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A higher-power boost converter often requires special 
consideration to minimize power losses and tempera-
ture rise in the FETs, diode, and inductor. Regarding 
FETs, many designers opt to place FETs in parallel to 
reduce conduction losses. However, placing FETs in 
parallel can increase transitional losses. Th is article 
discusses a number of approaches that can be considered 
to reduce total losses in boost FETs. Possible options 
include selecting lower gate-charge FETs, selecting 
alternative controllers with higher gate-drive current, or 
using a gate driver such as the LM5112. An alternative 
approach using National Semiconductor’s PowerWise® 
LM25037 dual-output gate-drive controller and its 
benefi ts are considered as compared to using a single 
gate-drive controller such as the LM5020. Further, this 
article will examine ways to approximate total FET 
losses and then make a selection from the potential 
approaches that best suits the application requirement.

General Overview of a Boost Converter
Figure 1 shows: a boost converter with its basic 
components, (a); the operation of the boost converter 
during the on period D, (b); and the operation during 
the off  period (1-D), (c).

All three waveforms in Figure 2 illustrate behavior 
over one complete switching cycle. In (a), the inductor 
current can be seen; in (b), the switch current is 
depicted; and in (c), the voltage across the FET is 
illustrated. 

Th e boost converter supplies a voltage that is always 
greater than its source voltage. Th e volt-second balance 
of the inductor L, for the D period, is added to the input 
voltage during the (1-D) period and is rectifi ed to the 
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Figure 2. Basic Behavioral Waveforms of the Boost Converter
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Figure 1. The Boost Converter during 
the D and (1-D) Switching Period
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Conduction loss is an I2R term where I is the RMS 
switch current and R is the RDSON of the FET. For 
a boost converter, the conduction losses are shown 
in the following equations.

 
 
 
 
 
Where 

 
 
 
        
 
 
 

Note: Equations 3 and 4 relate to the peak-to-peak 
inductor current which is 50% of the average input 
current.

output through the diode. Th e longer the D period, 
the shorter the 1-D period becomes, thereby 
increasing the voltage during the off  time in order 
to maintain volt-second balance. 

A benefi t to the alternative approach using the 
LM25037 PWM controller is evident in applications 
where the output voltage is many times greater than 
the input. Th e relationship of input and output 
voltage as it relates to the duty ratio is highlighted in 
the following equation:

From Equation 1, it is apparent that a single-
channel gate-drive solution with a limited maximum 
duty ratio can inhibit large step-up ratios. Some 
controllers have a maximum period of 80% which 
will limit the step-up ratio to fi ve times the input. 
However, using the LM25037 controller presents 
no such limitations. Th e reason for this is that the 
alternating outputs of the LM25037 gate driver 
have only a small dead time between the two 
outputs which allows a maximum duty ratio beyond 
80%. And therefore, it is possible to obtain output 
voltages that are 10 times the input.

Losses in the Boost FET
Losses due to the boost FET can be separated into 
three diff erent categories, namely, conduction, 
transition, and switching losses. Conduction and 
transition losses are discussed as they are dissipated 
directly in the FET which impacts thermal 
performance. 

Conduction Losses
Conduction losses in the boost FET are directly 
related to the output power of the boost converter, 
the input voltage, the output voltage (relating to D), 
and the RDSON of the FET.
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Transitional Losses
Transitional losses occur during the time period 
when the FET is turning on or off . During steady- 
state operation before the FET turns on, the output 
voltage is across the drain and the source of the 
FET. As the FET begins to turn on, current begins 
fl owing from the drain to the source after which the 
voltage begins to fall. During this time, the current 
is increasing as the voltage remains across the FET 
and losses are incurred. During turn off , the exact 
reverse occurs. 

As the frequency increases, transitional losses 
increase as more transitions occur per second.

Also, if transition times increase, transitional losses 
increase because the FET endures a longer period of 
time within the described loss period. Transitional 
losses can be approximated by the following 
equations:

Where

FSW is the switching frequency and TTRANS is the 
transitional switching time.

Figure 3 depicts a graph showing the drain current 
and the voltage across the FET and illustrates how 
much charge is required to fully turn on the FET.

Th e charge relates to time and is proportional to the 
gate-drive current being supplied to the gate of the 
FET. Th e more available current, the quicker the 
FET will turn on. Conversely, turning off  the FET 
requires that the gate driver sinks current out of 
the gate, and thus, the more current the gate driver 
can sink, and the faster the FET will turn off . For 
the purpose of simplicity, it is assumed the turn-
on time is equal to the turn-off  time, with the gate 
driver providing the same source and sink-current 
capability.

Many FET datasheets include a graph that relates 
the VGS on the Y axis with the charge on the X axis. 
Figure 3 has additional VDS and ID curves for relating 
the topic being discussed. To estimate the charge 
required to fully switch on a FET, the designer must 
estimate the diff erential charge, shown as the Miller 
charge. Another approximation can be made by 
estimating the Miller charge to be approximately 
60% of the typical gate charge.

Th e gate drive resistance for MOSFET gate drivers 
is typically quoted in its datasheet. For the Bipolar 
Junction Transistor (BJT) output stage, it will not 
be quoted as a resistance. VSAT is quoted for a BJT 

TransLOSSES 2 x VOUT x IINAVE x TTRANS x FSW =EQ8
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Figure 3. Approximating Transitional Switching Time
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output-driver stage. However, the VSAT information 
provided can be used to approximate the drive 
resistance as is seen in the following equation. Th e 
VG DROP is the VSAT of the transistor output stage.

Th e voltage available to drive a FET needs to be 
determined. Th is is simply calculated by subtracting 
the Miller plateau voltage from the total output 
voltage at the gate drive. Th e voltage available to 
drive the FET after its threshold is met is:

Equation 11 calculates the resistance of the gate 
driver. From this calculation, the gate-drive current 
is therefore:

where, RG is the gate resistance of the FET. 

Once the gate-drive current is determined, the 
transitional time can be calculated:

And the evaluation of transition losses (Equation 8) 
is now possible.

By way of example, a boost specifi cation will be 
considered using the two-switch approach and 
compared to the single gate-drive, parallel-switch 
approach.

 VIN = 12V

 VOUT = 24V

 IOUT = 6A

 Fsw = 300 kHz

 L = 3.6 μH

Single Gate-Drive Parallel-FET Approach using 
the LM5020 Controller
Considering the previously-identifi ed specifi cation, 
the designer may opt to use National’s LM5020 
PWM controller. Th e LM5020 controller is a 
common selection for many boost applications 
and serves as a good comparison in a typical design 
scenario.

Placing two FETs in parallel will increase switching 
losses as the gate charge will double and therefore 
switching transition times will double. With high 
RMS switch currents and the doubling of gate 
charge, it is essential to select FETs that have a low 
RDSON and a low gate charge. Th ese types of FETs 
tend to be more costly than FETs that have similar 
RDSON with a higher gate charge. To address this 
transitional loss issue, the FET selected for this 
example is the SiR472DP FET from Vishay.

Figure 4. A Single Gate-Drive Controller Switching 
Two FETs in Parallel 
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A traditional method of using a single gate-drive 
controller switching two FETs in parallel is shown 
in Figure 4.

From the calculation in Equation 7, 

and from Equation 6, the average input current is 
calculated as:

Choosing 50% of the average input current as being 
the peak-to-peak current in the inductor and using 
Equations 4 and 5, this yields the following peak 
and trough values:

Using Equation 3, the switch RMS currents can be 
calculated:

And the conduction losses also can now be calcu-
lated. Th e RDSON for the SiR472DP is 0.012Ω at 
10V of gate-drive voltage. As two of these FETs are 
placed in parallel, the eff ective RDSON, is half of this 
value (0.006Ω). 

In order to evaluate Equation 8, the transitional 
switching time must be estimated. It is assumed the 
VGS(th) of the SiR472DP is 1.85V (typical) from the 

datasheet. By referencing the SiR472DP datasheet 
and using the VGS verses total gate charge (nC) in 
a graph similar to the one shown in Figure 3, the 
Miller charge is shown to be 4 nC for a VDS of 24V. 
Th e eff ective Miller charge doubles (8 nC) due to 
two FETs being placed in parallel.

Th e LM5020 datasheet does not provide gate-
drive resistance data as it has a BJT output stage, 
but the source resistance of the gate drive can still 
be estimated. Th e table on page 5 of the LM5020 
datasheet shows the voltage drop (0.25V) of the 
gate-drive output for a given sourcing current 
(0.05A). By dividing the current fl owing out of the 
gate drive into the voltage drop, the gate resistance 
can be estimated. Using Equation 11 yields:

Th e LM5020 controller has an output gate-drive 
voltage of 7.6V supplied by the VCC regulator; from 
Equation 12:

A gate resistance of 1.8Ω (typical) is specifi ed in 
the SiR472DP datasheet. Using Equation 13, the 
gate-drive current can be calculated:

Using Equation 14, the transitional time yields:

Using Equation 8, the transitional losses can be 
approximated to:

D = 0.5

IINAVE = 12A

IPEAK = 15A

ITROUGH = 9A

ISWITCHRMS = 8.57A
IGATE = 0.68A

TTRANS = 11.76 ns

TransLOSSES = 2W

SWCOND = 0.441W

Dr iveR = 5Ω

VG AVAIL = 4.6V
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RDSON. Switching FETs independently, however, 
no longer yields the 50% reduction in RDSON but 
transitional losses are reduced. 

Th e RDSON of the SiR468DP is 0.0057Ω. Th e 
duty ratio (D) for each FET is now reduced to 25% 
due to the independent switching of the FETs. 
Using Equation 2 and using the revised eff ective D, 
we yield:

Th ere are two FETs dissipating the above conduction 
losses. Th e total conduction losses are twice this 
amount, therefore the total conduction losses in 
both FETs are:

Each gate drive of the LM25037 controller has the 
same gate-current drive capability as the LM5020 
controller. Th e datasheet specifi cations can be 
referred to for more details.

A gate resistance of 1.1Ω (typical) is specifi ed in 
the SiR468DP datasheet. Using Equation 13, the 
gate-drive current can be calculated as:

It is assumed the VGS(th) of the SiR468DP is 2V 
(typical) from the datasheet. From the SiR468DP 
datasheet, using the VGS versus total gate charge 
similar to the graph shown in Figure 3, the Miller 
charge is shown to be 6 nC for a VDS of 22.5V. Using 
a dual gate-drive controller switching independent 
FETs reduces the transitional losses due to the 
halving of the eff ective Miller charge which decreases 
the transitional switching times. Transitional 
switching time is calculated using Equation 14:

By adding the conduction losses with transitional 
losses, the total FET losses are obtained. Total 
FET losses using the single gate-drive parallel-FET 
method is:

Half of the calculated power (1.24W) is dissipated 
in each FET. 

Th ere are alternative approaches in circumstances 
where the single gate-drive approach is causing the 
FET to dissipate too much power. For example, a 
single gate-drive controller with higher drive current 
(if one is available) can be employed or an additional 
IC using the gate driver (LM5112) can be used. 
Another alternative is to consider the dual gate-
driver approach. 

Dual-Output Gate-Driver Approach using the 
LM25037 Controller
A basic schematic of the LM25037 dual gate driver 
switching the gates of two FETs independently is 
shown in Figure 5. 

Switching two independent FETs from a dual gate-
drive controller typically allows the designer to 
select low RDSON FETs with a higher gate charge. 
Higher gate-charge FETs tend to be less expensive 
than their lower gate-charge counterparts.

Th e two FETs selected to be switched independently 
are the SiR468DP. As previously mentioned, driving 
two FETs in parallel produces a 50% reduction in 
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ISWITCHRMS = 6.06A

SWCOND TOTAL = 0.42W

IGATE = 0.75A

TTRANS = 7.96 ns

SWCOND = 0.209W

FETLOSS TOTAL = 2.47W

VIN

C

D

Q2

Q1

R

LM 25037
OUT 1

OUT 2

Figure 5. LM25037 Dual-Output Gate Drivers 
Switching Two FETs Independently
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From Equation 8:

Including the conduction losses, the total losses in 
both FETs are:

Th e total FET losses recovered using two 
independent gate drives are:

Each FET will dissipate 0.34W less.

Figure 6 shows an example schematic of the boost 
example considered.

Summary
Using the LM25037 controller for higher-power 
boost applications is a simple straightforward 
approach that can provide benefi ts over using a 
typical single gate-drive controller. Th e benefi ts can 
include higher step-up ratios and lower FET losses 
due to the reduction in transitional losses. Although 
there are a number of possible approaches to reduce 
total FET losses in higher-power boost converters, 
the equations in this article can be used to calculate 
total losses in the boost FETs for a number of 
diff erent approaches. Considering the 150W boost 
converter example, it has been shown that total 
losses in the FETs are reduced when comparing the 
LM25037 dual-output gate-drive controller with 
the LM5020 single-output gate-drive controller. 

FETLOSS TOTAL = 1.79W

FETLOSS REC = 2.47W - 1.79W = 0.675W

TransLOSSES = 1.37W

Figure 6. Application Example of a 12V IN, 24V OUT at 6A
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