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ABSTRACT
There can be quite a few applications that require a conversion from a negative input voltage to a negative
output voltage and there are a few ways to go about doing it. The telecom industry is one such example
where the rails are usually negative. This design space along with being limited is not well explored. In this
application note we will go over the use of an integrated boost regulator in the inverted SEPIC topology to
convert a negative input voltage to a negative output voltage.
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1 Introduction
The LM2586 is part of the LM258x family of SIMPLE SWITCHER® boost regulators from Texas
Instruments. The internal NPN is capable of handling a voltage of 65V and has a current limit of 4A. The
maximum input voltage that the device can handle is 40V. Thus this device makes a good candidate for
wide VIN solutions. The design shown here is created for a typical input of -5V and output of -12V at 1A
load current, with a common ground between input and output. But it can handle an input voltage range of
-5V to -24V. The following sections will talk about the operation.
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2 Application Details
The basic operation of this circuit is that of an inverted SEPIC topology. The inverted SEPIC is usually
used with devices that have a high side switch (e.g. a buck switcher) because it lets a user design for an
output voltage that can be higher or lower than the input voltage. The switching device in this topology
needs to be able to withstand a voltage of +VIN and –VOUT with respect to ground which limits the use of
most DC/DC integrated buck regulators. But since we are working with negative rails, we can use a device
with a low side switch such as the LM2586 in the inverted SEPIC topology and reference the device
ground to –VIN.

When the NPN is turned on, there are two current paths. One path is from ground, through primary
inductor L1, the internal NPN, -VIN rail and the input capacitor. The second current path is from ground, the
output capacitor, secondary inductor, the coupling capacitor, internal NPN, –VIN rail and the input
capacitor. During the on time the switch node is at a voltage of –VIN with respect to ground and the voltage
at the other end of the coupling capacitor is –VIN-VOUT with respect to ground. Therefore the coupling
capacitor is now charging up to VOUT. When the NPN is turned off, the voltages across the two inductors
are reversed and the current through them starts ramping down. During the off time the diode, D1, is
forward biased. There are two current paths during the off time as well. The first path is from -VOUT,
secondary inductor L2, diode D1, and output capacitor. The second current path is from ground, primary
inductor L1, coupling capacitor, diode D1 and output capacitor. The switch voltage during the off time is
+VOUT with respect to ground and the voltage on the other side of the coupling capacitor is a diode drop
above ground. Therefore the device chosen has to be able to sustain a total voltage of VIN+VOUT across it.

The distinct advantage of this topology is that the output sees constant current like that in the buck
topology. This makes the output ripple much cleaner and smaller. Figure 1 shows the steady state
waveform with the secondary inductor current, switch voltage and the output voltage ripple. While Figure 2
shows the design schematic. Reference 1 talks about the actual design equations and component
selection.

Figure 1. -5VIN -12VOUT 300mA IOUT
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Figure 2. Design Schematic
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In this design, the ground of the IC is referenced to the negative input voltage. A current mirror is used to
set the feedback current and consequently the regulated output voltage. Use of an ordinary two transistor
current mirror would cause the output to have a dependency on the VBE of the transistor. In order to
remove that dependency a third transistor, Q3, and resistor RFBE2, are connected as shown in the design
schematic. From the schematic we can see that the voltage at the upper feedback resistor will be two
diode drops below ground, i.e. –2VBE. The lower feedback resistor is chosen such that there is 1mA of
current flowing through it. Therefore we get,

(1)

The reference voltage VREF for the LM2586 is 1.2V. Therefore RFBB is set to be 1.2kΩ. An additional
resistor, RFBE2 is connected between ground and the common base of the two transistors. This resistor
helps pull more current from ground to FB and that current gets added to the current flowing through the
upper feedback resistor. This current can be realized as

(2)

Without this resistor, RFBE2, the current flowing through the upper feedback resistor would be

(3)

With the addition of this resistor, this current is now re-written as

(4)

From Equation 4 we can observe that the value of RFBE2 will affect the output voltage. If it is set to be
exactly half of the upper feedback resistor, RFBT, then we could get an output voltage that would not
depend on the transistor’s VBE. Therefore when RFBE2 is set to RFBT/2, we get

(5)

This can be written as

(6)

We set the feedback current to be 1mA. Therefore setting IRFBT to 1mA, we can find the required value for
RFBT.

(7)

The two PNPs forming the current mirror should have very close matching so as to get a well-matched
current and consequently lesser variation in VOUT. The best way to ensure that is to find a device that has
two PNPs packaged together. This way the two VBEs will change together with temperature. Another note
to keep in mind is that while laying out the board, the transistors should be kept away from the high
current paths.
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3 Test Results
The following scope plots and efficiency data were taken on the custom PCB. Figure 3 shows the line
regulation at IOUT of 400mA. Because of the modified current mirror, there is very little variation on the
output with input voltage.

Figure 3. Line Regulation, IOUT = 400mA

Figure 4 shows the efficiency of the design with respect to the load current and different VINs.

Figure 4. Efficiency Vs. IOUT, VOUT = -12V
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Figure 5 shows the load regulation of the design with the input voltage set to -12V.

Figure 5. Load Regulation, VIN = -12V

Because of a relatively high switch current limit of 4A, the LM2586 can allow high output currents. Figure 6
shows the max load that the device can drive vs. the input voltage it is operating at.

Figure 6. Maximum Output Current Vs. Input Voltage
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As mentioned before, one advantage of the inverted SEPIC is that the output sees constant current. This
means that the RHP zero is eliminated in this topology. This makes the design a little easier to
compensate and the resulting load transient response would be faster. Figure 7 shows the result of a
200mA to 1A load transient at the output.

Figure 7. Load Transient VIN = -12V, VOUT = -12V, IOUT = 200mA to 1A

Figure 8 shows the startup behavior of the design. In certain systems inrush currents shown aren't
tolerated. In order to reduce the inrush currents a longer softstart is desired. To add more softstart time an
external circuit can be added. Please refer to application note titled Soft-start Using Constant Current
Approach to learn more about this.

Figure 8. Startup VIN = -12V, VOUT = -12V, IOUT = 500mA
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Table 1. Design BOM

DESIGNATOR DESCRIPTION PART NUMBER
CC CAP, CERM, 0.22 µF, 16 V, +/- 5%, X7R, 0805 0805YC224JAT2A
CC2 CAP, CERM, 1000 pF, 100 V, +/- 5%, C0G/NP0, 0805 08051A102JAT2A
CIN1 CAP, AL, 56 µF, 50 V, +/- 20%, 0.34 ohm, SMD UUD1H560MNL1GS
CIN2 CAP, CERM, 10 µF, 100 V, +/- 20%, X7R, 6x5x5mm CKG57NX7R2A106M500JH

COUT1, COUT2 CAP, AL, 220 µF, 35 V, +/- 20%, 0.15 ohm, SMD EEE-FC1V221P
CS2 CAP, CERM, 4.7 µF, 100 V, +/- 10%, X7S, 1210 C3225X7S2A475K200AE

COUT3 CAP, CERM, 10 µF, 50 V, +/- 10%, X5R, 1206_190 CGA5L3X5R1H106K160AB
D1 Diode, Schottky, 100 V, 2 A, PowerDI123 DFLS2100-7
D2 Diode, Schottky, 40 V, 1 A, SOD-123 1N5819HW-7-F

Inductor, Shielded Drum Core, Ferrite, 47 µH, 2.7 A, 0.076 ohm,L1 , L2 744770147SMD
Q1 Transistor, Dual PNP, 60 V, 0.6 A, SOT-363 MMDT2907A-7-F
Q3 Transistor, PNP, 150 V, 0.5 A, SOT-23 MMBT5401LT1G

RFBE2 RES, 6.04 k, 1%, 0.125 W, 0805 CRCW08056K04FKEA
RC RES, 226, 1%, 0.125 W, 0805 CRCW0805226RFKEA

RFBB RES, 1.21 k, 1%, 0.125 W, 0805 CRCW08051K21FKEA
RFBT RES, 12.1 k, 1%, 0.125 W, 0805 CRCW080512K1FKEA
RSET RES, 22.1 k, 1%, 0.125 W, 0805 CRCW080522K1FKEA

4 Conclusion
Thus we see that just by adding a few external components, a SIMPLE SWITCHER® boost regulator like
the LM2586 could be used in an inverted SEPIC topology to obtain a negative output from a negative
input. The showcased design has good line regulation and load transient response.

5 References
1. Designing DC/DC converters based on ZETA topology
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