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ABSTRACT

This application note describes design considerations to achieve Inverting Buck-Boost (IBB) topology using 
standard buck converter for display applications especially OLED panel. OLED panel normally requires positive 
and negative voltage power rails which is called ELVDD and ELVSS to light OLED. To make the design 
simple, it is common to implement IBB topology using standard buck converter to source negative voltage 
also considering PCB size, BOM cost. This application note uses the TI's reference design PMP23333 using 
LM61495. LM61495 can operate under a wide input voltage range for 3V to 36V and 10A load capability which is 
good enough to design IBB converter for OLED panel. This design is not only limited to OLED panel applications 
but also telecom application or other applications requiring negative output power.
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Trademarks
All trademarks are the property of their respective owners.
1 OLED Driving Scheme
OLED (Organic Lighting-Emitting Diode) is made by organic materials that emit light when current is applied. 
Each pixel can emit light, so OLED does not have a problem of light from backlight leaking through the display. 
The basic structure of OLED pixel is shown in Figure 1-1. Scan line is used for pixel selection to turn on T1 
to allow data to be written to T2. Vg from Data line can control the gray scale. Data storage capacitor keeps 
Vg constant during frame time. In general, driving OLED requires bipolar voltage rails like ELVDD(Positive), 
ELVSS(Negative). Once T2 is turned on, current can be driven from ELVDD(Positive) to ELVSS(Negative). The 
luminous brightness is adjusted by changing the voltage across OLED.

Scan Line

(Pixel Select)

Data Line

Data Storage Capacitor

ELVDD(Vpos)

ELVSS(Vneg)

T1(Write switch)

T2(Power switch)

Vg Level

(Controls gray scale)

Current Driving

OLED

Figure 1-1. Basic Structure of OLED Pixel

Simply the ground can be used for ELVSS rather than negative output voltage. But recently, the panel makers 
use negative output voltage for ELVSS to minimize flickering issue. Most applications using OLED panel such 
as monitors support VRR (Variable Refresh Rate) feature to synchronize the display refresh rate with the 
video input frame rate. VRR can eliminate the stuttering or tearing of the image and enable smooth display of 
the source. However, as the refresh rate is changed within VRR range such as 30Hz – 140Hz, the charging 
speed of data line can be impacted. This changes the charging level of the data storage capacitor, which can 
cause the current of OLED to be changed accordingly. VRR causes the luminance to vary depending on the 
frequency (refresh rate) even though the same luminance is the target. This phenomenon has been considered 
as the flickering issue by users. To prevent and minimize this flickering issue, ELVDD voltage level or internal 
compensation circuit of OLED can be tuned. But it is sometimes limited and complex. So this becomes popular 
to simply use negative output voltage for ELVSS to minimize the flickering issue. The voltage level is decided 
by the characteristics of OLED and internal compensation circuit. Therefore, the requirement of panel makers is 
very important.

The power supply for ELVDD and ELVSS need to have sufficient current capability to drive OLED pixels. Higher 
current capability is required if OLED panel size is bigger which can contain more pixels. This means negative 
output power also need to cover high current capability as much positive output power can do. Therefore 
inverting buck-boost for negative voltage become popular than charge pump design which has limited current 
capability. Also IBB design can help designer achieve lower BOM cost and small PCB size design.
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2 Inverting Buck-Boost Concept
For the standard buck converter, the inductor is connected to VOUT and the switch pin (SW). To change a 
standard buck converter to an inverting buck-boost, reassign the buck converter VOUT to system ground, and the 
old buck system ground to - VOUT. The input capacitor needs to be reconnected to the new system ground, and 
a new bypass capacitor, CIO, is needed between VIN and -VIN.

The positive input and the feedback resistors remains the same as in the buck converter. To adjust the output of 
the inverting buck-boost, calculate the feedback resistor values as if the feedback resistor was a buck converter. 
The schematics in Figure 2-1 show the changes that have to be made when configuring the standard buck 
converter as an inverting buck-boost converter. This inverting topology allows the output voltage to be inverted 
and always lower than the ground.
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Figure 2-1. Converting From Buck to Inverting Buck-Boost Topology

The circuit operation is different in the inverting buck-boost topology than in the buck topology. Figure 2-2 shows 
that the output voltage terminals are reversed, though the components are wired the same as a buck converter. 
As Figure 2-3 shows, during the ON-time of the control MOSFET, the inductor is charged with current while the 
output capacitor supplies the load current. The inductor does not provide current to the load during this time.

During the OFF-time of the control MOSFET and the ON-time of the synchronous MOSFET shown in Figure 2-4, 
the inductor provides current to the load and the output capacitor. These changes affect many parameters, which 
the following subsections describe in further detail.
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Figure 2-2. Inverting Buck-Boost Configuration 
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Figure 2-3. ON-Time of IBB Configuration
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Figure 2-4. OFF-Time of IBB Configuration
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3 PMP23333 Introduction
This application note uses TI’s reference design PMP23333. PMP23333 design used LM61495 synchronous 
buck regulator, with internal top and bottom FETs, which is configured as a synchronous inverting buck-boost 
converter. The LM61495 is regulator that provide either fixed or adjustable output voltage that can be set from 
1V to 95% of expected input voltage. LM61495 can operate under a wide input voltage range from 3V to 36V 
and have transient tolerance up to 42V which can give proper design flexibility to designers.

Figure 3-1. PMP23333 (Top) Board Image Figure 3-2. PMP23333 (Bottom) Board Image

Table 3-1. Voltage and Current Requirements of PMP23333
Parameter Specifications

VIN 12 VDC ±10%

VOUT –8 VDC

IOUT 2.7A continuous (4A peak)

FSW 400kHz nominal

This design generates an output of –8V, capable of delivering 2.7A continuous (4A peak) of current to the load, 
from a +12V, ±10% input. The design covers up to 32W power rating. So PMP23333 can be a great start point 
of design to cover up to 49 inch OLED panel for monitor, small TV applications. As described in Section 1, -VOUT 
can be decided by OLED characteristics. -VOUT value can be set by configuration of feedback resistors as shown 
in Figure 3-3, PMP23333 schematic. If designer requires higher power rating for bigger OLED panel, controller 
design needs to be considered due to current, thermal limitations, and so on.
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3.1 PMP23333 Schematic
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4 Design Considerations

4.1 VIN, VOUT Range
The input voltage that can be applied to an integrated circuit (IC) operating in the inverting buck-boost topology 
is less than the input voltage for the same IC operating in the buck topology. The reason for this difference is 
because the ground pin of the IC is connected to the (negative) output voltage. Therefore, the input voltage 
across the device is VIN to VOUT, not VIN to ground. Thus, the input voltage range which needs to be considered 
for this design is 13.2V – ( – 8V) = 21.2V.

LM61495 is good enough to cover 21.2V input voltage range since LM61495 can cover up to 36V. The output 
voltage range is the same as when configured as a standard buck converter, but negative. The output voltage 
for the inverting buck-boost topology must be set between 1V and 95% of expected input voltage following 
LM61495 specification. At this time, expected input voltage for LM61495 can be VIN – ( – VOUT) for IBB 
implementation

The output voltage is set in the same way as the buck configuration, with two resistors connected to the FB pin. 
This design sets the output voltage at –8V, which gives an input voltage range of 21.2V. LM61495 uses a 1V 
reference for control to derive Equation 1. This equation can be used to determine RFBB for a desired output 
voltage and a given RFBT. In this design, RFBT = 100kohm. Therefore RFBB= 14.3k to set –VOUT = -8V.

 RFBB  =  RFBT  VOUT  − 1 (1)

RFBT

RFBB

FB

AGND

VOUT

Figure 4-1. Setting Output Voltage of Adjustable Versions
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4.2 Inductor Selection and Maximum Output Current
The average inductor current is affected in this topology. In the buck configuration, the average inductor current 
is equal to the average output current because the inductor always supplies current to the load during both the 
ON- and OFF-times of the control MOSFET. However, in the inverting buck-boost configuration, only the output 
capacitor supplies the load with current, while the load is completely disconnected from the inductor during the 
ON-time of the control MOSFET. During the OFF-time, the inductor connects to both the output capacitor and the 
load (see Figure 2-2 to Figure 2-4). Because the OFF-time is 1 – D of the switching period, the average inductor 
current in Equation 2 is calculated as:

IL Avg = IOUT 1 − D (2)

The duty cycle for the typical buck converter is simply VOUT / (VIN × η), but the calculation of the duty cycle in 
Equation 3 for an inverting buck-boost converter becomes:

D = VOUT  VOUT   +   VIN × η (3)

Equation 4 provides the peak-to-peak inductor ripple current:

∆ IL = VIN × D  fs × L (4)

where,

• ΔIL (A): Peak-to-peak inductor ripple current
• D: Duty cycle
• fS (Hz): Switching frequency
• L (H): Inductor value
• VIN (V): Input voltage with respect to ground, not with respect to the device ground or VOUT

In the inverting buck-boost topology, the maximum output current is reduced as compared to the buck topology. 
This reduction is a result of the peak inductor current being higher.

The inductor for the IBB is selected based on the desired ripple current, much like any other DC/DC converter. 
Typically a value of between 20% and 40% of the load current is used for ΔIL. Equation 5 can be derived by 
Equation 4 to determine the value of L along with the maximum inductor current. This information is used to 
select a standard inductor that is designed for the application.

L = VIN fs × ∆ IL × VOUT  VOUT   +   VIN × η (5)

4.7μH inductor is selected in PMP23333 design. For an output voltage of – 8V and input voltage of + 12V ± 
10%, the following calculations produce the maximum allowable output current that can make sure is based on 
the LM61495 minimum valley current limit value of 9.8A which is described in the data sheet. Due to increased 
duty cycles when operating at high load current, the duty cycle used for the following maximum output current 
calculation in Equation 6 be increased by 5% for these conditions, which provides a more accurate maximum 
output current calculation.

D = VOUT  VOUT   +   VIN × η × 1.05  = 88  +   10.8 × 0.9 × 1.05  =  0.47 (6)

∆ IL = VIN × D  fs × L   =   10.8 × 0.47 400kHz × 4.7μH   =  2.7A (7)

IL Avg = IOUT 1 − D   =    41 − 0.47   =  7.547A (8)
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IL Peak = IL Avg + ∆ IL 2   = 8.897A (9)

IL Valley = IL Avg −  ∆ IL 2   =  6.197A (10)

Figure 4-2 and Figure 4-3 shows the switching voltage and inductor current waveforms under - 2.7A, - 4A load 
conditions and shows that the calculation almost matches with real values.

Figure 4-2. SW and IL Waveforms Under IOUT = - 
2.7A

Figure 4-3. SW and IL Waveforms Under IOUT = - 4A

To calculate allowable maximum current, IL(Valley) needs to be less than 9.8A as shown in Equation 11. Therefore, 
IOUT_MAX needs to be less than 5.9A as calculated in Equation 12. Even though, IOUT_MAX can be increased to 
5.9A, Texas Instruments does not recommend to use higher load than 4A in this design since the higher load can 
cause IC thermal rising significantly.

IL Avg −  ∆ IL 2   = IOUT_MAX 1 − D   −  ∆ IL 2   =   IOUT_MAX 0.53   −  1.35A  < 9.8A  (11)IOUT_MAX  < 5.9A  (12)
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4.3 Capacitor Selection
Figure 4-4 shows how capacitors are placed for both input and output side of IBB converter. The input capacitor, 
CIN is required to provide a low-impedance input voltage source to the converter. A low equivalent series 
resistance (ESR) X5R or X7R ceramic capacitor is best for input voltage filtering and minimizing interference 
with other circuits. As shown in Figure 3-3, PMP23333 uses 3 x 10µF ceramic capacitors (C2, C3, C4) from VIN 
to ground (system ground, not –VOUT). Note that C1 is only used for validation. The CIN capacitor value can be 
increased without any limit for better input voltage filtering.
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Figure 4-4. Inverting Buck-Boost with Additional Capacitors CIO, CIO_HF 

There is importance to place new bypass capacitors CIO, CIO_HF for IBB topology to provide a low impedance 
source for the internal gate drivers. CIO, CIO_HF can be connected from VIN to -VOUT. Therefore, the capacitors 
must be properly sized for the voltage difference between VIN and -VOUT. The values for the bypass capacitance, 
CIO, CIO_HF can be chosen using input capacitance recommendations from the buck converter data sheet. These 
bypass capacitors provide an AC path from VIN to -VOUT. When VIN is applied to the circuit, this dV/dt across 
the capacitor from VIN to -VOUT creates a current that must return to ground (the return of the input supply) to 
complete the loop.

PMP23333 uses 2 x 2.2uF, 2 x 220nF (C12 approximately C15) as input bypass capacitors. As shown in 
Figure 4-5 to Figure 4-10, installing bypass capacitors can reduce the input, output voltage ripple and improve 
the transient response. Without the bypass capacitors, the converter cannot filter the switching noise which is 
around 400kHz in PMP2333 design. It also causes worse transient performance which can impact to the system. 
Therefore, installing proper CIO, CIO_HF can reduce the size of CIN, COUT with optimization.

Figure 4-5. VIN Ripple Waveform With C12 - C15 Figure 4-6. VIN Ripple Waveform Without C12 - C15
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Figure 4-7. VOUT Ripple Waveform With C12 - C15 Figure 4-8. VOUT Ripple Waveform Without C12 - 
C15

Figure 4-9. VOUT Transient Waveform (0-2.7A) With 
C12 - C15

Figure 4-10. VOUT Transient Waveform (0-2.7A) 
Without C12 - C15

In IBB converter, the output current is discontinuous. The output capacitors supply energy to the load during 
the on time when energy stored in the inductor is increasing. During the off time, the inductor is delivering 
energy to both load and the output capacitors. The output capacitance can also follow buck converter data sheet 
recommendation. PMP23333 uses 5 x 22uF. The output capacitance can be increased or reduced by the output 
ripple and transient requirements.
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4.4 Efficiency and Thermal Considerations
As described in previous sections so far, the power loss of IBB converter can be greater than the standard buck 
converter due to larger voltage and current stresses. This means that the efficiency of the IBB can be less than 
that of a buck under similar conditions. Estimating the efficiency before the IBB is designed and tested is not 
easy. Therefore, the best plan is to take a conservative approach to calculating the maximum operating currents 
when choosing a buck converter.

The increased power dissipation compared to the standard buck converter also has consequences for increasing 
die temperature. Every regulator has a maximum rated die temperature that must not be exceeded. Since the 
IBB has more dissipation than the equivalent buck, the extra heat needs to be removed or the die temperature 
can get too high. This means that the total θJA of the application can have to be lowered.

The maximum allowed IC junction temperature is 150°C as stated in the LM61495 data sheet. To calculate the 
IC temperature for different conditions, multiply the power loss of the LM61495 device by the θJA of PMP23333 
PCB, and add this value to the ambient temperature. Since PMP23333 does not specify the θJA of PCB, we 
can estimate the θJA by checking actual efficiency and thermal results. Figure 4-11 and Figure 4-12 show the 
thermal results under - 2.7A, - 4A conditions when VIN = 12V, VOUT = -8V. Even though higher load can be used 
like described in Section 4.2 Texas Instruments does not recommend to increase the load more than – 4A in 
PMP23333 design since IC temperature can get to be too high.

Figure 4-11. Thermal Result When IOUT = - 2.7A Figure 4-12. Thermal Result When IOUT = - 4A
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4.5 Optional Enable (EN) Level Shifter
Since the ground of the buck converter IC is now referenced to the negative output voltage, a level shifter is 
required if a control signal is to be used on the enable pin. An example circuit is shown in Figure 4-13 that can 
be used to level shift an incoming enable signal. While the circuit requires two transistors, the circuit has no 
hysteresis and requires no current from the control signal. If the enable pin is not rated for the full input voltage 
range, then a Zener diode must be used to clamp the enable pin below the maximum voltage. The enable 
pin needs to be configured properly even without a control signal, and the buck converter data sheet can be 
referenced for the proper connection of the EN pin.

When the enable signal is pulled low, then the NMOS switch is turned off, pulling the gate of the PMOS to VIN. 
The PMOS then turns off, pulling the enable pin below the high-level threshold. When the enable signal is pulled 
high, the NMOS switch is turned on, pulling the gate of the PMOS low. The PMOS then turns on, pulling the 
enable pin above the high level threshold from VIN.

VIN

EN

GND

VIN

-VOUT

100 kΩ

100 kΩ

100 kΩ

EN

Figure 4-13. EN Pin Level Shifter
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5 Summary
Due to the trend of using negative output voltage for ELVSS power rail in OLED panel, Inverting Buck-
Boost (IBB) topology gets more common for the applications such as monitor, TV using OLED panel. This 
application note addresses the key design considerations to achieve IBB topology using standard buck 
converter. TI reference design PMP23333, Synchronous Inverting Buck-Boost Converter Reference Design for 
Communications Equipment using L61495 is utilized. LM61495 is a good option for IBB design since LM61495 
can operate under a wide input voltage range from 3V to 36V and have transient tolerance up to 42V which 
can give proper design flexibility to designers. Designers can refer to this application note as a start point to 
design the IBB converter. This application note is not only limited to OLED panel applications but also telecom 
application or other applications requiring negative output power.

6 References
• Texas Instruments, Working With Inverting Buck-Boost Converters, application note.
• Texas Instruments, Inverting Buck-Boost Application for the LM63615-Q1, application note.
• Texas Instruments, LM62460, LM61480, and LM61495 Pin-Compatible 6-A/8-A/10-A Buck Converter 

Optimized for Power Density and Low EMI, data sheet.
• Texas Instruments, Synchronous Inverting Buck-Boost Converter Reference Design for Communications 

Equipment, design guide.
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