
Application Note
Implementing OPUS Voice Code for TM4C129x Device

Amit Ashara

ABSTRACT

Opus is an open source, royalty-free audio compression format developed by Xiph and standardized by the 
IETF. It utilizes lossy compression which is designed to efficiently code audio with a low latency making it 
suitable for real time communication. Opus replaces both the Vorbis and Speex codecs, and is intended for 
storage and streaming applications. Its low complexity allows it to be run efficiently on TM4C129x series 
microcontroller from Texas Instruments. This document describes how to use the Code Composer Studio™ 

v6.1.1 software to build Opus and the examples that can be used to exercise compression and decompression 
functions provided.

Project collateral and source code mentioned in this document can be downloaded from the following URL: 
http://www.ti.com/lit/zip/spma076.

Note

This document applies to TM4C129x series microcontrollers. All screen captures reflect the 
TM4C129x device and Code Composer Studio v6.1.1 IDE.

Table of Contents
1 Introduction.............................................................................................................................................................................2
2 System Details........................................................................................................................................................................ 3

2.1 Hardware Requirements.................................................................................................................................................... 3
2.2 Software Requirements......................................................................................................................................................3
2.3 Audio Format......................................................................................................................................................................3

3 Example Code Description.................................................................................................................................................... 4
3.1 Importing the Examples..................................................................................................................................................... 5
3.2 Compiling opuslib...............................................................................................................................................................7
3.3 Compiling the Application Examples..................................................................................................................................7

4 Executing OPUS Example Project.......................................................................................................................................11
4.1 OPUS Encode and Decode..............................................................................................................................................11
4.2 OPUS Audio Playback for OPX....................................................................................................................................... 13
4.3 OPUS Audio Playback for OggS-Opus............................................................................................................................ 14

5 Performance Data on OPUS Encoder................................................................................................................................. 14
6 Conclusion............................................................................................................................................................................ 16
7 References............................................................................................................................................................................ 16

Trademarks
Code Composer Studio™ and TivaWare™ are trademarks of Texas Instruments.
Arm® and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SPMA076 – JUNE 2016
Submit Document Feedback

Implementing OPUS Voice Code for TM4C129x Device 1

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/lit/zip/spma076
https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


1 Introduction
Many microcontroller-based applications require audio to be either recorded or played back. Using raw audio 
formats require external storage as the size of the files are large and cannot be stored in the on-chip flash. 
Other audio formats may require special licensing agreements that require fees to be paid increasing the cost 
of the system development. The open source structure allows the development of applications without having 
to spend on licensing cost. Also with the wider adoption of the codec, it makes a good case for microcontroller 
applications to utilize the benefits of the codec especially in IoT applications.

The main features of the Opus code are listed below:

• Bitrates from 6Kbits/s to 510Kbits/s
• Five sampling rates from 8 KHz to 48 KHz: 8 KHz, 16 KHz, 24 KHz, 32 KHz and 48 KHz
• Frame sizes from 2.5 ms to 60 ms
• Support for both constant bitrate (CBR) and variable bitrate (VBR)
• Audio bandwidth from narrowband to full band
• Support both speech and music, mono and stereo
• Good loss robustness and packet loss concealment (PLC)
• Floating- and fixed-point implementations

The TM4C129x series microcontroller features:

• Arm® Cortex® M4F processor core at 120 MHz
• 1 Mbyte of on-chip flash and 256 Kbyte of on chip SRAM
• Integrated security modules like AES and DES and SHA hash engine
• Integrated 10/100 Ethernet MAC and PHY for network communication and IoT solutions
• Single 32-channel uDMA for data transfer
• Two 12-bit ADC modules each with a maximum of 2MSPS
• 8 16/32-bit configurable timer block
• USB2.0 OTG/Host/device with ULPI interface and Link Power Management (LPM) support

Even though there is no native support for SD card or Audio Interface, TM4C129x with its large on chip flash and 
SRAM, CPU core at 120 MHz can efficiently handle the Opus codec for play back on USB interface. Optionally, 
as described in this application report, the SD card can be read by the microcontroller over SPI interface using 
legacy mode and a timer in PWM mode can be used to playback audio with sufficient clarity for low and mid end 
applications and systems, reducing the requirement for more complex systems.

Introduction www.ti.com

2 Implementing OPUS Voice Code for TM4C129x Device SPMA076 – JUNE 2016
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


2 System Details
To successfully integrate the Opus Codec into an application, the system must meet the following requirements.

2.1 Hardware Requirements
The application example uses the DK-TM4C129X EVM from Texas Instruments. The EVM has an on-board SD 
card slot for reading files and buzzer for audio playback. To run the examples as given in the application note the 
user must install jumpers for the following headers.

• For the SD card interface, install all headers on J7 connector except one marked as FLS_CS
• For the audio interface, install the two headers (J21 and J22) marked as SPEAKER CON

2.2 Software Requirements
All examples built as part of the application report assume that a linear PCM stream is used with sampling rates 
from 8 KHz up to 16 KHz and a single channel.

1. Download and install TivaWare™ 2.1.2.111.
2. Create a directory “examples\OPUS” in “D:\ti”.
3. Download the source code from the opus website, https://opus-codec.org/downloads/, and unzip it. The 

version of opus source code used at the time of this document is libopus 1.1.2.
4. Download the project collateral and unzip it.
5. Install CCS v6.1.11 with ARM compiler tool chain version 5.2.6.

2.3 Audio Format
Opus prescribes the OggS file container for storing files or data streams encoded using the opus codec. The 
playback example along with this application report support OggS-Opus as well as a custom format. Information 
on the OggS-Opus is available online. For references, see Section 7. The custom format is referenced in this 
document as the OPX format. The OPX format has been developed to simplify the code for file processing 
during both compress and decompress operation of the codec. The details for OPX are shown in the Figure 2-1.

Figure 2-1. Custom OPX Audio Format

The OPX audio format contains three distinct sections referred to as segments.

www.ti.com System Details

SPMA076 – JUNE 2016
Submit Document Feedback

Implementing OPUS Voice Code for TM4C129x Device 3

Copyright © 2023 Texas Instruments Incorporated

https://opus-codec.org/downloads/
https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


2.3.1 Header Segment

The header segment is an information only segment and does not have any audio data. It is always 16 bytes 
long and has five fields:

• The first 4 bytes contain the string “HDR ” (Hex string of 0x48 0x44 0x52 0x00), which is used to identify the 
validity of the file.

• The next 2 bytes contain the number of channels. This can have the value “0x0001” for mono or “0x0002” for 
stereo.

• The next 2 bytes contain the bits per sample in the original bit stream. This can have the value “0x0008” for 8 
bit data or “0x0010” for 16 bit data.

• The next 4 bytes contain the sampling rate of the original bit stream in Hz.
• The last 4 bytes contain the size of the data payload in the original bit stream.

2.3.2 OPX Mid Segment

The mid segment is a data only segment and must be 0 or more. Each mid segment contains data equivalent to 
the frame size used during encode process.

• The first 4 bytes contains the string “MID ” (Hex string of 0x4D 0x69 0x64 0x00), which is used to identify that 
it is a data payload and that it is not the last payload segment.

• The next 4 bytes, in 32-bit unsigned type, contain the size of the segment data in bytes called “iLen”.
• The last field is the actual data and is “iLen” bytes long

2.3.3 OPX End Segment

The end segment is a data only segment and must be exactly one. The end segment contains data equivalent to 
the frame size used during encode process.

• The first 4 bytes contains the string “END ” (Hex string of 0x45 0x6E0x64 0x00), which is used to identify that 
it is a data payload and it is the last payload segment.

• The next 4 bytes, in 32-bit unsigned type, contains the size of the segment data in bytes called “iLen”.
• The last field is the actual data and is “iLen” bytes long

3 Example Code Description
The CCS project examples are part of the project collateral included with this application report. This project 
collateral includes four CCS projects:

• opuslib: This project is used to compile the Opus source code to create a pre-compiled library that is used in 
the application examples. The output of this project is a static library “opuslib.lib” that must be used during the 
linker phase of the other application examples.

• opus_enc_dec: This project is a serial console-based application for an embedded device that is used to read 
a wave file from the sd-card, compress the wave file to an OPX file and store the OPX file on the sd-card. It 
performs the reverse steps to read an OPX file from the sd-card, convert it to a wave file and store it on the 
sd-card.

• opus_playaudio_opx: This project is a graphics application for an embedded device that reads an OPX file 
from the sd-card, decompresses the data to play back on the audio buzzer on the DK-TM4C129X EVM. To 
playback OPX audio file, run the opus_enc_dec application to convert a mono format wav file to OPX file 
format.

• opus_playaudio_ogg: This project is a graphics application for an embedded device that reads an Oggs-Opus 
file from the sd-card and decompresses the data to play back on the audio buzzer on the DK-TM4C129X 
EVM. To playback the opus audio file, you can download opus files in mono format from the web.

System Details www.ti.com

4 Implementing OPUS Voice Code for TM4C129x Device SPMA076 – JUNE 2016
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


3.1 Importing the Examples
Before building the opus library in Code Composer Studio, a project for the library must be created. The 
following steps describe how to create and build the project:

1. Launch CCS v6.1.1 and select an empty workspace.
2. Select File → Import. The Import window will be displayed.
3. Click Code Composer Studio to expand then click CCS Projects. Click Next (see Figure 3-1).

Figure 3-1. Import the Examples

www.ti.com Example Code Description

SPMA076 – JUNE 2016
Submit Document Feedback

Implementing OPUS Voice Code for TM4C129x Device 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


4. Click the Browse button in front of Select search-directory option and navigate to the directory where the 
project collateral has been extracted. Select all the projects that are listed in the Discovered projects: 
pane. Make sure that the check-boxes in front of Automatically import referenced projects found in same 
search-directory and Copy projects into workspace are checked (see Figure 3-2). Now click on Finish button. 
This will import the examples into CCS.

Figure 3-2. Import the Examples

Example Code Description www.ti.com

6 Implementing OPUS Voice Code for TM4C129x Device SPMA076 – JUNE 2016
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


3.2 Compiling opuslib
Since all the application examples refer to the opuslib project, the opuslib must be compiled first. Right-click the 
opuslib project in Project Explorer and click Build Project. If building the library for the first time, it may take a few 
minutes. After the compilation is successful, the CCS console must display the following message (see Figure 
3-3).

Figure 3-3. Compiling opuslib

3.3 Compiling the Application Examples
If the required software has been extracted or installed (as provided in Section 2.2) to a path not the same 
as specified by the variables, then you must first modify the value of these variables in the respective projects 
(see Figure 3-4). The following steps show how to update the three variables (SW_ROOT, OPUS_ROOT and 
SPMA076_ROOT).

1. Right click the project, click Show Build Settings… 
2. Select Build, click on the Variables tab, select the variable to modify and click on the Edit… button

Figure 3-4. Edit Path Variables

www.ti.com Example Code Description

SPMA076 – JUNE 2016
Submit Document Feedback

Implementing OPUS Voice Code for TM4C129x Device 7

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


3.3.1 Compiling Opus Encode and Decode Example

The opus_enc_dec project contains the example for demonstrating the opus encoder and decoder with a 
serial console (TeraTerm or PuTTy) application. In this application example (see Figure 3-5), when the encode 
command line option is entered on a serial console, the TM4C129XNCZAD device reads wave file from a SD 
Card and encodes with the Opus Encoder and stores it back in the SD Card as a OPX file. Similarly, when the 
decode command line option is entered on a serial console, the TM4C129XNCZAD device reads the OPX file 
from the SD Card and decodes it with the Opus Decoder and stores the data back in the SD Card as a wave file.

Figure 3-5. opus_enc_dec Data Flow

To build the opus_enc_dec application, right-click the opus_enc_dec project in Project Explorer and click Build 
Project. After the compilation is successful, the CCS console must display the following message (see Figure 
3-6).

Figure 3-6. Compiling opus_enc_dec example

Example Code Description www.ti.com

8 Implementing OPUS Voice Code for TM4C129x Device SPMA076 – JUNE 2016
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


3.3.2 Compiling Playback Example for OPX

The opus_playaudio_opx project contains the example for demonstrating the opus decoder and playback 
with a GUI on the LCD panel of the DK-TM4C129X EVM. In this application example (see Figure 3-7), the 
TM4C129XNCZAD reads the SD Card and displays its content on the LCD panel of the DK-TM4C129X. Select 
an OPX file and playback the audio by using the on-board speaker. The LCD panel provides the touch interface 
as well for playing, pausing or stopping the audio stream, or selecting another OPX file for playback.

Figure 3-7. opus_playaudio_opx Data Flow

To build the opus_playaudio_opx application, right-click the opus_playaudio_opx project in Project Explorer and 
click Build Project. After the compilation is successful, the CCS console must display the following message (see 
Figure 3-8).

Figure 3-8. Compiling opus_playaudio_opx Example

www.ti.com Example Code Description

SPMA076 – JUNE 2016
Submit Document Feedback

Implementing OPUS Voice Code for TM4C129x Device 9

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


3.3.3 Compiling Playback Example for OggS-Opus

The opus_playaudio_ogg project contains the example for demonstrating the opus decoder and playback 
with a GUI on the LCD panel of the DK-TM4C129X EVM. In this application example (see Figure 3-9), the 
TM4C129XNCZAD reads the SD Card and displays its content on the LCD panel of the DK-TM4C129X. Select 
an OggS-Opus file and playback the audio by using the on-board speaker. The LCD panel provides the touch 
interface as well for playing, pausing or stopping the audio stream, or selecting another OggS-Opus file for 
playback.

Figure 3-9. opus_playaudio_ogg Data Flow

To build the opus_playaudio_ogg application, right-click the opus_playaudio_ogg project in Project Explorer and 
click Build Project. After the compilation is successful, the CCS console must display the following message (see 
Figure 3-10).

Figure 3-10. Compiling opus_playaudio_ogg Example

Example Code Description www.ti.com

10 Implementing OPUS Voice Code for TM4C129x Device SPMA076 – JUNE 2016
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


4 Executing OPUS Example Project
To execute the application examples on the DK-TM4C129X, click on the Debug Icon on the top panel of CCS.

4.1 OPUS Encode and Decode
Once the code has been flashed to the TM4C129XNCZAD, run the application example as shown below:

1. Launch a serial console application like TeraTerm (Baud rate of 115200 bps and 8N1 format) and press the 
Resume button (or F8) in Code Composer Studio to cause the program to start execute. The TeraTerm will 
show the welcome message. Use the following command:

/> enc <WAVFILE> <OPXFILE>

to encode a wave file to OPX file (see Figure 4-1). Once the encoding is complete, the statistics for 
compression will print (see Figure 4-2).

Figure 4-1. Application Encoding a Wav File to OPX Format

Figure 4-2. Application Prints Statistics for Compression Operation

www.ti.com Executing OPUS Example Project

SPMA076 – JUNE 2016
Submit Document Feedback

Implementing OPUS Voice Code for TM4C129x Device 11

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


2. Use the following command:

/> dec <OPXFILE> <WAVFILE>

to decode the OPX file to a wave file (see Figure 4-3). Once the decompression is complete, it will print the 
statistics on conversion (see Figure 4-4).

Figure 4-3. Application Decoding OPX File to a Wave File

Figure 4-4. Application Prints Statistics for the Decompression

Executing OPUS Example Project www.ti.com

12 Implementing OPUS Voice Code for TM4C129x Device SPMA076 – JUNE 2016
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


4.2 OPUS Audio Playback for OPX
Once the code has been flashed to the TM4C129XNCZAD, you can run the application example as shown 
below:

1. Press the Resume button (or F8) in Code Composer Studio to start execute. The display will shows the 
welcome screen with the file menu (see Figure 4-5).

Figure 4-5. Application opus_playaudio_opx as Seen on the LCD Panel
2. Select a file with the extension OPX and click on the Play button. The top-right of the screen shows the 

properties of the file (as read from the Header Segment) and the status bar on the bottom-right displays 
“Now Playing…” (see Figure 4-6). The audio will now be audible on the on-board speaker.

Figure 4-6. Application opus_playaudio_opx Running the Decoder

www.ti.com Executing OPUS Example Project

SPMA076 – JUNE 2016
Submit Document Feedback

Implementing OPUS Voice Code for TM4C129x Device 13

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


4.3 OPUS Audio Playback for OggS-Opus
Once the code has been flashed to the TM4C129XNCZAD, run the application example as shown below:

1. Press the Resume button (or F8) in Code Composer Studio to cause the program to start execute. The 
display will show the welcome screen with the file menu (see Figure 4-7).

Figure 4-7. Application opus_playaudio_ogg as Seen on the LCD Panel
2. Select a file with the extension OPUS and click on the Play button. The top-right of the screen will show the 

properties of the file (as read from the Header Segment) and the status bar on the bottom-right will display 
Now Playing… (see Figure 4-8). The audio will now be audible on the on-board speaker.

Figure 4-8. Application opus_playaudio_ogg Running the Decoder

5 Performance Data on OPUS Encoder
The following two tables illustrate the performance of OPUS encoder on the TM4C129x microcontroller. To 
enable the performance measurement on the microcontroller add the define PERFORMANCE_TEST to the 
example code opus_enc_dec and recompile the project. When the project is compiled with this define the 
command “testenc <WAVFILE> is activated. This command loops though the complexity level 0-10 of the OPUS 
encoder and does not generate any output OPX file.

For all tests, the following parameters are used:

• Output bit rate is set to twice the input wave file sample rate
• Bandwidth is set to OPUS_AUTO
• Only CELT mode is used
• The frame size is always 20 ms

Executing OPUS Example Project www.ti.com

14 Implementing OPUS Voice Code for TM4C129x Device SPMA076 – JUNE 2016
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


To ensure that excessive time is not spent it is advised that the test be done on a wave file not exceeding 10-40 
seconds.

The measurements have been performed for 16-bit wave file with sampling rate of 8 KHz (see Table 5-1) and 
16-bit wave file with sampling rate of 16 KHz (see Table 5-2). The method to read the performance data is shown 
below:

• Column-1 (Complexity): This is the encoder’s computational complexity from 0-10 with 10 representing the 
highest complexity.

• Column-2 (Raw Data Bytes): This is the total number of bytes read from the input wave file.
• Column-3 (Output Data Bytes): This is the total number of bytes output from the encoder.
• Column-4 (Segments): This is total number of frames read from the input wave file. Each segment contains 

encoder output data corresponding to the frame size.
• Column-5 (Total Time): This is the total time taken for the OPUS encoder to encode the incoming wave file 

and does not include the time spent in reading the SD card or pre/post processing the data.
• Column-6 (Compression Factor): This is the ratio of compression achieved by the encoder and is computed 

by dividing Column-2 by Column-3.
• Column-7 (Segment Encoding Time): This is the average time taken by the encoder to encode one frame 

size worth of input wave file data into the output segment.

Note

The playback time of the data stream file can be computed as follows:
Total Playback time = (Column-2 * Bits per sample) / (8 * Sampling Rate).

Table 5-1. Opus Encoder Performance for 16-Bit Audio Data Sampled at 8 KHz

Complexity
Raw Data 
Bytes

Output Data 
Bytes Segments

Total Compression Time
for wav File (in seconds)

Compression 
Factor

Segment 
Encoding Time
(in ms)

0 699572 83927 2187 8.825 8.33 4.035

1 699572 83739 2187 9.972 8.35 4.559

2 699572 83885 2187 10.511 8.33 4.806

3 699572 83957 2187 10.570 8.33 4.833

4 699572 83644 2187 10.699 8.36 4.892

5 699572 85617 2187 20.734 8.17 9.480

6 699572 85617 2187 20.734 8.17 9.480

7 699572 85617 2187 20.734 8.17 9.480

8 699572 85617 2187 21.012 8.17 9.607

9 699572 85617 2187 21.012 8.17 9.607

10 699572 85617 2187 21.012 8.17 9.607

www.ti.com Performance Data on OPUS Encoder

SPMA076 – JUNE 2016
Submit Document Feedback

Implementing OPUS Voice Code for TM4C129x Device 15

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


Table 5-2. Opus Encoder Performance for 16-Bit Audio Data Sampled at 16 KHz

Complexit
y

Raw Data 
Bytes

Output Data 
Bytes Segments

Total Compression Time
for wav file (in seconds)

Compression 
Factor

Segment 
Encoding Time
(in ms)

0 240002 30231 376 1.958 7.93 5.208

1 240002 30187 376 2.171 7.95 5.775

2 240002 30219 376 2.313 7.94 6.152

3 240002 30293 376 2.334 7.92 6.207

4 699572 30269 376 2.362 7.92 6.283

5 699572 30545 376 4.109 7.85 10.929

6 699572 30545 376 4.109 7.85 10.929

7 699572 30545 376 4.109 7.85 10.929

8 699572 30565 376 4.129 7.85 10.984

9 699572 30565 376 4.129 7.85 10.984

10 699572 30565 376 4.130 7.85 10.984

As can be seen from the performance tables, complexity 0 of the OPUS audio codec provides a good 
compression of the raw wave file, while using 25% of the CPU bandwidth for the codec to run a Cortex M4 
core.

There is scope to reduce the computational effort, if the application developer can create a lightweight version of 
the codec, which is more suitable for low memory and mid performance microcontrollers from TI.

6 Conclusion
In conclusion, the OPUS Audio Codec can be utilized efficiently on the TM4C129x microcontroller to enable low 
to mid performance applications that require audio to be captured, stored and played back. This is extremely 
useful in applications such as VoIP-like phones, information kiosks and HMI devices in industrial markets where 
low-cost exchange or storage of voice data have to be enabled.

7 References
The following related documents and software are available on the TM4C web page:

• Opus Interactive Audio Codec
• Tiva™ DK-TM4C129X Getting Started Guide (SPMU361)
• Tiva™ TM4C129XNCZAD Microcontroller Data Sheet (SPMS444)
• TivaWare Software
• Ogg Encapsulation Format RFC3533
• Ogg Encapsulation for the Opus Audio Codec RFC7845

Conclusion www.ti.com

16 Implementing OPUS Voice Code for TM4C129x Device SPMA076 – JUNE 2016
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/c2000_performance/control_automation/tm4c12x/overview.page
https://opus-codec.org/
https://www.ti.com/lit/pdf/SPMU361
https://www.ti.com/lit/pdf/SPMS444
http://www.ti.com/tool/sw-tm4c
https://tools.ietf.org/html/rfc3533
https://tools.ietf.org/html/rfc7845.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPMA076
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPMA076&partnum=


IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with 
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 System Details
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Audio Format
	2.3.1 Header Segment
	2.3.2 OPX Mid Segment
	2.3.3 OPX End Segment


	3 Example Code Description
	3.1 Importing the Examples
	3.2 Compiling opuslib
	3.3 Compiling the Application Examples
	3.3.1 Compiling Opus Encode and Decode Example
	3.3.2 Compiling Playback Example for OPX
	3.3.3 Compiling Playback Example for OggS-Opus


	4 Executing OPUS Example Project
	4.1 OPUS Encode and Decode
	4.2 OPUS Audio Playback for OPX
	4.3 OPUS Audio Playback for OggS-Opus

	5 Performance Data on OPUS Encoder
	6 Conclusion
	7 References

