The SSI module interrupt must be enabled in NVIC.
• The uDMA module must be enabled in SysCtl and the control table set (if using uDMA).
• The uDMA channels must be assigned to the SSI module.

After calling this function:
• The interrupt handler for the SSI module must call ROM_SPIFlashIntHandler(), pass-

ing the same psState structure pointer that was supplied to this function.
• No other SPI flash operation can be called until this operation has completed.

Completion of the read operation is indicated when ROM_SPIFlashIntHandler() returns
SPI_FLASH_DONE.

Like ROM_SPIFlashFastRead(), this uses the 0x0b SPI flash command.

Returns:
None.

25.2.1.8 ROM_SPIFlashInit

Initializes the SPI flash driver.

Prototype:
void
ROM_SPIFlashInit(uint32_t ui32Base,

uint32_t ui32Clock,
uint32_t ui32BitRate)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashInit is a function pointer located at ROM_SPIFLASHTABLE[1].

May 14, 2014 433

SPI Flash Module

Parameters:
ui32Base is the SSI module base address.
ui32Clock is the rate of the clock supplied to the SSI module.
ui32BitRate is the SPI clock rate.

Description:
This function configures the SSI module for use by the SPI flash driver. The SSI module will
be placed into the correct mode of operation to allow communication with the SPI flash. This
function must be called prior to calling the remaining SPI flash driver APIs. It can be called at
a later point to reconfigure the SSI module, such as to increase the SPI clock rate once it has
been determined that it is safe to use a higher speed clock.

It is the responsibility of the caller to enable the SSI module and configure the pins that it will
utilize.

Returns:
None.

25.2.1.9 ROM_SPIFlashIntHandler

Handles SSI module interrupts for the SPI flash driver.

Prototype:
uint32_t
ROM_SPIFlashIntHandler(tSPIFlashState *psState)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashIntHandler is a function pointer located at ROM_SPIFLASHTABLE[0].

Parameters:
psState is a pointer to the SPI flash driver instance data.

Description:
This function handles SSI module interrupts that are generated as a result of SPI flash driver
operations. This must be called by the application in response to the SSI module interrupt
when using the SPIFlashxxxNonBlocking APIs.

Returns:
Returns SPI_FLASH_IDLE if there is no transfer in progress, SPI_FLASH_WORKING is the
requested transfer is still in progress, or SPI_FLASH_DONE if the requested transfer has com-
pleted.

25.2.1.10 ROM_SPIFlashPageProgram

Programs the SPI flash.

Prototype:
void
ROM_SPIFlashPageProgram(uint32_t ui32Base,

434 May 14, 2014

Tiva TM4C129x ROM User’s Guide

uint32_t ui32Addr,
const uint8_t *pui8Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashPageProgram is a function pointer located at ROM_SPIFLASHTABLE[3].

Parameters:
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to be programmed.
pui8Data is a pointer to the data to be programmed.
ui32Count is the number of bytes to be programmed.

Description:
This function programs data into the SPI flash, using PIO mode. This function will not return
until the entire program command has been written into the SSI transmit FIFO. This uses the
0x02 SPI flash command.

Returns:
None.

25.2.1.11 ROM_SPIFlashPageProgramNonBlocking

Programs the SPI flash in the background.

Prototype:
void
ROM_SPIFlashPageProgramNonBlocking(tSPIFlashState *psState,

uint32_t ui32Base,
uint32_t ui32Addr,
const uint8_t *pui8Data,
uint32_t ui32Count,
bool bUseDMA,
uint32_t ui32TxChannel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashPageProgramNonBlocking is a function pointer located at
ROM_SPIFLASHTABLE[4].

Parameters:
psState is a pointer to the SPI flash state structure.
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to be programmed.
pui8Data is a pointer to the data to be programmed.
ui32Count is the number of bytes to be programmed.
bUseDMA is true if uDMA should be used and false otherwise.
ui32TxChannel is the uDMA channel to be used for writing to the SSI module.

May 14, 2014 435

SPI Flash Module

Description:
This function programs data into the SPI flash, using either interrupts or uDMA to transfer the
data. This function will return immediately and send the data in the background. In order for
this to complete successfully, several conditions must be satisfied:

Prior to calling this function:
• The SSI module must be enabled in SysCtl.
• The SSI pins must be configured for use by the SSI module.
• The SSI module interrupt must be enabled in NVIC.
• The uDMA module must be enabled in SysCtl and the control table set (if using uDMA).
• The uDMA channels must be assigned to the SSI module.

After calling this function:
• The interrupt handler for the SSI module must call ROM_SPIFlashIntHandler(), pass-

ing the same psState structure pointer that was supplied to this function.
• No other SPI flash operation can be called until this operation has completed.

Completion of the programming operation is indicated when ROM_SPIFlashIntHandler() re-
turns SPI_FLASH_DONE.

Like ROM_SPIFlashPageProgram(), this uses the 0x02 SPI flash command.

Returns:
None.

25.2.1.12 ROM_SPIFlashQuadRead

Reads data from the SPI flash using Quad-SPI.

Prototype:
void
ROM_SPIFlashQuadRead(uint32_t ui32Base,

uint32_t ui32Addr,
uint8_t *pui8Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashQuadRead is a function pointer located at ROM_SPIFLASHTABLE[16].

Parameters:
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to read.
pui8Data is a pointer to the data buffer to into which to read the data.
ui32Count is the number of bytes to read.

Description:
This function reads data from the SPI flash with Quad-SPI, using PIO mode. This function will
not return until the read has completed. This uses the 0x6b SPI flash command.

Returns:
None.

436 May 14, 2014

Tiva TM4C129x ROM User’s Guide

25.2.1.13 ROM_SPIFlashQuadReadNonBlocking

Reads data from the SPI flash using Quad-SPI in the background.

Prototype:
void
ROM_SPIFlashQuadReadNonBlocking(tSPIFlashState *psState,

uint32_t ui32Base,
uint32_t ui32Addr,
uint8_t *pui8Data,
uint32_t ui32Count,
bool bUseDMA,
uint32_t ui32TxChannel,
uint32_t ui32RxChannel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashQuadReadNonBlocking is a function pointer located at
ROM_SPIFLASHTABLE[17].

Parameters:
psState is a pointer to the SPI flash state structure.
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to read.
pui8Data is a pointer to the data buffer to into which to read the data.
ui32Count is the number of bytes to read.
bUseDMA is true if uDMA should be used and false otherwise.
ui32TxChannel is the uDMA channel to be used for writing to the SSI module.
ui32RxChannel is the uDMA channel to be used for reading from the SSI module.

Description:
This function reads data from the SPI flash with Quad-SPI, using either interrupts or uDMA to
transfer the data. This function will return immediately and read the data in the background. In
order for this to complete successfully, several conditions must be satisfied:

Prior to calling this function:
• The SSI module must be enabled in SysCtl.
• The SSI pins must be configured for use by the SSI module.
• The SSI module interrupt must be enabled in NVIC.
• The uDMA module must be enabled in SysCtl and the control table set (if using uDMA).
• The uDMA channels must be assigned to the SSI module.

After calling this function:
• The interrupt handler for the SSI module must call ROM_SPIFlashIntHandler(), pass-

ing the same psState structure pointer that was supplied to this function.
• No other SPI flash operation can be called until this operation has completed.

Completion of the read operation is indicated when ROM_SPIFlashIntHandler() returns
SPI_FLASH_DONE.

Like ROM_SPIFlashQuadRead(), this uses the 0x6b SPI flash command.

May 14, 2014 437

SPI Flash Module

Returns:
None.

25.2.1.14 ROM_SPIFlashRead

Reads data from the SPI flash.

Prototype:
void
ROM_SPIFlashRead(uint32_t ui32Base,

uint32_t ui32Addr,
uint8_t *pui8Data,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashRead is a function pointer located at ROM_SPIFLASHTABLE[5].

Parameters:
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to read.
pui8Data is a pointer to the data buffer to into which to read the data.
ui32Count is the number of bytes to read.

Description:
This function reads data from the SPI flash, using PIO mode. This function will not return until
the read has completed. This uses the 0x03 SPI flash command.

Returns:
None.

25.2.1.15 ROM_SPIFlashReadID

Reads the manufacturer and device IDs from the SPI flash.

Prototype:
void
ROM_SPIFlashReadID(uint32_t ui32Base,

uint8_t *pui8ManufacturerID,
uint16_t *pui16DeviceID)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashReadID is a function pointer located at ROM_SPIFLASHTABLE[18].

Parameters:
ui32Base is the SSI module base address.
pui8ManufacturerID is a pointer to the location into which to store the manufacturer ID.

438 May 14, 2014

Tiva TM4C129x ROM User’s Guide

pui16DeviceID is a pointer to the location into which to store the device ID.

Description:
This function reads the manufacturer and device IDs from the SPI flash. These values can be
used to identify the SPI flash that is attached, as well as determining if a SPI flash is attached
(if the SSIRx pin is pulled up or down, either using the pad’s weak pull up/down or using an
external resistor, which will cause the returned IDs to be either all zeros or all ones if the SPI
flash is not attached). This uses the 0x9f SPI flash command.

Returns:
None.

25.2.1.16 ROM_SPIFlashReadNonBlocking

Reads data from the SPI flash in the background.

Prototype:
void
ROM_SPIFlashReadNonBlocking(tSPIFlashState *psState,

uint32_t ui32Base,
uint32_t ui32Addr,
uint8_t *pui8Data,
uint32_t ui32Count,
bool bUseDMA,
uint32_t ui32TxChannel,
uint32_t ui32RxChannel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashReadNonBlocking is a function pointer located at
ROM_SPIFLASHTABLE[6].

Parameters:
psState is a pointer to the SPI flash state structure.
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to read.
pui8Data is a pointer to the data buffer to into which to read the data.
ui32Count is the number of bytes to read.
bUseDMA is true if uDMA should be used and false otherwise.
ui32TxChannel is the uDMA channel to be used for writing to the SSI module.
ui32RxChannel is the uDMA channel to be used for reading from the SSI module.

Description:
This function reads data from the SPI flash, using either interrupts or uDMA to transfer the
data. This function will return immediately and read the data in the background. In order for
this to complete successfully, several conditions must be satisfied:

Prior to calling this function:
• The SSI module must be enabled in SysCtl.
• The SSI pins must be configured for use by the SSI module.

May 14, 2014 439

SPI Flash Module

• The SSI module interrupt must be enabled in NVIC.
• The uDMA module must be enabled in SysCtl and the control table set (if using uDMA).
• The uDMA channels must be assigned to the SSI module.

After calling this function:
• The interrupt handler for the SSI module must call ROM_SPIFlashIntHandler(), pass-

ing the same psState structure pointer that was supplied to this function.
• No other SPI flash operation can be called until this operation has completed.

Completion of the read operation is indicated when ROM_SPIFlashIntHandler() returns
SPI_FLASH_DONE.

Like ROM_SPIFlashRead(), this uses the 0x03 SPI flash command.

Returns:
None.

25.2.1.17 ROM_SPIFlashReadStatus

Reads the SPI flash status register.

Prototype:
uint8_t
ROM_SPIFlashReadStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashReadStatus is a function pointer located at ROM_SPIFLASHTABLE[8].

Parameters:
ui32Base is the SSI module base address.

Description:
This function reads the SPI flash status register. This uses the 0x05 SPI flash command.

Returns:
Returns the value of the SPI flash status register.

25.2.1.18 ROM_SPIFlashSectorErase

Erases a 4 KB sector of the SPI flash.

Prototype:
void
ROM_SPIFlashSectorErase(uint32_t ui32Base,

uint32_t ui32Addr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashSectorErase is a function pointer located at ROM_SPIFLASHTABLE[12].

440 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the SSI module base address.
ui32Addr is the SPI flash address to erase.

Description:
This function erases a sector of the SPI flash. Each sector is 4 KB with a 4 KB alignment; the
SPI flash will ignore the lower ten bits of the address provided. The sector erase command
is issued by this function; ROM_SPIFlashReadStatus() must be used to query the SPI flash
to determine when the sector erase operation has completed. This uses the 0x20 SPI flash
command.

Returns:
None.

25.2.1.19 ROM_SPIFlashWriteDisable

Disables SPI flash write operations.

Prototype:
void
ROM_SPIFlashWriteDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashWriteDisable is a function pointer located at ROM_SPIFLASHTABLE[7].

Parameters:
ui32Base is the SSI module base address.

Description:
This function sets the SPI flash to disallow program and erase operations. This uses the 0x04
SPI flash command.

Returns:
None.

25.2.1.20 ROM_SPIFlashWriteEnable

Enables SPI flash write operations.

Prototype:
void
ROM_SPIFlashWriteEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashWriteEnable is a function pointer located at ROM_SPIFLASHTABLE[9].

Parameters:
ui32Base is the SSI module base address.

May 14, 2014 441

SPI Flash Module

Description:
This function sets the SPI flash to allow program and erase operations. This must be done prior
to each SPI flash program or erase operation; the SPI flash will automatically disable program
and erase operations once a program or erase operation has completed. This uses the 0x06
SPI flash command.

Returns:
None.

25.2.1.21 ROM_SPIFlashWriteStatus

Writes the SPI flash status register.

Prototype:
void
ROM_SPIFlashWriteStatus(uint32_t ui32Base,

uint8_t ui8Status)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SPIFLASHTABLE is an array of pointers located at ROM_APITABLE[38].
ROM_SPIFlashWriteStatus is a function pointer located at ROM_SPIFLASHTABLE[2].

Parameters:
ui32Base is the SSI module base address.
ui8Status is the value to write to the status register.

Description:
This function writes the SPI flash status register. This uses the 0x01 SPI flash command.

Returns:
None.

442 May 14, 2014

Tiva TM4C129x ROM User’s Guide

26 Synchronous Serial Interface (SSI)
Introduction .443
Functions . 445

26.1 Introduction

The Synchronous Serial Interface (SSI) module provides the functionality for synchronous se-
rial communications with peripheral devices, and can be configured to use either the Mo-
torola® SPI™or the Texas Instruments® synchronous serial interface frame formats. The size
of the data frame is also configurable, and can be set to be between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel data conversion on data received from a peripheral
device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX
paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or a slave device. As a slave device, the SSI
module can also be configured to disable its output, which allows a master device to be coupled
with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the
output serial clock derived from the SSI module’s input clock. Bit rates are generated based on the
input clock and the maximum bit rate supported by the connected peripheral.

For devices that include a DMA controller, the SSI module also provides a DMA interface to facilitate
data transfer via DMA.

Bi-SPI and Quad-SPI support

Bi-SPI and Quad-SPI allows two or four (respectively) data bits to be unidirectionally transferred on
each SSI clock pulse. In order to use these modes of operation, the SSI module must be configured
correctly and the appropriate advanced mode of operation selected.

The SSI module must be configured for 8 data bits and SSI_FRF_MOTO_MODE_0 data frame
format. For example:

ROM_SSIConfigSetExpClk(SSI0_BASE, ui32SystemClock, SSI_FRF_MOTO_MODE_0,
SSI_MODE_MASTER, ui32BitRate, 8);

Bi-SPI or Quad-SPI transfers start with a normal bi-directional SPI transfer to send a command to
the slave, which also indicates that the Bi-SPI or Quad-SPI mode will be used for the remainder of
the transfer (how this is negotiated is specific to the SPI device that is being used). For example,
the following sequence uses two bytes to set up the command followed by four bytes of data that
are written via Bi-SPI:

ROM_SSIAdvModeSet(SSI0_BASE, SSI_ADV_MODE_WRITE);
ROM_SSIDataPut(SSI0_BASE, <command byte 1>);
ROM_SSIDataPut(SSI0_BASE, <command byte 2>);
ROM_SSIAdvModeSet(SSI0_BASE, SSI_ADV_MODE_BI_WRITE)
ROM_SSIDataPut(SSI0_BASE, <data byte 1>);
ROM_SSIDataPut(SSI0_BASE, <data byte 2>);
ROM_SSIDataPut(SSI0_BASE, <data byte 3>);
ROM_SSIDataPut(SSI0_BASE, <data byte 4>);

May 14, 2014 443

Synchronous Serial Interface (SSI)

The following is an example using a two-byte command followed by four bytes of data that are read
via Bi-SPI:

ROM_SSIAdvModeSet(SSI0_BASE, SSI_ADV_MODE_WRITE);
ROM_SSIDataPut(SSI0_BASE, <command byte 1>);
ROM_SSIDataPut(SSI0_BASE, <command byte 2>);
ROM_SSIAdvModeSet(SSI0_BASE, SSI_ADV_MODE_BI_READ)
ROM_SSIDataPut(SSI0_BASE, 0);
ROM_SSIDataPut(SSI0_BASE, 0);
ROM_SSIDataPut(SSI0_BASE, 0);
ROM_SSIDataPut(SSI0_BASE, 0);
ROM_SSIDataGet(SSI0_BASE, <data byte 1>);
ROM_SSIDataGet(SSI0_BASE, <data byte 2>);
ROM_SSIDataGet(SSI0_BASE, <data byte 3>);
ROM_SSIDataGet(SSI0_BASE, <data byte 4>);

The ROM_SSIDataPut() calls are necessary in the read case because they cause the transfer of
data on the SPI bus; in this case the actual data in the transmit FIFO is thrown away because each
Bi-SPI transaction is unidirectional and a read is being performed.

A similar sequence is used for Quad-SPI reads and writes. Note that the above sequences work
since the size of the associated data fits within the SSI module’s FIFOs; longer sequences require
proper management of the FIFOs.

There are also special provisions for controlling the SSIFss signal. Normally,
SSI_FRF_MOTO_MODE_0 causes this signal to be deasserted for one clock between each
data byte. By calling ROM_SSIAdvFrameHoldEnable(), this signal is asserted when the first
data byte is written to the SSI transmit FIFO and remains asserted until a byte is encoun-
tered in the FIFO that has been specifically marked as the last byte in a frame via a call to
ROM_SSIAdvDataPutFrameEnd(). After the last byte in a frame is transferred, the SSIFss signal
is deasserted for at least one clock cycle; it asserts again prior to the next byte being transferred,
which might be immediately if there is more data in the FIFO or it might be at some point in the
future when new data is written into the FIFO. The following code modifies the previous example
for a two-byte command followed by writing four bytes by placing two of the sequences into the
FIFO:

ROM_SSIAdvFrameHoldEnable(SSI0_BASE);

ROM_SSIAdvModeSet(SSI0_BASE, SSI_ADV_MODE_WRITE);
ROM_SSIDataPut(SSI0_BASE, <command byte 1>);
ROM_SSIDataPut(SSI0_BASE, <command byte 2>);
ROM_SSIAdvModeSet(SSI0_BASE, SSI_ADV_MODE_BI_WRITE)
ROM_SSIDataPut(SSI0_BASE, <data byte 1>);
ROM_SSIDataPut(SSI0_BASE, <data byte 2>);
ROM_SSIDataPut(SSI0_BASE, <data byte 3>);
ROM_SSIAdvDataPutFrameEnd(SSI0_BASE, <data byte 4>);

ROM_SSIAdvModeSet(SSI0_BASE, SSI_ADV_MODE_WRITE);
ROM_SSIDataPut(SSI0_BASE, <command byte 1>);
ROM_SSIDataPut(SSI0_BASE, <command byte 2>);
ROM_SSIAdvModeSet(SSI0_BASE, SSI_ADV_MODE_BI_WRITE)
ROM_SSIDataPut(SSI0_BASE, <data byte 1>);
ROM_SSIDataPut(SSI0_BASE, <data byte 2>);
ROM_SSIDataPut(SSI0_BASE, <data byte 3>);
ROM_SSIAdvDataPutFrameEnd(SSI0_BASE, <data byte 4>);

444 May 14, 2014

Tiva TM4C129x ROM User’s Guide

26.2 Functions

Functions
void ROM_SSIAdvDataPutFrameEnd (uint32_t ui32Base, uint32_t ui32Data)
int32_t ROM_SSIAdvDataPutFrameEndNonBlocking (uint32_t ui32Base, uint32_t ui32Data)
void ROM_SSIAdvFrameHoldDisable (uint32_t ui32Base)
void ROM_SSIAdvFrameHoldEnable (uint32_t ui32Base)
void ROM_SSIAdvModeSet (uint32_t ui32Base, uint32_t ui32Mode)
bool ROM_SSIBusy (uint32_t ui32Base)
uint32_t ROM_SSIClockSourceGet (uint32_t ui32Base)
void ROM_SSIClockSourceSet (uint32_t ui32Base, uint32_t ui32Source)
void ROM_SSIConfigSetExpClk (uint32_t ui32Base, uint32_t ui32SSIClk, uint32_t
ui32Protocol, uint32_t ui32Mode, uint32_t ui32BitRate, uint32_t ui32DataWidth)
void ROM_SSIDataGet (uint32_t ui32Base, uint32_t ∗pui32Data)
int32_t ROM_SSIDataGetNonBlocking (uint32_t ui32Base, uint32_t ∗pui32Data)
void ROM_SSIDataPut (uint32_t ui32Base, uint32_t ui32Data)
int32_t ROM_SSIDataPutNonBlocking (uint32_t ui32Base, uint32_t ui32Data)
void ROM_SSIDisable (uint32_t ui32Base)
void ROM_SSIDMADisable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void ROM_SSIDMAEnable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void ROM_SSIEnable (uint32_t ui32Base)
void ROM_SSIIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_SSIIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_SSIIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_SSIIntStatus (uint32_t ui32Base, bool bMasked)
void ROM_UpdateSSI (void)

26.2.1 Function Documentation

26.2.1.1 ROM_SSIAdvDataPutFrameEnd

Puts a data element into the SSI transmit FIFO as the end of a frame.

Prototype:
void
ROM_SSIAdvDataPutFrameEnd(uint32_t ui32Base,

uint32_t ui32Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIAdvDataPutFrameEnd is a function pointer located at ROM_SSITABLE[18].

Parameters:
ui32Base specifies the SSI module base address.
ui32Data is the data to be transmitted over the SSI interface.

May 14, 2014 445

Synchronous Serial Interface (SSI)

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module,
marking it as the end of a frame. If there is no space available in the transmit FIFO, this
function waits until there is space available before returning. After this byte is transmitted by
the SSI module, the FSS signal de-asserts for at least one SSI clock.

Note:
The upper 24 bits of ui32Data are discarded by the hardware.

Returns:
None.

26.2.1.2 ROM_SSIAdvDataPutFrameEndNonBlocking

Puts a data element into the SSI transmit FIFO as the end of a frame.

Prototype:
int32_t
ROM_SSIAdvDataPutFrameEndNonBlocking(uint32_t ui32Base,

uint32_t ui32Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIAdvDataPutFrameEndNonBlocking is a function pointer located at
ROM_SSITABLE[19].

Parameters:
ui32Base specifies the SSI module base address.
ui32Data is the data to be transmitted over the SSI interface.

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module,
marking it as the end of a frame. After this byte is transmitted by the SSI module, the FSS
signal de-asserts for at least one SSI clock. If there is no space in the FIFO, then this function
returns a zero.

Note:
The upper 24 bits of ui32Data are discarded by the hardware.

Returns:
Returns the number of elements written to the SSI transmit FIFO.

26.2.1.3 ROM_SSIAdvFrameHoldDisable

Configures the SSI advanced mode to de-assert SSIFss after every byte transfer.

Prototype:
void
ROM_SSIAdvFrameHoldDisable(uint32_t ui32Base)

446 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIAdvFrameHoldDisable is a function pointer located at ROM_SSITABLE[21].

Parameters:
ui32Base is the base address of the SSI port.

Description:
This function configures the SSI module to de-assert the SSIFss signal for one SSI clock cycle
after every byte is transferred using one of the advanced modes (instead of leaving it asserted
for the entire transfer). This mode is the default operation.

Returns:
None.

26.2.1.4 ROM_SSIAdvFrameHoldEnable

Configures the SSI advanced mode to hold SSIFss during the full transfer.

Prototype:
void
ROM_SSIAdvFrameHoldEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIAdvFrameHoldEnable is a function pointer located at ROM_SSITABLE[20].

Parameters:
ui32Base is the base address of the SSI port.

Description:
This function configures the SSI module to de-assert the SSIFss signal during the en-
tire data transfer when using one of the advanced modes (instead of briefly de-asserting
it after every byte). When using this mode, SSIFss can be directly controlled via
ROM_SSIAdvDataPutFrameEnd() and ROM_SSIAdvDataPutFrameEndNonBlocking().

Returns:
None.

26.2.1.5 ROM_SSIAdvModeSet

Selects the advanced mode of operation for the SSI module.

Prototype:
void
ROM_SSIAdvModeSet(uint32_t ui32Base,

uint32_t ui32Mode)

May 14, 2014 447

Synchronous Serial Interface (SSI)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIAdvModeSet is a function pointer located at ROM_SSITABLE[17].

Parameters:
ui32Base is the base address of the SSI port.
ui32Mode is the mode of operation to use.

Description:
This function selects the mode of operation for the SSI module, which is needed when using
the advanced operation modes (Bi- or Quad-SPI). One of the following modes can be selected:

SSI_ADV_MODE_LEGACY - Disables the advanced modes of operation, resulting in
legacy, or backwards-compatible, operation. When this mode is selected, it is not valid
to switch to Bi- or Quad-SPI operation. This mode is the default.
SSI_ADV_MODE_WRITE - The advanced mode of operation where data is only written to
the slave; any data clocked in via the SSIRx pin is thrown away (instead of being placed
into the SSI Rx FIFO).
SSI_ADV_MODE_READ_WRITE - The advanced mode of operation where data is written
to and read from the slave; this mode is the same as SSI_ADV_MODE_LEGACY but
allows transitions to Bi- or Quad-SPI operation.
SSI_ADV_MODE_BI_READ - The advanced mode of operation where data is read from
the slave in Bi-SPI mode, with two bits of data read on every SSI clock.
SSI_ADV_MODE_BI_WRITE - The advanced mode of operation where data is written to
the slave in Bi-SPI mode, with two bits of data written on every SSI clock.
SSI_ADV_MODE_QUAD_READ - The advanced mode of operation where data is read
from the slave in Quad-SPI mode, with four bits of data read on every SSI clock.
SSI_ADV_MODE_QUAD_WRITE - The advanced mode of operation where data is written
to the slave in Quad-SPI mode, with four bits of data written on every SSI clock.

The following mode transitions are valid (other transitions produce undefined results):

+----------+---+
|FROM | TO |
| |Legacy|Write|Read Write|Bi Read|Bi Write|Quad Read|Quad Write|
+----------+------+-----+----------+-------+--------+---------+----------+
Legacy	yes	yes	yes				
Write	yes	yes	yes	yes	yes	yes	yes
Read/Write	yes	yes	yes	yes	yes	yes	yes
Bi Read		yes	yes	yes	yes		
Bi write		yes	yes	yes	yes		
Quad read		yes	yes			yes	yes
Quad write		yes	yes			yes	yes
+----------+------+-----+----------+-------+--------+---------+----------+

When using an advanced mode of operation, the SSI module must have been configured for
eight data bits and the SSI_FRF_MOTO_MODE_0 protocol. The advanced mode operation
that is selected applies only to data newly written into the FIFO; the data that is already present
in the FIFO is handled using the advanced mode of operation in effect when that data was
written.

Switching into and out of legacy mode should only occur when the FIFO is empty.

Returns:
None.

448 May 14, 2014

Tiva TM4C129x ROM User’s Guide

26.2.1.6 ROM_SSIBusy

Determines whether the SSI transmitter is busy or not.

Prototype:
bool
ROM_SSIBusy(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIBusy is a function pointer located at ROM_SSITABLE[14].

Parameters:
ui32Base is the base address of the SSI port.

Description:
This function allows the caller to determine whether all transmitted bytes have cleared the
transmitter hardware. If false is returned, then the transmit FIFO is empty and all bits of the
last transmitted word have left the hardware shift register.

Returns:
Returns true if the SSI is transmitting or false if all transmissions are complete.

26.2.1.7 ROM_SSIClockSourceGet

Gets the data clock source for the specified SSI peripheral.

Prototype:
uint32_t
ROM_SSIClockSourceGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIClockSourceGet is a function pointer located at ROM_SSITABLE[15].

Parameters:
ui32Base is the base address of the SSI port.

Description:
This function returns the data clock source for the specified SSI.

Returns:
Returns the current clock source, which will be either SSI_CLOCK_SYSTEM or
SSI_CLOCK_PIOSC.

26.2.1.8 ROM_SSIClockSourceSet

Sets the data clock source for the specified SSI peripheral.

May 14, 2014 449

Synchronous Serial Interface (SSI)

Prototype:
void
ROM_SSIClockSourceSet(uint32_t ui32Base,

uint32_t ui32Source)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIClockSourceSet is a function pointer located at ROM_SSITABLE[16].

Parameters:
ui32Base is the base address of the SSI port.
ui32Source is the baud clock source for the SSI.

Description:
This function allows the baud clock source for the SSI to be selected. The possible clock
source are the system clock (SSI_CLOCK_SYSTEM) or the precision internal oscillator
(SSI_CLOCK_PIOSC).

Changing the baud clock source changes the data rate generated by the SSI. Therefore, the
data rate should be reconfigured after any change to the SSI clock source.

Returns:
None.

26.2.1.9 ROM_SSIConfigSetExpClk

Configures the synchronous serial interface.

Prototype:
void
ROM_SSIConfigSetExpClk(uint32_t ui32Base,

uint32_t ui32SSIClk,
uint32_t ui32Protocol,
uint32_t ui32Mode,
uint32_t ui32BitRate,
uint32_t ui32DataWidth)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIConfigSetExpClk is a function pointer located at ROM_SSITABLE[1].

Parameters:
ui32Base specifies the SSI module base address.
ui32SSIClk is the rate of the clock supplied to the SSI module.
ui32Protocol specifies the data transfer protocol.
ui32Mode specifies the mode of operation.
ui32BitRate specifies the clock rate.
ui32DataWidth specifies number of bits transferred per frame.

450 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function configures the synchronous serial interface. It sets the SSI protocol, mode of
operation, bit rate, and data width.

The ui32Protocol parameter defines the data frame format. The ui32Protocol parameter
can be one of the following values: SSI_FRF_MOTO_MODE_0, SSI_FRF_MOTO_MODE_1,
SSI_FRF_MOTO_MODE_2, SSI_FRF_MOTO_MODE_3, SSI_FRF_TI, or SSI_FRF_NMW.
The Motorola frame formats encode the following polarity and phase configurations:

Polarity Phase Mode
0 0 SSI_FRF_MOTO_MODE_0
0 1 SSI_FRF_MOTO_MODE_1
1 0 SSI_FRF_MOTO_MODE_2
1 1 SSI_FRF_MOTO_MODE_3

The ui32Mode parameter defines the operating mode of the SSI module. The SSI module
can operate as a master or slave; if it is a slave, the SSI can be configured to disable out-
put on its serial output line. The ui32Mode parameter can be one of the following values:
SSI_MODE_MASTER, SSI_MODE_SLAVE, or SSI_MODE_SLAVE_OD.

The ui32BitRate parameter defines the bit rate for the SSI. This bit rate must satisfy the follow-
ing clock ratio criteria:

FSSI >= 2 ∗ bit rate (master mode); this speed cannot exceed 25 MHz.
FSSI >= 6 ∗ bit rate (slave modes)

where FSSI is the frequency of the clock supplied to the SSI module.

The ui32DataWidth parameter defines the width of the data transfers and can be a value be-
tween 4 and 16, inclusive.

The peripheral clock is the same as the processor clock. This value is returned by
ROM_SysCtlClockFreqSet(), or it can be explicitly hard-coded if it is constant and known.

Returns:
None.

26.2.1.10 ROM_SSIDataGet

Gets a data element from the SSI receive FIFO.

Prototype:
void
ROM_SSIDataGet(uint32_t ui32Base,

uint32_t *pui32Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDataGet is a function pointer located at ROM_SSITABLE[9].

Parameters:
ui32Base specifies the SSI module base address.
pui32Data is a pointer to a storage location for data that was received over the SSI interface.

May 14, 2014 451

Synchronous Serial Interface (SSI)

Description:
This function gets received data from the receive FIFO of the specified SSI module and places
that data into the location specified by the pui32Data parameter. If there is no data available,
this function waits until data is received before returning.

Note:
Only the lower N bits of the value written to pui32Data contain valid data, where N is the data
width as configured by ROM_SSIConfigSetExpClk(). For example, if the interface is configured
for 8-bit data width, only the lower 8 bits of the value written to pui32Data contain valid data.

Returns:
None.

26.2.1.11 ROM_SSIDataGetNonBlocking

Gets a data element from the SSI receive FIFO.

Prototype:
int32_t
ROM_SSIDataGetNonBlocking(uint32_t ui32Base,

uint32_t *pui32Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDataGetNonBlocking is a function pointer located at ROM_SSITABLE[10].

Parameters:
ui32Base specifies the SSI module base address.
pui32Data is a pointer to a storage location for data that was received over the SSI interface.

Description:
This function gets received data from the receive FIFO of the specified SSI module and places
that data into the location specified by the ui32Data parameter. If there is no data in the FIFO,
then this function returns a zero.

Note:
Only the lower N bits of the value written to pui32Data contain valid data, where N is the data
width as configured by ROM_SSIConfigSetExpClk(). For example, if the interface is configured
for 8-bit data width, only the lower 8 bits of the value written to pui32Data contain valid data.

Returns:
Returns the number of elements read from the SSI receive FIFO.

26.2.1.12 ROM_SSIDataPut

Puts a data element into the SSI transmit FIFO.

Prototype:
void
ROM_SSIDataPut(uint32_t ui32Base,

uint32_t ui32Data)

452 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDataPut is a function pointer located at ROM_SSITABLE[0].

Parameters:
ui32Base specifies the SSI module base address.
ui32Data is the data to be transmitted over the SSI interface.

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module. If
there is no space available in the transmit FIFO, this function waits until there is space available
before returning.

Note:
The upper 32 - N bits of ui32Data are discarded by the hardware, where N is the data width as
configured by ROM_SSIConfigSetExpClk(). For example, if the interface is configured for 8-bit
data width, the upper 24 bits of ui32Data are discarded.

Returns:
None.

26.2.1.13 ROM_SSIDataPutNonBlocking

Puts a data element into the SSI transmit FIFO.

Prototype:
int32_t
ROM_SSIDataPutNonBlocking(uint32_t ui32Base,

uint32_t ui32Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDataPutNonBlocking is a function pointer located at ROM_SSITABLE[8].

Parameters:
ui32Base specifies the SSI module base address.
ui32Data is the data to be transmitted over the SSI interface.

Description:
This function places the supplied data into the transmit FIFO of the specified SSI module. If
there is no space in the FIFO, then this function returns a zero.

Note:
The upper 32 - N bits of ui32Data are discarded by the hardware, where N is the data width as
configured by ROM_SSIConfigSetExpClk(). For example, if the interface is configured for 8-bit
data width, the upper 24 bits of ui32Data are discarded.

Returns:
Returns the number of elements written to the SSI transmit FIFO.

May 14, 2014 453

Synchronous Serial Interface (SSI)

26.2.1.14 ROM_SSIDisable

Disables the synchronous serial interface.

Prototype:
void
ROM_SSIDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDisable is a function pointer located at ROM_SSITABLE[3].

Parameters:
ui32Base specifies the SSI module base address.

Description:
This function disables operation of the synchronous serial interface.

Returns:
None.

26.2.1.15 ROM_SSIDMADisable

Disables SSI DMA operation.

Prototype:
void
ROM_SSIDMADisable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDMADisable is a function pointer located at ROM_SSITABLE[13].

Parameters:
ui32Base is the base address of the SSI port.
ui32DMAFlags is a bit mask of the DMA features to disable.

Description:
This function is used to disable SSI DMA features that were enabled by
ROM_SSIDMAEnable(). The specified SSI DMA features are disabled. The ui32DMAFlags
parameter is the logical OR of any of the following values:

SSI_DMA_RX - disable DMA for receive
SSI_DMA_TX - disable DMA for transmit

Returns:
None.

454 May 14, 2014

Tiva TM4C129x ROM User’s Guide

26.2.1.16 ROM_SSIDMAEnable

Enables SSI DMA operation.

Prototype:
void
ROM_SSIDMAEnable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIDMAEnable is a function pointer located at ROM_SSITABLE[12].

Parameters:
ui32Base is the base address of the SSI port.
ui32DMAFlags is a bit mask of the DMA features to enable.

Description:
This function enables the specified SSI DMA features. The SSI can be configured to use DMA
for transmit and/or receive data transfers. The ui32DMAFlags parameter is the logical OR of
any of the following values:

SSI_DMA_RX - enable DMA for receive
SSI_DMA_TX - enable DMA for transmit

Note:
The uDMA controller must also be set up before DMA can be used with the SSI.

Returns:
None.

26.2.1.17 ROM_SSIEnable

Enables the synchronous serial interface.

Prototype:
void
ROM_SSIEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIEnable is a function pointer located at ROM_SSITABLE[2].

Parameters:
ui32Base specifies the SSI module base address.

Description:
This function enables operation of the synchronous serial interface. The synchronous serial
interface must be configured before it is enabled.

Returns:
None.

May 14, 2014 455

Synchronous Serial Interface (SSI)

26.2.1.18 ROM_SSIIntClear

Clears SSI interrupt sources.

Prototype:
void
ROM_SSIIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIIntClear is a function pointer located at ROM_SSITABLE[7].

Parameters:
ui32Base specifies the SSI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
This function clears the specified SSI interrupt sources so that they no longer assert. This func-
tion must be called in the interrupt handler to keep the interrupts from being recognized again
immediately upon exit. The ui32IntFlags parameter can be any of the SSI_RXTO, SSI_RXOR,
SSI_TXEOT, SSI_DMATX, or SSI_DMARX values.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

26.2.1.19 ROM_SSIIntDisable

Disables individual SSI interrupt sources.

Prototype:
void
ROM_SSIIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIIntDisable is a function pointer located at ROM_SSITABLE[5].

Parameters:
ui32Base specifies the SSI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be disabled.

456 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function disables the indicated SSI interrupt sources. The ui32IntFlags parameter can
be any of the SSI_TXFF, SSI_RXFF, SSI_RXTO, SSI_RXOR, SSI_TXEOT, SSI_DMATX, or
SSI_DMARX values.

Returns:
None.

26.2.1.20 ROM_SSIIntEnable

Enables individual SSI interrupt sources.

Prototype:
void
ROM_SSIIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIIntEnable is a function pointer located at ROM_SSITABLE[4].

Parameters:
ui32Base specifies the SSI module base address.
ui32IntFlags is a bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated SSI interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.
The ui32IntFlags parameter can be any of the SSI_TXFF, SSI_RXFF, SSI_RXTO, SSI_RXOR,
SSI_TXEOT, SSI_DMATX, or SSI_DMARX values.

Returns:
None.

26.2.1.21 ROM_SSIIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ROM_SSIIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_SSIIntStatus is a function pointer located at ROM_SSITABLE[6].

Parameters:
ui32Base specifies the SSI module base address.

May 14, 2014 457

Synchronous Serial Interface (SSI)

bMasked is false if the raw interrupt status is required or true if the masked interrupt status is
required.

Description:
This function returns the interrupt status for the SSI module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of SSI_TXFF, SSI_RXFF, SSI_RXTO,
SSI_RXOR, SSI_TXEOT, SSI_DMATX, and SSI_DMARX.

26.2.1.22 ROM_UpdateSSI

Starts an update over the SSI0 interface.

Prototype:
void
ROM_UpdateSSI(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SSITABLE is an array of pointers located at ROM_APITABLE[2].
ROM_UpdateSSI is a function pointer located at ROM_SSITABLE[11].

Description:
Calling this function commences an update of the firmware via the SSI0 interface. This function
assumes that the SSI0 interface has already been configured and is currently operational.

Returns:
Never returns.

458 May 14, 2014

Tiva TM4C129x ROM User’s Guide

27 System Control
Introduction .459
Functions . 460

27.1 Introduction

System control determines the overall operation of the device. It controls the clocking of the device,
the set of peripherals that are enabled, configuration of the device and its resets, and provides
information about the device.

The members of the Tiva family have a varying peripheral set and memory sizes. The device has
a set of read-only registers that indicate the size of the memories, the peripherals that are present,
and the pins that are present for peripherals that have a varying number of pins. This information
can be used to write adaptive software that can run on more than one member of the Tiva family.

The device can be clocked from the precision internal oscillator (PIOSC) or the PLL. The PIOSC is
16 MHz, +/- 1%; its frequency will vary by device, with voltage, and with temperature.

Three modes of operation are supported by the Tiva family: run mode, sleep mode, and deep-
sleep mode. In run mode, the processor is actively executing code. In sleep mode, the clocking
of the device is unchanged but the processor no longer executes code (and is no longer clocked).
In deep-sleep mode, the clocking of the device may change (depending upon the run mode clock
configuration) and the processor no longer executes code (and is no longer clocked). An interrupt
returns the device to run mode from one of the sleep modes; the sleep modes are entered upon
request from the code.

There are several system events that, when detected, cause system control to reset the device.
These events are the input voltage dropping too low, the LDO voltage dropping too low, an external
reset, a software reset request, a watchdog timeout, and a main oscillator failure. The properties of
some of these events can be configured, and the reason for a reset can be determined from system
control.

Each peripheral in the device can be individually enabled, disabled, or reset. Additionally, the set
of peripherals that remain enabled during sleep mode and deep-sleep mode can be configured,
allowing custom sleep and deep-sleep modes to be defined. Care must be taken with deep-sleep
mode, though, because in this mode, the PLL is no longer used and the system is clocked by the
input crystal. Peripherals that depend upon a particular input clock rate (such as a UART) cannot
operate as expected in deep-sleep mode due to the clock rate change; these peripherals must
either be reconfigured upon entry to and exit from deep-sleep mode, or simply not enabled in deep-
sleep mode. Some peripherals may be configured to use PIOSC, even while in deep-sleep mode
so the peripheral clocking does not have to be reconfigured upon entry and exit.

There are various system events that, when detected, cause system control to generate a pro-
cessor interrupt. These events are the PLL achieving lock, the internal LDO current limit being
exceeded, the internal oscillator failing, the main oscillator failing, the input voltage dropping too
low, the internal LDO voltage dropping too low, and the PLL failing. Each of these interrupts can
be individually enabled or disabled, and the sources must be cleared by the interrupt handler when
they occur.

May 14, 2014 459

System Control

27.2 Functions

Functions
void ROM_SysCtlAltClkConfig (uint32_t ui32Config)
uint32_t ROM_SysCtlClockFreqSet (uint32_t ui32Config, uint32_t ui32SysClock)
void ROM_SysCtlClockOutConfig (uint32_t ui32Config, uint32_t ui32Div)
void ROM_SysCtlDeepSleep (void)
void ROM_SysCtlDeepSleepClockConfigSet (uint32_t ui32Div, uint32_t ui32Config)
void ROM_SysCtlDelay (uint32_t ui32Count)
uint32_t ROM_SysCtlFlashSectorSizeGet (void)
uint32_t ROM_SysCtlFlashSizeGet (void)
void ROM_SysCtlIntClear (uint32_t ui32Ints)
void ROM_SysCtlIntDisable (uint32_t ui32Ints)
void ROM_SysCtlIntEnable (uint32_t ui32Ints)
uint32_t ROM_SysCtlIntStatus (bool bMasked)
if TIVA_E void ROM_SysCtlLPCLowPowerConfigSet (uint32_t ui32Config)
endif if TIVA_E if TIVA_E uint32_t ROM_SysCtlLPCLowPowerStatusGet (void)
void ROM_SysCtlMOSCConfigSet (uint32_t ui32Config)
void ROM_SysCtlNMIClear (uint32_t ui32Ints)
uint32_t ROM_SysCtlNMIStatus (void)
void ROM_SysCtlPeripheralClockGating (bool bEnable)
void ROM_SysCtlPeripheralDeepSleepDisable (uint32_t ui32Peripheral)
void ROM_SysCtlPeripheralDeepSleepEnable (uint32_t ui32Peripheral)
void ROM_SysCtlPeripheralDisable (uint32_t ui32Peripheral)
void ROM_SysCtlPeripheralEnable (uint32_t ui32Peripheral)
void ROM_SysCtlPeripheralPowerOff (uint32_t ui32Peripheral)
void ROM_SysCtlPeripheralPowerOn (uint32_t ui32Peripheral)
bool ROM_SysCtlPeripheralPresent (uint32_t ui32Peripheral)
bool ROM_SysCtlPeripheralReady (uint32_t ui32Peripheral)
void ROM_SysCtlPeripheralReset (uint32_t ui32Peripheral)
void ROM_SysCtlPeripheralSleepDisable (uint32_t ui32Peripheral)
void ROM_SysCtlPeripheralSleepEnable (uint32_t ui32Peripheral)
uint32_t ROM_SysCtlPIOSCCalibrate (uint32_t ui32Type)
void ROM_SysCtlReset (void)
uint32_t ROM_SysCtlResetBehaviorGet (void)
void ROM_SysCtlResetBehaviorSet (uint32_t ui32Behavior)
void ROM_SysCtlResetCauseClear (uint32_t ui32Causes)
uint32_t ROM_SysCtlResetCauseGet (void)
void ROM_SysCtlSleep (void)
uint32_t ROM_SysCtlSRAMSizeGet (void)
void ROM_SysCtlVoltageEventClear (uint32_t ui32Status)
endif void ROM_SysCtlVoltageEventConfig (uint32_t ui32Config)
uint32_t ROM_SysCtlVoltageEventStatus (void)

460 May 14, 2014

Tiva TM4C129x ROM User’s Guide

27.2.1 Function Documentation

27.2.1.1 ROM_SysCtlAltClkConfig

Configures the alternate peripheral clock source.

Prototype:
void
ROM_SysCtlAltClkConfig(uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlAltClkConfig is a function pointer located at ROM_SYSCTLTABLE[61].

Parameters:
ui32Config holds the configuration options for the alternate peripheral clock.

Description:
This function configures the alternate peripheral clock. The alternate peripheral clock is used
to provide a known clock in all operating modes to peripherals that support using the alternate
peripheral clock as an input clock. The ui32Config parameter value provides the clock input
source using one of the following values:

SYSCTL_ALTCLK_PIOSC - use the PIOSC as the alternate clock source(default).
SYSCTL_ALTCLK_HIBRTC - use the Hibernate module RTC clock as the alternate clock
source.
SYSCTL_ALTCLK_LFIOSC - use the LFIOSC as the alternate clock source.

Returns:
None.

27.2.1.2 ROM_SysCtlClockFreqSet

Configures the system clock.

Prototype:
uint32_t
ROM_SysCtlClockFreqSet(uint32_t ui32Config,

uint32_t ui32SysClock)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlClockFreqSet is a function pointer located at ROM_SYSCTLTABLE[48].

Parameters:
ui32Config is the required configuration of the device clocking.
ui32SysClock is the requested processor frequency.

May 14, 2014 461

System Control

Description:
This function configures the main system clocking for the device. The input frequency, oscillator
source, whether or not to enable the PLL, and the system clock divider are all configured with
this function. This function configures the system frequency to the closest available divisor of
one of the fixed PLL VCO settings provided in the ui32Config parameter. The caller sets the
ui32SysClock parameter to request the system clock frequency, and this function then attempts
to match this using the values provided in the ui32Config parameter. If this function cannot
exactly match the requested frequency, it picks the closest frequency that is lower than the
requested frequency. The ui32Config parameter provides the remaining configuration options
using a set of defines that are a logical OR of several different values, many of which are
grouped into sets where only one of the set can be chosen. This function returns the current
system frequency which may not match the requested frequency.

The oscillator source is chosen with one of the following values:

SYSCTL_OSC_INT to use the 16-MHz precision internal oscillator.
SYSCTL_OSC_INT30 to use the internal low frequency oscillator.
SYSCTL_OSC_EXT32 to use the hibernate modules 32.786-kHz oscillator. This option is
only available on devices that include the hibernation module.

The system clock source is chosen with one of the following values:

SYSCTL_USE_PLL is used to select the PLL output as the system clock.
SYSCTL_USE_OSC is used to choose one of the oscillators as the system clock.

The PLL VCO frequency is chosen with one of the the following values:

SYSCTL_CFG_VCO_480 to set the PLL VCO output to 480-MHz
SYSCTL_CFG_VCO_320 to set the PLL VCO output to 320-MHz

Example: Configure the system clocking to be 40 MHz with a 320-MHz PLL setting using the
16-MHz internal oscillator.

ROM_SysCtlClockFreqSet(SYSCTL_OSC_INT | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_320,
40000000);

Returns:
The actual configured system clock frequency in Hz or zero if the value could not be changed
due to a parameter error or PLL lock failure.

27.2.1.3 ROM_SysCtlClockOutConfig

Configures and enables or disables the clock output on the DIVSCLK pin.

Prototype:
void
ROM_SysCtlClockOutConfig(uint32_t ui32Config,

uint32_t ui32Div)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlClockOutConfig is a function pointer located at ROM_SYSCTLTABLE[60].

462 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Config holds the configuration options including enabling or disabling the clock output the

DIVSCLK pin.
ui32Div is the divisor for the clock selected in the ui32Config parameter.

Description:
This function selects the source for the DIVSCLK, enables or disables the clock output, and
provides an output divider value as well. The ui32Div parameter specifies the divider for the
selected clock source and has a valid range of 1-256. The ui32Config parameter configures
the DIVSCLK output based on the following settings:

The first setting allows the output to be enabled or disabled.

SYSCTL_CLKOUT_EN - enable the DIVSCLK output.
SYSCTL_CLKOUT_DIS - disable the DIVSCLK output(default).

The next group of settings selects the source for the DIVSCLK.

SYSCTL_CLKOUT_SYSCLK - use the current system clock as the source(default).
SYSCTL_CLKOUT_PIOSC - use the PIOSC as the source.
SYSCTL_CLKOUT_MOSC - use the MOSC as the source.

Example: Enable the PIOSC divided by 4 as the DIVSCLK output.

//
// Enable the PIOSC divided by 4 as the DIVSCLK output.
//
SysCtlClockOutConfig(SYSCTL_DIVSCLK_EN | SYSCTL_DIVSCLK_SRC_PIOSC, 4);

Note:
The availability of the DIVSCLK output varies with the Tiva part in use. Please consult the data
sheet for the part you are using to determine which interrupt sources are available.

Returns:
None.

27.2.1.4 ROM_SysCtlDeepSleep

Puts the processor into deep-sleep mode.

Prototype:
void
ROM_SysCtlDeepSleep(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlDeepSleep is a function pointer located at ROM_SYSCTLTABLE[20].

Description:
This function places the processor into deep-sleep mode; it does not return un-
til the processor returns to run mode. The peripherals that are enabled via
ROM_SysCtlPeripheralDeepSleepEnable() continue to operate and can wake up the proces-
sor (if automatic clock gating is enabled with ROM_SysCtlPeripheralClockGating(), otherwise
all peripherals continue to operate).

May 14, 2014 463

System Control

Returns:
None.

27.2.1.5 ROM_SysCtlDeepSleepClockConfigSet

Sets the clock configuration of the device while in deep-sleep mode.

Prototype:
void
ROM_SysCtlDeepSleepClockConfigSet(uint32_t ui32Div,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlDeepSleepClockConfigSet is a function pointer located at
ROM_SYSCTLTABLE[47].

Parameters:
ui32Div is the clock divider when in deep-sleep mode.
ui32Config is the configuration of the device clocking while in deep-sleep mode.

Description:
This function configures the clocking of the device while in deep-sleep mode. The ui32Config
parameter selects the oscillator and the ui32Div parameter sets the clock divider used
in deep-sleep mode. The valid values for the ui32Div parameter range from 1 to 1024,
however not all Tiva microcontrollers support this full range. This function replaces the
ROM_SysCtlDeepSleepClockSet() function and can be used on Tiva devices that support
deep-sleep mode.

The oscillator source is chosen from one of the following values: SYSCTL_DSLP_OSC_MAIN,
SYSCTL_DSLP_OSC_INT, SYSCTL_DSLP_OSC_INT30, or SYSCTL_DSLP_OSC_EXT32.
The SYSCTL_DSLP_OSC_EXT32 option is only available on devices with the hibernation
module, and then only when the hibernation module is enabled.

The precision internal oscillator can be powered down in deep-sleep mode by specifying
SYSCTL_DSLP_PIOSC_PD. The precision internal oscillator is not powered down if it is re-
quired for operation while in deep-sleep (based on other configuration settings).

The main oscillator can be powered down in deep-sleep mode by specifying
SYSCTL_DSLP_MOSC_PD. The main oscillator is not powered down if it is required for oper-
ation while in deep-sleep (based on other configuration settings).

Note:
The availability of deep-sleep clocking configuration and the configuration values vary with the
Tiva device in use. Please consult the data sheet for the device you are using to determine
whether the desired configuration options are available and to determine the valid range for the
clock divider.

Returns:
None.

464 May 14, 2014

Tiva TM4C129x ROM User’s Guide

27.2.1.6 ROM_SysCtlDelay

Provides a small delay.

Prototype:
void
ROM_SysCtlDelay(uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlDelay is a function pointer located at ROM_SYSCTLTABLE[34].

Parameters:
ui32Count is the number of delay loop iterations to perform.

Description:
This function provides a means of generating a constant length delay. It is written in assembly
to keep the delay consistent across tool chains, avoiding the need to tune the delay based on
the tool chain in use.

The loop takes 3 cycles/loop.

Returns:
None.

27.2.1.7 ROM_SysCtlFlashSectorSizeGet

Gets the size of a single eraseable sector of flash.

Prototype:
uint32_t
ROM_SysCtlFlashSectorSizeGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlFlashSectorSizeGet is a function pointer located at
ROM_SYSCTLTABLE[54].

Description:
This function determines the flash sector size on the Tiva device. This size determines the
erase granularity of the device flash.

Returns:
The number of bytes in a single flash sector.

27.2.1.8 ROM_SysCtlFlashSizeGet

Gets the size of the flash.

May 14, 2014 465

System Control

Prototype:
uint32_t
ROM_SysCtlFlashSizeGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlFlashSizeGet is a function pointer located at ROM_SYSCTLTABLE[2].

Description:
This function determines the size of the flash on the Tiva device.

Returns:
The total number of bytes of flash.

27.2.1.9 ROM_SysCtlIntClear

Clears system control interrupt sources.

Prototype:
void
ROM_SysCtlIntClear(uint32_t ui32Ints)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlIntClear is a function pointer located at ROM_SYSCTLTABLE[15].

Parameters:
ui32Ints is a bit mask of the interrupt sources to be cleared. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
The specified system control interrupt sources are cleared, so that they no longer assert. This
function must be called in the interrupt handler to keep it from being called again immediately
upon exit.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

The interrupt sources vary based on the Tiva part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns:
None.

466 May 14, 2014

Tiva TM4C129x ROM User’s Guide

27.2.1.10 ROM_SysCtlIntDisable

Disables individual system control interrupt sources.

Prototype:
void
ROM_SysCtlIntDisable(uint32_t ui32Ints)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlIntDisable is a function pointer located at ROM_SYSCTLTABLE[14].

Parameters:
ui32Ints is a bit mask of the interrupt sources to be disabled. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
This function disables the indicated system control interrupt sources. Only the sources that
are enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

Note:
The interrupt sources vary based on the Tiva part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns:
None.

27.2.1.11 ROM_SysCtlIntEnable

Enables individual system control interrupt sources.

Prototype:
void
ROM_SysCtlIntEnable(uint32_t ui32Ints)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlIntEnable is a function pointer located at ROM_SYSCTLTABLE[13].

Parameters:
ui32Ints is a bit mask of the interrupt sources to be enabled. Must be a logical OR of

SYSCTL_INT_PLL_LOCK, SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL,
SYSCTL_INT_MOSC_FAIL, SYSCTL_INT_POR, SYSCTL_INT_BOR, and/or
SYSCTL_INT_PLL_FAIL.

Description:
This function enables the indicated system control interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

May 14, 2014 467

System Control

Note:
The interrupt sources vary based on the Tiva part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns:
None.

27.2.1.12 ROM_SysCtlIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ROM_SysCtlIntStatus(bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlIntStatus is a function pointer located at ROM_SYSCTLTABLE[16].

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the system controller. Either the raw interrupt
status or the status of interrupts that are allowed to reflect to the processor can be returned.

Note:
The interrupt sources vary based on the Tiva part in use. Please consult the data sheet for the
part you are using to determine which interrupt sources are available.

Returns:
The current interrupt status, enumerated as a bit field of SYSCTL_INT_PLL_LOCK,
SYSCTL_INT_CUR_LIMIT, SYSCTL_INT_IOSC_FAIL, SYSCTL_INT_MOSC_FAIL,
SYSCTL_INT_POR, SYSCTL_INT_BOR, and SYSCTL_INT_PLL_FAIL.

27.2.1.13 ROM_SysCtlLPCLowPowerConfigSet

Configures the low power mode settings for the LPC controller.

Prototype:
if TIVA_E void
ROM_SysCtlLPCLowPowerConfigSet(uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlLPCLowPowerConfigSet is a function pointer located at
ROM_SYSCTLTABLE[49].

468 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Config is the low power configuration for the LPC controller.

Description:
This function sets the low power configuration settings for the LPC controller. The ui32Config
parameter should be one of the following values:

SYSCTL_LPCLPWR_SRAM_OFF disables the SRAM in the LPC controller on entering a
low power mode.
SYSCTL_LPCLPWR_SRAM_RETENTION puts the SRAM in the LPC controller into a
SRAM retention mode on entering a low power mode.
SYSCTL_LPCLPWR_SRAM_ON leaves the SRAM in the LPC controller fully powered
when entering a low power mode.

Note:
The availability of this feature varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine whether this support is available.

Returns:
None.

27.2.1.14 ROM_SysCtlLPCLowPowerStatusGet

Returns the low power status of the LPC controller.

Prototype:
endif if TIVA_E if TIVA_E uint32_t
ROM_SysCtlLPCLowPowerStatusGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlLPCLowPowerStatusGet is a function pointer located at
ROM_SYSCTLTABLE[50].

Description:
This function returns the system controller low power status of the LPC controller.

The value returned is one of the following SYSCTL_LPCLPWRS_ values:

SYSCTL_LPCLPWRS_PD_OFF indicates that the LPC SRAM power domain has been
powered off.
SYSCTL_LPCLPWRS_SRAM_OFF indicates that the LPC SRAM is powered off and
does not retain any state. The power domain for the LPC SRAM is still enabled in this
case.
SYSCTL_LPCLPWRS_MEM_OFF indicates that the LPC SRAM is powered off.
SYSCTL_LPCLPWRS_SRAM_RETENTION indicates that the LPC SRAM is in a low
power. The power domain for the LPC SRAM is still enabled in this case.
SYSCTL_LPCLPWRS_SRAM_ON indicates that the LPC SRAM has been set to a full
power state. The power domain for the LPC SRAM is still enabled in this case.

Note:
The availability of this feature varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine whether this support is available.

May 14, 2014 469

System Control

Returns:
The current low power status for the LPC controller.

27.2.1.15 ROM_SysCtlMOSCConfigSet

Sets the configuration of the main oscillator (MOSC) control.

Prototype:
void
ROM_SysCtlMOSCConfigSet(uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlMOSCConfigSet is a function pointer located at ROM_SYSCTLTABLE[44].

Parameters:
ui32Config is the required configuration of the MOSC control.

Description:
This function configures the control of the main oscillator. The ui32Config is specified as the
logical OR of the following values:

SYSCTL_MOSC_VALIDATE enables the MOSC verification circuit that detects a failure of
the main oscillator (such as a loss of the clock).
SYSCTL_MOSC_INTERRUPT indicates that a MOSC failure should generate an interrupt
instead of resetting the processor.
SYSCTL_MOSC_NO_XTAL indicates that there is no crystal connected to the
OSC0/OSC1 pins, allowing power consumption to be reduced.
SYSCTL_MOSC_PWR_DIS disable power to the main oscillator. If this parameter is not
specified, the MOSC input remains powered.
SYSCTL_MOSC_LOWFREQ MOSC is less than 10-MHz.
SYSCTL_MOSC_HIGHFREQ MOSC is greater than 10-MHz.
SYSCTL_MOSC_SESRC specifies that the MOSC is a singled ended oscillator connected
to OSC0. If this parameter is not specified, the input is assumed to be a crystal.

Note:
The availability of MOSC control varies based on the Tiva part in use. Please consult the data
sheet for the part you are using to determine whether this support is available. In addition, the
capability of MOSC control varies based on the Tiva part in use.

Returns:
None.

27.2.1.16 ROM_SysCtlNMIClear

Clears NMI sources.

Prototype:
void
ROM_SysCtlNMIClear(uint32_t ui32Ints)

470 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlNMIClear is a function pointer located at ROM_SYSCTLTABLE[59].

Parameters:
ui32Ints is a bit mask of the non-maskable interrupt sources.

Description:
This function clears the current NMI status specified in the ui32Ints parameter. The valid values
for the ui32Ints parameter are a logical OR of the following values:

SYSCTL_NMI_MOSCFAIL the main oscillator is not present or did not start.
SYSCTL_NMI_TAMPER a tamper event has been detected.
SYSCTL_NMI_WDT0 watchdog 0 generated a timeout.
SYSCTL_NMI_WDT1 watchdog 1 generated a timeout.
SYSCTL_NMI_POWER a power event occurred.
SYSCTL_NMI_EXTERNAL an external NMI pin asserted.

Example: Clear all current NMI status flags.

//
// Clear all the current NMI sources.
//
SysCtlNMIClear(SysCtlNMIStatus());

Note:
The availability of the NMI status varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine which interrupt sources are available.

Returns:
None.

27.2.1.17 ROM_SysCtlNMIStatus

Returns the current NMI status.

Prototype:
uint32_t
ROM_SysCtlNMIStatus(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlNMIStatus is a function pointer located at ROM_SYSCTLTABLE[58].

Description:
This function returns the NMI status for the system controller. The valid values for the ui32Ints
parameter are a logical OR of the following values:

SYSCTL_NMI_MOSCFAIL the main oscillator is not present or did not start.
SYSCTL_NMI_TAMPER a tamper event has been detected.
SYSCTL_NMI_WDT0 watch dog 0 generated a timeout.

May 14, 2014 471

System Control

SYSCTL_NMI_WDT1 watch dog 1 generated a timeout.
SYSCTL_NMI_POWER a power event occurred.
SYSCTL_NMI_EXTERNAL an external NMI pin asserted.

Example: Clear all current NMI status flags.

//
// Clear all the current NMI sources.
//
SysCtlNMIClear(SysCtlNMIStatus());

Note:
The availability of the NMI status varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine which interrupt sources are available.

Returns:
The current NMI status.

27.2.1.18 ROM_SysCtlPeripheralClockGating

Controls peripheral clock gating in sleep and deep-sleep mode.

Prototype:
void
ROM_SysCtlPeripheralClockGating(bool bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralClockGating is a function pointer located at
ROM_SYSCTLTABLE[12].

Parameters:
bEnable is a boolean that is true if the sleep and deep-sleep peripheral configuration should

be used and false if not.

Description:
This function controls how peripherals are clocked when the processor goes into sleep
or deep-sleep mode. By default, the peripherals are clocked the same as in run
mode; if peripheral clock gating is enabled, they are clocked according to the config-
uration set by ROM_SysCtlPeripheralSleepEnable(), ROM_SysCtlPeripheralSleepDisable(),
ROM_SysCtlPeripheralDeepSleepEnable(), and ROM_SysCtlPeripheralDeepSleepDisable().

Returns:
None.

27.2.1.19 ROM_SysCtlPeripheralDeepSleepDisable

Disables a peripheral in deep-sleep mode.

Prototype:
void
ROM_SysCtlPeripheralDeepSleepDisable(uint32_t ui32Peripheral)

472 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralDeepSleepDisable is a function pointer located at
ROM_SYSCTLTABLE[11].

Parameters:
ui32Peripheral is the peripheral to disable in deep-sleep mode.

Description:
This function causes a peripheral to stop operating when the processor goes into deep-sleep
mode. Disabling peripherals while in deep-sleep mode helps to lower the current draw of
the device, and can keep peripherals that require a particular clock frequency from oper-
ating when the clock changes as a result of entering deep-sleep mode. If enabled (via
ROM_SysCtlPeripheralEnable()), the peripheral automatically resumes operation when the
processor leaves deep-sleep mode, maintaining its entire state from before deep-sleep mode
was entered.

Deep-sleep mode clocking of peripherals must be enabled via
ROM_SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode con-
figuration is maintained but has no effect when deep-sleep mode is entered.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

Returns:
None.

27.2.1.20 ROM_SysCtlPeripheralDeepSleepEnable

Enables a peripheral in deep-sleep mode.

May 14, 2014 473

System Control

Prototype:
void
ROM_SysCtlPeripheralDeepSleepEnable(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralDeepSleepEnable is a function pointer located at
ROM_SYSCTLTABLE[10].

Parameters:
ui32Peripheral is the peripheral to enable in deep-sleep mode.

Description:
This function allows a peripheral to continue operating when the processor goes into deep-
sleep mode. Because the clocking configuration of the device may change, not all peripherals
can safely continue operating while the processor is in deep-sleep mode. Those that must run
at a particular frequency (such as a UART) do not work as expected if the clock changes. It is
the responsibility of the caller to make sensible choices.

Deep-sleep mode clocking of peripherals must be enabled via
ROM_SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode con-
figuration is maintained but has no effect when deep-sleep mode is entered.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1. SYSCTL_PERIPH_ADC0,
SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0, SYSCTL_PERIPH_CAN1,
SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0, SYSCTL_PERIPH_COMP1,
SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC, SYSCTL_PERIPH_EEPROM0,
SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH, SYSCTL_PERIPH_GPIOA,
SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD,
SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG,
SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK,
SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION,
SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR,

474 May 14, 2014

Tiva TM4C129x ROM User’s Guide

SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_LCD,
SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1,
SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_SSI0,
SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2, SYSCTL_PERIPH_SSI3,
SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2,
SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5,
SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2,
SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0, SYSCTL_PERIPH_WDOG0, or
SYSCTL_PERIPH_WDOG1.

Returns:
None.

27.2.1.21 ROM_SysCtlPeripheralDisable

Disables a peripheral.

Prototype:
void
ROM_SysCtlPeripheralDisable(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralDisable is a function pointer located at ROM_SYSCTLTABLE[7].

Parameters:
ui32Peripheral is the peripheral to disable.

Description:
This function disables a peripheral. Once disabled, they do not operate or respond to register
reads/writes.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,

May 14, 2014 475

System Control

SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

Returns:
None.

27.2.1.22 ROM_SysCtlPeripheralEnable

Enables a peripheral.

Prototype:
void
ROM_SysCtlPeripheralEnable(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralEnable is a function pointer located at ROM_SYSCTLTABLE[6].

Parameters:
ui32Peripheral is the peripheral to enable.

Description:
This function enables a peripheral. At power-up, all peripherals are disabled; they must be
enabled in order to operate or respond to register reads/writes.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

476 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Note:
It takes five clock cycles after the write to enable a peripheral before the the peripheral is
actually enabled. During this time, attempts to access the peripheral result in a bus fault. Care
should be taken to ensure that the peripheral is not accessed during this brief time period.

Returns:
None.

27.2.1.23 ROM_SysCtlPeripheralPowerOff

Powers off a peripheral.

Prototype:
void
ROM_SysCtlPeripheralPowerOff(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralPowerOff is a function pointer located at
ROM_SYSCTLTABLE[37].

Parameters:
ui32Peripheral is the peripheral to be powered off.

Description:
This function allows the power to a peripheral to be turned off. The peripheral continues to
receive power when its clock is enabled, but the power is removed when its clock is disabled.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

May 14, 2014 477

System Control

Note:
The ability to power off a peripheral varies based on the Tiva part in use. Please consult the
data sheet for the part you are using to determine if this feature is available.

Returns:
None.

27.2.1.24 ROM_SysCtlPeripheralPowerOn

Powers on a peripheral.

Prototype:
void
ROM_SysCtlPeripheralPowerOn(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralPowerOn is a function pointer located at ROM_SYSCTLTABLE[36].

Parameters:
ui32Peripheral is the peripheral to be powered on.

Description:
This function turns on the power to a peripheral. The peripheral continues to receive power
even when its clock is not enabled.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

Note:
The ability to power off a peripheral varies based on the Tiva part in use. Please consult the
data sheet for the part you are using to determine if this feature is available.

478 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

27.2.1.25 ROM_SysCtlPeripheralPresent

Determines if a peripheral is present.

Prototype:
bool
ROM_SysCtlPeripheralPresent(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralPresent is a function pointer located at ROM_SYSCTLTABLE[4].

Parameters:
ui32Peripheral is the peripheral in question.

Description:
This function determines if a particular peripheral is present in the device. Each member of
the Tiva family has a different peripheral set; this function determines which peripherals are
present on this device.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_FAN0, SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB,
SYSCTL_PERIPH_GPIOC, SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE,
SYSCTL_PERIPH_GPIOF, SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH,
SYSCTL_PERIPH_GPIOJ, SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL,
SYSCTL_PERIPH_GPIOM, SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP,
SYSCTL_PERIPH_GPIOQ, SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS,
SYSCTL_PERIPH_GPIOT, SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_HIM0,
SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1, SYSCTL_PERIPH_I2C2,
SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4, SYSCTL_PERIPH_I2C5,
SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7, SYSCTL_PERIPH_I2S0,
SYSCTL_PERIPH_IEEE1588, SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_LPC0,
SYSCTL_PERIPH_MPU, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PECI0,
SYSCTL_PERIPH_PLL, SYSCTL_PERIPH_PWM0, SYSCTL_PERIPH_PWM1,
SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1, SYSCTL_PERIPH_RTS0,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TEMP, SYSCTL_PERIPH_TIMER0,
SYSCTL_PERIPH_TIMER1, SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3,
SYSCTL_PERIPH_TIMER4, SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0,
SYSCTL_PERIPH_UART1, SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UART3,
SYSCTL_PERIPH_UART4, SYSCTL_PERIPH_UART5, SYSCTL_PERIPH_UART6,
SYSCTL_PERIPH_UART7, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, SYSCTL_PERIPH_WDOG1,

May 14, 2014 479

System Control

Returns:
Returns true if the specified peripheral is present and false if it is not.

27.2.1.26 ROM_SysCtlPeripheralReady

Determines if a peripheral is ready.

Prototype:
bool
ROM_SysCtlPeripheralReady(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralReady is a function pointer located at ROM_SYSCTLTABLE[35].

Parameters:
ui32Peripheral is the peripheral in question.

Description:
This function determines if a particular peripheral is ready to be accessed. The peripheral
may be in a non-ready state if it is not enabled, is being held in reset, or is in the process of
becoming ready after being enabled or taken out of reset.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

Note:
The ability to check for a peripheral being ready varies based on the Tiva part in use. Please
consult the data sheet for the part you are using to determine if this feature is available.

Returns:
Returns true if the specified peripheral is ready and false if it is not.

480 May 14, 2014

Tiva TM4C129x ROM User’s Guide

27.2.1.27 ROM_SysCtlPeripheralReset

Performs a software reset of a peripheral.

Prototype:
void
ROM_SysCtlPeripheralReset(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralReset is a function pointer located at ROM_SYSCTLTABLE[5].

Parameters:
ui32Peripheral is the peripheral to reset.

Description:
This function performs a software reset of the specified peripheral. An individual peripheral
reset signal is asserted for a brief period and then de-asserted, returning the internal state of
the peripheral to its reset condition.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

Returns:
None.

27.2.1.28 ROM_SysCtlPeripheralSleepDisable

Disables a peripheral in sleep mode.

May 14, 2014 481

System Control

Prototype:
void
ROM_SysCtlPeripheralSleepDisable(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralSleepDisable is a function pointer located at
ROM_SYSCTLTABLE[9].

Parameters:
ui32Peripheral is the peripheral to disable in sleep mode.

Description:
This function causes a peripheral to stop operating when the processor goes into sleep mode.
Disabling peripherals while in sleep mode helps to lower the current draw of the device. If
enabled (via ROM_SysCtlPeripheralEnable()), the peripheral automatically resumes operation
when the processor leaves sleep mode, maintaining its entire state from before sleep mode
was entered.

Sleep mode clocking of peripherals must be enabled via ROM_SysCtlPeripheralClockGating();
if disabled, the peripheral sleep mode configuration is maintained but has no effect when sleep
mode is entered.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

Returns:
None.

27.2.1.29 ROM_SysCtlPeripheralSleepEnable

Enables a peripheral in sleep mode.

482 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_SysCtlPeripheralSleepEnable(uint32_t ui32Peripheral)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPeripheralSleepEnable is a function pointer located at
ROM_SYSCTLTABLE[8].

Parameters:
ui32Peripheral is the peripheral to enable in sleep mode.

Description:
This function allows a peripheral to continue operating when the processor goes into sleep
mode. Because the clocking configuration of the device does not change, any peripheral can
safely continue operating while the processor is in sleep mode and can therefore wake the
processor from sleep mode.

Sleep mode clocking of peripherals must be enabled via ROM_SysCtlPeripheralClockGating();
if disabled, the peripheral sleep mode configuration is maintained but has no effect when sleep
mode is entered.

The ui32Peripheral parameter must be only one of the following values:
SYSCTL_PERIPH_ADC0, SYSCTL_PERIPH_ADC1, SYSCTL_PERIPH_CAN0,
SYSCTL_PERIPH_CAN1, SYSCTL_PERIPH_CAN2, SYSCTL_PERIPH_COMP0,
SYSCTL_PERIPH_COMP1, SYSCTL_PERIPH_COMP2, SYSCTL_PERIPH_CRC,
SYSCTL_PERIPH_EEPROM0, SYSCTL_PERIPH_EPI0, SYSCTL_PERIPH_ETH,
SYSCTL_PERIPH_GPIOA, SYSCTL_PERIPH_GPIOB, SYSCTL_PERIPH_GPIOC,
SYSCTL_PERIPH_GPIOD, SYSCTL_PERIPH_GPIOE, SYSCTL_PERIPH_GPIOF,
SYSCTL_PERIPH_GPIOG, SYSCTL_PERIPH_GPIOH, SYSCTL_PERIPH_GPIOJ,
SYSCTL_PERIPH_GPIOK, SYSCTL_PERIPH_GPIOL, SYSCTL_PERIPH_GPIOM,
SYSCTL_PERIPH_GPION, SYSCTL_PERIPH_GPIOP, SYSCTL_PERIPH_GPIOQ,
SYSCTL_PERIPH_GPIOR, SYSCTL_PERIPH_GPIOS, SYSCTL_PERIPH_GPIOT,
SYSCTL_PERIPH_HIBERNATE, SYSCTL_PERIPH_I2C0, SYSCTL_PERIPH_I2C1,
SYSCTL_PERIPH_I2C2, SYSCTL_PERIPH_I2C3, SYSCTL_PERIPH_I2C4,
SYSCTL_PERIPH_I2C5, SYSCTL_PERIPH_I2C6, SYSCTL_PERIPH_I2C7,
SYSCTL_PERIPH_LCD, SYSCTL_PERIPH_ONEWIRE0, SYSCTL_PERIPH_PWM0,
SYSCTL_PERIPH_PWM1, SYSCTL_PERIPH_QEI0, SYSCTL_PERIPH_QEI1,
SYSCTL_PERIPH_SSI0, SYSCTL_PERIPH_SSI1, SYSCTL_PERIPH_SSI2,
SYSCTL_PERIPH_SSI3, SYSCTL_PERIPH_TIMER0, SYSCTL_PERIPH_TIMER1,
SYSCTL_PERIPH_TIMER2, SYSCTL_PERIPH_TIMER3, SYSCTL_PERIPH_TIMER4,
SYSCTL_PERIPH_TIMER5, SYSCTL_PERIPH_UART0, SYSCTL_PERIPH_UART1,
SYSCTL_PERIPH_UART2, SYSCTL_PERIPH_UDMA, SYSCTL_PERIPH_USB0,
SYSCTL_PERIPH_WDOG0, or SYSCTL_PERIPH_WDOG1.

Returns:
None.

27.2.1.30 ROM_SysCtlPIOSCCalibrate

Calibrates the precision internal oscillator.

May 14, 2014 483

System Control

Prototype:
uint32_t
ROM_SysCtlPIOSCCalibrate(uint32_t ui32Type)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlPIOSCCalibrate is a function pointer located at ROM_SYSCTLTABLE[45].

Parameters:
ui32Type is the type of calibration to perform.

Description:
This function performs a calibration of the PIOSC. There are three types of calibration available;
the desired calibration type as specified in ui32Type is one of:

SYSCTL_PIOSC_CAL_AUTO to perform automatic calibration using the 32-kHz clock
from the hibernate module as a reference. This type is only possible on parts that have a
hibernate module, and then only if it is enabled, a 32.768-kHz clock source is attached to
the XOSC0/1 pins and the hibernate module’s RTC is also enabled.

SYSCTL_PIOSC_CAL_FACT to reset the PIOSC calibration to the factory provided cali-
bration.

SYSCTL_PIOSC_CAL_USER to set the PIOSC calibration to a user-supplied value. The
value to be used is ORed into the lower 7-bits of this value, with 0x40 being the “nominal”
value (in other words, if everything were perfect, 0x40 provides exactly 16 MHz). Values
larger than 0x40 slow down PIOSC, and values smaller than 0x40 speed up PIOSC.

Returns:
Returns 1 if the calibration was successful and 0 if it failed.

27.2.1.31 ROM_SysCtlReset

Resets the device.

Prototype:
void
ROM_SysCtlReset(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlReset is a function pointer located at ROM_SYSCTLTABLE[19].

Description:
This function performs a software reset of the entire device. The processor and all peripherals
are reset and all device registers are returned to their default values (with the exception of the
reset cause register, which maintains its current value but has the software reset bit set as
well).

Returns:
This function does not return.

484 May 14, 2014

Tiva TM4C129x ROM User’s Guide

27.2.1.32 ROM_SysCtlResetBehaviorGet

Returns the current types of reset issued due to reset events.

Prototype:
uint32_t
ROM_SysCtlResetBehaviorGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlResetBehaviorGet is a function pointer located at ROM_SYSCTLTABLE[52].

Description:
This function returns the types of resets issued when a configurable reset occurs. The value
returned is a logical OR combination of the valid values that are described in the documentation
for the ui32Behavior parameter of the ROM_SysCtlResetBehaviorSet() function.

Returns:
The reset behaviors for all configurable resets.

27.2.1.33 ROM_SysCtlResetBehaviorSet

Sets the type of reset issued due to certain reset events.

Prototype:
void
ROM_SysCtlResetBehaviorSet(uint32_t ui32Behavior)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlResetBehaviorSet is a function pointer located at ROM_SYSCTLTABLE[51].

Parameters:
ui32Behavior specifies the types of resets for each of the configurable reset events.

Description:
This function sets the types of reset issued when a configurable reset event occurs. The reset
events that are configurable are: Watchdog 0 or 1, a brown out and the external RSTn pin. See
the data sheet for more information on the differences between a full POR and a system reset.
The valid actions are either a system reset or a full POR sequence. All reset behaviors can be
configured with a single call using the logical OR of the values defined below. Any options that
are not specifically set leaves the type of reset for that reset to its default behavior. Either POR
or system reset can be selected for each reset cause.

Valid values are logical combinations of the following:

SYSCTL_ONRST_WDOG0_POR configures a Watchdog 0 reset to perform a full POR.
SYSCTL_ONRST_WDOG0_SYS configures a Watchdog 0 reset to perform a system re-
set.
SYSCTL_ONRST_WDOG1_POR configures a Watchdog 1 reset to perform a full POR.

May 14, 2014 485

System Control

SYSCTL_ONRST_WDOG1_SYS configures a Watchdog 1 reset to perform a system re-
set.
SYSCTL_ONRST_BOR_POR configures a brown-out reset to perform a full POR.
SYSCTL_ONRST_BOR_SYS configures a brown-out reset to perform a system reset.
SYSCTL_ONRST_EXT_POR configures an external pin reset to perform a full POR.
SYSCTL_ONRST_EXT_SYS configures an external pin reset to perform a system reset.

Example: Set Watchdog 0 reset to trigger a POR and a brown-out reset to trigger a system
reset while leaving the remaining resets with their default behaviors.

SysCtlResetBehaviorSet(SYSCTL_ONRST_WDOG0_POR | SYSCTL_ONRST_BOR_SYS);

Returns:
None.

27.2.1.34 ROM_SysCtlResetCauseClear

Clears reset reasons.

Prototype:
void
ROM_SysCtlResetCauseClear(uint32_t ui32Causes)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlResetCauseClear is a function pointer located at ROM_SYSCTLTABLE[22].

Parameters:
ui32Causes are the reset causes to be cleared; must be a logical OR of

SYSCTL_CAUSE_HSRVREQ, SYSCTL_CAUSE_HIB, SYSCTL_CAUSE_LDO,
SYSCTL_CAUSE_WDOG1, SYSCTL_CAUSE_SW, SYSCTL_CAUSE_WDOG0,
SYSCTL_CAUSE_WDOG, SYSCTL_CAUSE_BOR, SYSCTL_CAUSE_POR or
SYSCTL_CAUSE_EXT.

Description:
This function clears the specified sticky reset reasons. Once cleared, another reset for the
same reason can be detected, and a reset for a different reason can be distinguished (instead
of having two reset causes set). If the reset reason is used by an application, all reset causes
should be cleared after they are retrieved with ROM_SysCtlResetCauseGet().

Returns:
None.

27.2.1.35 ROM_SysCtlResetCauseGet

Gets the reason for a reset.

Prototype:
uint32_t
ROM_SysCtlResetCauseGet(void)

486 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlResetCauseGet is a function pointer located at ROM_SYSCTLTABLE[21].

Description:
This function returns the reason(s) for a reset. Because the reset reasons are
sticky until either cleared by software or a power-on reset, multiple reset reasons
may be returned if multiple resets have occurred. The reset reason is a log-
ical OR of SYSCTL_CAUSE_LDO, SYSCTL_CAUSE_SW, SYSCTL_CAUSE_WDOG,
SYSCTL_CAUSE_BOR, SYSCTL_CAUSE_POR, and/or SYSCTL_CAUSE_EXT.

Returns:
Returns the reason(s) for a reset.

27.2.1.36 ROM_SysCtlSleep

Puts the processor into sleep mode.

Prototype:
void
ROM_SysCtlSleep(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlSleep is a function pointer located at ROM_SYSCTLTABLE[0].

Description:
This function places the processor into sleep mode; it does not return until the processor re-
turns to run mode. The peripherals that are enabled via ROM_SysCtlPeripheralSleepEnable()
continue to operate and can wake up the processor (if automatic clock gating is enabled with
ROM_SysCtlPeripheralClockGating(), otherwise all peripherals continue to operate).

Returns:
None.

27.2.1.37 ROM_SysCtlSRAMSizeGet

Gets the size of the SRAM.

Prototype:
uint32_t
ROM_SysCtlSRAMSizeGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlSRAMSizeGet is a function pointer located at ROM_SYSCTLTABLE[1].

Description:
This function determines the size of the SRAM on the Tiva device.

May 14, 2014 487

System Control

Returns:
The total number of bytes of SRAM.

27.2.1.38 ROM_SysCtlVoltageEventClear

Clears the voltage event status.

Prototype:
void
ROM_SysCtlVoltageEventClear(uint32_t ui32Status)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlVoltageEventClear is a function pointer located at ROM_SYSCTLTABLE[57].

Parameters:
ui32Status is a bit mask of the voltage events to clear.

Description:
This function clears the current voltage events status for the values specified in the ui32Status
parameter. The ui32Status value must be a logical OR of the following values:

SYSCTL_VESTAT_VDDBOR a brown out event occurred on the VDD rail.
SYSCTL_VESTAT_VDDABOR a brown out event occurred on the VDDA rail.
SYSCTL_VESTAT_VDDCBOR a brown out event occurred on the VDDC rail.

Example: Clear the current voltage event status.

//
// Clear all the current voltage events.
//
SysCtlVoltageEventClear(SysCtlVoltageEventStatus());

Note:
The availability of voltage event status varies with the Tiva part in use. Please consult the data
sheet for the part you are using to determine which interrupt sources are available.

Returns:
None.

27.2.1.39 ROM_SysCtlVoltageEventConfig

Configures the response to system voltage events.

Prototype:
endif void
ROM_SysCtlVoltageEventConfig(uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].

488 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM_SysCtlVoltageEventConfig is a function pointer located at
ROM_SYSCTLTABLE[55].

Parameters:
ui32Config holds the configuration options for the voltage events.

Description:
This function configures the response to voltage related events. These events are triggered
when the voltage rails drop below certain levels. The ui32Config parameter provides the con-
figuration for the voltage events and is a combination of the SYSCTL_VEVENT_∗ values.

The response to a brown out on the VDDA rail is set by using one of the following values:

SYSCTL_VEVENT_VDDABO_NONE - There is no action taken on a VDDA brown out.
SYSCTL_VEVENT_VDDABO_INT - A system interrupt is generated when a VDDA brown
out occurs.
SYSCTL_VEVENT_VDDABO_NMI - A NMI is generated when a VDDA brown out occurs.
SYSCTL_VEVENT_VDDABO_RST - A reset is generated when a VDDA brown out oc-
curs. The type of reset that is generated is controller by the SYSCTL_ONRST_BOR_∗
setting passed into the ROM_SysCtlResetBehaviorSet() function.

The response to a brown out on the VDD rail is set by using one of the following values:

SYSCTL_VEVENT_VDDBO_NONE - There is no action taken on a VDD brown out.
SYSCTL_VEVENT_VDDBO_INT - A system interrupt is generated when a VDD brown
out occurs.
SYSCTL_VEVENT_VDDBO_NMI - A NMI is generated when a VDD brown out occurs.
SYSCTL_VEVENT_VDDBO_RST - A reset is generated when a VDD brown out occurs.
The type of reset that is generated is controller by the SYSCTL_ONRST_BOR_∗ setting
passed into the ROM_SysCtlResetBehaviorSet() function.

Example: Configure the voltage events to trigger an interrupt on a VDDA brown out, a NMI or
a VDDC brown out and a reset on a VDD brown out.

//
// Configure the BOR rest to trigger a full POR. This is needed because
// the ROM_SysCtlVoltageEventConfig() call is triggering a reset so the type
// of reset is specified by this call.
//
SysCtlResetBehaviorSet(SYSCTL_ONRST_BOR_POR);

//
// Trigger an interrupt on a VDDA brown out, an NMI on a VDDC brown out and
// a reset on a VDD brown out.
//
SysCtlVoltageEventConfig(SYSCTL_VEVENT_VDDCBO_NMI |

SYSCTL_VEVENT_VDDABO_INT |
SYSCTL_VEVENT_VDDBO_RST);

Returns:
None.

27.2.1.40 ROM_SysCtlVoltageEventStatus

Returns the voltage event status.

May 14, 2014 489

System Control

Prototype:
uint32_t
ROM_SysCtlVoltageEventStatus(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSCTLTABLE is an array of pointers located at ROM_APITABLE[13].
ROM_SysCtlVoltageEventStatus is a function pointer located at
ROM_SYSCTLTABLE[56].

Description:
This function returns the voltage event status for the system controller. The value returned is a
logical OR of the following values:

SYSCTL_VESTAT_VDDBOR a brown out event occurred on the VDD rail.
SYSCTL_VESTAT_VDDABOR a brown out event occurred on the VDDA rail.

The values returned from this function can be passed to the ROM_SysCtlVoltageEventClear()
to clear the current voltage event status. Because voltage events are not cleared due to a
reset, the voltage event status must be cleared by calling ROM_SysCtlVoltageEventClear().

Example: Clear the current voltage event status.

uint32_t ui32VoltageEvents;

//
// Read the current voltage event status.
//
ui32VoltageEvents = ROM_SysCtlVoltageEventStatus();

//
// Clear all the current voltage events.
//
SysCtlVoltageEventClear(ui32VoltageEvents);

Returns:
The current voltage event status.

Note:
The availability of voltage events varies with the Tiva part in use. Please consult the data sheet
for the part you are using to determine which interrupt sources are available.

490 May 14, 2014

Tiva TM4C129x ROM User’s Guide

28 System Exception Module
Introduction .491
API Functions . 491

28.1 Introduction

The system exception module driver provides methods for manipulating the behavior of the sys-
tem exception module that handles system-level Cortex-M4 FPU exceptions. The exceptions are
underflow, overflow, divide by zero, invalid operation, input denormal, and inexact exception. The
application can optionally choose to enable one or more of these interrupts and use the interrupt
handler to decide upon a course of action to be taken in each case. All the interrupt events are
ORed together before being sent to the interrupt controller, so the System Exception module can
only generate a single interrupt request to the controller at any given time.

28.2 API Functions

Functions
void ROM_SysExcIntClear (uint32_t ui32IntFlags)
void ROM_SysExcIntDisable (uint32_t ui32IntFlags)
void ROM_SysExcIntEnable (uint32_t ui32IntFlags)
uint32_t ROM_SysExcIntStatus (bool bMasked)

28.2.1 Function Documentation

28.2.1.1 ROM_SysExcIntClear

Clears system exception interrupt sources.

Prototype:
void
ROM_SysExcIntClear(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSEXCTABLE is an array of pointers located at ROM_APITABLE[30].
ROM_SysExcIntClear is a function pointer located at ROM_SYSEXCTABLE[1].

Parameters:
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
This function clears the specified system exception interrupt sources, so that they no longer
assert. This function must be called in the interrupt handler to keep the interrupt from being
recognized again immediately upon exit.

May 14, 2014 491

System Exception Module

The ui32IntFlags parameter is the logical OR of any of the following:

SYSEXC_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXC_INT_FP_OFC - Floating-point overflow exception interrupt
SYSEXC_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXC_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXC_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXC_INT_FP_IDC - Floating-point input denormal exception interrupt

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

28.2.1.2 ROM_SysExcIntDisable

Disables individual system exception interrupt sources.

Prototype:
void
ROM_SysExcIntDisable(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSEXCTABLE is an array of pointers located at ROM_APITABLE[30].
ROM_SysExcIntDisable is a function pointer located at ROM_SYSEXCTABLE[2].

Parameters:
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated system exception interrupt sources. Only sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

SYSEXC_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXC_INT_FP_OFC - Floating-point overflow exception interrupt
SYSEXC_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXC_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXC_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXC_INT_FP_IDC - Floating-point input denormal exception interrupt

Returns:
None.

492 May 14, 2014

Tiva TM4C129x ROM User’s Guide

28.2.1.3 ROM_SysExcIntEnable

Enables individual system exception interrupt sources.

Prototype:
void
ROM_SysExcIntEnable(uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSEXCTABLE is an array of pointers located at ROM_APITABLE[30].
ROM_SysExcIntEnable is a function pointer located at ROM_SYSEXCTABLE[3].

Parameters:
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated system exception interrupt sources. Only the sources that
are enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

SYSEXC_INT_FP_IXC - Floating-point inexact exception interrupt
SYSEXC_INT_FP_OFC - Floating-point overflow exception interrupt
SYSEXC_INT_FP_UFC - Floating-point underflow exception interrupt
SYSEXC_INT_FP_IOC - Floating-point invalid operation interrupt
SYSEXC_INT_FP_DZC - Floating-point divide by zero exception interrupt
SYSEXC_INT_FP_IDC - Floating-point input denormal exception interrupt

Returns:
None.

28.2.1.4 ROM_SysExcIntStatus

Gets the current system exception interrupt status.

Prototype:
uint32_t
ROM_SysExcIntStatus(bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSEXCTABLE is an array of pointers located at ROM_APITABLE[30].
ROM_SysExcIntStatus is a function pointer located at ROM_SYSEXCTABLE[0].

Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the system exception interrupt status. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

May 14, 2014 493

System Exception Module

Returns:
Returns the current system exception interrupt status, enumerated as the logi-
cal OR of SYSEXC_INT_FP_IXC, SYSEXC_INT_FP_OFC, SYSEXC_INT_FP_UFC, SY-
SEXC_INT_FP_IOC, SYSEXC_INT_FP_DZC, and SYSEXC_INT_FP_IDC.

494 May 14, 2014

Tiva TM4C129x ROM User’s Guide

29 System Tick (SysTick)
Introduction .495
Functions . 495

29.1 Introduction

SysTick is a simple timer that is part of the NVIC controller in the Cortex-M microprocessor. Its
intended purpose is to provide a periodic interrupt for an RTOS, but it can be used for other simple
timing purposes.

The SysTick interrupt handler does not need to clear the SysTick interrupt source as it is cleared
automatically by the NVIC when the SysTick interrupt handler is called.

29.2 Functions

Functions
void ROM_SysTickDisable (void)
void ROM_SysTickEnable (void)
void ROM_SysTickIntDisable (void)
void ROM_SysTickIntEnable (void)
uint32_t ROM_SysTickPeriodGet (void)
void ROM_SysTickPeriodSet (uint32_t ui32Period)
uint32_t ROM_SysTickValueGet (void)

29.2.1 Function Documentation

29.2.1.1 ROM_SysTickDisable

Disables the SysTick counter.

Prototype:
void
ROM_SysTickDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickDisable is a function pointer located at ROM_SYSTICKTABLE[2].

Description:
This function stops the SysTick counter. If an interrupt handler has been registered, it is not
called until SysTick is restarted.

May 14, 2014 495

System Tick (SysTick)

Returns:
None.

29.2.1.2 ROM_SysTickEnable

Enables the SysTick counter.

Prototype:
void
ROM_SysTickEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickEnable is a function pointer located at ROM_SYSTICKTABLE[1].

Description:
This function starts the SysTick counter. If an interrupt handler has been registered, it is called
when the SysTick counter rolls over.

Note:
Calling this function causes the SysTick counter to (re)commence counting from its current
value. The counter is not automatically reloaded with the period as specified in a previous
call to ROM_SysTickPeriodSet(). If an immediate reload is required, the NVIC_ST_CURRENT
register must be written to force the reload. Any write to this register clears the SysTick counter
to 0 and causes a reload with the supplied period on the next clock.

Returns:
None.

29.2.1.3 ROM_SysTickIntDisable

Disables the SysTick interrupt.

Prototype:
void
ROM_SysTickIntDisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickIntDisable is a function pointer located at ROM_SYSTICKTABLE[4].

Description:
This function disables the SysTick interrupt, preventing it from being reflected to the processor.

Returns:
None.

496 May 14, 2014

Tiva TM4C129x ROM User’s Guide

29.2.1.4 ROM_SysTickIntEnable

Enables the SysTick interrupt.

Prototype:
void
ROM_SysTickIntEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickIntEnable is a function pointer located at ROM_SYSTICKTABLE[3].

Description:
This function enables the SysTick interrupt, allowing it to be reflected to the processor.

Note:
The SysTick interrupt handler is not required to clear the SysTick interrupt source because it is
cleared automatically by the NVIC when the interrupt handler is called.

Returns:
None.

29.2.1.5 ROM_SysTickPeriodGet

Gets the period of the SysTick counter.

Prototype:
uint32_t
ROM_SysTickPeriodGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickPeriodGet is a function pointer located at ROM_SYSTICKTABLE[6].

Description:
This function returns the rate at which the SysTick counter wraps, which equates to the number
of processor clocks between interrupts.

Returns:
Returns the period of the SysTick counter.

29.2.1.6 ROM_SysTickPeriodSet

Sets the period of the SysTick counter.

Prototype:
void
ROM_SysTickPeriodSet(uint32_t ui32Period)

May 14, 2014 497

System Tick (SysTick)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickPeriodSet is a function pointer located at ROM_SYSTICKTABLE[5].

Parameters:
ui32Period is the number of clock ticks in each period of the SysTick counter and must be

between 1 and 16,777,216, inclusive.

Description:
This function sets the rate at which the SysTick counter wraps, which equates to the number
of processor clocks between interrupts.

Note:
Calling this function does not cause the SysTick counter to reload immediately. If an immediate
reload is required, the NVIC_ST_CURRENT register must be written. Any write to this register
clears the SysTick counter to 0 and causes a reload with the ui32Period supplied here on the
next clock after SysTick is enabled.

Returns:
None.

29.2.1.7 ROM_SysTickValueGet

Gets the current value of the SysTick counter.

Prototype:
uint32_t
ROM_SysTickValueGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_SYSTICKTABLE is an array of pointers located at ROM_APITABLE[10].
ROM_SysTickValueGet is a function pointer located at ROM_SYSTICKTABLE[0].

Description:
This function returns the current value of the SysTick counter, which is a value between the
period - 1 and zero, inclusive.

Returns:
Returns the current value of the SysTick counter.

498 May 14, 2014

Tiva TM4C129x ROM User’s Guide

30 Timer
Introduction .499
Functions . 500

30.1 Introduction

The timer API provides a set of functions for using the timer module. Functions are provided to
configure and control the timer, modify timer/counter values, and manage timer interrupt handling.

The timer module provides two half-width timers/counters that can be configured to operate inde-
pendently as timers or event counters or to operate as a combined full-width timer or Real Time
Clock (RTC). The timers provide 16-bit half-width timers and a 32-bit full-width timer. For the pur-
pose of this API, the two half-width timers provided by a timer module are referred to as TimerA
and TimerB, and the full-width timer is referred to as TimerA.

When configured as either a full-width or half-width timer, a timer can be set up to run as a one-shot
timer or a continuous timer. If configured in one-shot mode, the timer ceases counting when it
reaches zero when counting down or the load value when counting up. If configured in continuous
mode, the timer counts to zero (counting down) or the load value (counting up), then reloads and
continues counting. When configured as a full-width timer, the timer can also be configured to
operate as an RTC. In this mode, the timer expects to be driven by a 32.768 KHz external clock,
which is divided down to produce 1 second clock ticks.

When in half-width mode, the timer can also be configured for event capture or as a Pulse Width
Modulation (PWM) generator. When configured for event capture, the timer acts as a counter. It
can be configured to either count the time between events or the events themselves. The type of
event being counted can be configured as a positive edge, a negative edge, or both edges. When
a timer is configured as a PWM generator, the input signal used to capture events becomes an
output signal, and the timer drives an edge-aligned pulse onto that signal.

The timer module also provides the ability to control other functional parameters, such as output
inversion, output triggers, and timer behavior during stalls.

Control is also provided over interrupt sources and events. Interrupts can be generated to indicate
that an event has been captured, or that a certain number of events have been captured. Interrupts
can also be generated when the timer has counted down to zero or when the timer matches a
certain value.

The counters from multiple timer modules can be synchronized. Synchronized counters are useful
in PWM and edge time capture modes. In PWM mode, the PWM outputs from multiple timers can
be in lock-step by having the same load value and synchronizing the counters (meaning that the
counters always have the same value). Similarly, by using the same load value and synchronized
counters in edge time capture mode, the absolute time between two input edges can be easily
measured.

May 14, 2014 499

Timer

30.2 Functions

Functions
uint32_t ROM_TimerADCEventGet (uint32_t ui32Base)
void ROM_TimerADCEventSet (uint32_t ui32Base, uint32_t ui32ADCEvent)
uint32_t ROM_TimerClockSourceGet (uint32_t ui32Base)
void ROM_TimerClockSourceSet (uint32_t ui32Base, uint32_t ui32Source)
void ROM_TimerConfigure (uint32_t ui32Base, uint32_t ui32Config)
void ROM_TimerControlEvent (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Event)
void ROM_TimerControlLevel (uint32_t ui32Base, uint32_t ui32Timer, bool bInvert)
void ROM_TimerControlStall (uint32_t ui32Base, uint32_t ui32Timer, bool bStall)
void ROM_TimerControlTrigger (uint32_t ui32Base, uint32_t ui32Timer, bool bEnable)
void ROM_TimerControlWaitOnTrigger (uint32_t ui32Base, uint32_t ui32Timer, bool bWait)
void ROM_TimerDisable (uint32_t ui32Base, uint32_t ui32Timer)
uint32_t ROM_TimerDMAEventGet (uint32_t ui32Base)
void ROM_TimerDMAEventSet (uint32_t ui32Base, uint32_t ui32DMAEvent)
void ROM_TimerEnable (uint32_t ui32Base, uint32_t ui32Timer)
void ROM_TimerIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_TimerIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_TimerIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_TimerIntStatus (uint32_t ui32Base, bool bMasked)
uint32_t ROM_TimerLoadGet (uint32_t ui32Base, uint32_t ui32Timer)
void ROM_TimerLoadSet (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Value)
uint32_t ROM_TimerMatchGet (uint32_t ui32Base, uint32_t ui32Timer)
void ROM_TimerMatchSet (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Value)
uint32_t ROM_TimerPrescaleGet (uint32_t ui32Base, uint32_t ui32Timer)
uint32_t ROM_TimerPrescaleMatchGet (uint32_t ui32Base, uint32_t ui32Timer)
void ROM_TimerPrescaleMatchSet (uint32_t ui32Base, uint32_t ui32Timer, uint32_t
ui32Value)
void ROM_TimerPrescaleSet (uint32_t ui32Base, uint32_t ui32Timer, uint32_t ui32Value)
void ROM_TimerRTCDisable (uint32_t ui32Base)
void ROM_TimerRTCEnable (uint32_t ui32Base)
void ROM_TimerSynchronize (uint32_t ui32Base, uint32_t ui32Timers)
uint32_t ROM_TimerValueGet (uint32_t ui32Base, uint32_t ui32Timer)

30.2.1 Function Documentation

30.2.1.1 ROM_TimerADCEventGet

Returns the events that can cause an ADC trigger event.

Prototype:
uint32_t
ROM_TimerADCEventGet(uint32_t ui32Base)

500 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerADCEventGet is a function pointer located at ROM_TIMERTABLE[30].

Parameters:
ui32Base is the base address of the timer module.

Description:
This function returns the timer events that can cause an ADC trigger event. The ADC trigger
events are the logical OR of any of the following values:

TIMER_ADC_MODEMATCH_B - The mode match ADC trigger for timer B is enabled.
TIMER_ADC_CAPEVENT_B - The capture event ADC trigger for timer B is enabled.
TIMER_ADC_CAPMATCH_B - The capture match ADC trigger for timer B is enabled.
TIMER_ADC_TIMEOUT_B - The timeout ADC trigger for timer B is enabled.
TIMER_ADC_MODEMATCH_A - The mode match ADC trigger for timer A is enabled.
TIMER_ADC_RTC_A - The RTC ADC trigger for timer A is enabled.
TIMER_ADC_CAPEVENT_A - The capture event ADC trigger for timer A is enabled.
TIMER_ADC_CAPMATCH_A - The capture match ADC trigger for timer A is enabled.
TIMER_ADC_TIMEOUT_A - The timeout ADC trigger for timer A is enabled.

Returns:
The timer events that trigger the ADC.

30.2.1.2 ROM_TimerADCEventSet

Enables the events that can cause an ADC trigger event.

Prototype:
void
ROM_TimerADCEventSet(uint32_t ui32Base,

uint32_t ui32ADCEvent)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerADCEventSet is a function pointer located at ROM_TIMERTABLE[31].

Parameters:
ui32Base is the base address of the timer module.
ui32ADCEvent is a bit mask of the events that can cause an ADC trigger event.

Description:
This function enables the timer events that can cause an ADC trigger event. The ADC trigger
events are specified in the ui32ADCEvent parameter by passing in the logical OR of any of the
following values:

TIMER_ADC_MODEMATCH_B - Enables the mode match ADC trigger for timer B.
TIMER_ADC_CAPEVENT_B - Enables the capture event ADC trigger for timer B.
TIMER_ADC_CAPMATCH_B - Enables the capture match ADC trigger for timer B.

May 14, 2014 501

Timer

TIMER_ADC_TIMEOUT_B - Enables the timeout ADC trigger for timer B.
TIMER_ADC_MODEMATCH_A - Enables the mode match ADC trigger for timer A.
TIMER_ADC_RTC_A - Enables the RTC ADC trigger for timer A.
TIMER_ADC_CAPEVENT_A - Enables the capture event ADC trigger for timer A.
TIMER_ADC_CAPMATCH_A - Enables the capture match ADC trigger for timer A.
TIMER_ADC_TIMEOUT_A - Enables the timeout ADC trigger for timer A.

Returns:
None.

30.2.1.3 ROM_TimerClockSourceGet

Returns the clock source for the specified timer module.

Prototype:
uint32_t
ROM_TimerClockSourceGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerClockSourceGet is a function pointer located at ROM_TIMERTABLE[28].

Parameters:
ui32Base is the base address of the timer module.

Description:
This function returns the clock source for the specified timer module. The possible clock
sources are the system clock (TIMER_CLOCK_SYSTEM) or the precision internal oscillator
(TIMER_CLOCK_PIOSC).

Returns:
Returns either TIMER_CLOCK_SYSTEM or TIMER_CLOCK_PIOSC.

30.2.1.4 ROM_TimerClockSourceSet

Sets the clock source for the specified timer module.

Prototype:
void
ROM_TimerClockSourceSet(uint32_t ui32Base,

uint32_t ui32Source)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerClockSourceSet is a function pointer located at ROM_TIMERTABLE[29].

Parameters:
ui32Base is the base address of the timer module.

502 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32Source is the clock source for the timer module.

Description:
This function sets the clock source for both timer A and timer B for the given timer module.
The possible clock sources are the system clock (TIMER_CLOCK_SYSTEM) or the precision
internal oscillator (TIMER_CLOCK_PIOSC).

Returns:
None.

30.2.1.5 ROM_TimerConfigure

Configures the timer(s).

Prototype:
void
ROM_TimerConfigure(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerConfigure is a function pointer located at ROM_TIMERTABLE[3].

Parameters:
ui32Base is the base address of the timer module.
ui32Config is the configuration for the timer.

Description:
This function configures the operating mode of the timer(s). The timer module is disabled
before being configured and is left in the disabled state. The timer can be configured to be a
single full-width timer by using the TIMER_CFG_∗ values or a pair of half-width timers using
the TIMER_CFG_A_∗ and TIMER_CFG_B_∗ values passed in the ui32Config parameter.

The configuration is specified in ui32Config as one of the following values:

TIMER_CFG_ONE_SHOT - Full-width one-shot timer
TIMER_CFG_ONE_SHOT_UP - Full-width one-shot timer that counts up instead of down
(not available on all parts)
TIMER_CFG_PERIODIC - Full-width periodic timer
TIMER_CFG_PERIODIC_UP - Full-width periodic timer that counts up instead of down
(not available on all parts)
TIMER_CFG_RTC - Full-width real time clock timer
TIMER_CFG_SPLIT_PAIR - Two half-width timers

When configured for a pair of half-width timers, each timer is separately configured. The first
timer is configured by setting ui32Config to the result of a logical OR operation between one of
the following values and ui32Config:

TIMER_CFG_A_ONE_SHOT - Half-width one-shot timer
TIMER_CFG_A_ONE_SHOT_UP - Half-width one-shot timer that counts up instead of
down (not available on all parts)

May 14, 2014 503

Timer

TIMER_CFG_A_PERIODIC - Half-width periodic timer
TIMER_CFG_A_PERIODIC_UP - Half-width periodic timer that counts up instead of down
(not available on all parts)
TIMER_CFG_A_CAP_COUNT - Half-width edge count capture
TIMER_CFG_A_CAP_COUNT_UP - Half-width edge count capture that counts up instead
of down (not available on all parts)
TIMER_CFG_A_CAP_TIME - Half-width edge time capture
TIMER_CFG_A_CAP_TIME_UP - Half-width edge time capture that counts up instead of
down (not available on all parts)
TIMER_CFG_A_PWM - Half-width PWM output

One of the following can be combined with the TIMER_CFG_∗ values to enable an action on
timer A:

TIMER_CFG_A_ACT_TOINTD - masks the timeout interrupt of timer A.
TIMER_CFG_A_ACT_NONE - no additional action on timeout of timer A.
TIMER_CFG_A_ACT_TOGGLE - toggle CCP on timeout of timer A.
TIMER_CFG_A_ACT_SETTO - set CCP on timeout of timer A.
TIMER_CFG_A_ACT_CLRTO - clear CCP on timeout of timer A.
TIMER_CFG_A_ACT_SETTOGTO - set CCP immediately and then toggle it on timeout of
timer A.
TIMER_CFG_A_ACT_CLRTOGTO - clear CCP immediately and then toggle it on timeout
of timer A.
TIMER_CFG_A_ACT_SETCLRTO - set CCP immediately and then clear it on timeout of
timer A.
TIMER_CFG_A_ACT_CLRSETTO - clear CCP immediately and then set it on timeout of
timer A.

One of the following can be combined with the TIMER_CFG_∗ values to enable an action on
timer B:

TIMER_CFG_B_ACT_TOINTD - masks the timeout interrupt of timer B.
TIMER_CFG_B_ACT_NONE - no additional action on timeout of timer B.
TIMER_CFG_B_ACT_TOGGLE - toggle CCP on timeout of timer B.
TIMER_CFG_B_ACT_SETTO - set CCP on timeout of timer B.
TIMER_CFG_B_ACT_CLRTO - clear CCP on timeout of timer B.
TIMER_CFG_B_ACT_SETTOGTO - set CCP immediately and then toggle it on timeout of
timer B.
TIMER_CFG_B_ACT_CLRTOGTO - clear CCP immediately and then toggle it on timeout
of timer B.
TIMER_CFG_B_ACT_SETCLRTO - set CCP immediately and then clear it on timeout of
timer B.
TIMER_CFG_B_ACT_CLRSETTO - clear CCP immediately and then set it on timeout of
timer B.

Similarly, the second timer is configured by setting ui32Config to the result of a logical OR
operation between one of the corresponding TIMER_CFG_B_∗ values and ui32Config.

Returns:
None.

504 May 14, 2014

Tiva TM4C129x ROM User’s Guide

30.2.1.6 ROM_TimerControlEvent

Controls the event type.

Prototype:
void
ROM_TimerControlEvent(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Event)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlEvent is a function pointer located at ROM_TIMERTABLE[6].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ui32Event specifies the type of event; must be one of TIMER_EVENT_POS_EDGE,

TIMER_EVENT_NEG_EDGE, or TIMER_EVENT_BOTH_EDGES.

Description:
This function configures the signal edge(s) that triggers the timer when in capture mode.

Returns:
None.

30.2.1.7 ROM_TimerControlLevel

Controls the output level.

Prototype:
void
ROM_TimerControlLevel(uint32_t ui32Base,

uint32_t ui32Timer,
bool bInvert)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlLevel is a function pointer located at ROM_TIMERTABLE[4].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bInvert specifies the output level.

Description:
This function configures the PWM output level for the specified timer. If the bInvert parameter
is true, then the timer’s output is made active low; otherwise, it is made active high.

May 14, 2014 505

Timer

Returns:
None.

30.2.1.8 ROM_TimerControlStall

Controls the stall handling.

Prototype:
void
ROM_TimerControlStall(uint32_t ui32Base,

uint32_t ui32Timer,
bool bStall)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlStall is a function pointer located at ROM_TIMERTABLE[7].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bStall specifies the response to a stall signal.

Description:
This function controls the stall response for the specified timer. If the bStall parameter is true,
then the timer stops counting if the processor enters debug mode; otherwise the timer keeps
running while in debug mode.

Returns:
None.

30.2.1.9 ROM_TimerControlTrigger

Enables or disables the ADC trigger output.

Prototype:
void
ROM_TimerControlTrigger(uint32_t ui32Base,

uint32_t ui32Timer,
bool bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlTrigger is a function pointer located at ROM_TIMERTABLE[5].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.

506 May 14, 2014

Tiva TM4C129x ROM User’s Guide

bEnable specifies the desired ADC trigger state.

Description:
This function controls the ADC trigger output for the specified timer. If the bEnable parameter
is true, then the timer’s ADC output trigger is enabled; otherwise it is disabled.

Returns:
None.

30.2.1.10 ROM_TimerControlWaitOnTrigger

Controls the wait on trigger handling.

Prototype:
void
ROM_TimerControlWaitOnTrigger(uint32_t ui32Base,

uint32_t ui32Timer,
bool bWait)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerControlWaitOnTrigger is a function pointer located at
ROM_TIMERTABLE[22].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to be adjusted; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
bWait specifies if the timer should wait for a trigger input.

Description:
This function controls whether or not a timer waits for a trigger input to start counting. When
enabled, the previous timer in the trigger chain must count to its timeout in order for this timer
to start counting. Refer to the part’s data sheet for a description of the trigger chain.

Note:
This function should not be used for Timer 0A.

Returns:
None.

30.2.1.11 ROM_TimerDisable

Disables the timer(s).

Prototype:
void
ROM_TimerDisable(uint32_t ui32Base,

uint32_t ui32Timer)

May 14, 2014 507

Timer

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerDisable is a function pointer located at ROM_TIMERTABLE[2].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to disable; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.

Description:
This function disables operation of the timer module.

Returns:
None.

30.2.1.12 ROM_TimerDMAEventGet

Returns the events that can trigger a DMA request.

Prototype:
uint32_t
ROM_TimerDMAEventGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerDMAEventGet is a function pointer located at ROM_TIMERTABLE[32].

Parameters:
ui32Base is the base address of the timer module.

Description:
This function returns the timer events that can trigger the start of a DMA sequence. The DMA
trigger events are the logical OR of the following values:

TIMER_DMA_MODEMATCH_B - Enables the mode match DMA trigger for timer B.
TIMER_DMA_CAPEVENT_B - Enables the capture event DMA trigger for timer B.
TIMER_DMA_CAPMATCH_B - Enables the capture match DMA trigger for timer B.
TIMER_DMA_TIMEOUT_B - Enables the timeout DMA trigger for timer B.
TIMER_DMA_MODEMATCH_A - Enables the mode match DMA trigger for timer A.
TIMER_DMA_RTC_A - Enables the RTC DMA trigger for timer A.
TIMER_DMA_CAPEVENT_A - Enables the capture event DMA trigger for timer A.
TIMER_DMA_CAPMATCH_A - Enables the capture match DMA trigger for timer A.
TIMER_DMA_TIMEOUT_A - Enables the timeout DMA trigger for timer A.

Returns:
The timer events that trigger the uDMA.

508 May 14, 2014

Tiva TM4C129x ROM User’s Guide

30.2.1.13 ROM_TimerDMAEventSet

Enables the events that can trigger a DMA request.

Prototype:
void
ROM_TimerDMAEventSet(uint32_t ui32Base,

uint32_t ui32DMAEvent)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerDMAEventSet is a function pointer located at ROM_TIMERTABLE[33].

Parameters:
ui32Base is the base address of the timer module.
ui32DMAEvent is a bit mask of the events that can trigger DMA.

Description:
This function enables the timer events that can trigger the start of a DMA sequence. The DMA
trigger events are specified in the ui32DMAEvent parameter by passing in the logical OR of
the following values:

TIMER_DMA_MODEMATCH_B - The mode match DMA trigger for timer B is enabled.
TIMER_DMA_CAPEVENT_B - The capture event DMA trigger for timer B is enabled.
TIMER_DMA_CAPMATCH_B - The capture match DMA trigger for timer B is enabled.
TIMER_DMA_TIMEOUT_B - The timeout DMA trigger for timer B is enabled.
TIMER_DMA_MODEMATCH_A - The mode match DMA trigger for timer A is enabled.
TIMER_DMA_RTC_A - The RTC DMA trigger for timer A is enabled.
TIMER_DMA_CAPEVENT_A - The capture event DMA trigger for timer A is enabled.
TIMER_DMA_CAPMATCH_A - The capture match DMA trigger for timer A is enabled.
TIMER_DMA_TIMEOUT_A - The timeout DMA trigger for timer A is enabled.

Returns:
None.

30.2.1.14 ROM_TimerEnable

Enables the timer(s).

Prototype:
void
ROM_TimerEnable(uint32_t ui32Base,

uint32_t ui32Timer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerEnable is a function pointer located at ROM_TIMERTABLE[1].

Parameters:
ui32Base is the base address of the timer module.

May 14, 2014 509

Timer

ui32Timer specifies the timer(s) to enable; must be one of TIMER_A, TIMER_B, or
TIMER_BOTH.

Description:
This function enables operation of the timer module. The timer must be configured before it is
enabled.

Returns:
None.

30.2.1.15 ROM_TimerIntClear

Clears timer interrupt sources.

Prototype:
void
ROM_TimerIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerIntClear is a function pointer located at ROM_TIMERTABLE[0].

Parameters:
ui32Base is the base address of the timer module.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified timer interrupt sources are cleared, so that they no longer assert. This func-
tion must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
ROM_TimerIntEnable().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

30.2.1.16 ROM_TimerIntDisable

Disables individual timer interrupt sources.

510 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_TimerIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerIntDisable is a function pointer located at ROM_TIMERTABLE[20].

Parameters:
ui32Base is the base address of the timer module.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated timer interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
ROM_TimerIntEnable().

Returns:
None.

30.2.1.17 ROM_TimerIntEnable

Enables individual timer interrupt sources.

Prototype:
void
ROM_TimerIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerIntEnable is a function pointer located at ROM_TIMERTABLE[19].

Parameters:
ui32Base is the base address of the timer module.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated timer interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter must be the logical OR of any combination of the following:

TIMER_TIMB_DMA - Timer B DMA complete
TIMER_TIMA_DMA - Timer A DMA complete
TIMER_CAPB_EVENT - Capture B event interrupt
TIMER_CAPB_MATCH - Capture B match interrupt
TIMER_TIMB_TIMEOUT - Timer B timeout interrupt

May 14, 2014 511

Timer

TIMER_RTC_MATCH - RTC interrupt mask
TIMER_CAPA_EVENT - Capture A event interrupt
TIMER_CAPA_MATCH - Capture A match interrupt
TIMER_TIMA_TIMEOUT - Timer A timeout interrupt

Returns:
None.

30.2.1.18 ROM_TimerIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ROM_TimerIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerIntStatus is a function pointer located at ROM_TIMERTABLE[21].

Parameters:
ui32Base is the base address of the timer module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the timer module. Either the raw interrupt status or
the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of values described in
ROM_TimerIntEnable().

30.2.1.19 ROM_TimerLoadGet

Gets the timer load value.

Prototype:
uint32_t
ROM_TimerLoadGet(uint32_t ui32Base,

uint32_t ui32Timer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerLoadGet is a function pointer located at ROM_TIMERTABLE[15].

Parameters:
ui32Base is the base address of the timer module.

512 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should
be used when the timer is configured for full-width operation.

Description:
This function gets the currently programmed interval load value for the specified timer.

Returns:
Returns the load value for the timer.

30.2.1.20 ROM_TimerLoadSet

Sets the timer load value.

Prototype:
void
ROM_TimerLoadSet(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Value)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerLoadSet is a function pointer located at ROM_TIMERTABLE[14].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH. Only TIMER_A should be used when the timer is configured for full-width
operation.

ui32Value is the load value.

Description:
This function configures the timer load value; if the timer is running then the value is immedi-
ately loaded into the timer.

Returns:
None.

30.2.1.21 ROM_TimerMatchGet

Gets the timer match value.

Prototype:
uint32_t
ROM_TimerMatchGet(uint32_t ui32Base,

uint32_t ui32Timer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerMatchGet is a function pointer located at ROM_TIMERTABLE[18].

May 14, 2014 513

Timer

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should

be used when the timer is configured for full-width operation.

Description:
This function gets the match value for the specified timer.

Returns:
Returns the match value for the timer.

30.2.1.22 ROM_TimerMatchSet

Sets the timer match value.

Prototype:
void
ROM_TimerMatchSet(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Value)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerMatchSet is a function pointer located at ROM_TIMERTABLE[17].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH. Only TIMER_A should be used when the timer is configured for full-width
operation.

ui32Value is the match value.

Description:
This function configures the match value for a timer. This value is used in capture count mode
to determine when to interrupt the processor and in PWM mode to determine the duty cycle of
the output signal. Match interrupts can also be generated in periodic and one-shot modes.

Returns:
None.

30.2.1.23 ROM_TimerPrescaleGet

Get the timer prescale value.

Prototype:
uint32_t
ROM_TimerPrescaleGet(uint32_t ui32Base,

uint32_t ui32Timer)

514 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerPrescaleGet is a function pointer located at ROM_TIMERTABLE[11].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B.

Description:
This function gets the value of the input clock prescaler. The prescaler is only operational when
in half-width mode and is used to extend the range of the half-width timer modes. The prescaler
provides the least significant bits when counting down in periodic and one-shot modes; in all
other modes, the prescaler provides the most significant bits.

Returns:
The value of the timer prescaler.

30.2.1.24 ROM_TimerPrescaleMatchGet

Get the timer prescale match value.

Prototype:
uint32_t
ROM_TimerPrescaleMatchGet(uint32_t ui32Base,

uint32_t ui32Timer)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerPrescaleMatchGet is a function pointer located at ROM_TIMERTABLE[13].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B.

Description:
This function gets the value of the input clock prescaler match value. When in a half-width
mode that uses the counter match and prescaler, the prescale match effectively extends the
range of the match. The prescaler provides the least significant bits when counting down in
periodic and one-shot modes; in all other modes, the prescaler provides the most significant
bits.

Returns:
The value of the timer prescale match.

30.2.1.25 ROM_TimerPrescaleMatchSet

Set the timer prescale match value.

May 14, 2014 515

Timer

Prototype:
void
ROM_TimerPrescaleMatchSet(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Value)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerPrescaleMatchSet is a function pointer located at ROM_TIMERTABLE[12].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ui32Value is the timer prescale match value which must be between 0 and 255 (inclusive).

Description:
This function configures the value of the input clock prescaler match value. When in a half-width
mode that uses the counter match and the prescaler, the prescale match effectively extends
the range of the match. The prescaler provides the least significant bits when counting down
in periodic and one-shot modes; in all other modes, the prescaler provides the most significant
bits.

Returns:
None.

30.2.1.26 ROM_TimerPrescaleSet

Set the timer prescale value.

Prototype:
void
ROM_TimerPrescaleSet(uint32_t ui32Base,

uint32_t ui32Timer,
uint32_t ui32Value)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerPrescaleSet is a function pointer located at ROM_TIMERTABLE[10].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer(s) to adjust; must be one of TIMER_A, TIMER_B, or

TIMER_BOTH.
ui32Value is the timer prescale value which must be between 0 and 255 (inclusive).

Description:
This function configures the value of the input clock prescaler. The prescaler is only opera-
tional when in half-width mode and is used to extend the range of the half-width timer modes.
The prescaler provides the least significant bits when counting down in periodic and one-shot
modes; in all other modes, the prescaler provides the most significant bits.

516 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

30.2.1.27 ROM_TimerRTCDisable

Disable RTC counting.

Prototype:
void
ROM_TimerRTCDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerRTCDisable is a function pointer located at ROM_TIMERTABLE[9].

Parameters:
ui32Base is the base address of the timer module.

Description:
This function causes the timer to stop counting when in RTC mode.

Returns:
None.

30.2.1.28 ROM_TimerRTCEnable

Enable RTC counting.

Prototype:
void
ROM_TimerRTCEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerRTCEnable is a function pointer located at ROM_TIMERTABLE[8].

Parameters:
ui32Base is the base address of the timer module.

Description:
This function causes the timer to start counting when in RTC mode. If not configured for RTC
mode, this function does nothing.

Returns:
None.

May 14, 2014 517

Timer

30.2.1.29 ROM_TimerSynchronize

Synchronizes the counters in a set of timers.

Prototype:
void
ROM_TimerSynchronize(uint32_t ui32Base,

uint32_t ui32Timers)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerSynchronize is a function pointer located at ROM_TIMERTABLE[34].

Parameters:
ui32Base is the base address of the timer module. This parameter must be the base address

of Timer0 (in other words, TIMER0_BASE).
ui32Timers is the set of timers to synchronize.

Description:
This function synchronizes the counters in a specified set of timers. When a timer is running
in half-width mode, each half can be included or excluded in the synchronization event. When
a timer is running in full-width mode, only the A timer can be synchronized (specifying the B
timer has no effect).

The ui32Timers parameter is the logical OR of any of the following defines:

TIMER_0A_SYNC
TIMER_0B_SYNC
TIMER_1A_SYNC
TIMER_1B_SYNC
TIMER_2A_SYNC
TIMER_2B_SYNC
TIMER_3A_SYNC
TIMER_3B_SYNC
TIMER_4A_SYNC
TIMER_4B_SYNC
TIMER_5A_SYNC
TIMER_5B_SYNC

Returns:
None.

30.2.1.30 ROM_TimerValueGet

Gets the current timer value.

Prototype:
uint32_t
ROM_TimerValueGet(uint32_t ui32Base,

uint32_t ui32Timer)

518 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_TIMERTABLE is an array of pointers located at ROM_APITABLE[11].
ROM_TimerValueGet is a function pointer located at ROM_TIMERTABLE[16].

Parameters:
ui32Base is the base address of the timer module.
ui32Timer specifies the timer; must be one of TIMER_A or TIMER_B. Only TIMER_A should

be used when the timer is configured for full-width operation.

Description:
This function reads the current value of the specified timer.

Returns:
Returns the current value of the timer.

May 14, 2014 519

Timer

520 May 14, 2014

Tiva TM4C129x ROM User’s Guide

31 UART
Introduction .521
Functions . 521

31.1 Introduction

The Universal Asynchronous Receiver/Transmitter (UART) API provides a set of functions for using
the Tiva UART modules. Functions are provided to configure and control the UART modules, to
send and receive data, and to manage interrupts for the UART modules.

The Tiva UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is
very similar in functionality to a 16C550 UART, but is not register-compatible.

Some of the features of the Tiva UART are:

A 16x12 bit receive FIFO and a 16x8 bit transmit FIFO.

Programmable baud rate generator.

Automatic generation and stripping of start, stop, and parity bits.

Line break generation and detection.

Programmable serial interface

• 5, 6, 7, or 8 data bits
• even, odd, stick, or no parity bit generation and detection
• 1 or 2 stop bit generation
• baud rate generation, from DC to processor clock/16
• Modem control/flow control
• IrDA serial-IR (SIR) encoder/decoder.
• uDMA interface
• 9-bit operation

31.2 Functions

Functions
void ROM_UART9BitAddrSend (uint32_t ui32Base, uint8_t ui8Addr)
void ROM_UART9BitAddrSet (uint32_t ui32Base, uint8_t ui8Addr, uint8_t ui8Mask)
void ROM_UART9BitDisable (uint32_t ui32Base)
void ROM_UART9BitEnable (uint32_t ui32Base)
void ROM_UARTBreakCtl (uint32_t ui32Base, bool bBreakState)
bool ROM_UARTBusy (uint32_t ui32Base)
int32_t ROM_UARTCharGet (uint32_t ui32Base)
int32_t ROM_UARTCharGetNonBlocking (uint32_t ui32Base)
void ROM_UARTCharPut (uint32_t ui32Base, unsigned char ucData)
bool ROM_UARTCharPutNonBlocking (uint32_t ui32Base, unsigned char ucData)

May 14, 2014 521

UART

bool ROM_UARTCharsAvail (uint32_t ui32Base)
uint32_t ROM_UARTClockSourceGet (uint32_t ui32Base)
void ROM_UARTClockSourceSet (uint32_t ui32Base, uint32_t ui32Source)
void ROM_UARTConfigGetExpClk (uint32_t ui32Base, uint32_t ui32UARTClk, uint32_t
∗pui32Baud, uint32_t ∗pui32Config)
void ROM_UARTConfigSetExpClk (uint32_t ui32Base, uint32_t ui32UARTClk, uint32_t
ui32Baud, uint32_t ui32Config)
void ROM_UARTDisable (uint32_t ui32Base)
void ROM_UARTDisableSIR (uint32_t ui32Base)
void ROM_UARTDMADisable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void ROM_UARTDMAEnable (uint32_t ui32Base, uint32_t ui32DMAFlags)
void ROM_UARTEnable (uint32_t ui32Base)
void ROM_UARTEnableSIR (uint32_t ui32Base, bool bLowPower)
void ROM_UARTFIFODisable (uint32_t ui32Base)
void ROM_UARTFIFOEnable (uint32_t ui32Base)
void ROM_UARTFIFOLevelGet (uint32_t ui32Base, uint32_t ∗pui32TxLevel, uint32_t
∗pui32RxLevel)
void ROM_UARTFIFOLevelSet (uint32_t ui32Base, uint32_t ui32TxLevel, uint32_t
ui32RxLevel)
uint32_t ROM_UARTFlowControlGet (uint32_t ui32Base)
void ROM_UARTFlowControlSet (uint32_t ui32Base, uint32_t ui32Mode)
void ROM_UARTIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_UARTIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void ROM_UARTIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
uint32_t ROM_UARTIntStatus (uint32_t ui32Base, bool bMasked)
void ROM_UARTModemControlClear (uint32_t ui32Base, uint32_t ui32Control)
uint32_t ROM_UARTModemControlGet (uint32_t ui32Base)
void ROM_UARTModemControlSet (uint32_t ui32Base, uint32_t ui32Control)
uint32_t ROM_UARTModemStatusGet (uint32_t ui32Base)
uint32_t ROM_UARTParityModeGet (uint32_t ui32Base)
void ROM_UARTParityModeSet (uint32_t ui32Base, uint32_t ui32Parity)
void ROM_UARTRxErrorClear (uint32_t ui32Base)
uint32_t ROM_UARTRxErrorGet (uint32_t ui32Base)
void ROM_UARTSmartCardDisable (uint32_t ui32Base)
void ROM_UARTSmartCardEnable (uint32_t ui32Base)
bool ROM_UARTSpaceAvail (uint32_t ui32Base)
uint32_t ROM_UARTTxIntModeGet (uint32_t ui32Base)
void ROM_UARTTxIntModeSet (uint32_t ui32Base, uint32_t ui32Mode)
void ROM_UpdateUART (void)

31.2.1 Function Documentation

31.2.1.1 ROM_UART9BitAddrSend

Sends an address character from the specified port when operating in 9-bit mode.

522 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_UART9BitAddrSend(uint32_t ui32Base,

uint8_t ui8Addr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UART9BitAddrSend is a function pointer located at ROM_UARTTABLE[36].

Parameters:
ui32Base is the base address of the UART port.
ui8Addr is the address to be transmitted.

Description:
This function waits until all data has been sent from the specified port and then sends the given
address as an address byte. It then waits until the address byte has been transmitted before
returning.

The normal data functions (ROM_UARTCharPut(), ROM_UARTCharPutNonBlocking(),
ROM_UARTCharGet(), and ROM_UARTCharGetNonBlocking()) are used to send and receive
data characters in 9-bit mode.

Returns:
None.

31.2.1.2 ROM_UART9BitAddrSet

Sets the device address(es) for 9-bit mode.

Prototype:
void
ROM_UART9BitAddrSet(uint32_t ui32Base,

uint8_t ui8Addr,
uint8_t ui8Mask)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UART9BitAddrSet is a function pointer located at ROM_UARTTABLE[35].

Parameters:
ui32Base is the base address of the UART port.
ui8Addr is the device address.
ui8Mask is the device address mask.

Description:
This function configures the device address or range of device addresses that respond to
requests on the 9-bit UART port. The received address is masked with the mask and then
compared against the given address, allowing either a single address (if ui8Mask is 0xff) or a
set of addresses to be matched.

Returns:
None.

May 14, 2014 523

UART

31.2.1.3 ROM_UART9BitDisable

Disables 9-bit mode on the specified UART.

Prototype:
void
ROM_UART9BitDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UART9BitDisable is a function pointer located at ROM_UARTTABLE[34].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function disables the 9-bit operational mode of the UART.

Returns:
None.

31.2.1.4 ROM_UART9BitEnable

Enables 9-bit mode on the specified UART.

Prototype:
void
ROM_UART9BitEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UART9BitEnable is a function pointer located at ROM_UARTTABLE[33].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function enables the 9-bit operational mode of the UART.

Returns:
None.

31.2.1.5 ROM_UARTBreakCtl

Causes a BREAK to be sent.

Prototype:
void
ROM_UARTBreakCtl(uint32_t ui32Base,

bool bBreakState)

524 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTBreakCtl is a function pointer located at ROM_UARTTABLE[16].

Parameters:
ui32Base is the base address of the UART port.
bBreakState controls the output level.

Description:
Calling this function with bBreakState set to true asserts a break condition on the UART. Calling
this function with bBreakState set to false removes the break condition. For proper transmis-
sion of a break command, the break must be asserted for at least two complete frames.

Returns:
None.

31.2.1.6 ROM_UARTBusy

Determines whether the UART transmitter is busy or not.

Prototype:
bool
ROM_UARTBusy(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTBusy is a function pointer located at ROM_UARTTABLE[26].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function allows the caller to determine whether all transmitted bytes have cleared the
transmitter hardware. If false is returned, the transmit FIFO is empty and all bits of the last
transmitted character, including all stop bits, have left the hardware shift register.

Returns:
Returns true if the UART is transmitting or false if all transmissions are complete.

31.2.1.7 ROM_UARTCharGet

Waits for a character from the specified port.

Prototype:
int32_t
ROM_UARTCharGet(uint32_t ui32Base)

May 14, 2014 525

UART

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharGet is a function pointer located at ROM_UARTTABLE[14].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function gets a character from the receive FIFO for the specified port. If there are no
characters available, this function waits until a character is received before returning.

Returns:
Returns the character read from the specified port, cast as a int32_t .

31.2.1.8 ROM_UARTCharGetNonBlocking

Receives a character from the specified port.

Prototype:
int32_t
ROM_UARTCharGetNonBlocking(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharGetNonBlocking is a function pointer located at ROM_UARTTABLE[13].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function gets a character from the receive FIFO for the specified port.

Returns:
Returns the character read from the specified port, cast as a int32_t . A -1 is returned if there
are no characters present in the receive FIFO. The ROM_UARTCharsAvail() function should
be called before attempting to call this function.

31.2.1.9 ROM_UARTCharPut

Waits to send a character from the specified port.

Prototype:
void
ROM_UARTCharPut(uint32_t ui32Base,

unsigned char ucData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharPut is a function pointer located at ROM_UARTTABLE[0].

526 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the UART port.
ucData is the character to be transmitted.

Description:
This function sends the character ucData to the transmit FIFO for the specified port. If there is
no space available in the transmit FIFO, this function waits until there is space available before
returning.

Returns:
None.

31.2.1.10 ROM_UARTCharPutNonBlocking

Sends a character to the specified port.

Prototype:
bool
ROM_UARTCharPutNonBlocking(uint32_t ui32Base,

unsigned char ucData)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharPutNonBlocking is a function pointer located at ROM_UARTTABLE[15].

Parameters:
ui32Base is the base address of the UART port.
ucData is the character to be transmitted.

Description:
This function writes the character ucData to the transmit FIFO for the specified port. This
function does not block, so if there is no space available, then a false is returned and the
application must retry the function later.

Returns:
Returns true if the character was successfully placed in the transmit FIFO or false if there was
no space available in the transmit FIFO.

31.2.1.11 ROM_UARTCharsAvail

Determines if there are any characters in the receive FIFO.

Prototype:
bool
ROM_UARTCharsAvail(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTCharsAvail is a function pointer located at ROM_UARTTABLE[11].

May 14, 2014 527

UART

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns a flag indicating whether or not there is data available in the receive FIFO.

Returns:
Returns true if there is data in the receive FIFO or false if there is no data in the receive FIFO.

31.2.1.12 ROM_UARTClockSourceGet

Gets the baud clock source for the specified UART.

Prototype:
uint32_t
ROM_UARTClockSourceGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTClockSourceGet is a function pointer located at ROM_UARTTABLE[32].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the baud clock source for the specified UART. The possible baud clock
source are the system clock (UART_CLOCK_SYSTEM) or the precision internal oscillator
(UART_CLOCK_PIOSC).

Returns:
None.

31.2.1.13 ROM_UARTClockSourceSet

Sets the baud clock source for the specified UART.

Prototype:
void
ROM_UARTClockSourceSet(uint32_t ui32Base,

uint32_t ui32Source)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTClockSourceSet is a function pointer located at ROM_UARTTABLE[31].

Parameters:
ui32Base is the base address of the UART port.
ui32Source is the baud clock source for the UART.

528 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function allows the baud clock source for the UART to be selected. The possible clock
source are the system clock (UART_CLOCK_SYSTEM) or the precision internal oscillator
(UART_CLOCK_PIOSC).

Changing the baud clock source changes the baud rate generated by the UART. Therefore, the
baud rate should be reconfigured after any change to the baud clock source.

Returns:
None.

31.2.1.14 ROM_UARTConfigGetExpClk

Gets the current configuration of a UART.

Prototype:
void
ROM_UARTConfigGetExpClk(uint32_t ui32Base,

uint32_t ui32UARTClk,
uint32_t *pui32Baud,
uint32_t *pui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTConfigGetExpClk is a function pointer located at ROM_UARTTABLE[6].

Parameters:
ui32Base is the base address of the UART port.
ui32UARTClk is the rate of the clock supplied to the UART module.
pui32Baud is a pointer to storage for the baud rate.
pui32Config is a pointer to storage for the data format.

Description:
This function determines the baud rate and data format for the UART, given an explicitly
provided peripheral clock (hence the ExpClk suffix). The returned baud rate is the actual
baud rate; it may not be the exact baud rate requested or an “official” baud rate. The
data format returned in pui32Config is enumerated the same as the ui32Config parameter
of ROM_UARTConfigSetExpClk().

The peripheral clock is the same as the processor clock. This value is returned by
ROM_SysCtlClockFreqSet(), or it can be explicitly hard-coded if it is constant and known.

If the peripheral clock has been changed to PIOSC (via ROM_UARTClockSourceSet()), the
peripheral clock should be specified as 16,000,000 (the nominal rate of PIOSC).

Returns:
None.

31.2.1.15 ROM_UARTConfigSetExpClk

Sets the configuration of a UART.

May 14, 2014 529

UART

Prototype:
void
ROM_UARTConfigSetExpClk(uint32_t ui32Base,

uint32_t ui32UARTClk,
uint32_t ui32Baud,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTConfigSetExpClk is a function pointer located at ROM_UARTTABLE[5].

Parameters:
ui32Base is the base address of the UART port.
ui32UARTClk is the rate of the clock supplied to the UART module.
ui32Baud is the desired baud rate.
ui32Config is the data format for the port (number of data bits, number of stop bits, and parity).

Description:
This function configures the UART for operation in the specified data format. The baud rate is
provided in the ui32Baud parameter and the data format in the ui32Config parameter.

The ui32Config parameter is the logical OR of three values: the number of
data bits, the number of stop bits, and the parity. UART_CONFIG_WLEN_8,
UART_CONFIG_WLEN_7, UART_CONFIG_WLEN_6, and UART_CONFIG_WLEN_5
select from eight to five data bits per byte (respectively). UART_CONFIG_STOP_ONE
and UART_CONFIG_STOP_TWO select one or two stop bits (respectively).
UART_CONFIG_PAR_NONE, UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD,
UART_CONFIG_PAR_ONE, and UART_CONFIG_PAR_ZERO select the parity mode (no
parity bit, even parity bit, odd parity bit, parity bit always one, and parity bit always zero,
respectively).

The peripheral clock is the same as the processor clock. This value is returned by
ROM_SysCtlClockFreqSet(), or it can be explicitly hard-coded if it is constant and known.

If the peripheral clock has been changed to PIOSC (via ROM_UARTClockSourceSet()), the
peripheral clock should be specified as 16,000,000 (the nominal rate of PIOSC).

Returns:
None.

31.2.1.16 ROM_UARTDisable

Disables transmitting and receiving.

Prototype:
void
ROM_UARTDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTDisable is a function pointer located at ROM_UARTTABLE[8].

530 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base is the base address of the UART port.

Description:
This function disables the UART, waits for the end of transmission of the current character, and
flushes the transmit FIFO.

Returns:
None.

31.2.1.17 ROM_UARTDisableSIR

Disables SIR (IrDA) mode on the specified UART.

Prototype:
void
ROM_UARTDisableSIR(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTDisableSIR is a function pointer located at ROM_UARTTABLE[10].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function disables SIR(IrDA) mode on the UART. This function only has an ef-
fect if the UART has not been enabled by a call to ROM_UARTEnable(). The call
ROM_UARTEnableSIR() must be made before a call to ROM_UARTConfigSetExpClk() be-
cause the ROM_UARTConfigSetExpClk() function calls the ROM_UARTEnable() function. An-
other option is to call ROM_UARTDisable() followed by ROM_UARTEnableSIR() and then en-
able the UART by calling ROM_UARTEnable().

Returns:
None.

31.2.1.18 ROM_UARTDMADisable

Disable UART uDMA operation.

Prototype:
void
ROM_UARTDMADisable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTDMADisable is a function pointer located at ROM_UARTTABLE[23].

May 14, 2014 531

UART

Parameters:
ui32Base is the base address of the UART port.
ui32DMAFlags is a bit mask of the uDMA features to disable.

Description:
This function is used to disable UART uDMA features that were enabled by
ROM_UARTDMAEnable(). The specified UART uDMA features are disabled. The
ui32DMAFlags parameter is the logical OR of any of the following values:

UART_DMA_RX - disable uDMA for receive
UART_DMA_TX - disable uDMA for transmit
UART_DMA_ERR_RXSTOP - do not disable uDMA receive on UART error

Returns:
None.

31.2.1.19 ROM_UARTDMAEnable

Enable UART uDMA operation.

Prototype:
void
ROM_UARTDMAEnable(uint32_t ui32Base,

uint32_t ui32DMAFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTDMAEnable is a function pointer located at ROM_UARTTABLE[22].

Parameters:
ui32Base is the base address of the UART port.
ui32DMAFlags is a bit mask of the uDMA features to enable.

Description:
The specified UART uDMA features are enabled. The UART can be configured to use uDMA
for transmit or receive and to disable receive if an error occurs. The ui32DMAFlags parameter
is the logical OR of any of the following values:

UART_DMA_RX - enable uDMA for receive
UART_DMA_TX - enable uDMA for transmit
UART_DMA_ERR_RXSTOP - disable uDMA receive on UART error

Note:
The uDMA controller must also be set up before uDMA can be used with the UART.

Returns:
None.

532 May 14, 2014

Tiva TM4C129x ROM User’s Guide

31.2.1.20 ROM_UARTEnable

Enables transmitting and receiving.

Prototype:
void
ROM_UARTEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTEnable is a function pointer located at ROM_UARTTABLE[7].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function enables the UART and its transmit and receive FIFOs.

Returns:
None.

31.2.1.21 ROM_UARTEnableSIR

Enables SIR (IrDA) mode on the specified UART.

Prototype:
void
ROM_UARTEnableSIR(uint32_t ui32Base,

bool bLowPower)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTEnableSIR is a function pointer located at ROM_UARTTABLE[9].

Parameters:
ui32Base is the base address of the UART port.
bLowPower indicates if SIR Low Power Mode is to be used.

Description:
This function enables SIR (IrDA) mode on the UART. If the bLowPower flag is true, then SIR low
power mode will be selected as well. This function only has an effect if the UART has not been
enabled by a call to ROM_UARTEnable(). The call ROM_UARTEnableSIR() must be made be-
fore a call to ROM_UARTConfigSetExpClk() because the ROM_UARTConfigSetExpClk() func-
tions calls the ROM_UARTEnable() function. Another option is to call ROM_UARTDisable() fol-
lowed by ROM_UARTEnableSIR() and then enable the UART by calling ROM_UARTEnable().

Returns:
None.

May 14, 2014 533

UART

31.2.1.22 ROM_UARTFIFODisable

Disables the transmit and receive FIFOs.

Prototype:
void
ROM_UARTFIFODisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFIFODisable is a function pointer located at ROM_UARTTABLE[25].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function disables the transmit and receive FIFOs in the UART.

Returns:
None.

31.2.1.23 ROM_UARTFIFOEnable

Enables the transmit and receive FIFOs.

Prototype:
void
ROM_UARTFIFOEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFIFOEnable is a function pointer located at ROM_UARTTABLE[24].

Parameters:
ui32Base is the base address of the UART port.

Description:
This functions enables the transmit and receive FIFOs in the UART.

Returns:
None.

31.2.1.24 ROM_UARTFIFOLevelGet

Gets the FIFO level at which interrupts are generated.

Prototype:
void
ROM_UARTFIFOLevelGet(uint32_t ui32Base,

uint32_t *pui32TxLevel,
uint32_t *pui32RxLevel)

534 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFIFOLevelGet is a function pointer located at ROM_UARTTABLE[4].

Parameters:
ui32Base is the base address of the UART port.
pui32TxLevel is a pointer to storage for the transmit FIFO level, returned as one of

UART_FIFO_TX1_8, UART_FIFO_TX2_8, UART_FIFO_TX4_8, UART_FIFO_TX6_8, or
UART_FIFO_TX7_8.

pui32RxLevel is a pointer to storage for the receive FIFO level, returned as one of
UART_FIFO_RX1_8, UART_FIFO_RX2_8, UART_FIFO_RX4_8, UART_FIFO_RX6_8, or
UART_FIFO_RX7_8.

Description:
This function gets the FIFO level at which transmit and receive interrupts are generated.

Returns:
None.

31.2.1.25 ROM_UARTFIFOLevelSet

Sets the FIFO level at which interrupts are generated.

Prototype:
void
ROM_UARTFIFOLevelSet(uint32_t ui32Base,

uint32_t ui32TxLevel,
uint32_t ui32RxLevel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFIFOLevelSet is a function pointer located at ROM_UARTTABLE[3].

Parameters:
ui32Base is the base address of the UART port.
ui32TxLevel is the transmit FIFO interrupt level, specified as one of UART_FIFO_TX1_8,

UART_FIFO_TX2_8, UART_FIFO_TX4_8, UART_FIFO_TX6_8, or UART_FIFO_TX7_8.
ui32RxLevel is the receive FIFO interrupt level, specified as one of UART_FIFO_RX1_8,

UART_FIFO_RX2_8, UART_FIFO_RX4_8, UART_FIFO_RX6_8, or UART_FIFO_RX7_8.

Description:
This function configures the FIFO level at which transmit and receive interrupts are generated.

Returns:
None.

May 14, 2014 535

UART

31.2.1.26 ROM_UARTFlowControlGet

Returns the UART hardware flow control mode currently in use.

Prototype:
uint32_t
ROM_UARTFlowControlGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFlowControlGet is a function pointer located at ROM_UARTTABLE[43].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current hardware flow control mode.

Note:
The availability of hardware flow control varies with the UART in use. Please consult the
datasheet for the part you are using to determine whether this support is available.

Returns:
Returns the current flow control mode in use. This value is a logical OR combina-
tion of values UART_FLOWCONTROL_TX if transmit (CTS) flow control is enabled and
UART_FLOWCONTROL_RX if receive (RTS) flow control is in use. If hardware flow control is
disabled, UART_FLOWCONTROL_NONE is returned.

31.2.1.27 ROM_UARTFlowControlSet

Sets the UART hardware flow control mode to be used.

Prototype:
void
ROM_UARTFlowControlSet(uint32_t ui32Base,

uint32_t ui32Mode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTFlowControlSet is a function pointer located at ROM_UARTTABLE[44].

Parameters:
ui32Base is the base address of the UART port.
ui32Mode indicates the flow control modes to be used. This parameter is a logical OR com-

bination of values UART_FLOWCONTROL_TX and UART_FLOWCONTROL_RX
to enable hardware transmit (CTS) and receive (RTS) flow control or
UART_FLOWCONTROL_NONE to disable hardware flow control.

Description:
This function configures the required hardware flow control modes. If ui32Mode contains flag
UART_FLOWCONTROL_TX, data is only transmitted if the incoming CTS signal is asserted.

536 May 14, 2014

Tiva TM4C129x ROM User’s Guide

If ui32Mode contains flag UART_FLOWCONTROL_RX, the RTS output is controlled by the
hardware and is asserted only when there is space available in the receive FIFO. If no hardware
flow control is required, UART_FLOWCONTROL_NONE should be passed.

Note:
The availability of hardware flow control varies with the UART in use. Please consult the
datasheet for the part you are using to determine whether this support is available.

Returns:
None.

31.2.1.28 ROM_UARTIntClear

Clears UART interrupt sources.

Prototype:
void
ROM_UARTIntClear(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTIntClear is a function pointer located at ROM_UARTTABLE[20].

Parameters:
ui32Base is the base address of the UART port.
ui32IntFlags is a bit mask of the interrupt sources to be cleared.

Description:
The specified UART interrupt sources are cleared, so that they no longer assert. This func-
tion must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
ROM_UARTIntEnable().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

31.2.1.29 ROM_UARTIntDisable

Disables individual UART interrupt sources.

May 14, 2014 537

UART

Prototype:
void
ROM_UARTIntDisable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTIntDisable is a function pointer located at ROM_UARTTABLE[18].

Parameters:
ui32Base is the base address of the UART port.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated UART interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter has the same definition as the ui32IntFlags parameter to
ROM_UARTIntEnable().

Returns:
None.

31.2.1.30 ROM_UARTIntEnable

Enables individual UART interrupt sources.

Prototype:
void
ROM_UARTIntEnable(uint32_t ui32Base,

uint32_t ui32IntFlags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTIntEnable is a function pointer located at ROM_UARTTABLE[17].

Parameters:
ui32Base is the base address of the UART port.
ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated UART interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

UART_INT_9BIT - 9-bit Address Match interrupt
UART_INT_OE - Overrun Error interrupt
UART_INT_BE - Break Error interrupt
UART_INT_PE - Parity Error interrupt
UART_INT_FE - Framing Error interrupt

538 May 14, 2014

Tiva TM4C129x ROM User’s Guide

UART_INT_RT - Receive Timeout interrupt
UART_INT_TX - Transmit interrupt
UART_INT_RX - Receive interrupt
UART_INT_DSR - DSR interrupt
UART_INT_DCD - DCD interrupt
UART_INT_CTS - CTS interrupt
UART_INT_RI - RI interrupt

Returns:
None.

31.2.1.31 ROM_UARTIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ROM_UARTIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTIntStatus is a function pointer located at ROM_UARTTABLE[19].

Parameters:
ui32Base is the base address of the UART port.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the specified UART. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, enumerated as a bit field of values described in
ROM_UARTIntEnable().

31.2.1.32 ROM_UARTModemControlClear

Clears the states of the DTR and/or RTS modem control signals.

Prototype:
void
ROM_UARTModemControlClear(uint32_t ui32Base,

uint32_t ui32Control)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTModemControlClear is a function pointer located at ROM_UARTTABLE[39].

May 14, 2014 539

UART

Parameters:
ui32Base is the base address of the UART port.
ui32Control is a bit-mapped flag indicating which modem control bits should be set.

Description:
This function clears the states of the DTR or RTS modem handshake outputs from the UART.

The ui32Control parameter is the logical OR of any of the following:

UART_OUTPUT_DTR - The Modem Control DTR signal
UART_OUTPUT_RTS - The Modem Control RTS signal

Note:
The availability of hardware modem handshake signals varies with the UART in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

31.2.1.33 ROM_UARTModemControlGet

Gets the states of the DTR and RTS modem control signals.

Prototype:
uint32_t
ROM_UARTModemControlGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTModemControlGet is a function pointer located at ROM_UARTTABLE[40].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current states of each of the two UART modem control signals, DTR
and RTS.

Note:
The availability of hardware modem handshake signals varies with the UART in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
Returns the states of the handshake output signals. This value is a logical OR combination
of values UART_OUTPUT_RTS and UART_OUTPUT_DTR where the presence of each flag
indicates that the associated signal is asserted.

31.2.1.34 ROM_UARTModemControlSet

Sets the states of the DTR and/or RTS modem control signals.

540 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_UARTModemControlSet(uint32_t ui32Base,

uint32_t ui32Control)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTModemControlSet is a function pointer located at ROM_UARTTABLE[41].

Parameters:
ui32Base is the base address of the UART port.
ui32Control is a bit-mapped flag indicating which modem control bits should be set.

Description:
This function configures the states of the DTR or RTS modem handshake outputs from the
UART.

The ui32Control parameter is the logical OR of any of the following:

UART_OUTPUT_DTR - The Modem Control DTR signal
UART_OUTPUT_RTS - The Modem Control RTS signal

Note:
The availability of hardware modem handshake signals varies with the UART in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

Returns:
None.

31.2.1.35 ROM_UARTModemStatusGet

Gets the states of the RI, DCD, DSR and CTS modem status signals.

Prototype:
uint32_t
ROM_UARTModemStatusGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTModemStatusGet is a function pointer located at ROM_UARTTABLE[42].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current states of each of the four UART modem status signals, RI,
DCD, DSR and CTS.

Note:
The availability of hardware modem handshake signals varies with the UART in use. Please
consult the datasheet for the part you are using to determine whether this support is available.

May 14, 2014 541

UART

Returns:
Returns the states of the handshake output signals. This value is a logical OR combination of
values UART_INPUT_RI, UART_INPUT_DCD, UART_INPUT_CTS and UART_INPUT_DSR
where the presence of each flag indicates that the associated signal is asserted.

31.2.1.36 ROM_UARTParityModeGet

Gets the type of parity currently being used.

Prototype:
uint32_t
ROM_UARTParityModeGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTParityModeGet is a function pointer located at ROM_UARTTABLE[2].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function gets the type of parity used for transmitting data and expected when receiving
data.

Returns:
Returns the current parity settings, specified as one of UART_CONFIG_PAR_NONE,
UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE, or
UART_CONFIG_PAR_ZERO.

31.2.1.37 ROM_UARTParityModeSet

Sets the type of parity.

Prototype:
void
ROM_UARTParityModeSet(uint32_t ui32Base,

uint32_t ui32Parity)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTParityModeSet is a function pointer located at ROM_UARTTABLE[1].

Parameters:
ui32Base is the base address of the UART port.
ui32Parity specifies the type of parity to use.

Description:
This function configures the type of parity to use for transmitting and expect when
receiving. The ui32Parity parameter must be one of UART_CONFIG_PAR_NONE,

542 May 14, 2014

Tiva TM4C129x ROM User’s Guide

UART_CONFIG_PAR_EVEN, UART_CONFIG_PAR_ODD, UART_CONFIG_PAR_ONE, or
UART_CONFIG_PAR_ZERO. The last two parameters allow direct control of the parity bit;
it is always either one or zero based on the mode.

Returns:
None.

31.2.1.38 ROM_UARTRxErrorClear

Clears all reported receiver errors.

Prototype:
void
ROM_UARTRxErrorClear(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTRxErrorClear is a function pointer located at ROM_UARTTABLE[30].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function is used to clear all receiver error conditions reported via
ROM_UARTRxErrorGet(). If using the overrun, framing error, parity error or break inter-
rupts, this function must be called after clearing the interrupt to ensure that later errors of the
same type trigger another interrupt.

Returns:
None.

31.2.1.39 ROM_UARTRxErrorGet

Gets current receiver errors.

Prototype:
uint32_t
ROM_UARTRxErrorGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTRxErrorGet is a function pointer located at ROM_UARTTABLE[29].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current state of each of the 4 receiver error sources. The returned er-
rors are equivalent to the four error bits returned via the previous call to ROM_UARTCharGet()

May 14, 2014 543

UART

or ROM_UARTCharGetNonBlocking() with the exception that the overrun error is set immedi-
ately when the overrun occurs rather than when a character is next read.

Returns:
Returns a logical OR combination of the receiver error flags, UART_RXERROR_FRAMING,
UART_RXERROR_PARITY, UART_RXERROR_BREAK and UART_RXERROR_OVERRUN.

31.2.1.40 ROM_UARTSmartCardDisable

Disables ISO7816 smart card mode on the specified UART.

Prototype:
void
ROM_UARTSmartCardDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTSmartCardDisable is a function pointer located at ROM_UARTTABLE[37].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function clears the SMART (ISO7816 smart card) bit in the UART control register.

Note:
The availability of ISO7816 smart card mode varies with the UART in use. Please consult the
datasheet for the part you are using to determine whether this support is available.

Returns:
None.

31.2.1.41 ROM_UARTSmartCardEnable

Enables ISO7816 smart card mode on the specified UART.

Prototype:
void
ROM_UARTSmartCardEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTSmartCardEnable is a function pointer located at ROM_UARTTABLE[38].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function enables the SMART control bit for the ISO7816 smart card mode on the UART.
This call also sets 8-bit word length and even parity as required by ISO7816.

544 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Note:
The availability of ISO7816 smart card mode varies with the UART in use. Please consult the
datasheet for the part you are using to determine whether this support is available.

Returns:
None.

31.2.1.42 ROM_UARTSpaceAvail

Determines if there is any space in the transmit FIFO.

Prototype:
bool
ROM_UARTSpaceAvail(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTSpaceAvail is a function pointer located at ROM_UARTTABLE[12].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns a flag indicating whether or not there is space available in the transmit
FIFO.

Returns:
Returns true if there is space available in the transmit FIFO or false if there is no space
available in the transmit FIFO.

31.2.1.43 ROM_UARTTxIntModeGet

Returns the current operating mode for the UART transmit interrupt.

Prototype:
uint32_t
ROM_UARTTxIntModeGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTTxIntModeGet is a function pointer located at ROM_UARTTABLE[28].

Parameters:
ui32Base is the base address of the UART port.

Description:
This function returns the current operating mode for the UART transmit interrupt. The return
value is UART_TXINT_MODE_EOT if the transmit interrupt is currently configured to be as-
serted once the transmitter is completely idle - the transmit FIFO is empty and all bits, including
any stop bits, have cleared the transmitter. The return value is UART_TXINT_MODE_FIFO if
the interrupt is configured to be asserted based on the level of the transmit FIFO.

May 14, 2014 545

UART

Returns:
Returns UART_TXINT_MODE_FIFO or UART_TXINT_MODE_EOT.

31.2.1.44 ROM_UARTTxIntModeSet

Sets the operating mode for the UART transmit interrupt.

Prototype:
void
ROM_UARTTxIntModeSet(uint32_t ui32Base,

uint32_t ui32Mode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UARTTxIntModeSet is a function pointer located at ROM_UARTTABLE[27].

Parameters:
ui32Base is the base address of the UART port.
ui32Mode is the operating mode for the transmit interrupt. It may be

UART_TXINT_MODE_EOT to trigger interrupts when the transmitter is idle or
UART_TXINT_MODE_FIFO to trigger based on the current transmit FIFO level.

Description:
This function allows the mode of the UART transmit interrupt to be set. By default, the
transmit interrupt is asserted when the FIFO level falls past a threshold set via a call to
ROM_UARTFIFOLevelSet(). Alternatively, if this function is called with ui32Mode set to
UART_TXINT_MODE_EOT, the transmit interrupt is asserted once the transmitter is com-
pletely idle - the transmit FIFO is empty and all bits, including any stop bits, have cleared the
transmitter.

Returns:
None.

31.2.1.45 ROM_UpdateUART

Starts an update over the UART0 interface.

Prototype:
void
ROM_UpdateUART(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UARTTABLE is an array of pointers located at ROM_APITABLE[1].
ROM_UpdateUART is a function pointer located at ROM_UARTTABLE[21].

Description:
Calling this function commences an update of the firmware via the UART0 interface. This
function assumes that the UART0 interface has already been configured and is currently oper-
ational.

546 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
Never returns.

May 14, 2014 547

UART

548 May 14, 2014

Tiva TM4C129x ROM User’s Guide

32 uDMA Controller
Introduction .549
Functions . 551

32.1 Introduction

The Micro Direct Memory Access (uDMA) API provides functions to configure the Tiva uDMA con-
troller. The uDMA controller is designed to work with the ARM Cortex-M processor and provides
an efficient and low-overhead means of transferring blocks of data in the system.

The uDMA controller has the following features:

dedicated channels for supported peripherals

one channel each for receive and transmit for devices with receive and transmit paths

dedicated channel for software initiated data transfers

channels can be independently configured and operated

an arbitration scheme that is configurable per channel

two levels of priority

subordinate to Cortex-M processor bus usage

data sizes of 8, 16, or 32 bits

address increment of byte, half-word, word, or none

maskable device requests

optional software initiated transfers on any channel

interrupt on transfer completion

The uDMA controller supports several different transfer modes, allowing for complex transfer
schemes. The following transfer modes are provided:

Basic mode performs a simple transfer when a request is asserted by a device. This mode is
appropriate to use with peripherals where the peripheral asserts the request signal whenever
data should be transferred. The transfer pauses if the request is de-asserted, even if the
transfer is not complete.

Auto-request mode performs a simple transfer that is started by a request, but always com-
pletes the entire transfer, even if the request is de-asserted. This mode is appropriate to use
with software-initiated transfers.

Ping-Pong mode is used to transfer data to or from two buffers, switching from one buffer to
the other as each buffer fills. This mode is appropriate to use with peripherals as a way to
ensure a continuous flow of data to or from the peripheral. However, it is more complex to set
up and requires code to manage the ping-pong buffers in the interrupt handler.

Memory scatter-gather mode is a complex mode that provides a way to set up a list of
transfer “tasks” for the uDMA controller. Blocks of data can be transferred to and from arbitrary
locations in memory.

May 14, 2014 549

uDMA Controller

Peripheral scatter-gather mode is similar to memory scatter-gather mode except that it is
controlled by a peripheral request.

Detailed explanation of the various transfer modes is beyond the scope of this document. Please
refer to the device data sheet for more information on the operation of the uDMA controller.

The naming convention for the microDMA controller is to use the Greek letter “mu” to represent
“micro”. For the purposes of this document, and in the software library function names, a lower
case “u” will be used in place of “mu” when the controller is referred to as “uDMA”.

The general order of function calls to set up and perform a uDMA transfer is the following:

ROM_uDMAEnable() is called once to enable the controller.
ROM_uDMAControlBaseSet() is called once to set the channel control table.
ROM_uDMAChannelAttributeEnable() is called once or infrequently to configure the behavior
of the channel.
ROM_uDMAChannelControlSet() is used to set up characteristics of the data transfer. It is
only called once if the nature of the data transfer does not change.
ROM_uDMAChannelTransferSet() is used to set the buffer pointers and size for a transfer. It
is called before each new transfer.
ROM_uDMAChannelEnable() enables a channel to perform data transfers.
ROM_uDMAChannelRequest() is used to initiate a software based transfer. This is normally
not used for peripheral based transfers.

In order to use the uDMA controller, you must first enable it by calling ROM_uDMAEnable(). You
can later disable it, if no longer needed, by calling ROM_uDMADisable().

Once the uDMA controller is enabled, you must tell it where to find the channel control structures in
system memory by using the function ROM_uDMAControlBaseSet() and passing a pointer to the
base of the channel control structure. The control structure must be allocated by the application.
One way to allocate the control structure is to declare an array of data type int8_t or uint8_t.
In order to support all channels and transfer modes, the control table array should be 1024 bytes,
but it can be fewer depending on transfer modes used and number of channels actually used.

Note:
The control table must be aligned on a 1024-byte boundary.

The uDMA controller supports multiple channels. Each channel has a set of at-
tribute flags to control certain uDMA features and channel behavior. The attribute
flags are configured with the function ROM_uDMAChannelAttributeEnable() and cleared with
ROM_uDMAChannelAttributeDisable(). The setting of the channel attribute flags can be queried
using the function ROM_uDMAChannelAttributeGet().

Next, the control parameters of the DMA transfer must be configured. These parameters
control the size and address increment of the data items to be transferred. The function
ROM_uDMAChannelControlSet() is used to set up these control parameters.

All of the functions mentioned so far are used only once or infrequently to set up the uDMA channel
and transfer. In order to configure the transfer addresses, transfer size, and transfer mode, use
the function ROM_uDMAChannelTransferSet(). This function must be called for each new trans-
fer. Once everything is set up, the channel is enabled by calling ROM_uDMAChannelEnable(),
which must be done before each new transfer. The uDMA controller automatically disables
the channel at the completion of a transfer. A channel can be manually disabled by using
ROM_uDMAChannelDisable().

550 May 14, 2014

Tiva TM4C129x ROM User’s Guide

There are additional functions that can be used to query the status of a channel, either from
an interrupt handler or in polling fashion. The function ROM_uDMAChannelSizeGet() is used to
find the amount of data remaining to transfer on a channel. This value is zero when a trans-
fer is complete. The function ROM_uDMAChannelModeGet() can be used to find the transfer
mode of a uDMA channel. This function is usually used to see if the mode indicates stopped,
meaning that a transfer has completed on a channel that was previously running. The function
ROM_uDMAChannelIsEnabled() can be used to determine if a particular channel is enabled.

The uDMA interrupt handler is only for software-initiated transfers or errors. uDMA interrupts for
a peripheral occur on the peripheral’s dedicated interrupt channel and should be handled by the
peripheral interrupt handler. It is not necessary to acknowledge or clear uDMA interrupt sources.
They are cleared automatically when they are serviced.

The uDMA interrupt handler should use the function ROM_uDMAErrorStatusGet() to test if a uDMA
error occurred. If so, the interrupt must be cleared by calling ROM_uDMAErrorStatusClear().

Note:
Many of the API functions take a channel parameter that includes the logical OR of one of
the values UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose the primary or alternate
control structure. For Basic and Auto transfer modes, only the primary control structure is
needed. The alternate control structure is only needed for complex transfer modes of Ping-
pong or Scatter-gather. Refer to the device data sheet for detailed information about transfer
modes.

32.2 Functions

Functions
void ROM_uDMAChannelAssign (uint32_t ui32Mapping)
void ROM_uDMAChannelAttributeDisable (uint32_t ui32ChannelNum, uint32_t ui32Attr)
void ROM_uDMAChannelAttributeEnable (uint32_t ui32ChannelNum, uint32_t ui32Attr)
uint32_t ROM_uDMAChannelAttributeGet (uint32_t ui32ChannelNum)
void ROM_uDMAChannelControlSet (uint32_t ui32ChannelStructIndex, uint32_t ui32Control)
void ROM_uDMAChannelDisable (uint32_t ui32ChannelNum)
void ROM_uDMAChannelEnable (uint32_t ui32ChannelNum)
bool ROM_uDMAChannelIsEnabled (uint32_t ui32ChannelNum)
uint32_t ROM_uDMAChannelModeGet (uint32_t ui32ChannelStructIndex)
void ROM_uDMAChannelRequest (uint32_t ui32ChannelNum)
void ROM_uDMAChannelScatterGatherSet (uint32_t ui32ChannelNum, uint32_t
ui32TaskCount, void ∗pvTaskList, uint32_t ui32IsPeriphSG)
void ROM_uDMAChannelSelectDefault (uint32_t ui32DefPeriphs)
void ROM_uDMAChannelSelectSecondary (uint32_t ui32SecPeriphs)
uint32_t ROM_uDMAChannelSizeGet (uint32_t ui32ChannelStructIndex)
void ROM_uDMAChannelTransferSet (uint32_t ui32ChannelStructIndex, uint32_t ui32Mode,
void ∗pvSrcAddr, void ∗pvDstAddr, uint32_t ui32TransferSize)
void ∗ ROM_uDMAControlAlternateBaseGet (void)
void ∗ ROM_uDMAControlBaseGet (void)
void ROM_uDMAControlBaseSet (void ∗psControlTable)

May 14, 2014 551

uDMA Controller

void ROM_uDMADisable (void)
void ROM_uDMAEnable (void)
void ROM_uDMAErrorStatusClear (void)
uint32_t ROM_uDMAErrorStatusGet (void)
void ROM_uDMAIntClear (uint32_t ui32ChanMask)
uint32_t ROM_uDMAIntStatus (void)

32.2.1 Function Documentation

32.2.1.1 ROM_uDMAChannelAssign

Assigns a peripheral mapping for a uDMA channel.

Prototype:
void
ROM_uDMAChannelAssign(uint32_t ui32Mapping)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelAssign is a function pointer located at ROM_UDMATABLE[23].

Parameters:
ui32Mapping is a macro specifying the peripheral assignment for a channel.

Description:
This function assigns a peripheral mapping to a uDMA channel. It is used to select which pe-
ripheral is used for a uDMA channel. The parameter ui32Mapping should be one of the macros
named UDMA_CHn_tttt from the header file udma.h. For example, to assign uDMA channel
0 to the UART2 RX channel, the parameter should be the macro UDMA_CH0_UART2RX.

Returns:
None.

32.2.1.2 ROM_uDMAChannelAttributeDisable

Disables attributes of a uDMA channel.

Prototype:
void
ROM_uDMAChannelAttributeDisable(uint32_t ui32ChannelNum,

uint32_t ui32Attr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelAttributeDisable is a function pointer located at
ROM_UDMATABLE[12].

552 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32ChannelNum is the channel to configure.
ui32Attr is a combination of attributes for the channel.

Description:
This function is used to disable attributes of a uDMA channel.

The ui32Attr parameter is the logical OR of any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

Returns:
None.

32.2.1.3 ROM_uDMAChannelAttributeEnable

Enables attributes of a uDMA channel.

Prototype:
void
ROM_uDMAChannelAttributeEnable(uint32_t ui32ChannelNum,

uint32_t ui32Attr)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelAttributeEnable is a function pointer located at
ROM_UDMATABLE[11].

Parameters:
ui32ChannelNum is the channel to configure.
ui32Attr is a combination of attributes for the channel.

Description:
This function is used to enable attributes of a uDMA channel.

The ui32Attr parameter is the logical OR of any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel (it is very unlikely that this flag should be used).
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

Returns:
None.

May 14, 2014 553

uDMA Controller

32.2.1.4 ROM_uDMAChannelAttributeGet

Gets the enabled attributes of a uDMA channel.

Prototype:
uint32_t
ROM_uDMAChannelAttributeGet(uint32_t ui32ChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelAttributeGet is a function pointer located at ROM_UDMATABLE[13].

Parameters:
ui32ChannelNum is the channel to configure.

Description:
This function returns a combination of flags representing the attributes of the uDMA channel.

Returns:
Returns the logical OR of the attributes of the uDMA channel, which can be any of the following:

UDMA_ATTR_USEBURST is used to restrict transfers to use only burst mode.
UDMA_ATTR_ALTSELECT is used to select the alternate control structure for this chan-
nel.
UDMA_ATTR_HIGH_PRIORITY is used to set this channel to high priority.
UDMA_ATTR_REQMASK is used to mask the hardware request signal from the periph-
eral for this channel.

32.2.1.5 ROM_uDMAChannelControlSet

Sets the control parameters for a uDMA channel control structure.

Prototype:
void
ROM_uDMAChannelControlSet(uint32_t ui32ChannelStructIndex,

uint32_t ui32Control)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelControlSet is a function pointer located at ROM_UDMATABLE[14].

Parameters:
ui32ChannelStructIndex is the logical OR of the uDMA channel number with

UDMA_PRI_SELECT or UDMA_ALT_SELECT.
ui32Control is logical OR of several control values to set the control parameters for the chan-

nel.

Description:
This function is used to set control parameters for a uDMA transfer. These parameters are
typically not changed often.

554 May 14, 2014

Tiva TM4C129x ROM User’s Guide

The ui32ChannelStructIndex parameter should be the logical OR of the channel number with
one of UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose whether the primary or alter-
nate data structure is used.

The ui32Control parameter is the logical OR of five values: the data size, the source address
increment, the destination address increment, the arbitration size, and the use burst flag. The
choices available for each of these values is described below.

Choose the data size from one of UDMA_SIZE_8, UDMA_SIZE_16, or UDMA_SIZE_32 to
select a data size of 8, 16, or 32 bits.

Choose the source address increment from one of UDMA_SRC_INC_8,
UDMA_SRC_INC_16, UDMA_SRC_INC_32, or UDMA_SRC_INC_NONE to select an
address increment of 8-bit bytes, 16-bit half-words, 32-bit words, or to select non-incrementing.

Choose the destination address increment from one of UDMA_DST_INC_8,
UDMA_DST_INC_16, UDMA_DST_INC_32, or UDMA_DST_INC_NONE to select an address
increment of 8-bit bytes, 16-bit half-words, 32-bit words, or to select non-incrementing.

The arbitration size determines how many items are transferred before the uDMA controller re-
arbitrates for the bus. Choose the arbitration size from one of UDMA_ARB_1, UDMA_ARB_2,
UDMA_ARB_4, UDMA_ARB_8, through UDMA_ARB_1024 to select the arbitration size from
1 to 1024 items, in powers of 2.

The value UDMA_NEXT_USEBURST is used to force the channel to only respond to burst
requests at the tail end of a scatter-gather transfer.

Note:
The address increment cannot be smaller than the data size.

Returns:
None.

32.2.1.6 ROM_uDMAChannelDisable

Disables a uDMA channel for operation.

Prototype:
void
ROM_uDMAChannelDisable(uint32_t ui32ChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelDisable is a function pointer located at ROM_UDMATABLE[6].

Parameters:
ui32ChannelNum is the channel number to disable.

Description:
This function disables a specific uDMA channel. Once disabled, a channel cannot respond to
uDMA transfer requests until re-enabled via ROM_uDMAChannelEnable().

Returns:
None.

May 14, 2014 555

uDMA Controller

32.2.1.7 ROM_uDMAChannelEnable

Enables a uDMA channel for operation.

Prototype:
void
ROM_uDMAChannelEnable(uint32_t ui32ChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelEnable is a function pointer located at ROM_UDMATABLE[5].

Parameters:
ui32ChannelNum is the channel number to enable.

Description:
This function enables a specific uDMA channel for use. This function must be used to enable
a channel before it can be used to perform a uDMA transfer.

When a uDMA transfer is completed, the channel is automatically disabled by the uDMA con-
troller. Therefore, this function should be called prior to starting up any new transfer.

Returns:
None.

32.2.1.8 ROM_uDMAChannelIsEnabled

Checks if a uDMA channel is enabled for operation.

Prototype:
bool
ROM_uDMAChannelIsEnabled(uint32_t ui32ChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelIsEnabled is a function pointer located at ROM_UDMATABLE[7].

Parameters:
ui32ChannelNum is the channel number to check.

Description:
This function checks to see if a specific uDMA channel is enabled. This function can be used to
check the status of a transfer, as the channel is automatically disabled at the end of a transfer.

Returns:
Returns true if the channel is enabled, false if disabled.

556 May 14, 2014

Tiva TM4C129x ROM User’s Guide

32.2.1.9 ROM_uDMAChannelModeGet

Gets the transfer mode for a uDMA channel control structure.

Prototype:
uint32_t
ROM_uDMAChannelModeGet(uint32_t ui32ChannelStructIndex)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelModeGet is a function pointer located at ROM_UDMATABLE[16].

Parameters:
ui32ChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.

Description:
This function is used to get the transfer mode for the uDMA channel and to query the status of
a transfer on a channel. When the transfer is complete the mode is UDMA_MODE_STOP.

Returns:
Returns the transfer mode of the specified channel and control structure, which is one of the
following values: UDMA_MODE_STOP, UDMA_MODE_BASIC, UDMA_MODE_AUTO,
UDMA_MODE_PINGPONG, UDMA_MODE_MEM_SCATTER_GATHER, or
UDMA_MODE_PER_SCATTER_GATHER.

32.2.1.10 ROM_uDMAChannelRequest

Requests a uDMA channel to start a transfer.

Prototype:
void
ROM_uDMAChannelRequest(uint32_t ui32ChannelNum)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelRequest is a function pointer located at ROM_UDMATABLE[10].

Parameters:
ui32ChannelNum is the channel number on which to request a uDMA transfer.

Description:
This function allows software to request a uDMA channel to begin a transfer. This function
could be used for performing a memory-to-memory transfer, or if for some reason a transfer
needs to be initiated by software instead of the peripheral associated with that channel.

Note:
If the channel is UDMA_CHANNEL_SW and interrupts are used, then the completion is sig-
naled on the uDMA dedicated interrupt. If a peripheral channel is used, then the completion is
signaled on the peripheral’s interrupt.

May 14, 2014 557

uDMA Controller

Returns:
None.

32.2.1.11 ROM_uDMAChannelScatterGatherSet

Configures a uDMA channel for scatter-gather mode.

Prototype:
void
ROM_uDMAChannelScatterGatherSet(uint32_t ui32ChannelNum,

uint32_t ui32TaskCount,
void *pvTaskList,
uint32_t ui32IsPeriphSG)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelScatterGatherSet is a function pointer located at
ROM_UDMATABLE[22].

Parameters:
ui32ChannelNum is the uDMA channel number.
ui32TaskCount is the number of scatter-gather tasks to execute.
pvTaskList is a pointer to the beginning of the scatter-gather task list.
ui32IsPeriphSG is a flag to indicate it is a peripheral scatter-gather transfer (else it is memory

scatter-gather transfer)

Description:
This function is used to configure a channel for scatter-gather mode. The caller must have
already set up a task list and must pass a pointer to the start of the task list as the pvTaskList
parameter. The ui32TaskCount parameter is the count of tasks in the task list, not the size
of the task list. The ui32IsPeriphSG parameter is used to indicate if scatter-gather should be
configured for a peripheral or memory operation.

Returns:
None.

32.2.1.12 ROM_uDMAChannelSelectDefault

Selects the default peripheral for a set of uDMA channels.

Prototype:
void
ROM_uDMAChannelSelectDefault(uint32_t ui32DefPeriphs)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelSelectDefault is a function pointer located at ROM_UDMATABLE[18].

558 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32DefPeriphs is the logical OR of the uDMA channels for which to use the default peripheral,

instead of the secondary peripheral.

Description:
This function is used to select the default peripheral assignment for a set of uDMA channels.

The parameter ui32DefPeriphs can be the logical OR of any of the following macros. If one of
the macros below is in the list passed to this function, then the default peripheral (marked as
DEF) is selected.

UDMA_DEF_USBEP1RX_SEC_UART2RX
UDMA_DEF_USBEP1TX_SEC_UART2TX
UDMA_DEF_USBEP2RX_SEC_TMR3A
UDMA_DEF_USBEP2TX_SEC_TMR3B
UDMA_DEF_USBEP3RX_SEC_TMR2A
UDMA_DEF_USBEP3TX_SEC_TMR2B
UDMA_DEF_ETH0RX_SEC_TMR2A
UDMA_DEF_ETH0TX_SEC_TMR2B
UDMA_DEF_UART0RX_SEC_UART1RX
UDMA_DEF_UART0TX_SEC_UART1TX
UDMA_DEF_SSI0RX_SEC_SSI1RX
UDMA_DEF_SSI0TX_SEC_SSI1TX
UDMA_DEF_ADC00_SEC_TMR2A
UDMA_DEF_ADC01_SEC_TMR2B
UDMA_DEF_ADC02_SEC_RESERVED
UDMA_DEF_ADC03_SEC_RESERVED
UDMA_DEF_TMR0A_SEC_TMR1A
UDMA_DEF_TMR0B_SEC_TMR1B
UDMA_DEF_TMR1A_SEC_EPI0RX
UDMA_DEF_TMR1B_SEC_EPI0TX
UDMA_DEF_UART1RX_SEC_RESERVED
UDMA_DEF_UART1TX_SEC_RESERVED
UDMA_DEF_SSI1RX_SEC_ADC10
UDMA_DEF_SSI1TX_SEC_ADC11

Returns:
None.

32.2.1.13 ROM_uDMAChannelSelectSecondary

Selects the secondary peripheral for a set of uDMA channels.

Prototype:
void
ROM_uDMAChannelSelectSecondary(uint32_t ui32SecPeriphs)

May 14, 2014 559

uDMA Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelSelectSecondary is a function pointer located at
ROM_UDMATABLE[17].

Parameters:
ui32SecPeriphs is the logical OR of the uDMA channels for which to use the secondary pe-

ripheral, instead of the default peripheral.

Description:
This function is used to select the secondary peripheral assignment for a set of uDMA chan-
nels. By selecting the secondary peripheral assignment for a channel, the default peripheral
assignment is no longer available for that channel.

The parameter ui32SecPeriphs can be the logical OR of any of the following macros. If one of
the macros below is in the list passed to this function, then the secondary peripheral (marked
as _SEC_) is selected.

UDMA_DEF_USBEP1RX_SEC_UART2RX
UDMA_DEF_USBEP1TX_SEC_UART2TX
UDMA_DEF_USBEP2RX_SEC_TMR3A
UDMA_DEF_USBEP2TX_SEC_TMR3B
UDMA_DEF_USBEP3RX_SEC_TMR2A
UDMA_DEF_USBEP3TX_SEC_TMR2B
UDMA_DEF_ETH0RX_SEC_TMR2A
UDMA_DEF_ETH0TX_SEC_TMR2B
UDMA_DEF_UART0RX_SEC_UART1RX
UDMA_DEF_UART0TX_SEC_UART1TX
UDMA_DEF_SSI0RX_SEC_SSI1RX
UDMA_DEF_SSI0TX_SEC_SSI1TX
UDMA_DEF_RESERVED_SEC_UART2RX
UDMA_DEF_RESERVED_SEC_UART2TX
UDMA_DEF_ADC00_SEC_TMR2A
UDMA_DEF_ADC01_SEC_TMR2B
UDMA_DEF_TMR0A_SEC_TMR1A
UDMA_DEF_TMR0B_SEC_TMR1B
UDMA_DEF_TMR1A_SEC_EPI0RX
UDMA_DEF_TMR1B_SEC_EPI0TX
UDMA_DEF_SSI1RX_SEC_ADC10
UDMA_DEF_SSI1TX_SEC_ADC11
UDMA_DEF_RESERVED_SEC_ADC12
UDMA_DEF_RESERVED_SEC_ADC13

Returns:
None.

560 May 14, 2014

Tiva TM4C129x ROM User’s Guide

32.2.1.14 ROM_uDMAChannelSizeGet

Gets the current transfer size for a uDMA channel control structure.

Prototype:
uint32_t
ROM_uDMAChannelSizeGet(uint32_t ui32ChannelStructIndex)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelSizeGet is a function pointer located at ROM_UDMATABLE[15].

Parameters:
ui32ChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.

Description:
This function is used to get the uDMA transfer size for a channel. The transfer size is the
number of items to transfer, where the size of an item might be 8, 16, or 32 bits. If a partial
transfer has already occurred, then the number of remaining items is returned. If the transfer
is complete, then 0 is returned.

Returns:
Returns the number of items remaining to transfer.

32.2.1.15 ROM_uDMAChannelTransferSet

Sets the transfer parameters for a uDMA channel control structure.

Prototype:
void
ROM_uDMAChannelTransferSet(uint32_t ui32ChannelStructIndex,

uint32_t ui32Mode,
void *pvSrcAddr,
void *pvDstAddr,
uint32_t ui32TransferSize)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAChannelTransferSet is a function pointer located at ROM_UDMATABLE[0].

Parameters:
ui32ChannelStructIndex is the logical OR of the uDMA channel number with either

UDMA_PRI_SELECT or UDMA_ALT_SELECT.
ui32Mode is the type of uDMA transfer.
pvSrcAddr is the source address for the transfer.
pvDstAddr is the destination address for the transfer.
ui32TransferSize is the number of data items to transfer.

May 14, 2014 561

uDMA Controller

Description:
This function is used to configure the parameters for a uDMA transfer. These parameters are
typically changed often. The function ROM_uDMAChannelControlSet() MUST be called at
least once for this channel prior to calling this function.

The ui32ChannelStructIndex parameter should be the logical OR of the channel number with
one of UDMA_PRI_SELECT or UDMA_ALT_SELECT to choose whether the primary or alter-
nate data structure is used.

The ui32Mode parameter should be one of the following values:

UDMA_MODE_STOP stops the uDMA transfer. The controller sets the mode to this value
at the end of a transfer.
UDMA_MODE_BASIC to perform a basic transfer based on request.
UDMA_MODE_AUTO to perform a transfer that always completes once started even if the
request is removed.
UDMA_MODE_PINGPONG to set up a transfer that switches between the primary and
alternate control structures for the channel. This mode allows use of ping-pong buffering
for uDMA transfers.
UDMA_MODE_MEM_SCATTER_GATHER to set up a memory scatter-gather transfer.
UDMA_MODE_PER_SCATTER_GATHER to set up a peripheral scatter-gather transfer.

The pvSrcAddr and pvDstAddr parameters are pointers to the first location of the data to be
transferred. These addresses should be aligned according to the item size. The compiler takes
care of this alignment if the pointers are pointing to storage of the appropriate data type.

The ui32TransferSize parameter is the number of data items, not the number of bytes.

The two scatter-gather modes, memory and peripheral, are actually different depending on
whether the primary or alternate control structure is selected. This function looks for the
UDMA_PRI_SELECT and UDMA_ALT_SELECT flag along with the channel number and sets
the scatter-gather mode as appropriate for the primary or alternate control structure.

The channel must also be enabled using ROM_uDMAChannelEnable() after calling this func-
tion. The transfer does not begin until the channel has been configured and enabled.
Note that the channel is automatically disabled after the transfer is completed, meaning that
ROM_uDMAChannelEnable() must be called again after setting up the next transfer.

Note:
Great care must be taken to not modify a channel control structure that is in use or else the
results are unpredictable, including the possibility of undesired data transfers to or from mem-
ory or peripherals. For BASIC and AUTO modes, it is safe to make changes when the channel
is disabled, or the ROM_uDMAChannelModeGet() returns UDMA_MODE_STOP. For PING-
PONG or one of the SCATTER_GATHER modes, it is safe to modify the primary or alternate
control structure only when the other is being used. The ROM_uDMAChannelModeGet() func-
tion returns UDMA_MODE_STOP when a channel control structure is inactive and safe to
modify.

Returns:
None.

32.2.1.16 ROM_uDMAControlAlternateBaseGet

Gets the base address for the channel control table alternate structures.

562 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void *
ROM_uDMAControlAlternateBaseGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAControlAlternateBaseGet is a function pointer located at
ROM_UDMATABLE[21].

Description:
This function gets the base address of the second half of the channel control table that holds
the alternate control structures for each channel.

Returns:
Returns a pointer to the base address of the second half of the channel control table.

32.2.1.17 ROM_uDMAControlBaseGet

Gets the base address for the channel control table.

Prototype:
void *
ROM_uDMAControlBaseGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAControlBaseGet is a function pointer located at ROM_UDMATABLE[9].

Description:
This function gets the base address of the channel control table. This table resides in system
memory and holds control information for each uDMA channel.

Returns:
Returns a pointer to the base address of the channel control table.

32.2.1.18 ROM_uDMAControlBaseSet

Sets the base address for the channel control table.

Prototype:
void
ROM_uDMAControlBaseSet(void *psControlTable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAControlBaseSet is a function pointer located at ROM_UDMATABLE[8].

Parameters:
psControlTable is a pointer to the 1024-byte-aligned base address of the uDMA channel con-

trol table.

May 14, 2014 563

uDMA Controller

Description:
This function configures the base address of the channel control table. This table resides in
system memory and holds control information for each uDMA channel. The table must be
aligned on a 1024-byte boundary. The base address must be configured before any of the
channel functions can be used.

The size of the channel control table depends on the number of uDMA channels and the
transfer modes that are used. Refer to the introductory text and the microcontroller datasheet
for more information about the channel control table.

Returns:
None.

32.2.1.19 ROM_uDMADisable

Disables the uDMA controller for use.

Prototype:
void
ROM_uDMADisable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMADisable is a function pointer located at ROM_UDMATABLE[2].

Description:
This function disables the uDMA controller. Once disabled, the uDMA controller cannot operate
until re-enabled with ROM_uDMAEnable().

Returns:
None.

32.2.1.20 ROM_uDMAEnable

Enables the uDMA controller for use.

Prototype:
void
ROM_uDMAEnable(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAEnable is a function pointer located at ROM_UDMATABLE[1].

Description:
This function enables the uDMA controller. The uDMA controller must be enabled before it can
be configured and used.

Returns:
None.

564 May 14, 2014

Tiva TM4C129x ROM User’s Guide

32.2.1.21 ROM_uDMAErrorStatusClear

Clears the uDMA error interrupt.

Prototype:
void
ROM_uDMAErrorStatusClear(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAErrorStatusClear is a function pointer located at ROM_UDMATABLE[4].

Description:
This function clears a pending uDMA error interrupt. This function should be called from within
the uDMA error interrupt handler to clear the interrupt.

Returns:
None.

32.2.1.22 ROM_uDMAErrorStatusGet

Gets the uDMA error status.

Prototype:
uint32_t
ROM_uDMAErrorStatusGet(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAErrorStatusGet is a function pointer located at ROM_UDMATABLE[3].

Description:
This function returns the uDMA error status. It should be called from within the uDMA error
interrupt handler to determine if a uDMA error occurred.

Returns:
Returns non-zero if a uDMA error is pending.

32.2.1.23 ROM_uDMAIntClear

Clears uDMA interrupt status.

Prototype:
void
ROM_uDMAIntClear(uint32_t ui32ChanMask)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAIntClear is a function pointer located at ROM_UDMATABLE[20].

May 14, 2014 565

uDMA Controller

Parameters:
ui32ChanMask is a 32-bit mask with one bit for each uDMA channel.

Description:
This function clears bits in the uDMA interrupt status register according to which bits are set in
ui32ChanMask . There is one bit for each channel. If a a bit is set in ui32ChanMask , then that
corresponding channel’s interrupt status is cleared (if it was set).

Returns:
None.

32.2.1.24 ROM_uDMAIntStatus

Gets the uDMA controller channel interrupt status.

Prototype:
uint32_t
ROM_uDMAIntStatus(void)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_UDMATABLE is an array of pointers located at ROM_APITABLE[17].
ROM_uDMAIntStatus is a function pointer located at ROM_UDMATABLE[19].

Description:
This function is used to get the interrupt status of the uDMA controller. The returned value
is a 32-bit bit mask that indicates which channels are requesting an interrupt. This function
can be used from within an interrupt handler to determine or confirm which uDMA channel has
requested an interrupt.

Returns:
Returns a 32-bit mask which indicates requesting uDMA channels. There is a bit for each
channel and a 1 indicates that the channel is requesting an interrupt. Multiple bits can be set.

566 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33 USB Controller
Introduction .567
Functions . 568

33.1 Introduction

The USB APIs provide a set of functions that are used to access the Tiva USB device, host and/or
device, or OTG controllers. The APIs are split into groups according to the functionality provided by
the USB controller present in the microcontroller. The groups are the following: USBDev, USBHost,
USBOTG, USBEndpoint, USBFIFO and USBDMA. The APIs in the USBDev group are only used
with microcontrollers when the controller is operating in Device mode. The APIs in the USBHost
group can only be used with microcontrollers when the device is operating in Host mode. The
USBOTG APIs are used by microcontrollers with an OTG interface. With USB OTG controllers,
once the mode of the USB controller is configured, the device or host APIs is used. The remainder
of the APIs are used for both USB host and USB device controllers. The USBEndpoint APIs are
used to configure and access the endpoints while the USBFIFO APIs are used to configure the size
and location of the FIFOs.

The USB APIs provide all of the functions needed by an application to implement a USB device
or USB host stack. The APIs abstract the IN/OUT nature of endpoints based on the type of USB
controller that is in use. Any API that uses the IN/OUT terminology complies with the standard USB
interpretation of these terms. For example, an OUT endpoint on a microcontroller that has only
a device interface actually receives data on this endpoint, while a microcontroller that has a host
interface actually transmits data on an OUT endpoint.

Another important fact to understand is that all endpoints in the USB controller, whether host or
device, have two "sides" to them, allowing each endpoint to both transmit and receive data. An
application can use a single endpoint for both and IN and OUT transactions. For example: In
device mode, endpoint 1 can be configured to have BULK IN and BULK OUT handled by endpoint
1. It is important to note that the endpoint number used is the endpoint number reported to the host.
For microcontrollers with host controllers, the application can use an endpoint to communicate with
both IN and OUT endpoints of different types as well. For example: Endpoint 2 can be used to
communicate with one device’s interrupt IN endpoint and another device’s bulk OUT endpoint at
the same time. This configuration effectively gives the application one dedicated control endpoint
for IN or OUT control transactions on endpoint 0, and seven IN endpoints and seven OUT endpoints.

The USB controller has a configurable FIFOs in devices that have a USB device controller as well as
those that have a host controller. The overall size of the FIFO RAM is 4096 bytes. It is important to
note that the first 64 bytes of this memory are dedicated to endpoint 0 for control transactions. The
remaining 4032 bytes are configurable however the application desires. The FIFO configuration is
usually set at the beginning of the application and not modified once the USB controller is in use.
The FIFO configuration uses the ROM_USBFIFOConfigSet() API to set the starting address and
the size of the FIFOs that are dedicated to each endpoint.

Example: FIFO Configuration

//
// 0-64 - endpoint 0 IN/OUT (64 bytes).
//
// 64-576 - endpoint 1 IN (512 bytes).
//

May 14, 2014 567

USB Controller

// 576-1088 - endpoint 1 OUT (512 bytes).
//
// 1088-1600 - endpoint 2 IN (512 bytes).
//

//
// FIFO for endpoint 1 IN starts at address 64 and is 512 bytes in size.
//
ROM_USBFIFOConfigSet(USB0_BASE, USB_EP_1, 64, USB_FIFO_SZ_512, USB_EP_DEV_IN);

//
// FIFO for endpoint 1 OUT starts at address 576 and is 512 bytes in size.
//
ROM_USBFIFOConfigSet(USB0_BASE, USB_EP_1, 576, USB_FIFO_SZ_512, USB_EP_DEV_OUT);

//
// FIFO for endpoint 2 IN starts at address 1088 and is 512 bytes in size.
//
ROM_USBFIFOConfigSet(USB0_BASE, USB_EP_2, 1088, USB_FIFO_SZ_512, USB_EP_DEV_IN);

33.2 Functions

Functions
void ROM_UpdateUSB (uint8_t ∗pui8USBBootROMInfo)
void ROM_USBClockDisable (uint32_t ui32Base)
void ROM_USBClockEnable (uint32_t ui32Base, uint32_t ui32Div, uint32_t ui32Flags)
uint32_t ROM_USBControllerVersion (uint32_t ui32Base)
uint32_t ROM_USBDevAddrGet (uint32_t ui32Base)
void ROM_USBDevAddrSet (uint32_t ui32Base, uint32_t ui32Address)
void ROM_USBDevConnect (uint32_t ui32Base)
void ROM_USBDevDisconnect (uint32_t ui32Base)
void ROM_USBDevEndpointConfigGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
∗pui32MaxPacketSize, uint32_t ∗pui32Flags)
void ROM_USBDevEndpointConfigSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32MaxPacketSize, uint32_t ui32Flags)
void ROM_USBDevEndpointDataAck (uint32_t ui32Base, uint32_t ui32Endpoint, bool bIsLast-
Packet)
void ROM_USBDevEndpointStall (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void ROM_USBDevEndpointStallClear (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void ROM_USBDevEndpointStatusClear (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void ROM_USBDevLPMConfig (uint32_t ui32Base, uint32_t ui32Config)
void ROM_USBDevLPMDisable (uint32_t ui32Base)
void ROM_USBDevLPMEnable (uint32_t ui32Base)
void ROM_USBDevLPMRemoteWake (uint32_t ui32Base)
void ROM_USBDevMode (uint32_t ui32Base)
uint32_t ROM_USBDevSpeedGet (uint32_t ui32Base)
void ∗ ROM_USBDMAChannelAddressGet (uint32_t ui32Base, uint32_t ui32Channel)

568 May 14, 2014

Tiva TM4C129x ROM User’s Guide

void ROM_USBDMAChannelAddressSet (uint32_t ui32Base, uint32_t ui32Channel, void
∗pvAddress)
void ROM_USBDMAChannelConfigSet (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Endpoint, uint32_t ui32Config)
uint32_t ROM_USBDMAChannelCountGet (uint32_t ui32Base, uint32_t ui32Channel)
void ROM_USBDMAChannelCountSet (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Count)
void ROM_USBDMAChannelDisable (uint32_t ui32Base, uint32_t ui32Channel)
void ROM_USBDMAChannelEnable (uint32_t ui32Base, uint32_t ui32Channel)
void ROM_USBDMAChannelIntDisable (uint32_t ui32Base, uint32_t ui32Channel)
void ROM_USBDMAChannelIntEnable (uint32_t ui32Base, uint32_t ui32Channel)
uint32_t ROM_USBDMAChannelIntStatus (uint32_t ui32Base)
uint32_t ROM_USBDMAChannelStatus (uint32_t ui32Base, uint32_t ui32Channel)
void ROM_USBDMAChannelStatusClear (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Status)
uint32_t ROM_USBDMANumChannels (uint32_t ui32Base)
endif uint32_t ROM_USBEndpointDataAvail (uint32_t ui32Base, uint32_t ui32Endpoint)
int32_t ROM_USBEndpointDataGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint8_t
∗pui8Data, uint32_t ∗pui32Size)
int32_t ROM_USBEndpointDataPut (uint32_t ui32Base, uint32_t ui32Endpoint, uint8_t
∗pui8Data, uint32_t ui32Size)
int32_t ROM_USBEndpointDataSend (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32TransType)
void ROM_USBEndpointDataToggleClear (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
if void ROM_USBEndpointDMAChannel (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Channel)
if void ROM_USBEndpointDMAConfigSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Config)
void ROM_USBEndpointDMADisable (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void ROM_USBEndpointDMAEnable (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void ROM_USBEndpointPacketCountSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Count)
uint32_t ROM_USBEndpointStatus (uint32_t ui32Base, uint32_t ui32Endpoint)
uint32_t ROM_USBFIFOAddrGet (uint32_t ui32Base, uint32_t ui32Endpoint)
void ROM_USBFIFOConfigGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
∗pui32FIFOAddress, uint32_t ∗pui32FIFOSize, uint32_t ui32Flags)
void ROM_USBFIFOConfigSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32FIFOAddress, uint32_t ui32FIFOSize, uint32_t ui32Flags)
void ROM_USBFIFOFlush (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Flags)
uint32_t ROM_USBFrameNumberGet (uint32_t ui32Base)
void ROM_USBHighSpeed (uint32_t ui32Base, bool bEnable)
uint32_t ROM_USBHostAddrGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void ROM_USBHostAddrSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t ui32Addr,
uint32_t ui32Flags)

May 14, 2014 569

USB Controller

void ROM_USBHostEndpointConfig (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32MaxPayload, uint32_t ui32NAKPollInterval, uint32_t ui32TargetEndpoint, uint32_t
ui32Flags)
void ROM_USBHostEndpointDataAck (uint32_t ui32Base, uint32_t ui32Endpoint)
void ROM_USBHostEndpointDataToggle (uint32_t ui32Base, uint32_t ui32Endpoint, bool
bDataToggle, uint32_t ui32Flags)
void ROM_USBHostEndpointPing (uint32_t ui32Base, uint32_t ui32Endpoint, bool bEnable)
void ROM_USBHostEndpointSpeed (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void ROM_USBHostEndpointStatusClear (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
uint32_t ROM_USBHostHubAddrGet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Flags)
void ROM_USBHostHubAddrSet (uint32_t ui32Base, uint32_t ui32Endpoint, uint32_t
ui32Addr, uint32_t ui32Flags)
void ROM_USBHostLPMConfig (uint32_t ui32Base, uint32_t ui32ResumeTime, uint32_t
ui32Config)
void ROM_USBHostLPMResume (uint32_t ui32Base)
void ROM_USBHostLPMSend (uint32_t ui32Base, uint32_t ui32Address, uint32_t
ui32Endpoint)
endif void ROM_USBHostMode (uint32_t ui32Base)
void ROM_USBHostPwrConfig (uint32_t ui32Base, uint32_t ui32Flags)
void ROM_USBHostPwrDisable (uint32_t ui32Base)
void ROM_USBHostPwrEnable (uint32_t ui32Base)
void ROM_USBHostPwrFaultDisable (uint32_t ui32Base)
void ROM_USBHostPwrFaultEnable (uint32_t ui32Base)
void ROM_USBHostRequestIN (uint32_t ui32Base, uint32_t ui32Endpoint)
void ROM_USBHostRequestINClear (uint32_t ui32Base, uint32_t ui32Endpoint)
void ROM_USBHostRequestStatus (uint32_t ui32Base)
void ROM_USBHostReset (uint32_t ui32Base, bool bStart)
void ROM_USBHostResume (uint32_t ui32Base, bool bStart)
uint32_t ROM_USBHostSpeedGet (uint32_t ui32Base)
void ROM_USBHostSuspend (uint32_t ui32Base)
void ROM_USBIntDisableControl (uint32_t ui32Base, uint32_t ui32Flags)
void ROM_USBIntDisableEndpoint (uint32_t ui32Base, uint32_t ui32Flags)
void ROM_USBIntEnableControl (uint32_t ui32Base, uint32_t ui32Flags)
void ROM_USBIntEnableEndpoint (uint32_t ui32Base, uint32_t ui32Flags)
uint32_t ROM_USBIntStatusControl (uint32_t ui32Base)
uint32_t ROM_USBIntStatusEndpoint (uint32_t ui32Base)
void ROM_USBLPMIntDisable (uint32_t ui32Base, uint32_t ui32Ints)
void ROM_USBLPMIntEnable (uint32_t ui32Base, uint32_t ui32Ints)
uint32_t ROM_USBLPMIntStatus (uint32_t ui32Base)
uint32_t ROM_USBLPMLinkStateGet (uint32_t ui32Base)
bool ROM_USBLPMRemoteWakeEnabled (uint32_t ui32Base)
void ROM_USBModeConfig (uint32_t ui32Base, uint32_t ui32Mode)
uint32_t ROM_USBModeGet (uint32_t ui32Base)
uint32_t ROM_USBNumEndpointsGet (uint32_t ui32Base)

570 May 14, 2014

Tiva TM4C129x ROM User’s Guide

void ROM_USBOTGMode (uint32_t ui32Base)
void ROM_USBOTGSessionRequest (uint32_t ui32Base, bool bStart)
void ROM_USBPHYPowerOff (uint32_t ui32Base)
void ROM_USBPHYPowerOn (uint32_t ui32Base)
void ROM_USBULPIConfig (uint32_t ui32Base, uint32_t ui32Config)
void ROM_USBULPIDisable (uint32_t ui32Base)
void ROM_USBULPIEnable (uint32_t ui32Base)
uint8_t ROM_USBULPIRegRead (uint32_t ui32Base, uint8_t ui8Reg)
void ROM_USBULPIRegWrite (uint32_t ui32Base, uint8_t ui8Reg, uint8_t ui8Data)

33.2.1 Function Documentation

33.2.1.1 ROM_UpdateUSB

Starts an update over the USB interface.

Prototype:
void
ROM_UpdateUSB(uint8_t *pui8USBBootROMInfo)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_UpdateUSB is a function pointer located at ROM_USBTABLE[58].

Parameters:
pui8USBBootROMInfo is a pointer to an array containing the values that are used to cus-

tomize the USB interface.

Description:
Calling this function commences an update of the firmware via the USB interface. This function
assumes that the USB interface has already been configured and the device is being clocked
by the PLL. By using the pui8USBBootROMInfo, the vendor ID, product ID, bus- versus self-
powered, maximum power, device version, and USB strings can be customized.

Returns:
Never returns.

33.2.1.2 ROM_USBClockDisable

Disables the clocking of the USB controller’s PHY.

Prototype:
void
ROM_USBClockDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBClockDisable is a function pointer located at ROM_USBTABLE[62].

May 14, 2014 571

USB Controller

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables the USB PHY clock input or output.

Example: Disable the USB PHY clock input.

//
// Disable clocking of the USB controller’s PHY.
//
USBClockDisable(USB0_BASE);

Note:
The ability to configure the USB PHY clock is not available on all Tiva devices. Please consult
the data sheet for the Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.3 ROM_USBClockEnable

Configures and enables the clocking to the USB controller’s PHY.

Prototype:
void
ROM_USBClockEnable(uint32_t ui32Base,

uint32_t ui32Div,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBClockEnable is a function pointer located at ROM_USBTABLE[63].

Parameters:
ui32Base specifies the USB module base address.
ui32Div specifies the divider for the input clock
ui32Flags specifies which clock to use for the USB clock.

Description:
This function configures and enables the USB PHY clock as an input to the USB controller or
as and output to an externally connect USB PHY. The ui32Flags parameter specifies the clock
source with the following values:

USB_CLOCK_INTERNAL uses the internal clock for the USB PHY clock source.
USB_CLOCK_EXTERNAL specifies that the USB0CLK input pin is used as the USB PHY
clock source.

The ui32Div parameter is used to specify a divider for the internal clock if the
USB_CLOCK_INTERNAL is specified and is ignored if USB_CLOCK_EXTERNAL is spec-
ified. When the USB_CLOCK_INTERNAL is specified, the ui32Div value must be set so that
the PLL_VCO/ui32Div results in a 60-MHz clock.

Example: Enable the USB clock with a 480-MHz PLL setting.

572 May 14, 2014

Tiva TM4C129x ROM User’s Guide

//
// Enable the USB clock using a 480-MHz PLL.
// (480-MHz/8 = 60-MHz)
//
USBClockEnable(USB0_BASE, 8, USB_CLOCK_INTERNAL);

Note:
The ability to configure the USB PHY clock input is not available on all Tiva devices. Please
consult the data sheet for the Tiva device that you are using to determine if this feature is
available.

Returns:
None.

33.2.1.4 ROM_USBControllerVersion

Returns the version of the USB controller.

Prototype:
uint32_t
ROM_USBControllerVersion(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBControllerVersion is a function pointer located at ROM_USBTABLE[64].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the version number of the USB controller, which can be be used to ad-
just for slight differences between the USB controllers in the Tiva family. The values that are
returned are USB_CONTROLLER_VER_0 and USB_CONTROLLER_VER_1.

Note:
The most significant difference between USB_CONTROLLER_VER_0 and
USB_CONTROLLER_VER_1 is that USB_CONTROLLER_VER_1 supports the USB
controller’s own bus master DMA controller, while the USB_CONTROLLER_VER_0 only
supports using the uDMA controller with the USB module.

Example: Get the version of the Tiva USB controller.

uint32_t ui32Version;

//
// Retrieve the version of the Tiva USB controller.
//
ui32Version = USBControllerVersion(USB0_BASE);

Returns:
This function returns one of the USB_CONTROLLER_VER_ values.

May 14, 2014 573

USB Controller

33.2.1.5 ROM_USBDevAddrGet

Returns the current device address in device mode.

Prototype:
uint32_t
ROM_USBDevAddrGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevAddrGet is a function pointer located at ROM_USBTABLE[1].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current device address. This address was set by a call to
ROM_USBDevAddrSet().

Note:
This function must only be called in device mode.

Returns:
The current device address.

33.2.1.6 ROM_USBDevAddrSet

Sets the address in device mode.

Prototype:
void
ROM_USBDevAddrSet(uint32_t ui32Base,

uint32_t ui32Address)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevAddrSet is a function pointer located at ROM_USBTABLE[2].

Parameters:
ui32Base specifies the USB module base address.
ui32Address is the address to use for a device.

Description:
This function configures the device address on the USB bus. This address was likely received
via a SET ADDRESS command from the host controller.

Note:
This function must only be called in device mode.

Returns:
None.

574 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.7 ROM_USBDevConnect

Connects the USB controller to the bus in device mode.

Prototype:
void
ROM_USBDevConnect(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevConnect is a function pointer located at ROM_USBTABLE[3].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function causes the soft connect feature of the USB controller to be enabled. Call
ROM_USBDevDisconnect() to remove the USB device from the bus.

Note:
This function must only be called in device mode.

Returns:
None.

33.2.1.8 ROM_USBDevDisconnect

Removes the USB controller from the bus in device mode.

Prototype:
void
ROM_USBDevDisconnect(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevDisconnect is a function pointer located at ROM_USBTABLE[4].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function causes the soft connect feature of the USB controller to remove the device from
the USB bus. A call to ROM_USBDevConnect() is needed to reconnect to the bus.

Note:
This function must only be called in device mode.

Returns:
None.

May 14, 2014 575

USB Controller

33.2.1.9 ROM_USBDevEndpointConfigGet

Gets the current configuration for an endpoint.

Prototype:
void
ROM_USBDevEndpointConfigGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t *pui32MaxPacketSize,
uint32_t *pui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointConfigGet is a function pointer located at ROM_USBTABLE[41].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
pui32MaxPacketSize is a pointer which is written with the maximum packet size for this end-

point.
pui32Flags is a pointer which is written with the current endpoint settings. On entry to the

function, this pointer must contain either USB_EP_DEV_IN or USB_EP_DEV_OUT to in-
dicate whether the IN or OUT endpoint is to be queried.

Description:
This function returns the basic configuration for an endpoint in device mode. The values re-
turned in ∗pui32MaxPacketSize and ∗pui32Flags are equivalent to the ui32MaxPacketSize and
ui32Flags previously passed to ROM_USBDevEndpointConfigSet() for this endpoint.

Note:
This function must only be called in device mode.

Returns:
None.

33.2.1.10 ROM_USBDevEndpointConfigSet

Sets the configuration for an endpoint.

Prototype:
void
ROM_USBDevEndpointConfigSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32MaxPacketSize,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointConfigSet is a function pointer located at ROM_USBTABLE[5].

576 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32MaxPacketSize is the maximum packet size for this endpoint.
ui32Flags are used to configure other endpoint settings.

Description:
This function sets the basic configuration for an endpoint in device mode. Endpoint zero does
not have a dynamic configuration, so this function must not be called for endpoint zero. The
ui32Flags parameter determines some of the configuration while the other parameters provide
the rest.

The USB_EP_MODE_ flags define what the type is for the given endpoint.

USB_EP_MODE_CTRL is a control endpoint.
USB_EP_MODE_ISOC is an isochronous endpoint.
USB_EP_MODE_BULK is a bulk endpoint.
USB_EP_MODE_INT is an interrupt endpoint.

When configuring an IN endpoint, the USB_EP_AUTO_SET bit can be specified to cause the
automatic transmission of data on the USB bus as soon as ui32MaxPacketSize bytes of data
are written into the FIFO for this endpoint.

When configuring an OUT endpoint, the USB_EP_AUTO_REQUEST bit is specified to
trigger the request for more data once the FIFO has been drained enough to receive
ui32MaxPacketSize more bytes of data. Also for OUT endpoints, the USB_EP_AUTO_CLEAR
bit can be used to clear the data packet ready flag automatically once the data has been
read from the FIFO. If this option is not used, this flag must be manually cleared via a call to
ROM_USBDevEndpointStatusClear(). Both of these settings can be used to remove the need
for extra calls when using the controller in DMA mode.

Note:
This function must only be called in device mode.

Returns:
None.

33.2.1.11 ROM_USBDevEndpointDataAck

Acknowledge that data was read from the given endpoint’s FIFO in device mode.

Prototype:
void
ROM_USBDevEndpointDataAck(uint32_t ui32Base,

uint32_t ui32Endpoint,
bool bIsLastPacket)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointDataAck is a function pointer located at ROM_USBTABLE[6].

May 14, 2014 577

USB Controller

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
bIsLastPacket indicates if this packet is the last one.

Description:
This function acknowledges that the data was read from the endpoint’s FIFO. The bIsLast-
Packet parameter is set to a true value if this is the last in a series of data packets on endpoint
zero. The bIsLastPacket parameter is not used for endpoints other than endpoint zero. This
call can be used if processing is required between reading the data and acknowledging that
the data has been read.

Note:
This function must only be called in device mode.

Returns:
None.

33.2.1.12 ROM_USBDevEndpointStall

Stalls the specified endpoint in device mode.

Prototype:
void
ROM_USBDevEndpointStall(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointStall is a function pointer located at ROM_USBTABLE[7].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies the endpoint to stall.
ui32Flags specifies whether to stall the IN or OUT endpoint.

Description:
This function causes the endpoint number passed in to go into a stall condition. If the ui32Flags
parameter is USB_EP_DEV_IN, then the stall is issued on the IN portion of this endpoint. If
the ui32Flags parameter is USB_EP_DEV_OUT, then the stall is issued on the OUT portion of
this endpoint.

Note:
This function must only be called in device mode.

Returns:
None.

578 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.13 ROM_USBDevEndpointStallClear

Clears the stall condition on the specified endpoint in device mode.

Prototype:
void
ROM_USBDevEndpointStallClear(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointStallClear is a function pointer located at ROM_USBTABLE[8].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies which endpoint to remove the stall condition.
ui32Flags specifies whether to remove the stall condition from the IN or the OUT portion of

this endpoint.

Description:
This function causes the endpoint number passed in to exit the stall condition. If the ui32Flags
parameter is USB_EP_DEV_IN, then the stall is cleared on the IN portion of this endpoint. If
the ui32Flags parameter is USB_EP_DEV_OUT, then the stall is cleared on the OUT portion
of this endpoint.

Note:
This function must only be called in device mode.

Returns:
None.

33.2.1.14 ROM_USBDevEndpointStatusClear

Clears the status bits in this endpoint in device mode.

Prototype:
void
ROM_USBDevEndpointStatusClear(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevEndpointStatusClear is a function pointer located at ROM_USBTABLE[9].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags are the status bits that are cleared.

May 14, 2014 579

USB Controller

Description:
This function clears the status of any bits that are passed in the ui32Flags parameter. The
ui32Flags parameter can take the value returned from the ROM_USBEndpointStatus() call.

Note:
This function must only be called in device mode.

Returns:
None.

33.2.1.15 ROM_USBDevLPMConfig

Configures the USB device mode response to LPM requests.

Prototype:
void
ROM_USBDevLPMConfig(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevLPMConfig is a function pointer located at ROM_USBTABLE[65].

Parameters:
ui32Base specifies the USB module base address.
ui32Config is the combination of configuration options for LPM transactions in device mode.

Description:
This function sets the global configuration options for LPM transactions in device mode and
must be called before ever calling ROM_USBDevLPMEnable(). The configuration options in
device mode are specified in the ui32Config parameter and include one of the following:

USB_DEV_LPM_NONE disables the USB controller from responding to LPM transactions.
USB_DEV_LPM_EN enables the USB controller to respond to LPM and extended trans-
actions.
USB_DEV_LPM_EXTONLY enables the USB controller to respond to extended transac-
tions, but not LPM transactions.

The ui32Config option can also optionally include the USB_DEV_LPM_NAK value to cause
the USB controller to NAK all transactions other than an LPM transaction once the USB con-
troller is in LPM suspend mode. If this value is not included in the ui32Config parameter, the
USB controller does not respond in suspend mode.

The USB controller does not enter LPM suspend mode until the application calls the
ROM_USBDevLPMEnable() function.

Example: Enable LPM transactions and NAK while in LPM suspend mode.

//
// Enable LPM transactions and NAK while in LPM suspend mode.
//
USBDevLPMConfig(USB0_BASE, USB_DEV_LPM_NAK | USB_DEV_LPM_EN);

580 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.16 ROM_USBDevLPMDisable

Disables the USB controller from responding to LPM suspend requests.

Prototype:
void
ROM_USBDevLPMDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevLPMDisable is a function pointer located at ROM_USBTABLE[66].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables the USB controller from responding to LPM transactions. When the
device enters LPM L1 mode, the USB controller automatically disables responding to further
LPM transactions.

Note:
If LPM transactions were enabled before calling this function, then an LPM request can still
occur before this function returns. As a result, the application must continue to handle LPM
requests until this function returns.

Example: Disable LPM suspend mode.

//
// Disable LPM suspend mode.
//
USBDevLPMDisable(USB0_BASE);

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.17 ROM_USBDevLPMEnable

Enables the USB controller to respond to LPM suspend requests.

May 14, 2014 581

USB Controller

Prototype:
void
ROM_USBDevLPMEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevLPMEnable is a function pointer located at ROM_USBTABLE[67].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function is used to automatically respond to an LPM sleep request from the USB host
controller. If there is no data pending in any transmit FIFOs, then the USB controller acknowl-
edges the packet and enters the LPM L1 state and generate the USB_INTLPM_ACK interrupt.
If the USB controller has pending transmit data in at least one FIFO, then the USB controller re-
sponds with NYET and signals the USB_INTLPM_INCOMPLETE or USB_INTLPM_NYET de-
pending on if data is pending in receive or transmit FIFOs. A call to ROM_USBDevLPMEnable()
is required after every LPM resume event to re-enable LPM mode.

Example: Enable LPM suspend mode.

//
// Enable LPM suspend mode.
//
USBDevLPMEnable(USB0_BASE);

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.18 ROM_USBDevLPMRemoteWake

Initiates remote wake signaling to request the device to leave LPM suspend mode.

Prototype:
void
ROM_USBDevLPMRemoteWake(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevLPMRemoteWake is a function pointer located at ROM_USBTABLE[68].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function initiates remote wake signaling to request that the host wake a device that has
entered an LPM-triggered low power mode.

Example: Initiate remote wake signaling.

582 May 14, 2014

Tiva TM4C129x ROM User’s Guide

//
// Initiate remote wake signaling.
//
USBDevLPMRemoteWake(USB0_BASE);

Note:
This function must only be called in device mode.

The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.19 ROM_USBDevMode

Change the mode of the USB controller to device.

Prototype:
void
ROM_USBDevMode(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevMode is a function pointer located at ROM_USBTABLE[55].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function changes the mode of the USB controller to device mode.

Note:
This function must only be called on microcontrollers that support OTG operation and have the
DEVMODOTG bit in the USBGPCS register.

Returns:
None.

33.2.1.20 ROM_USBDevSpeedGet

Returns the current speed of the USB controller in device mode.

Prototype:
uint32_t
ROM_USBDevSpeedGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDevSpeedGet is a function pointer located at ROM_USBTABLE[69].

May 14, 2014 583

USB Controller

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the operating speed of the connection to the USB host controller. This
function returns either USB_HIGH_SPEED or USB_FULL_SPEED to indicate the connection
speed in device mode.

Example: Get the USB connection speed.

//
// Get the connection speed of the USB controller.
//
USBDevSpeedGet(USB0_BASE);

Note:
This function must only be called in device mode.

Returns:
Returns either USB_HIGH_SPEED or USB_FULL_SPEED.

33.2.1.21 ROM_USBDMAChannelAddressGet

Returns the source or destination address for a given USB controller’s DMA channel.

Prototype:
void *
ROM_USBDMAChannelAddressGet(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelAddressGet is a function pointer located at ROM_USBTABLE[70].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies the USB DMA channel.

Description:
This function returns the DMA address for the channel number specified in the ui32Channel
parameter. The ui32Channel value is a zero-based index of the DMA channel to query.
This function must not be used on devices that return USB_CONTROLLER_VER_0 from the
ROM_USBControllerVersion() function.

Example: Get the transfer address for USB DMA channel 1.

void *pvBuffer;

//
// Retrieve the current DMA address for channel 1.
//
pvBuffer = USBDMAChannelAddressGet(USB0_BASE, 1);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

584 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
The current DMA address for a USB DMA channel.

33.2.1.22 ROM_USBDMAChannelAddressSet

Sets the source or destination address for a USB DMA transfer on a given channel.

Prototype:
void
ROM_USBDMAChannelAddressSet(uint32_t ui32Base,

uint32_t ui32Channel,
void *pvAddress)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelAddressSet is a function pointer located at ROM_USBTABLE[71].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to configure.
pvAddress specifies the source or destination address for the USB DMA transfer.

Description:
This function sets the source or destination address for the USB DMA channel number speci-
fied in the ui32Channel parameter. The ui32Channel value is a zero-based index of the USB
DMA channel. The pvAddress parameter is a source address if the transfer type for the DMA
channel is transmit and a destination address if the transfer type is receive.

Example: Set the transfer address for USB DMA channel 1.

void *pvBuffer;

//
// Set the address for USB DMA channel 1.
//
USBDMAChannelAddressSet(USB0_BASE, 1, pvBuffer);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

33.2.1.23 ROM_USBDMAChannelConfigSet

Assigns and configures an endpoint to a given USB DMA channel.

Prototype:
void
ROM_USBDMAChannelConfigSet(uint32_t ui32Base,

May 14, 2014 585

USB Controller

uint32_t ui32Channel,
uint32_t ui32Endpoint,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelConfigSet is a function pointer located at ROM_USBTABLE[72].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to access.
ui32Endpoint is the endpoint to assign to the USB DMA channel.
ui32Config is used to specify the configuration of the USB DMA channel.

Description:
This function assigns an endpoint and configures the settings for a USB DMA channel. The
ui32Endpoint parameter is one of the USB_EP_∗ values and the ui32Channel value is a zero-
based index of the DMA channel to configure. The ui32Config parameter is a combination of
the USB_DMA_CFG_∗ values using the following guidelines.

Use one of the following to set the DMA burst mode:

USB_DMA_CFG_BURST_NONE disables bursting.
USB_DMA_CFG_BURST_4 sets the DMA burst size to 4 words.
USB_DMA_CFG_BURST_8 sets the DMA burst size to 8 words.
USB_DMA_CFG_BURST_16 sets the DMA burst size to 16 words.

Use one of the following to set the DMA mode:

USB_DMA_CFG_MODE_0 is typically used when only a single packet is being sent via
DMA and triggers one completion interrupt per packet.
USB_DMA_CFG_MODE_1 is typically used when multiple packets are being sent via
DMA and triggers one completion interrupt per transfer.

Use one of the following to set the direction of the transfer:

USB_DMA_CFG_DIR_RX selects a DMA transfer from the endpoint to a memory location.
USB_DMA_CFG_DIR_TX selects a DMA transfer to the endpoint from a memory location.

The following two optional settings allow an application to immediately enable the DMA transfer
and/or DMA interrupts when configuring the DMA channel:

USB_DMA_CFG_INT_EN enables interrupts for this channel immediately so that an
added call to ROM_USBDMAChannelIntEnable() is not necessary.
USB_DMA_CFG_EN enables the DMA channel immediately so that an added call to
ROM_USBDMAChannelEnable() is not necessary.

Example: Assign channel 0 to endpoint 1 in DMA mode 0, 4 word burst, enable interrupts and
immediately enable the transfer.

//
// Assign channel 0 to endpoint 1 in DMA mode 0, 4 word bursts,
// enable interrupts and immediately enable the transfer.
//
USBDMAChannelConfigSet(USB0_BASE, 0, USB_EP_1,

586 May 14, 2014

Tiva TM4C129x ROM User’s Guide

(USB_DMA_CFG_BURST_4 | USB_DMA_CFG_MODE0 |
USB_DMA_CFG_DIR_RX | USB_DMA_CFG_INT_EN |
USB_DMA_CFG_EN));

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

33.2.1.24 ROM_USBDMAChannelCountGet

Returns the transfer count for a USB DMA channel.

Prototype:
uint32_t
ROM_USBDMAChannelCountGet(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelCountGet is a function pointer located at ROM_USBTABLE[77].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to access.

Description:
This function returns the USB DMA transfer count in bytes for the channel number specified in
the ui32Channel parameter. The ui32Channel value is a zero-based index of the DMA channel
to query.

Example: Get the transfer count for USB DMA channel 1.

uint32_t ui32Count;

//
// Get the transfer count for USB DMA channel 1.
//
ui32Count = USBDMAChannelCountGet(USB0_BASE, 1);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
The current count for a USB DMA channel.

33.2.1.25 ROM_USBDMAChannelCountSet

Sets the transfer count for a USB DMA channel.

May 14, 2014 587

USB Controller

Prototype:
void
ROM_USBDMAChannelCountSet(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelCountSet is a function pointer located at ROM_USBTABLE[78].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to access.
ui32Count specifies the number of bytes to transfer.

Description:
This function sets the USB DMA transfer count in bytes for the channel number specified in the
ui32Channel parameter. The ui32Channel value is a zero-based index of the DMA channel.

Example: Set the transfer count to 512 bytes for USB DMA channel 1.

//
// Set the transfer count to 512 bytes for USB DMA channel 1.
//
USBDMAChannelCountSet(USB0_BASE, 1, 512);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

33.2.1.26 ROM_USBDMAChannelDisable

Disables USB DMA for a given channel.

Prototype:
void
ROM_USBDMAChannelDisable(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelDisable is a function pointer located at ROM_USBTABLE[73].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies the USB DMA channel to disable.

588 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function disables the USB DMA channel passed in the ui32Channel parameter. The
ui32Channel parameter is a zero-based index of the DMA channel.

Example: Disable USB DMA channel 2.

//
// Disable USB DMA channel 2.
//
USBDMAChannelDisable(2);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

33.2.1.27 ROM_USBDMAChannelEnable

Enables USB DMA for a given channel.

Prototype:
void
ROM_USBDMAChannelEnable(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelEnable is a function pointer located at ROM_USBTABLE[74].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies the USB DMA channel to enable.

Description:
This function enables the USB DMA channel passed in the ui32Channel parameter. The
ui32Channel value is a zero-based index of the USB DMA channel.

Example: Enable USB DMA channel 2.

//
// Enable USB DMA channel 2.
//
USBDMAChannelEnable(2);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

May 14, 2014 589

USB Controller

33.2.1.28 ROM_USBDMAChannelIntDisable

Disable interrupts for a given USB DMA channel.

Prototype:
void
ROM_USBDMAChannelIntDisable(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelIntDisable is a function pointer located at ROM_USBTABLE[75].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which USB DMA channel interrupt to disable.

Description:
This function disables the USB DMA channel interrupt based on the ui32Channel parameter.
The ui32Channel value is a zero-based index of the USB DMA channel.

Example: Disable the USB DMA channel 3 interrupt.

//
// Disable the USB DMA channel 3 interrupt
//
USBDMAChannelIntDisable(USB0_BASE, 3);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

33.2.1.29 ROM_USBDMAChannelIntEnable

Enable interrupts for a given USB DMA channel.

Prototype:
void
ROM_USBDMAChannelIntEnable(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelIntEnable is a function pointer located at ROM_USBTABLE[76].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel interrupt to enable.

590 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function enables the USB DMA channel interrupt based on the ui32Channel parameter.
The ui32Channel value is a zero-based index of the USB DMA channel. Once enabled, the
ROM_USBDMAChannelIntStatus() function returns if a DMA channel has generated an inter-
rupt.

Example: Enable the USB DMA channel 3 interrupt.

//
// Enable the USB DMA channel 3 interrupt
//
USBDMAChannelIntEnable(USB0_BASE, 3);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

33.2.1.30 ROM_USBDMAChannelIntStatus

Return the current status of the USB DMA interrupts.

Prototype:
uint32_t
ROM_USBDMAChannelIntStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelIntStatus is a function pointer located at ROM_USBTABLE[79].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current bit-mapped interrupt status for all USB DMA channel interrupt
sources. Calling this function automatically clears all currently pending USB DMA interrupts.

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Example: Get the pending USB DMA interrupts.

uint32_t ui32Ints;

//
// Get the pending USB DMA interrupts.
//
ui32Ints = USBDMAChannelIntStatus(USB0_BASE);

Returns:
The bit-mapped interrupts for the DMA channels.

May 14, 2014 591

USB Controller

33.2.1.31 ROM_USBDMAChannelStatus

Returns the current status for a USB DMA channel.

Prototype:
uint32_t
ROM_USBDMAChannelStatus(uint32_t ui32Base,

uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelStatus is a function pointer located at ROM_USBTABLE[80].

Parameters:
ui32Base specifies the USB module base address.
ui32Channel specifies which DMA channel to query.

Description:
This function returns the current status for the USB DMA channel specified by the ui32Channel
parameter. The ui32Channel value is a zero-based index of the USB DMA channel to query.

Example: Get the current USB DMA status for channel 2.

uint32_t ui32Status;

//
// Get the current USB DMA status for channel 2.
//
ui32Status = USBDMAChannelStatus(USB0_BASE, 2);

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
Returns zero or USB_DMACTL0_ERR if there is a pending error condition on a DMA channel.

33.2.1.32 ROM_USBDMAChannelStatusClear

Clears the USB DMA status for a given channel.

Prototype:
void
ROM_USBDMAChannelStatusClear(uint32_t ui32Base,

uint32_t ui32Channel,
uint32_t ui32Status)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMAChannelStatusClear is a function pointer located at ROM_USBTABLE[81].

Parameters:
ui32Base specifies the USB module base address.

592 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32Channel specifies which DMA channel to clear.
ui32Status holds the status bits to clear.

Description:
This function clears the USB DMA channel status for the channel specified by the ui32Channel
parameter. The ui32Channel value is a zero-based index of the USB DMA channel to query.
The ui32Status parameter specifies the status bits to clear and must be the valid values that
are returned from a call to the ROM_USBDMAChannelStatus() function.

Example: Clear the current USB DMA status for channel 2.

//
// Clear the any pending USB DMA status for channel 2.
//
USBDMAChannelStatusClear(USB0_BASE, 2, USBDMAChannelStatus(USB0_BASE, 2));

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

33.2.1.33 ROM_USBDMANumChannels

Returns the available number of integrated USB DMA channels.

Prototype:
uint32_t
ROM_USBDMANumChannels(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBDMANumChannels is a function pointer located at ROM_USBTABLE[99].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the total number of DMA channels available when using the integrated
USB DMA controller. This function returns 0 if the integrated controller is not present.

Example: Get the number of integrated DMA channels.

uint32_t ui32Count;

//
// Get the number of integrated DMA channels.
//
ui32Count = USBDMANumChannels(USB0_BASE);

Returns:
The number of integrated USB DMA channels or zero if the integrated USB DMA controller is
not present.

May 14, 2014 593

USB Controller

33.2.1.34 ROM_USBEndpointDataAvail

Determine the number of bytes of data available in a given endpoint’s FIFO.

Prototype:
endif uint32_t
ROM_USBEndpointDataAvail(uint32_t ui32Base,

uint32_t ui32Endpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataAvail is a function pointer located at ROM_USBTABLE[44].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function returns the number of bytes of data currently available in the FIFO for the given
receive (OUT) endpoint. It may be used prior to calling ROM_USBEndpointDataGet() to deter-
mine the size of buffer required to hold the newly-received packet.

Returns:
This call returns the number of bytes available in a given endpoint FIFO.

33.2.1.35 ROM_USBEndpointDataGet

Retrieves data from the given endpoint’s FIFO.

Prototype:
int32_t
ROM_USBEndpointDataGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint8_t *pui8Data,
uint32_t *pui32Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataGet is a function pointer located at ROM_USBTABLE[10].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
pui8Data is a pointer to the data area used to return the data from the FIFO.
pui32Size is initially the size of the buffer passed into this call via the pui8Data parameter. It

is set to the amount of data returned in the buffer.

Description:
This function returns the data from the FIFO for the given endpoint. The pui32Size parameter
indicates the size of the buffer passed in the pui32Data parameter. The data in the pui32Size

594 May 14, 2014

Tiva TM4C129x ROM User’s Guide

parameter is changed to match the amount of data returned in the pui8Data parameter. If a
zero-byte packet is received, this call does not return an error but instead just returns a zero in
the pui32Size parameter. The only error case occurs when there is no data packet available.

Returns:
This call returns 0, or -1 if no packet was received.

33.2.1.36 ROM_USBEndpointDataPut

Puts data into the given endpoint’s FIFO.

Prototype:
int32_t
ROM_USBEndpointDataPut(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint8_t *pui8Data,
uint32_t ui32Size)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataPut is a function pointer located at ROM_USBTABLE[11].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
pui8Data is a pointer to the data area used as the source for the data to put into the FIFO.
ui32Size is the amount of data to put into the FIFO.

Description:
This function puts the data from the pui8Data parameter into the FIFO for this endpoint. If a
packet is already pending for transmission, then this call does not put any of the data into the
FIFO and returns -1. Care must be taken to not write more data than can fit into the FIFO
allocated by the call to ROM_USBFIFOConfigSet().

Returns:
This call returns 0 on success, or -1 to indicate that the FIFO is in use and cannot be written.

33.2.1.37 ROM_USBEndpointDataSend

Starts the transfer of data from an endpoint’s FIFO.

Prototype:
int32_t
ROM_USBEndpointDataSend(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32TransType)

May 14, 2014 595

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataSend is a function pointer located at ROM_USBTABLE[12].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32TransType is set to indicate what type of data is being sent.

Description:
This function starts the transfer of data from the FIFO for a given endpoint. This func-
tion is called if the USB_EP_AUTO_SET bit was not enabled for the endpoint. Setting the
ui32TransType parameter allows the appropriate signaling on the USB bus for the type of trans-
action being requested. The ui32TransType parameter must be one of the following:

USB_TRANS_OUT for OUT transaction on any endpoint in host mode.
USB_TRANS_IN for IN transaction on any endpoint in device mode.
USB_TRANS_IN_LAST for the last IN transaction on endpoint zero in a sequence of IN
transactions.
USB_TRANS_SETUP for setup transactions on endpoint zero.
USB_TRANS_STATUS for status results on endpoint zero.

Returns:
This call returns 0 on success, or -1 if a transmission is already in progress.

33.2.1.38 ROM_USBEndpointDataToggleClear

Sets the data toggle on an endpoint to zero.

Prototype:
void
ROM_USBEndpointDataToggleClear(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDataToggleClear is a function pointer located at ROM_USBTABLE[13].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies the endpoint to reset the data toggle.
ui32Flags specifies whether to access the IN or OUT endpoint.

Description:
This function causes the USB controller to clear the data toggle for an endpoint. This call is not
valid for endpoint zero and can be made with host or device controllers.

The ui32Flags parameter must be one of USB_EP_HOST_OUT, USB_EP_HOST_IN,
USB_EP_DEV_OUT, or USB_EP_DEV_IN.

596 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

33.2.1.39 ROM_USBEndpointDMAChannel

Sets the DMA channel to use for a given endpoint.

Prototype:
if void
ROM_USBEndpointDMAChannel(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Channel)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDMAChannel is a function pointer located at ROM_USBTABLE[47].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies which endpoint’s FIFO address to return.
ui32Channel specifies which DMA channel to use for which endpoint.

Description:
This function is used to configure which DMA channel to use with a given endpoint. Receive
DMA channels can only be used with receive endpoints and transmit DMA channels can only
be used with transmit endpoints. As a result, the 3 receive and 3 transmit DMA channels can
be mapped to any endpoint other than 0. The values that are passed into the ui32Channel
value are the UDMA_CHANNEL_USBEP∗ values defined in udma.h.

Note:
This function only has an effect on microcontrollers that have the ability to change the DMA
channel for an endpoint. Calling this function on other devices has no effect.

Returns:
None.

33.2.1.40 ROM_USBEndpointDMAConfigSet

Configure the DMA settings for an endpoint.

Prototype:
if void
ROM_USBEndpointDMAConfigSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDMAConfigSet is a function pointer located at ROM_USBTABLE[100].

May 14, 2014 597

USB Controller

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Config specifies the configuration options for an endpoint.

Description:
This function configures the DMA settings for a given endpoint without changing other op-
tions that may already be configured. In order for the DMA transfer to be enabled, the
ROM_USBEndpointDMAEnable() function must be called before starting the DMA transfer.
The configuration options are passed in the ui32Config parameter and can have the values
described below.

One of the following values to specify direction:

USB_EP_HOST_OUT or USB_EP_DEV_IN - This setting is used with DMA transfers from
memory to the USB controller.
USB_EP_HOST_IN or USB_EP_DEV_OUT - This setting is used with DMA transfers from
the USB controller to memory.

One of the following values:

USB_EP_DMA_MODE_0(default) - This setting is typically used for transfers that do not
span multiple packets or when interrupts are required for each packet.
USB_EP_DMA_MODE_1 - This setting is typically used for transfers that span multiple
packets and do not require interrupts between packets.

Values only used with USB_EP_HOST_OUT or USB_EP_DEV_IN:

USB_EP_AUTO_SET - This setting is used to allow transmit DMA transfers to au-
tomatically be sent when a full packet is loaded into a FIFO. This is needed with
USB_EP_DMA_MODE_1 to ensure that packets go out when the FIFO becomes full and
the DMA has more data to send.

Values only used with USB_EP_HOST_IN or USB_EP_DEV_OUT:

USB_EP_AUTO_CLEAR - This setting is used to allow receive DMA transfers to automati-
cally be acknowledged as they are received. This is needed with USB_EP_DMA_MODE_1
to ensure that packets continue to be received and acknowledged when the FIFO is emp-
tied by the DMA transfer.

Values only used with USB_EP_HOST_IN:

USB_EP_AUTO_REQUEST - This setting is used to allow receive DMA transfers to auto-
matically request a new IN transaction when the previous transfer has emptied the FIFO.
This is typically used in conjunction with USB_EP_AUTO_CLEAR so that receive DMA
transfers can continue without interrupting the main processor.

Example: Set endpoint 1 receive endpoint to automatically acknowledge request and auto-
matically generate a new IN request in host mode.

//
// Configure endpoint 1 for receiving multiple packets using DMA.
//
USBEndpointDMAConfigSet(USB0_BASE, USB_EP_1, USB_EP_HOST_IN |

USB_EP_DMA_MODE_1 |
USB_EP_AUTO_CLEAR |
USB_EP_AUTO_REQUEST);

598 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Example: Set endpoint 2 transmit endpoint to automatically send each packet in host mode
when spanning multiple packets.

//
// Configure endpoint 1 for transmitting multiple packets using DMA.
//
USBEndpointDMAConfigSet(USB0_BASE, USB_EP_2, USB_EP_HOST_OUT |

USB_EP_DMA_MODE_1 |
USB_EP_AUTO_SET);

Returns:
None.

33.2.1.41 ROM_USBEndpointDMADisable

Disable DMA on a given endpoint.

Prototype:
void
ROM_USBEndpointDMADisable(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDMADisable is a function pointer located at ROM_USBTABLE[43].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags specifies which direction to disable.

Description:
This function disables DMA on a given endpoint to allow non-DMA USB transactions to
generate interrupts normally. The ui32Flags parameter must be USB_EP_DEV_IN or
USB_EP_DEV_OUT; all other bits are ignored.

Returns:
None.

33.2.1.42 ROM_USBEndpointDMAEnable

Enable DMA on a given endpoint.

Prototype:
void
ROM_USBEndpointDMAEnable(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

May 14, 2014 599

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointDMAEnable is a function pointer located at ROM_USBTABLE[42].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags specifies which direction and what mode to use when enabling DMA.

Description:
This function enables DMA on a given endpoint and configures the mode according to the
values in the ui32Flags parameter. The ui32Flags parameter must have USB_EP_DEV_IN
or USB_EP_DEV_OUT set. Once this function is called the only DMA or error interrupts are
generated by the USB controller.

Note:
If this function is called when an endpoint is configured in DMA mode 0 the USB controller
does not generate an interrupt.

Returns:
None.

33.2.1.43 ROM_USBEndpointPacketCountSet

Sets the number of packets to request when transferring multiple bulk packets.

Prototype:
void
ROM_USBEndpointPacketCountSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Count)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointPacketCountSet is a function pointer located at ROM_USBTABLE[92].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint index to target for this write.
ui32Count is the number of packets to request.

Description:
This function sets the number of consecutive bulk packets to request when transferring multiple
bulk packets with DMA.

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if the
USB controller has a DMA controller or if it must use the uDMA controller for DMA transfers.

Returns:
None.

600 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.44 ROM_USBEndpointStatus

Returns the current status of an endpoint.

Prototype:
uint32_t
ROM_USBEndpointStatus(uint32_t ui32Base,

uint32_t ui32Endpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBEndpointStatus is a function pointer located at ROM_USBTABLE[14].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function returns the status of a given endpoint. If any of these status bits must be cleared,
then the ROM_USBDevEndpointStatusClear() or the ROM_USBHostEndpointStatusClear()
functions must be called.

The following are the status flags for host mode:

USB_HOST_IN_PID_ERROR - PID error on the given endpoint.
USB_HOST_IN_NOT_COMP - The device failed to respond to an IN request.
USB_HOST_IN_STALL - A stall was received on an IN endpoint.
USB_HOST_IN_DATA_ERROR - There was a CRC or bit-stuff error on an IN endpoint in
Isochronous mode.
USB_HOST_IN_NAK_TO - NAKs received on this IN endpoint for more than the specified
timeout period.
USB_HOST_IN_ERROR - Failed to communicate with a device using this IN endpoint.
USB_HOST_IN_FIFO_FULL - This IN endpoint’s FIFO is full.
USB_HOST_IN_PKTRDY - Data packet ready on this IN endpoint.
USB_HOST_OUT_NAK_TO - NAKs received on this OUT endpoint for more than the
specified timeout period.
USB_HOST_OUT_NOT_COMP - The device failed to respond to an OUT request.
USB_HOST_OUT_STALL - A stall was received on this OUT endpoint.
USB_HOST_OUT_ERROR - Failed to communicate with a device using this OUT end-
point.
USB_HOST_OUT_FIFO_NE - This endpoint’s OUT FIFO is not empty.
USB_HOST_OUT_PKTPEND - The data transfer on this OUT endpoint has not com-
pleted.
USB_HOST_EP0_NAK_TO - NAKs received on endpoint zero for more than the specified
timeout period.
USB_HOST_EP0_ERROR - The device failed to respond to a request on endpoint zero.
USB_HOST_EP0_IN_STALL - A stall was received on endpoint zero for an IN transaction.
USB_HOST_EP0_IN_PKTRDY - Data packet ready on endpoint zero for an IN transaction.

The following are the status flags for device mode:

May 14, 2014 601

USB Controller

USB_DEV_OUT_SENT_STALL - A stall was sent on this OUT endpoint.
USB_DEV_OUT_DATA_ERROR - There was a CRC or bit-stuff error on an OUT endpoint.
USB_DEV_OUT_OVERRUN - An OUT packet was not loaded due to a full FIFO.
USB_DEV_OUT_FIFO_FULL - The OUT endpoint’s FIFO is full.
USB_DEV_OUT_PKTRDY - There is a data packet ready in the OUT endpoint’s FIFO.
USB_DEV_IN_NOT_COMP - A larger packet was split up, more data to come.
USB_DEV_IN_SENT_STALL - A stall was sent on this IN endpoint.
USB_DEV_IN_UNDERRUN - Data was requested on the IN endpoint and no data was
ready.
USB_DEV_IN_FIFO_NE - The IN endpoint’s FIFO is not empty.
USB_DEV_IN_PKTPEND - The data transfer on this IN endpoint has not completed.
USB_DEV_EP0_SETUP_END - A control transaction ended before Data End condition
was sent.
USB_DEV_EP0_SENT_STALL - A stall was sent on endpoint zero.
USB_DEV_EP0_IN_PKTPEND - The data transfer on endpoint zero has not completed.
USB_DEV_EP0_OUT_PKTRDY - There is a data packet ready in endpoint zero’s OUT
FIFO.

Returns:
The current status flags for the endpoint depending on mode.

33.2.1.45 ROM_USBFIFOAddrGet

Returns the absolute FIFO address for a given endpoint.

Prototype:
uint32_t
ROM_USBFIFOAddrGet(uint32_t ui32Base,

uint32_t ui32Endpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFIFOAddrGet is a function pointer located at ROM_USBTABLE[15].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies which endpoint’s FIFO address to return.

Description:
This function returns the actual physical address of the FIFO. This address is needed when the
USB is going to be used with the uDMA controller and the source or destination address must
be set to the physical FIFO address for a given endpoint.

Returns:
None.

602 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.46 ROM_USBFIFOConfigGet

Returns the FIFO configuration for an endpoint.

Prototype:
void
ROM_USBFIFOConfigGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t *pui32FIFOAddress,
uint32_t *pui32FIFOSize,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFIFOConfigGet is a function pointer located at ROM_USBTABLE[16].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
pui32FIFOAddress is the starting address for the FIFO.
pui32FIFOSize is the size of the FIFO as specified by one of the USB_FIFO_SZ_ values.
ui32Flags specifies what information to retrieve from the FIFO configuration.

Description:
This function returns the starting address and size of the FIFO for a given endpoint. Endpoint
zero does not have a dynamically configurable FIFO, so this function must not be called for
endpoint zero. The ui32Flags parameter specifies whether the endpoint’s OUT or IN FIFO
must be read. If in host mode, the ui32Flags parameter must be USB_EP_HOST_OUT
or USB_EP_HOST_IN, and if in device mode, the ui32Flags parameter must be either
USB_EP_DEV_OUT or USB_EP_DEV_IN.

Returns:
None.

33.2.1.47 ROM_USBFIFOConfigSet

Sets the FIFO configuration for an endpoint.

Prototype:
void
ROM_USBFIFOConfigSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32FIFOAddress,
uint32_t ui32FIFOSize,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFIFOConfigSet is a function pointer located at ROM_USBTABLE[17].

May 14, 2014 603

USB Controller

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32FIFOAddress is the starting address for the FIFO.
ui32FIFOSize is the size of the FIFO specified by one of the USB_FIFO_SZ_ values.
ui32Flags specifies what information to set in the FIFO configuration.

Description:
This function configures the starting FIFO RAM address and size of the FIFO for a given
endpoint. Endpoint zero does not have a dynamically configurable FIFO, so this function must
not be called for endpoint zero. The ui32FIFOSize parameter must be one of the values in the
USB_FIFO_SZ_ values.

The ui32FIFOAddress value must be a multiple of 8 bytes and directly indicates the starting
address in the USB controller’s FIFO RAM. For example, a value of 64 indicates that the FIFO
starts 64 bytes into the USB controller’s FIFO memory. The ui32Flags value specifies whether
the endpoint’s OUT or IN FIFO must be configured. If in host mode, use USB_EP_HOST_OUT
or USB_EP_HOST_IN, and if in device mode, use USB_EP_DEV_OUT or USB_EP_DEV_IN.

Returns:
None.

33.2.1.48 ROM_USBFIFOFlush

Forces a flush of an endpoint’s FIFO.

Prototype:
void
ROM_USBFIFOFlush(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFIFOFlush is a function pointer located at ROM_USBTABLE[18].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags specifies if the IN or OUT endpoint is accessed.

Description:
This function forces the USB controller to flush out the data in the FIFO. The function can be
called with either host or device controllers and requires the ui32Flags parameter be one of
USB_EP_HOST_OUT, USB_EP_HOST_IN, USB_EP_DEV_OUT, or USB_EP_DEV_IN.

Returns:
None.

604 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.49 ROM_USBFrameNumberGet

Get the current frame number.

Prototype:
uint32_t
ROM_USBFrameNumberGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBFrameNumberGet is a function pointer located at ROM_USBTABLE[19].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the last frame number received.

Returns:
The last frame number received.

33.2.1.50 ROM_USBHighSpeed

Enable or disable USB high-speed negotiation.

Prototype:
void
ROM_USBHighSpeed(uint32_t ui32Base,

bool bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHighSpeed is a function pointer located at ROM_USBTABLE[82].

Parameters:
ui32Base specifies the USB module base address.
bEnable specifies whether to enable or disable high-speed negotiation.

Description:
High-speed negotiations for both host and device mode are enabled when this function is called
with the bEnable parameter set to true. In device mode this causes the device to negotiate for
high speed when the USB controller receives a reset from the host. In host mode, the USB
host enables high-speed negotiations when resetting the connected device. If bEnable is set
to false the controller only operates only in full-speed or low-speed.

Example: Enable USB high-speed mode.

//
// Enable USB high-speed mode.
//
USBHighSpeed(USB0_BASE, true);

May 14, 2014 605

USB Controller

Returns:
None.

33.2.1.51 ROM_USBHostAddrGet

Gets the current functional device address for an endpoint.

Prototype:
uint32_t
ROM_USBHostAddrGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostAddrGet is a function pointer located at ROM_USBTABLE[20].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags determines if this is an IN or an OUT endpoint.

Description:
This function returns the current functional address that an endpoint is using to communicate
with a device. The ui32Flags parameter determines if the IN or OUT endpoint’s device address
is returned.

Note:
This function must only be called in host mode.

Returns:
Returns the current function address being used by an endpoint.

33.2.1.52 ROM_USBHostAddrSet

Sets the functional address for the device that is connected to an endpoint in host mode.

Prototype:
void
ROM_USBHostAddrSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Addr,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostAddrSet is a function pointer located at ROM_USBTABLE[21].

606 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Addr is the functional address for the controller to use for this endpoint.
ui32Flags determines if this is an IN or an OUT endpoint.

Description:
This function configures the functional address for a device that is using this endpoint for com-
munication. This ui32Addr parameter is the address of the target device that this endpoint is
communicating with. The ui32Flags parameter indicates if the IN or OUT endpoint is set.

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.53 ROM_USBHostEndpointConfig

Sets the base configuration for a host endpoint.

Prototype:
void
ROM_USBHostEndpointConfig(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32MaxPayload,
uint32_t ui32NAKPollInterval,
uint32_t ui32TargetEndpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointConfig is a function pointer located at ROM_USBTABLE[22].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32MaxPayload is the maximum payload for this endpoint.
ui32NAKPollInterval is the either the NAK timeout limit or the polling interval, depending on

the type of endpoint.
ui32TargetEndpoint is the endpoint that the host endpoint is targeting.
ui32Flags are used to configure other endpoint settings.

Description:
This function sets the basic configuration for the transmit or receive portion of an endpoint in
host mode. The ui32Flags parameter determines some of the configuration while the other
parameters provide the rest. The ui32Flags parameter determines whether this is an IN end-
point (USB_EP_HOST_IN or USB_EP_DEV_IN) or an OUT endpoint (USB_EP_HOST_OUT
or USB_EP_DEV_OUT), whether this is a Full speed endpoint (USB_EP_SPEED_FULL) or a
Low speed endpoint (USB_EP_SPEED_LOW).

The USB_EP_MODE_ flags control the type of the endpoint.

May 14, 2014 607

USB Controller

USB_EP_MODE_CTRL is a control endpoint.
USB_EP_MODE_ISOC is an isochronous endpoint.
USB_EP_MODE_BULK is a bulk endpoint.
USB_EP_MODE_INT is an interrupt endpoint.

The ui32NAKPollInterval parameter has different meanings based on the USB_EP_MODE
value and whether or not this call is being made for endpoint zero or another endpoint. For
endpoint zero or any Bulk endpoints, this value always indicates the number of frames to allow
a device to NAK before considering it a timeout. If this endpoint is an isochronous or interrupt
endpoint, this value is the polling interval for this endpoint.

For interrupt endpoints, the polling interval is the number of frames between interrupt IN re-
quests to an endpoint and has a range of 1 to 255. For isochronous endpoints this value
represents a polling interval of 2 ∧ (ui32NAKPollInterval - 1) frames. When used as a NAK
timeout, the ui32NAKPollInterval value specifies 2 ∧ (ui32NAKPollInterval - 1) frames before
issuing a time out.

There are two special time out values that can be specified when setting the
ui32NAKPollInterval value. The first is MAX_NAK_LIMIT, which is the maximum value that
can be passed in this variable. The other is DISABLE_NAK_LIMIT, which indicates that there
is no limit on the number of NAKs.

When configuring the OUT portion of an endpoint, the USB_EP_AUTO_SET bit is specified
to cause the transmission of data on the USB bus to start as soon as the number of bytes
specified by ui32MaxPayload has been written into the OUT FIFO for this endpoint.

When configuring the IN portion of an endpoint, the USB_EP_AUTO_REQUEST bit can be
specified to trigger the request for more data once the FIFO has been drained enough to
fit ui32MaxPayload bytes. The USB_EP_AUTO_CLEAR bit can be used to clear the data
packet ready flag automatically once the data has been read from the FIFO. If this option is not
used, this flag must be manually cleared via a call to ROM_USBDevEndpointStatusClear() or
ROM_USBHostEndpointStatusClear().

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.54 ROM_USBHostEndpointDataAck

Acknowledge that data was read from the given endpoint’s FIFO in host mode.

Prototype:
void
ROM_USBHostEndpointDataAck(uint32_t ui32Base,

uint32_t ui32Endpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointDataAck is a function pointer located at ROM_USBTABLE[23].

608 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function acknowledges that the data was read from the endpoint’s FIFO. This call is used
if processing is required between reading the data and acknowledging that the data has been
read.

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.55 ROM_USBHostEndpointDataToggle

Sets the value data toggle on an endpoint in host mode.

Prototype:
void
ROM_USBHostEndpointDataToggle(uint32_t ui32Base,

uint32_t ui32Endpoint,
bool bDataToggle,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointDataToggle is a function pointer located at ROM_USBTABLE[24].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies the endpoint to reset the data toggle.
bDataToggle specifies whether to set the state to DATA0 or DATA1.
ui32Flags specifies whether to set the IN or OUT endpoint.

Description:
This function is used to force the state of the data toggle in host mode. If the value passed
in the bDataToggle parameter is false, then the data toggle is set to the DATA0 state, and if
it is true it is set to the DATA1 state. The ui32Flags parameter can be USB_EP_HOST_IN or
USB_EP_HOST_OUT to access the desired portion of this endpoint. The ui32Flags parameter
is ignored for endpoint zero.

Note:
This function must only be called in host mode.

Returns:
None.

May 14, 2014 609

USB Controller

33.2.1.56 ROM_USBHostEndpointPing

Enables or disables ping tokens for an endpoint using high-speed control transfers in host mode.

Prototype:
void
ROM_USBHostEndpointPing(uint32_t ui32Base,

uint32_t ui32Endpoint,
bool bEnable)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointPing is a function pointer located at ROM_USBTABLE[83].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint specifies the endpoint to enable/disable ping tokens.
bEnable specifies whether enable or disable ping tokens.

Description:
This function configures the USB controller to either send or not send ping tokens during
the data and status phase of high speed control transfers. The only supported value for
ui32Endpoint is USB_EP_0 because all control transfers are handled using this endpoint. If
the bEnable is true then ping tokens are enabled, if false then ping tokens are disabled. This
must be used if the controller must support communications with devices that do not support
ping tokens in high speed mode.

Example: Disable ping transactions in host mode on endpoint 0.

//
// Disable ping transaction on endpoint 0.
//
USBHostEndpointPing(USB0_BASE, USB_EP_0, false);

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.57 ROM_USBHostEndpointSpeed

Changes the speed of the connection for a host endpoint.

Prototype:
void
ROM_USBHostEndpointSpeed(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointSpeed is a function pointer located at ROM_USBTABLE[84].

610 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags are used to configure other endpoint settings.

Description:
This function sets the USB speed for an IN or OUT endpoint in host mode. The ui32Flags
parameter specifies the speed using one of the following values: USB_EP_SPEED_LOW,
USB_EP_SPEED_FULL, or USB_EP_SPEED_HIGH. The ui32Flags parameter also spec-
ifies which direction is set by adding the logical OR in either USB_EP_HOST_IN or
USB_EP_HOST_OUT. All other flags are ignored. This is typically only used for endpoint
0, but could be used with other endpoints as well.

Example: Set host transactions on endpoint 0 to full speed..

//
// Set host endpoint 0 transactions to full speed.
//
USBHostEndpointSpeed(USB0_BASE, USB_EP_0, USB_EP_SPEED_FULL);

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.58 ROM_USBHostEndpointStatusClear

Clears the status bits in this endpoint in host mode.

Prototype:
void
ROM_USBHostEndpointStatusClear(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostEndpointStatusClear is a function pointer located at ROM_USBTABLE[25].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags are the status bits that are cleared.

Description:
This function clears the status of any bits that are passed in the ui32Flags parameter. The
ui32Flags parameter can take the value returned from the ROM_USBEndpointStatus() call.

Note:
This function must only be called in host mode.

Returns:
None.

May 14, 2014 611

USB Controller

33.2.1.59 ROM_USBHostHubAddrGet

Gets the current device hub address for this endpoint.

Prototype:
uint32_t
ROM_USBHostHubAddrGet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostHubAddrGet is a function pointer located at ROM_USBTABLE[26].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Flags determines if this is an IN or an OUT endpoint.

Description:
This function returns the current hub address that an endpoint is using to communicate with a
device. The ui32Flags parameter determines if the device address for the IN or OUT endpoint
is returned.

Note:
This function must only be called in host mode.

Returns:
This function returns the current hub address being used by an endpoint.

33.2.1.60 ROM_USBHostHubAddrSet

Sets the hub address for the device that is connected to an endpoint.

Prototype:
void
ROM_USBHostHubAddrSet(uint32_t ui32Base,

uint32_t ui32Endpoint,
uint32_t ui32Addr,
uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostHubAddrSet is a function pointer located at ROM_USBTABLE[27].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.
ui32Addr is the hub address and port for the device using this endpoint. The hub address

must be defined in bits 0 through 6 with the port number in bits 8 through 14.

612 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32Flags determines if this is an IN or an OUT endpoint.

Description:
This function configures the hub address for a device that is using this endpoint for communica-
tion. The ui32Flags parameter determines if the device address for the IN or the OUT endpoint
is configured by this call and sets the speed of the downstream device. Valid values are one of
USB_EP_HOST_OUT or USB_EP_HOST_IN optionally ORed with USB_EP_SPEED_LOW.

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.61 ROM_USBHostLPMConfig

Sets the global configuration for all LPM requests.

Prototype:
void
ROM_USBHostLPMConfig(uint32_t ui32Base,

uint32_t ui32ResumeTime,
uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostLPMConfig is a function pointer located at ROM_USBTABLE[85].

Parameters:
ui32Base specifies the USB module base address.
ui32ResumeTime specifies the resume signaling duration in 75us increments.
ui32Config specifies the combination of configuration options for LPM transactions.

Description:
This function sets the global configuration options for LPM transactions and must be called at
least once before ever calling ROM_USBHostLPMSend() to set the configuration parameters
for LPM transactions. The ui32ResumeTime specifies the length of time that the host drives
resume signaling on the bus in microseconds. The valid values for ui32ResumeTime are from
50us to 1175us in 75us increments. The remaining configuration is specified by the ui32Config
parameter and includes the following options:

USB_HOST_LPM_RMTWAKE allows the device to signal a remote wake from the LPM
state.
USB_HOST_LPM_L1 is the LPM mode to enter and must always be included in the con-
figuration.

Example: Set the LPM configuration to allow remote wake with a resume duration of 500us.

//
// Set the LPM configuration to allow remote wake with a resume
// duration of 500us.
//
USBHostLPMConfig(USB0_BASE, 500, USB_HOST_LPM_RMTWAKE | USB_HOST_LPM_L1);

May 14, 2014 613

USB Controller

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.62 ROM_USBHostLPMResume

Initiates resume signaling to wake a device from LPM suspend mode.

Prototype:
void
ROM_USBHostLPMResume(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostLPMResume is a function pointer located at ROM_USBTABLE[86].

Parameters:
ui32Base specifies the USB module base address.

Description:
In host mode, this function initiates resume signaling to wake a device that has entered an
LPM-triggered low power mode. This LPM-triggered low power mode is entered when the
ROM_USBHostLPMSend() is called to put a specific device into a low power state.

Example: Initiate resume signaling.

//
// Initiate resume signaling.
//
USBHostLPMResume(USB0_BASE);

Note:
This function must only be called in host mode.

The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.63 ROM_USBHostLPMSend

Sends an LPM request to a device at a given address and endpoint number.

Prototype:
void
ROM_USBHostLPMSend(uint32_t ui32Base,

uint32_t ui32Address,
uint32_t ui32Endpoint)

614 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostLPMSend is a function pointer located at ROM_USBTABLE[87].

Parameters:
ui32Base specifies the USB module base address.
ui32Address is the target device address for the LPM request.
ui32Endpoint is the target endpoint for the LPM request.

Description:
This function sends an LPM request to a connected device in host mode. The ui32Address
parameter specifies the device address and has a range of values from 1 to 127. The
ui32Endpoint parameter specifies the endpoint on the device to which to send the LPM re-
quest and must be one of the USB_EP_∗ values. The function returns before the LPM request
is sent, requiring the caller to poll the ROM_USBLPMIntStatus() function or wait for an inter-
rupt to signal completion of the LPM transaction. This function must only be called after the
ROM_USBHostLPMConfig() has configured the LPM transaction settings.

Example: Send an LPM request to the device at address 1 on endpoint 0.

//
// Send an LPM request to the device at address 1 on endpoint 0.
//
USBHostLPMSend(USB0_BASE, 1, USB_EP_0);

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.64 ROM_USBHostMode

Change the mode of the USB controller to host.

Prototype:
endif void
ROM_USBHostMode(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostMode is a function pointer located at ROM_USBTABLE[54].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function changes the mode of the USB controller to host mode.

Note:
This function must only be called on microcontrollers that support OTG operation and have the
DEVMODOTG bit in the USBGPCS register.

May 14, 2014 615

USB Controller

Returns:
None.

33.2.1.65 ROM_USBHostPwrConfig

Sets the configuration for USB power fault.

Prototype:
void
ROM_USBHostPwrConfig(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrConfig is a function pointer located at ROM_USBTABLE[30].

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies the configuration of the power fault.

Description:
This function controls how the USB controller uses its external power control pins (USBnPFLT
and USBnEPEN). The flags specify the power fault level sensitivity, the power fault action, and
the power enable level and source.

One of the following can be selected as the power fault level sensitivity:

USB_HOST_PWRFLT_LOW - An external power fault is indicated by the pin being driven
low.
USB_HOST_PWRFLT_HIGH - An external power fault is indicated by the pin being driven
high.

One of the following can be selected as the power fault action:

USB_HOST_PWRFLT_EP_NONE - No automatic action when power fault detected.
USB_HOST_PWRFLT_EP_TRI - Automatically tri-state the USBnEPEN pin on a power
fault.
USB_HOST_PWRFLT_EP_LOW - Automatically drive USBnEPEN pin low on a power
fault.
USB_HOST_PWRFLT_EP_HIGH - Automatically drive USBnEPEN pin high on a power
fault.

One of the following can be selected as the power enable level and source:

USB_HOST_PWREN_MAN_LOW - USBnEPEN is driven low by the USB controller when
ROM_USBHostPwrEnable() is called.
USB_HOST_PWREN_MAN_HIGH - USBnEPEN is driven high by the USB controller
when ROM_USBHostPwrEnable() is called.
USB_HOST_PWREN_AUTOLOW - USBnEPEN is driven low by the USB controller auto-
matically if ROM_USBOTGSessionRequest() has enabled a session.
USB_HOST_PWREN_AUTOHIGH - USBnEPEN is driven high by the USB controller au-
tomatically if ROM_USBOTGSessionRequest() has enabled a session.

616 May 14, 2014

Tiva TM4C129x ROM User’s Guide

On devices that support the VBUS glitch filter, the USB_HOST_PWREN_FILTER can be
added to ignore small, short drops in VBUS level caused by high power consumption. This
feature is mainly used to avoid causing VBUS errors caused by devices with high in-rush cur-
rent.

Note:
This function must only be called on microcontrollers that support host mode or OTG operation.

Returns:
None.

33.2.1.66 ROM_USBHostPwrDisable

Disables the external power pin.

Prototype:
void
ROM_USBHostPwrDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrDisable is a function pointer located at ROM_USBTABLE[28].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables the USBnEPEN signal, which disables an external power supply in host
mode operation.

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.67 ROM_USBHostPwrEnable

Enables the external power pin.

Prototype:
void
ROM_USBHostPwrEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrEnable is a function pointer located at ROM_USBTABLE[29].

Parameters:
ui32Base specifies the USB module base address.

May 14, 2014 617

USB Controller

Description:
This function enables the USBnEPEN signal, which enables an external power supply in host
mode operation.

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.68 ROM_USBHostPwrFaultDisable

Disables power fault detection.

Prototype:
void
ROM_USBHostPwrFaultDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrFaultDisable is a function pointer located at ROM_USBTABLE[31].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables power fault detection in the USB controller.

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.69 ROM_USBHostPwrFaultEnable

Enables power fault detection.

Prototype:
void
ROM_USBHostPwrFaultEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostPwrFaultEnable is a function pointer located at ROM_USBTABLE[32].

Parameters:
ui32Base specifies the USB module base address.

618 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function enables power fault detection in the USB controller. If the USBnPFLT pin is not in
use, this function must not be used.

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.70 ROM_USBHostRequestIN

Schedules a request for an IN transaction on an endpoint in host mode.

Prototype:
void
ROM_USBHostRequestIN(uint32_t ui32Base,

uint32_t ui32Endpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostRequestIN is a function pointer located at ROM_USBTABLE[33].

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function schedules a request for an IN transaction. When the USB device be-
ing communicated with responds with the data, the data can be retrieved by calling
ROM_USBEndpointDataGet() or via a DMA transfer.

Note:
This function must only be called in host mode and only for IN endpoints.

Returns:
None.

33.2.1.71 ROM_USBHostRequestINClear

Clears a scheduled IN transaction for an endpoint in host mode.

Prototype:
void
ROM_USBHostRequestINClear(uint32_t ui32Base,

uint32_t ui32Endpoint)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostRequestINClear is a function pointer located at ROM_USBTABLE[60].

May 14, 2014 619

USB Controller

Parameters:
ui32Base specifies the USB module base address.
ui32Endpoint is the endpoint to access.

Description:
This function clears a previously scheduled IN transaction if it is still pending. This function is
used to safely disable any scheduled IN transactions if the endpoint specified by ui32Endpoint
is reconfigured for communications with other devices.

Note:
This function must only be called in host mode and only for IN endpoints.

Returns:
None.

33.2.1.72 ROM_USBHostRequestStatus

Issues a request for a status IN transaction on endpoint zero.

Prototype:
void
ROM_USBHostRequestStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostRequestStatus is a function pointer located at ROM_USBTABLE[34].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function is used to cause a request for a status IN transaction from a device on endpoint
zero. This function can only be used with endpoint zero as that is the only control endpoint that
supports this ability. This function is used to complete the last phase of a control transaction to
a device and an interrupt is signaled when the status packet has been received.

Returns:
None.

33.2.1.73 ROM_USBHostReset

Handles the USB bus reset condition.

Prototype:
void
ROM_USBHostReset(uint32_t ui32Base,

bool bStart)

620 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostReset is a function pointer located at ROM_USBTABLE[35].

Parameters:
ui32Base specifies the USB module base address.
bStart specifies whether to start or stop signaling reset on the USB bus.

Description:
When this function is called with the bStart parameter set to true, this function causes the start
of a reset condition on the USB bus. The caller must then delay at least 20ms before calling
this function again with the bStart parameter set to false.

Note:
This function must only be called in host mode.

Returns:
None.

33.2.1.74 ROM_USBHostResume

Handles the USB bus resume condition.

Prototype:
void
ROM_USBHostResume(uint32_t ui32Base,

bool bStart)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostResume is a function pointer located at ROM_USBTABLE[36].

Parameters:
ui32Base specifies the USB module base address.
bStart specifies if the USB controller is entering or leaving the resume signaling state.

Description:
When in device mode, this function brings the USB controller out of the suspend state. This
call must first be made with the bStart parameter set to true to start resume signaling. The
device application must then delay at least 10ms but not more than 15ms before calling this
function with the bStart parameter set to false.

When in host mode, this function signals devices to leave the suspend state. This call must first
be made with the bStart parameter set to true to start resume signaling. The host application
must then delay at least 20ms before calling this function with the bStart parameter set to false.
This action causes the controller to complete the resume signaling on the USB bus.

Returns:
None.

May 14, 2014 621

USB Controller

33.2.1.75 ROM_USBHostSpeedGet

Returns the current speed of the USB device connected.

Prototype:
uint32_t
ROM_USBHostSpeedGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostSpeedGet is a function pointer located at ROM_USBTABLE[37].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current speed of the USB bus in host mode.

Example: Get the USB connection speed.

//
// Get the connection speed of the device connected to the USB controller.
//
USBHostSpeedGet(USB0_BASE);

Note:
This function must only be called in host mode.

Returns:
Returns one of the following: USB_LOW_SPEED, USB_FULL_SPEED, USB_HIGH_SPEED,
or USB_UNDEF_SPEED.

33.2.1.76 ROM_USBHostSuspend

Puts the USB bus in a suspended state.

Prototype:
void
ROM_USBHostSuspend(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBHostSuspend is a function pointer located at ROM_USBTABLE[38].

Parameters:
ui32Base specifies the USB module base address.

Description:
When used in host mode, this function puts the USB bus in the suspended state.

Note:
This function must only be called in host mode.

622 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

33.2.1.77 ROM_USBIntDisableControl

Disables control interrupts on a given USB controller.

Prototype:
void
ROM_USBIntDisableControl(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntDisableControl is a function pointer located at ROM_USBTABLE[48].

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies which control interrupts to disable.

Description:
This function disables the control interrupts for the USB controller specified by the ui32Base
parameter. The ui32Flags parameter specifies which control interrupts to disable. The flags
passed in the ui32Flags parameters must be the definitions that start with USB_INTCTRL_∗
and not any other USB_INT flags.

Returns:
None.

33.2.1.78 ROM_USBIntDisableEndpoint

Disables endpoint interrupts on a given USB controller.

Prototype:
void
ROM_USBIntDisableEndpoint(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntDisableEndpoint is a function pointer located at ROM_USBTABLE[51].

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies which endpoint interrupts to disable.

Description:
This function disables endpoint interrupts for the USB controller specified by the ui32Base
parameter. The ui32Flags parameter specifies which endpoint interrupts to disable. The flags

May 14, 2014 623

USB Controller

passed in the ui32Flags parameters must be the definitions that start with USB_INTEP_∗ and
not any other USB_INT flags.

Returns:
None.

33.2.1.79 ROM_USBIntEnableControl

Enables control interrupts on a given USB controller.

Prototype:
void
ROM_USBIntEnableControl(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntEnableControl is a function pointer located at ROM_USBTABLE[49].

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies which control interrupts to enable.

Description:
This function enables the control interrupts for the USB controller specified by the ui32Base
parameter. The ui32Flags parameter specifies which control interrupts to enable. The flags
passed in the ui32Flags parameters must be the definitions that start with USB_INTCTRL_∗
and not any other USB_INT flags.

Returns:
None.

33.2.1.80 ROM_USBIntEnableEndpoint

Enables endpoint interrupts on a given USB controller.

Prototype:
void
ROM_USBIntEnableEndpoint(uint32_t ui32Base,

uint32_t ui32Flags)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntEnableEndpoint is a function pointer located at ROM_USBTABLE[52].

Parameters:
ui32Base specifies the USB module base address.
ui32Flags specifies which endpoint interrupts to enable.

624 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function enables endpoint interrupts for the USB controller specified by the ui32Base
parameter. The ui32Flags parameter specifies which endpoint interrupts to enable. The flags
passed in the ui32Flags parameters must be the definitions that start with USB_INTEP_∗ and
not any other USB_INT flags.

Returns:
None.

33.2.1.81 ROM_USBIntStatusControl

Returns the control interrupt status on a given USB controller.

Prototype:
uint32_t
ROM_USBIntStatusControl(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntStatusControl is a function pointer located at ROM_USBTABLE[50].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function reads control interrupt status for a USB controller. This call returns the
current status for control interrupts only, the endpoint interrupt status is retrieved by call-
ing ROM_USBIntStatusEndpoint(). The bit values returned are compared against the
USB_INTCTRL_∗ values.

The following are the meanings of all USB_INCTRL_ flags and the modes for which
they are valid. These values apply to any calls to ROM_USBIntStatusControl(),
ROM_USBIntEnableControl(), and ROM_USBIntDisableControl(). Some of these flags are
only valid in the following modes as indicated in the parentheses: Host, Device, and OTG.

USB_INTCTRL_ALL - A full mask of all control interrupt sources.
USB_INTCTRL_VBUS_ERR - A VBUS error has occurred (Host Only).
USB_INTCTRL_SESSION - Session Start Detected on A-side of cable (OTG Only).
USB_INTCTRL_SESSION_END - Session End Detected (Device Only)
USB_INTCTRL_DISCONNECT - Device Disconnect Detected (Host Only)
USB_INTCTRL_CONNECT - Device Connect Detected (Host Only)
USB_INTCTRL_SOF - Start of Frame Detected.
USB_INTCTRL_BABBLE - USB controller detected a device signaling past the end of a
frame (Host Only)
USB_INTCTRL_RESET - Reset signaling detected by device (Device Only)
USB_INTCTRL_RESUME - Resume signaling detected.
USB_INTCTRL_SUSPEND - Suspend signaling detected by device (Device Only)
USB_INTCTRL_MODE_DETECT - OTG cable mode detection has completed (OTG Only)
USB_INTCTRL_POWER_FAULT - Power Fault detected (Host Only)

May 14, 2014 625

USB Controller

Note:
This call clears the source of all of the control status interrupts.

Returns:
Returns the status of the control interrupts for a USB controller.

33.2.1.82 ROM_USBIntStatusEndpoint

Returns the endpoint interrupt status on a given USB controller.

Prototype:
uint32_t
ROM_USBIntStatusEndpoint(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBIntStatusEndpoint is a function pointer located at ROM_USBTABLE[53].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function reads endpoint interrupt status for a USB controller. This call returns
the current status for endpoint interrupts only, the control interrupt status is retrieved by
calling ROM_USBIntStatusControl(). The bit values returned are compared against the
USB_INTEP_∗ values. These values are grouped into classes for USB_INTEP_HOST_∗ and
USB_INTEP_DEV_∗ values to handle both host and device modes with all endpoints.

Note:
This call clears the source of all of the endpoint interrupts.

Returns:
Returns the status of the endpoint interrupts for a USB controller.

33.2.1.83 ROM_USBLPMIntDisable

Disables LPM interrupts.

Prototype:
void
ROM_USBLPMIntDisable(uint32_t ui32Base,

uint32_t ui32Ints)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBLPMIntDisable is a function pointer located at ROM_USBTABLE[88].

Parameters:
ui32Base specifies the USB module base address.

626 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ui32Ints specifies which LPM interrupts to disable.

Description:
This function disables the LPM interrupts specified in the ui32Ints parameter, preventing them
from triggering a USB interrupt.

The valid interrupt status bits when the USB controller is acting as a host are the following:

USB_INTLPM_ERROR a bus error occurred in the transmission of an LPM transaction.
USB_INTLPM_RESUME the USB controller has resumed from LPM low power state.
USB_INTLPM_INCOMPLETE the LPM transaction failed because a timeout occurred or
there were bit errors in the response for three attempts.
USB_INTLPM_ACK the device has acknowledged an LPM transaction.
USB_INTLPM_NYET the device has responded with a NYET to an LPM transaction.
USB_INTLPM_STALL the device has stalled an LPM transaction.

The valid interrupt status bits when the USB controller is acting as a device are the following:

USB_INTLPM_ERROR an LPM transaction was received that has an unsupported link
state field. The transaction was stalled, but the requested link state can still be read using
the ROM_USBLPMLinkStateGet() function.
USB_INTLPM_RESUME the USB controller has resumed from the LPM low power state.
USB_INTLPM_INCOMPLETE the USB controller responded to an LPM transaction with a
NYET because data was still in the transmit FIFOs.
USB_INTLPM_ACK the USB controller acknowledged an LPM transaction and is now in
the LPM suspend mode.
USB_INTLPM_NYET the USB controller responded to an LPM transaction with a NYET
because LPM transactions are not yet enabled by a call to ROM_USBDevLPMEnable().
USB_INTLPM_STALL the USB controller has stalled an incoming LPM transaction.

Example: Disable all LPM interrupt sources.

//
// Disable all LPM interrupt sources.
//
USBLPMIntDisable(USB0_BASE, USB_INTLPM_ERROR | USB_INTLPM_RESUME |

USB_INTLPM_INCOMPLETE | USB_INTLPM_ACK |
USB_INTLPM_NYET | USB_INTLPM_STALL);

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.84 ROM_USBLPMIntEnable

Enables LPM interrupts.

Prototype:
void
ROM_USBLPMIntEnable(uint32_t ui32Base,

uint32_t ui32Ints)

May 14, 2014 627

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBLPMIntEnable is a function pointer located at ROM_USBTABLE[89].

Parameters:
ui32Base specifies the USB module base address.
ui32Ints specifies which LPM interrupts to enable.

Description:
This function enables a set of LPM interrupts so that they can trigger a USB interrupt. The
ui32Ints parameter specifies which of the USB_INTLPM_∗ to enable.

The valid interrupt status bits when the USB controller is acting as a host are the following:

USB_INTLPM_ERROR a bus error occurred in the transmission of an LPM transaction.
USB_INTLPM_RESUME the USB controller has resumed from LPM low power state.
USB_INTLPM_INCOMPLETE the LPM transaction failed because a timeout occurred or
there were bit errors in the response for three attempts.
USB_INTLPM_ACK the device has acknowledged an LPM transaction.
USB_INTLPM_NYET the device has responded with a NYET to an LPM transaction.
USB_INTLPM_STALL the device has stalled an LPM transaction.

The valid interrupt status bits when the USB controller is acting as a device are the following:

USB_INTLPM_ERROR an LPM transaction was received that has an unsupported link
state field. The transaction was stalled, but the requested link state can still be read using
the ROM_USBLPMLinkStateGet() function.
USB_INTLPM_RESUME the USB controller has resumed from the LPM low power state.
USB_INTLPM_INCOMPLETE the USB controller responded to an LPM transaction with a
NYET because data was still in the transmit FIFOs.
USB_INTLPM_ACK the USB controller acknowledged an LPM transaction and is now in
the LPM suspend mode.
USB_INTLPM_NYET the USB controller responded to an LPM transaction with a NYET
because LPM transactions are not yet enabled by a call to ROM_USBDevLPMEnable().
USB_INTLPM_STALL the USB controller has stalled an incoming LPM transaction.

Example: Enable all LPM interrupt sources.

//
// Enable all LPM interrupt sources.
//
USBLPMIntEnable(USB0_BASE, USB_INTLPM_ERROR | USB_INTLPM_RESUME |

USB_INTLPM_INCOMPLETE | USB_INTLPM_ACK |
USB_INTLPM_NYET | USB_INTLPM_STALL);

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
None.

628 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.85 ROM_USBLPMIntStatus

Returns the current LPM interrupt status.

Prototype:
uint32_t
ROM_USBLPMIntStatus(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBLPMIntStatus is a function pointer located at ROM_USBTABLE[90].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current LPM interrupt status for the USB controller.

The valid interrupt status bits when the USB controller is acting as a host are the following:

USB_INTLPM_ERROR a bus error occurred in the transmission of an LPM transaction.
USB_INTLPM_RESUME the USB controller has resumed from the LPM low power state.
USB_INTLPM_INCOMPLETE the LPM transaction failed because a timeout occurred or
there were bit errors in the response for three attempts.
USB_INTLPM_ACK the device has acknowledged an LPM transaction.
USB_INTLPM_NYET the device has responded with a NYET to an LPM transaction.
USB_INTLPM_STALL the device has stalled an LPM transaction.

The valid interrupt status bits when the USB controller is acting as a device are the following:

USB_INTLPM_ERROR an LPM transaction was received that has an unsupported link
state field. The transaction was stalled, but the requested link state can still be read using
the ROM_USBLPMLinkStateGet() function.
USB_INTLPM_RESUME the USB controller has resumed from the LPM low power state.
USB_INTLPM_INCOMPLETE the USB controller responded to an LPM transaction with a
NYET because data was still in the transmit FIFOs.
USB_INTLPM_ACK the USB controller acknowledged an LPM transaction and is now in
the LPM suspend mode.
USB_INTLPM_NYET the USB controller responded to an LPM transaction with a NYET
because LPM transactions are not yet enabled by a call to ROM_USBDevLPMEnable().
USB_INTLPM_STALL the USB controller has stalled an incoming LPM transaction.

Note:
This call clears the source of all LPM status interrupts, so the caller must take care to save the
value returned because a subsequent call to ROM_USBLPMIntStatus() does not return the
previous value.

Example: Get the current LPM interrupt status.

uint32_t ui32LPMIntStatus;

//
// Get the current LPM interrupt status.

May 14, 2014 629

USB Controller

//
ui32LPMIntStatus = USBLPMIntStatus(USB0_BASE);

//
// Check if an LPM transaction was acknowledged.
//
if(ui32LPMIntStatus & USB_INTLPM_ACK)
{

//
// Handle entering LPM suspend mode.
//
...

}

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
The current LPM interrupt status.

33.2.1.86 ROM_USBLPMLinkStateGet

Returns the current link state setting.

Prototype:
uint32_t
ROM_USBLPMLinkStateGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBLPMLinkStateGet is a function pointer located at ROM_USBTABLE[91].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current link state setting for the USB controller. When the controller is
operating as a host, this link state is sent with an LPM request. When the controller is acting as
a device, this link state was received by the last LPM transaction whether it was acknowledged
or stalled because the requested LPM mode is not supported.

Example: Get the link state for the last LPM transaction.

uint32_t ui32LinkState;

//
// Get the endpoint number that received the LPM request.
//
ui32LinkState = USBLPMLinkStateGet(USB0_BASE);

//
// Check if this was a supported link state.
//
if(ui32LinkState == USB_HOST_LPM_L1)
{

//

630 May 14, 2014

Tiva TM4C129x ROM User’s Guide

// Handle the supported L1 link state.
//

}
else
{

//
// Handle the unsupported link state.
//

}

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
The current LPM link state.

33.2.1.87 ROM_USBLPMRemoteWakeEnabled

Returns if remote wake is currently enabled.

Prototype:
bool
ROM_USBLPMRemoteWakeEnabled(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBLPMRemoteWakeEnabled is a function pointer located at ROM_USBTABLE[102].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current state of the remote wake setting for host or device mode
operation. If the controller is acting as a host this returns the current setting that is sent to
devices when LPM requests are sent to a device. If the controller is in device mode, this
returns the state of the last LPM request sent from the host and indicates if the host enabled
remote wakeup.

Example: Issue remote wake if remote wake is enabled.

if(USBLPMRemoteWakeEnabled(USB0_BASE))
{

USBDevLPMRemoteWake(USB0_BASE);
}

Note:
The USB LPM feature is not available on all Tiva devices. Please consult the data sheet for the
Tiva device that you are using to determine if this feature is available.

Returns:
The true if remote wake is enabled or false if it is not.

May 14, 2014 631

USB Controller

33.2.1.88 ROM_USBModeConfig

Change the operating mode of the USB controller.

Prototype:
void
ROM_USBModeConfig(uint32_t ui32Base,

uint32_t ui32Mode)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBModeConfig is a function pointer located at ROM_USBTABLE[103].

Parameters:
ui32Base specifies the USB module base address.
ui32Mode specifies the operating mode of the USB OTG pins.

Description:
This function changes the operating modes of the USB controller. When operating in full OTG
mode, the USB controller uses the VBUS and ID pins to detect mode and voltage changes.
While these pins are primarily used in OTG mode, they can also affect the operation of host
and device modes. In device mode the USB controller can configured monitor or ignore
VBUS. Monitoring VBUS allows the controller to determine if it has been disconnected from
the host. In host mode, the USB controller uses the VBUS pin to detect loss of VBUS due
to excessive power draw due to a drop in the VBUS voltage. This call takes the place of
ROM_USBHostMode(), ROM_USBDevMode(), and ROM_USBOTGMode(). The ui32Mode
value should be one of the following values:

USB_MODE_OTG enables operating in full OTG mode, VBUS and ID are used by the
controller.
USB_MODE_HOST enables operating only as a host with no monitoring of VBUS or ID
pins.
USB_MODE_HOST_VBUS enables operating only as a host with monitoring of VBUS pin.
This enables detection of VBUS droop while still forcing host mode.
USB_MODE_DEVICE enables operating only as a device with no monitoring of VBUS or
ID pins.
USB_MODE_DEVICE_VBUS enables operating only as a device with monitoring of VBUS
pin. This enables disconnect detection while still forcing device mode.

Note:
This feature is not available on all Tiva devices. Please check the data sheet to determine if
the USB controller has the ability to control monitoring VBUS while forcing the ID state.

Example: Force device mode but allow monitoring of the USB VBUS pin.

//
// Force device mode but allow monitoring of VBUS for disconnect.
//
USBModeConfig(USB_MODE_DEVICE_VBUS);

Returns:
None.

632 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.89 ROM_USBModeGet

Returns the current operating mode of the controller.

Prototype:
uint32_t
ROM_USBModeGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBModeGet is a function pointer located at ROM_USBTABLE[46].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the current operating mode on USB controllers with OTG or Dual mode
functionality.

For OTG controllers:

The function returns one of the following values on OTG con-
trollers: USB_OTG_MODE_ASIDE_HOST, USB_OTG_MODE_ASIDE_DEV,
USB_OTG_MODE_BSIDE_HOST, USB_OTG_MODE_BSIDE_DEV,
USB_OTG_MODE_NONE.

USB_OTG_MODE_ASIDE_HOST indicates that the controller is in host mode on the A-side
of the cable.

USB_OTG_MODE_ASIDE_DEV indicates that the controller is in device mode on the A-side
of the cable.

USB_OTG_MODE_BSIDE_HOST indicates that the controller is in host mode on the B-side
of the cable.

USB_OTG_MODE_BSIDE_DEV indicates that the controller is in device mode on the B-side
of the cable. If an OTG session request is started with no cable in place, this mode is the
default.

USB_OTG_MODE_NONE indicates that the controller is not attempting to determine its role
in the system.

For Dual Mode controllers:

The function returns one of the following values: USB_DUAL_MODE_HOST,
USB_DUAL_MODE_DEVICE, or USB_DUAL_MODE_NONE.

USB_DUAL_MODE_HOST indicates that the controller is acting as a host.

USB_DUAL_MODE_DEVICE indicates that the controller acting as a device.

USB_DUAL_MODE_NONE indicates that the controller is not active as either a host or device.

Returns:
Returns USB_OTG_MODE_ASIDE_HOST, USB_OTG_MODE_ASIDE_DEV,
USB_OTG_MODE_BSIDE_HOST, USB_OTG_MODE_BSIDE_DEV,
USB_OTG_MODE_NONE, USB_DUAL_MODE_HOST, USB_DUAL_MODE_DEVICE,
or USB_DUAL_MODE_NONE.

May 14, 2014 633

USB Controller

33.2.1.90 ROM_USBNumEndpointsGet

Returns the number of USB endpoint pairs on the device.

Prototype:
uint32_t
ROM_USBNumEndpointsGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBNumEndpointsGet is a function pointer located at ROM_USBTABLE[61].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function returns the number of endpoint pairs supported by the USB controller corre-
sponding to the passed base address. The value returned is the number of IN or OUT end-
points available and does not include endpoint 0 (the control endpoint). For example, if 15 is
returned, there are 15 IN and 15 OUT endpoints available in addition to endpoint 0.

Returns:
Returns the number of IN or OUT endpoints available.

33.2.1.91 ROM_USBOTGMode

Change the mode of the USB controller to OTG.

Prototype:
void
ROM_USBOTGMode(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBOTGMode is a function pointer located at ROM_USBTABLE[59].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function changes the mode of the USB controller to OTG mode. This function is only valid
on microcontrollers that have the OTG capabilities.

Returns:
None.

33.2.1.92 ROM_USBOTGSessionRequest

Starts or ends a session.

634 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Prototype:
void
ROM_USBOTGSessionRequest(uint32_t ui32Base,

bool bStart)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBOTGSessionRequest is a function pointer located at ROM_USBTABLE[98].

Parameters:
ui32Base specifies the USB module base address.
bStart specifies if this call starts or ends a session.

Description:
This function is used in OTG mode to start a session request or end a session. If the bStart
parameter is set to true, then this function starts a session and if it is false it ends a session.

Returns:
None.

33.2.1.93 ROM_USBPHYPowerOff

Powers off the USB PHY.

Prototype:
void
ROM_USBPHYPowerOff(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBPHYPowerOff is a function pointer located at ROM_USBTABLE[56].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function powers off the USB PHY, reducing the current consuption of the device. While in
the powered-off state, the USB controller is unable to operate.

Returns:
None.

33.2.1.94 ROM_USBPHYPowerOn

Powers on the USB PHY.

Prototype:
void
ROM_USBPHYPowerOn(uint32_t ui32Base)

May 14, 2014 635

USB Controller

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBPHYPowerOn is a function pointer located at ROM_USBTABLE[57].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function powers on the USB PHY, enabling it return to normal operation. By default,
the PHY is powered on, so this function must only be called if ROM_USBPHYPowerOff() has
previously been called.

Returns:
None.

33.2.1.95 ROM_USBULPIConfig

Configures the USB controller’s ULPI interface.

Prototype:
void
ROM_USBULPIConfig(uint32_t ui32Base,

uint32_t ui32Config)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBULPIConfig is a function pointer located at ROM_USBTABLE[93].

Parameters:
ui32Base specifies the USB module base address.
ui32Config contains the configuration options.

Description:
This function is used to configure the USB controller’s ULPI interface. The configuration options
are set in the ui32Config parameter and are a logical OR of the following values:

USB_ULPI_EXTVBUS enables the external ULPI PHY as the source for VBUS signaling.
USB_ULPI_EXTVBUS_IND enables the external ULPI PHY to detect external VBUS over-
current condition.

Example: Enable ULPI PHY with full VBUS control.

//
// Enable ULPI PHY with full VBUS control.
//
USBULPIConfig(USB0_BASE, USB_ULPI_EXTVBUS | USB_ULPI_EXTVBUS_IND);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
None.

636 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.96 ROM_USBULPIDisable

Disables the USB controller’s ULPI interface.

Prototype:
void
ROM_USBULPIDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBULPIDisable is a function pointer located at ROM_USBTABLE[94].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function disables the USB controller’s ULPI interface. Accesses to the ULPI-connected
PHY do not succeed after this function has been called.

Example: Disable ULPI interface.

//
// Disable ULPI interface.
//
USBULPIDisable(USB0_BASE);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.97 ROM_USBULPIEnable

Enables the USB controller’s ULPI interface.

Prototype:
void
ROM_USBULPIEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBULPIEnable is a function pointer located at ROM_USBTABLE[95].

Parameters:
ui32Base specifies the USB module base address.

Description:
This function enables the USB controller’s ULPI interface and must be called before attempting
to access the ULPI-connected USB PHY.

Example: Enable ULPI interface.

May 14, 2014 637

USB Controller

//
// Enable ULPI interface.
//
USBULPIEnable(USB0_BASE);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
None.

33.2.1.98 ROM_USBULPIRegRead

Reads a register from a ULPI-connected USB PHY.

Prototype:
uint8_t
ROM_USBULPIRegRead(uint32_t ui32Base,

uint8_t ui8Reg)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBULPIRegRead is a function pointer located at ROM_USBTABLE[96].

Parameters:
ui32Base specifies the USB module base address.
ui8Reg specifies the register address to read.

Description:
This function reads the register address specified in the ui8Reg parameter using the ULPI
interface. This function is blocking and only returns when the read access completes. The
function does not return if there is not a ULPI-connected USB PHY present.

Example: Read a register from the ULPI PHY.

uint8_t ui8Value;

//
// Read a register from the ULPI PHY register at 0x10.
//
ui8Value = USBULPIRegRead(USB0_BASE, 0x10);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
The value of the requested ULPI register.

638 May 14, 2014

Tiva TM4C129x ROM User’s Guide

33.2.1.99 ROM_USBULPIRegWrite

Writes a value to a register on a ULPI-connected USB PHY.

Prototype:
void
ROM_USBULPIRegWrite(uint32_t ui32Base,

uint8_t ui8Reg,
uint8_t ui8Data)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_USBTABLE is an array of pointers located at ROM_APITABLE[16].
ROM_USBULPIRegWrite is a function pointer located at ROM_USBTABLE[97].

Parameters:
ui32Base specifies the USB module base address.
ui8Reg specifies the register address to write.
ui8Data specifies the data to write.

Description:
This function writes the register address specified in the ui8Reg parameter with the value
specified in the ui8Data parameter using the ULPI interface. This function is blocking and
only returns when the write access completes. The function does not return if there is not a
ULPI-connected USB PHY present.

Example: Write a register from the ULPI PHY.

//
// Write the ULPI PHY register at 0x10 with 0x20.
//
USBULPIRegWrite(USB0_BASE, 0x10, 0x20);

Note:
The USB ULPI feature is not available on all Tiva devices. Please consult the data sheet for
the Tiva device that you are using to determine if this feature is available.

Returns:
None.

May 14, 2014 639

USB Controller

640 May 14, 2014

Tiva TM4C129x ROM User’s Guide

34 Watchdog Timer
Introduction .641
Functions . 641

34.1 Introduction

The Watchdog Timer API provides a set of functions for using the Tiva watchdog timer modules.
Functions are provided to deal with the watchdog timer interrupts, and to handle status and config-
uration of the watchdog timer.

A watchdog timer module’s function is to prevent system hangs. The watchdog timer module con-
sists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a
locking register. Once the watchdog timer has been configured, the lock register can be written to
prevent the timer configuration from being inadvertently altered.

The watchdog timer can be configured to generate an interrupt to the processor after its first timeout,
and to generate a reset signal after its second timeout. The watchdog timer module generates the
first timeout signal when the 32-bit counter reaches the zero state after being enabled; enabling the
counter also enables the watchdog timer interrupt. After the first timeout event, the 32-bit counter is
reloaded with the value of the watchdog timer load register, and the timer resumes counting down
from that value. If the timer counts down to its zero state again before the first timeout interrupt is
cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the
system. If the interrupt is cleared before the 32-bit counter reaches its second timeout, the 32-bit
counter is loaded with the value in the load register, and counting resumes from that value. If the
load register is written with a new value while the watchdog timer counter is counting, then the
counter is loaded with the new value and continues counting.

The watchdog timer can be configured to generate an NMI instead of a standard interrupt. If the
watchdog timer has been configured to generate an NMI, the interrupt is still treated the same as
if it were a standard interrupt; it must be enabled in order to be triggered, and it must be cleared
inside the NMI handler.

34.2 Functions

Functions
void ROM_WatchdogEnable (uint32_t ui32Base)
void ROM_WatchdogIntClear (uint32_t ui32Base)
void ROM_WatchdogIntEnable (uint32_t ui32Base)
uint32_t ROM_WatchdogIntStatus (uint32_t ui32Base, bool bMasked)
void ROM_WatchdogIntTypeSet (uint32_t ui32Base, uint32_t ui32Type)
void ROM_WatchdogLock (uint32_t ui32Base)
bool ROM_WatchdogLockState (uint32_t ui32Base)
uint32_t ROM_WatchdogReloadGet (uint32_t ui32Base)
void ROM_WatchdogReloadSet (uint32_t ui32Base, uint32_t ui32LoadVal)
void ROM_WatchdogResetDisable (uint32_t ui32Base)

May 14, 2014 641

Watchdog Timer

void ROM_WatchdogResetEnable (uint32_t ui32Base)
bool ROM_WatchdogRunning (uint32_t ui32Base)
void ROM_WatchdogStallDisable (uint32_t ui32Base)
void ROM_WatchdogStallEnable (uint32_t ui32Base)
void ROM_WatchdogUnlock (uint32_t ui32Base)
uint32_t ROM_WatchdogValueGet (uint32_t ui32Base)

34.2.1 Function Documentation

34.2.1.1 ROM_WatchdogEnable

Enables the watchdog timer.

Prototype:
void
ROM_WatchdogEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogEnable is a function pointer located at ROM_WATCHDOGTABLE[2].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function enables the watchdog timer counter and interrupt.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

34.2.1.2 ROM_WatchdogIntClear

Clears the watchdog timer interrupt.

Prototype:
void
ROM_WatchdogIntClear(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogIntClear is a function pointer located at ROM_WATCHDOGTABLE[0].

Parameters:
ui32Base is the base address of the watchdog timer module.

642 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
The watchdog timer interrupt source is cleared, so that it no longer asserts.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

34.2.1.3 ROM_WatchdogIntEnable

Enables the watchdog timer interrupt.

Prototype:
void
ROM_WatchdogIntEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogIntEnable is a function pointer located at ROM_WATCHDOGTABLE[11].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function enables the watchdog timer interrupt.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

34.2.1.4 ROM_WatchdogIntStatus

Gets the current watchdog timer interrupt status.

Prototype:
uint32_t
ROM_WatchdogIntStatus(uint32_t ui32Base,

bool bMasked)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogIntStatus is a function pointer located at ROM_WATCHDOGTABLE[12].

May 14, 2014 643

Watchdog Timer

Parameters:
ui32Base is the base address of the watchdog timer module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status

is required.

Description:
This function returns the interrupt status for the watchdog timer module. Either the raw interrupt
status or the status of interrupt that is allowed to reflect to the processor can be returned.

Returns:
Returns the current interrupt status, where a 1 indicates that the watchdog interrupt is active,
and a 0 indicates that it is not active.

34.2.1.5 ROM_WatchdogIntTypeSet

Sets the type of interrupt generated by the watchdog.

Prototype:
void
ROM_WatchdogIntTypeSet(uint32_t ui32Base,

uint32_t ui32Type)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogIntTypeSet is a function pointer located at ROM_WATCHDOGTABLE[15].

Parameters:
ui32Base is the base address of the watchdog timer module.
ui32Type is the type of interrupt to generate.

Description:
This function sets the type of interrupt that is generated if the watchdog timer expires. ui32Type
can be either WATCHDOG_INT_TYPE_INT to generate a standard interrupt (the default) or
WATCHDOG_INT_TYPE_NMI to generate a non-maskable interrupt (NMI).

When configured to generate an NMI, the watchdog interrupt must still be enabled with
ROM_WatchdogIntEnable(), and it must still be cleared inside the NMI handler with
ROM_WatchdogIntClear().

Returns:
None.

34.2.1.6 ROM_WatchdogLock

Enables the watchdog timer lock mechanism.

Prototype:
void
ROM_WatchdogLock(uint32_t ui32Base)

644 May 14, 2014

Tiva TM4C129x ROM User’s Guide

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogLock is a function pointer located at ROM_WATCHDOGTABLE[5].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function locks out write access to the watchdog timer registers.

Returns:
None.

34.2.1.7 ROM_WatchdogLockState

Gets the state of the watchdog timer lock mechanism.

Prototype:
bool
ROM_WatchdogLockState(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogLockState is a function pointer located at ROM_WATCHDOGTABLE[7].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function returns the lock state of the watchdog timer registers.

Returns:
Returns true if the watchdog timer registers are locked, and false if they are not locked.

34.2.1.8 ROM_WatchdogReloadGet

Gets the watchdog timer reload value.

Prototype:
uint32_t
ROM_WatchdogReloadGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogReloadGet is a function pointer located at ROM_WATCHDOGTABLE[9].

Parameters:
ui32Base is the base address of the watchdog timer module.

May 14, 2014 645

Watchdog Timer

Description:
This function gets the value that is loaded into the watchdog timer when the count reaches
zero for the first time.

Returns:
None.

34.2.1.9 ROM_WatchdogReloadSet

Sets the watchdog timer reload value.

Prototype:
void
ROM_WatchdogReloadSet(uint32_t ui32Base,

uint32_t ui32LoadVal)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogReloadSet is a function pointer located at ROM_WATCHDOGTABLE[8].

Parameters:
ui32Base is the base address of the watchdog timer module.
ui32LoadVal is the load value for the watchdog timer.

Description:
This function configures the value to load into the watchdog timer when the count reaches zero
for the first time; if the watchdog timer is running when this function is called, then the value is
immediately loaded into the watchdog timer counter. If the ui32LoadVal parameter is 0, then
an interrupt is immediately generated.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

34.2.1.10 ROM_WatchdogResetDisable

Disables the watchdog timer reset.

Prototype:
void
ROM_WatchdogResetDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogResetDisable is a function pointer located at ROM_WATCHDOGTABLE[4].

Parameters:
ui32Base is the base address of the watchdog timer module.

646 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Description:
This function disables the capability of the watchdog timer to issue a reset to the processor
after a second timeout condition.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

34.2.1.11 ROM_WatchdogResetEnable

Enables the watchdog timer reset.

Prototype:
void
ROM_WatchdogResetEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogResetEnable is a function pointer located at ROM_WATCHDOGTABLE[3].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function enables the capability of the watchdog timer to issue a reset to the processor
after a second timeout condition.

Note:
This function has no effect if the watchdog timer has been locked.

Returns:
None.

34.2.1.12 ROM_WatchdogRunning

Determines if the watchdog timer is enabled.

Prototype:
bool
ROM_WatchdogRunning(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogRunning is a function pointer located at ROM_WATCHDOGTABLE[1].

Parameters:
ui32Base is the base address of the watchdog timer module.

May 14, 2014 647

Watchdog Timer

Description:
This function checks to see if the watchdog timer is enabled.

Returns:
Returns true if the watchdog timer is enabled and false if it is not.

34.2.1.13 ROM_WatchdogStallDisable

Disables stalling of the watchdog timer during debug events.

Prototype:
void
ROM_WatchdogStallDisable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogStallDisable is a function pointer located at ROM_WATCHDOGTABLE[14].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function disables the debug mode stall of the watchdog timer. By doing so, the watchdog
timer continues to count regardless of the processor debug state.

Returns:
None.

34.2.1.14 ROM_WatchdogStallEnable

Enables stalling of the watchdog timer during debug events.

Prototype:
void
ROM_WatchdogStallEnable(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogStallEnable is a function pointer located at ROM_WATCHDOGTABLE[13].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function allows the watchdog timer to stop counting when the processor is stopped by the
debugger. By doing so, the watchdog is prevented from expiring (typically almost immediately
from a human time perspective) and resetting the system (if reset is enabled). The watchdog
instead expires after the appropriate number of processor cycles have been executed while
debugging (or at the appropriate time after the processor has been restarted).

648 May 14, 2014

Tiva TM4C129x ROM User’s Guide

Returns:
None.

34.2.1.15 ROM_WatchdogUnlock

Disables the watchdog timer lock mechanism.

Prototype:
void
ROM_WatchdogUnlock(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogUnlock is a function pointer located at ROM_WATCHDOGTABLE[6].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function enables write access to the watchdog timer registers.

Returns:
None.

34.2.1.16 ROM_WatchdogValueGet

Gets the current watchdog timer value.

Prototype:
uint32_t
ROM_WatchdogValueGet(uint32_t ui32Base)

ROM Location:
ROM_APITABLE is an array of pointers located at 0x0100.0010.
ROM_WATCHDOGTABLE is an array of pointers located at ROM_APITABLE[12].
ROM_WatchdogValueGet is a function pointer located at ROM_WATCHDOGTABLE[10].

Parameters:
ui32Base is the base address of the watchdog timer module.

Description:
This function reads the current value of the watchdog timer.

Returns:
Returns the current value of the watchdog timer.

May 14, 2014 649

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Copyright
	Revision Information
	1 Introduction
	2 Analog Comparator
	2.1 Introduction
	2.2 Functions

	3 Analog to Digital Converter (ADC)
	3.1 Introduction
	3.2 Functions

	4 AES
	4.1 Introduction
	4.2 API Functions

	5 Controller Area Network (CAN)
	5.1 Introduction
	5.2 Functions

	6 CRC
	6.1 Introduction
	6.2 API Functions

	7 DES
	7.1 Introduction
	7.2 API Functions

	8 EEPROM
	8.1 Introduction
	8.2 API Functions

	9 Ethernet Controller
	9.1 Introduction
	9.2 API Functions

	10 External Peripheral Interface (EPI)
	10.1 Introduction
	10.2 Functions

	11 Flash
	11.1 Introduction
	11.2 Functions

	12 Floating-Point Unit (FPU)
	12.1 Introduction
	12.2 API Functions

	13 GPIO
	13.1 Introduction
	13.2 Functions

	14 Hibernation Module
	14.1 Introduction
	14.2 Functions

	15 Inter-Integrated Circuit (I2C)
	15.1 Introduction
	15.2 Functions

	16 Interrupt Controller (NVIC)
	16.1 Introduction
	16.2 Functions

	17 LCD Controller (LCD)
	17.1 Introduction
	17.2 API Functions

	18 Memory Protection Unit (MPU)
	18.1 Introduction
	18.2 Functions

	19 1-Wire Master Module
	19.1 Introduction
	19.2 API Functions

	20 Pulse Width Modulator (PWM)
	20.1 Introduction
	20.2 Functions

	21 Quadrature Encoder (QEI)
	21.1 Introduction
	21.2 Functions

	22 SMBus Stack
	22.1 Introduction
	22.2 API Functions

	23 Software AES Data Tables
	23.1 Introduction
	23.2 Data Structures

	24 Software CRC
	24.1 Introduction
	24.2 Functions

	25 SPI Flash Module
	25.1 Introduction
	25.2 API Functions

	26 Synchronous Serial Interface (SSI)
	26.1 Introduction
	26.2 Functions

	27 System Control
	27.1 Introduction
	27.2 Functions

	28 System Exception Module
	28.1 Introduction
	28.2 API Functions

	29 System Tick (SysTick)
	29.1 Introduction
	29.2 Functions

	30 Timer
	30.1 Introduction
	30.2 Functions

	31 UART
	31.1 Introduction
	31.2 Functions

	32 uDMA Controller
	32.1 Introduction
	32.2 Functions

	33 USB Controller
	33.1 Introduction
	33.2 Functions

	34 Watchdog Timer
	34.1 Introduction
	34.2 Functions

	IMPORTANT NOTICE

