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ABSTRACT

Since the introduction of monolithic IC amplifiers there has been a continual improvement in DC accuracy.
Bias currents have been decreased by 5 orders of magnitude over the past 5 years. Low offset voltage
drift is also necessary in a high accuracy circuits. This is evidenced by the popularity of low drift amplifier
types as well as the requests for selected low-drift op amps. However, until now the chopper stabilized
amplifier offered the lowest drift. A new monolithic IC pre-amplifier designed for use with general purpose
op amps improves DC accuracy to where the drift is lower than many chopper stabilized amplifiers.
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1 Introduction

Chopper amplifiers have long been known to offer the lowest possible DC drift. They are not without
problems, however. Most chopper amps can be used only as inverting amplifiers, limiting their
applications. Chopping can introduce noise and spikes into the signal. Mechanical choppers need
replacement as well as being shock sensitive. Further, chopper amplifiers are designed to operate over a
limited power supply, limited temperature range.

Previous low-drift op amps do not provide optimum performance either. Selected devices may only meet
their specified voltage drift under restrictive conditions. For example, if a 741 device is selected without
offset nulling, the addition of a offset null pot can drastically change the drift. Low drift op amps designed
for offset balancing have another problem. The resistor network used in the null circuit is designed to null
the drift when the offset voltage is nulled. The mechanism to achieve nulled drift depends on the
difference in temperature coefficient between the internal resistors and the external null pot. Since the
internal resistors have a non-linear temperature coefficient and may vary device to device as well as
between manufacturers, it can only approximately null offset drift. The problem gets worse if the external
null pot has a TC other than zero.

A new IC preamplifier is now available which can give drifts as low as 0.2 μV/°C. It is used with
conventional op amps and eliminates the problems associated with older devices. As well as improving
the DC input characteristics of the op amp, loop-gain is increased when an LM121 is used. This further
improves overall accuracy since DC gain error is decreased.

The LM121 preamp is designed to give zero drift when the offset voltage is nulled to zero. The operating
current of the LM121 is programmable by the value of the null network resistors. The drift is independent
of the value of the nulling network so it can be used over a wide range of operating currents while
retaining low drift. The operating current can be chosen to optimize bias current, gain, speed, or noise
while still retaining the low drift. Further, since the drift is independent of the match between external and
internal resistors when the offset is nulled, lower and more predictable drifts can be expected in actual
use. The input is fully differential, overcoming many of the problems with single ended chopper-amps. The
device also has enough common mode rejection ratio to allow the low drift to be fully utilized.

2 Circuit Description

The LM121 is a well matched differential amplifier utilizing super-gain transistors as the input devices. A
schematic is shown in Figure 1. The input signal is applied to the bases of Q3 and Q4 through protection
resistors R1 and R2. Q3 and Q4 have two emitters to allow offset balancing which will be explained later.
The operating current for the differential amplifier is supplied by current sources Q10 and Q11. The
operating current is externally programmed by resistors connected from the emitters of Q10 and Q11 to the
negative supply. Input transistors Q3 and Q4 are cascoded by transistors Q5 and Q6 to keep the collector
base voltage on the input stage equal to zero. This eliminates leakage at high operating temperatures and
keeps the common mode input voltage from appearing across the low breakdown super-gain input
transistors. Additionally, the cascode improves the common mode rejection of the differential amplifier. Q1

and Q2 protect the input against large differential voltages.

The ouput signal is developed across resistive loads R3 and R4. The total collector current of the input is
then applied to the base of a fixed gain PNP, Q7. The collector current of Q7 sets the operating current of
Q8, Q12, and Q13. These transistors are used to set the operating voltage of the cascode, Q5 and Q6. By
operating the cascode biasing transistors at the same operating current as the input stage, it is possible to
keep collector base voltage at zero and, therefore, collector-base leakage remains low over a wide current
range. Further, this minimizes the effects of VBE variations and finite transistor current gain. At high
operating currents the collector base voltage of the input stage is increased by about 100 mV due to the
drop across R15 and R16. This prevents the input transistors from saturating under worst case conditions of
high current and high operating temperature.
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*Pin connections shown on diagram and typical applications are for TO-5 package.

Figure 1. Schematic Diagram of the LM121

The rest of the devices comprise the turn-on and regulator circuitry. Transistors Q14, Q15, and Q16 form a
1.2V regulator for the bases of the input stage current source. By fixing the bases of the current sources at
1.2V, their ouput current changes proportional to absolute temperature. This compensates for the
temperature sensitivity of the input stage transconductance. Temperature compensating the
transconductance makes the preamp more useful in some applications such as an instrumentation
amplifier and minimizes bandwidth variations with temperature. The regulator is started by Q18 and its
operating current is supplied by Q17 and Q9, Figure 2 shows the LM121 chip.
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3 Offset Balancing

The LM121 was designed to operate with an offset balancing network connected to the current source
transistors. The method of balancing the offset also minimizes the drift of the preamp. Unlike earlier
devices such as the LM725, the LM121 depends only upon the highly predictable emitter base voltages of
transistors to achieve low drift. Devices like the LM725 depend on the match between internal resistor
temperature coefficient and the external null pot as well as the input stage transistors characteristics for
drift compensation.

The input stage of the LM121 is actually two differential amplifiers connected in parallel, each having a
fixed offset. The offset is due to different areas for the transistor emitters. The offset for each pair is given
by:

(1)

where, k is Boltzmann's constant, T is absolute temperature,

Figure 2. LM121 Chip

q is the charge on an electron, and A1 and A2 are emitter areas. Because of the offset, each pair has a
fixed drift. When the pairs are connected in parallel, if they match, the offsets and drift cancel. However,
since matching is not perfect, the emitters of the pairs are not connected in parallel, but connected to
independent current sources to allow offset balancing. The offset and drift effect of each pair is
proportional to its operating current, so varying the ratio of the current from current sources will vary both
the offset and drift. When the offset is nulled to zero, the drift is nulled to below 1 μV/°C.

The offset balancing method used in the LM121 has several advantages over conventional balancing
schemes. Firstly, as mentioned earlier, it theoretically zeros the drift and offset simultaneously. Secondly,
since the maximum balancing range is fixed by transistor areas, the effect of null network variations on
offset voltage is minimized. Resistor shifts of one percent only cause a 30 μV shift in offset voltage on the
LM121, while a one percent shift in collector resistors on a standard diff amp causes a 300 μV offset
change. Finally, it allows the value of the null network to set the operating current.

4 AN-79 IC Preamplifier Challenges Choppers on Drift SNOA655B–February 1973–Revised May 2013
Submit Documentation Feedback

Copyright © 1973–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA655B


www.ti.com Achieving Low Drift

4 Achieving Low Drift

A very low drift amplifier poses some uncommon application and testing problems. Many sources of error
can cause the apparent circuit drift to be much higher than would be predicted. In many cases, the low
drift of the op amp is completely swamped by external effects while the amplifier is blamed for the high
drift.

Thermocouple effects caused by temperature gradient across dissimilar metals are perhaps the worst
offenders. Whenever dissimilar metals are joined, a thermocouple results. The voltage generated by the
thermocouple is proportional to the temperature difference between the junction and the measurement
end of the metal. This voltage can range between essentially zero and hundred of microvolts per degree,
depending on the metals used. In any system using integrated circuits a minimum of three metals are
found: copper, solder, and kovar (lead material of the IC).

Nominally, most parts of a circuit are at the same temperature. However, a small temperature gradient can
exist across even a few inches — and this is a big problem with low level signals. Only a few degrees
gradient can cause hundreds of microvolts of error. The two places this shows up, generally are the
package-to-printed circuit board interface and temperature gradients across resistors. Keeping package
leads short and the two input leads close together help greatly.

For example, a very low drift amplifier was constructed and the output monitored over a 1 minute period.
During the 1 minute it appeared to have input referred offset variations of ±5 μV. Shielding the circuit from
air currents reduced this to ±0.5 μV. The 10 μV error was due to thermal gradients across the circuit from
air currents.

Resistor choice as well as physical placement is important for minimizing thermocouple effects. Carbon,
oxide film and some metal film resistors can cause large thermocouple errors. Wirewound resistors of
evenohm or managanin are best since they only generate about 2 μV/°C referenced to copper. Of course,
keeping the resistor ends at the same temperature is important. Generally, shielding a low drift stage
electrically and thermally will yield good results.

Resistors can cause other errors besides gradient generated voltages. If the gain setting resistors do not
track with temperature a gain error will result. For example a gain of 1000 amplifier with a constant 10 mV
input will have a 10V output. If the resistors mistrack by 0.5% over the operating temperature range, the
error at the output is 50 mV. Referred to input, this is a 50 μV error. Most precision resistors use different
material for different ranges of resistor values. It is not unexpected that resistors differing by a factor of
1000, do not track perfectly with temperature. For best results insure that the gain fixing resistors are of
the same material or have tracking temperature coefficients.

Testing low drift amplifiers is also difficult. Standard drift testing techniques such as heating the device in
an oven and having the leads available through a connector, thermoprobe, or the soldering iron method —
do not work. Thermal gradients cause much greater errors than the amplifier drift. Coupling microvolt
signals through connectors is especially bad since the temperature difference across the connector can be
50°C or more. The device under test along with the gain setting resistor should be isothermal. The circuit
in Figure 3 will yield good results if well constructed.

*Op amp shown in Figure 9.

Figure 3. Drift Measurement Circuit
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5 Performance

It is somewhat difficult to specify the performance of the LM121 since it is programmable over a wide
range of operating currents. Changing the operating current varies gain, bias current, and offset current —
three critical parameters in a high accuracy system. However, offset voltage and drift are virtually
independent of the operating current.

Typical performance at an operating current of 20 μA is shown in Table 1. Figure 4 Figure 5 show how the
bias current, offset current, and gain change as a function of programming current. Drift is ensured at 1
μV/°C independent of the operating current.

Table 1. Typical Performance at an Operating Current of 10 μA Per Side

Offset Voltage Nulled

Bias Current 7 nA

Offset Current 0.5 nA

Offset Voltage Drift 0.3 μV/°C

Common Mode Rejection Ratio 125 dB

Supply Voltage Rejection Ratio 125 dB

Common Mode Range ±13V

Gain 20 V/V

Supply Current 0.5 mA

Figure 4. Bias and Offset Current vs Set Current

Figure 5. Gain vs Set Current
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Over a temperature range of −55°C to +125°C the LM121 has less than 1 μV/°C offset voltage drift when
nulled. It is important that the offset voltage is accurately nulled to achieve this low drift. The drift is directly
related to the offset voltage with 3.8 μV/°C drift resulting from every millivolt of offset. For example, if the
offset is nulled to 100 μV, about 0.4 μV/°C will result — or twice the typically expected drift. This drift is
quite predictable and could even be used to cancel the drift elsewhere in a system. Figure 6 shows drift as
a function of offset voltage. For critical applications selected devices can achieve 0.2 μV/°C.

Figure 7 Figure 8 show the bias current, offset current, and gain variation over a −55°C to +125°C
temperature range. These performance characteristics do not tell the whole story. Since the LM121 is
used with an operational amplifier, the op amp characteristics must be considered for overall amplifier
performance.

Figure 6. Drift vs Offset Voltage

Figure 7. Bias and Offset Current vs Temperature

7SNOA655B–February 1973–Revised May 2013 AN-79 IC Preamplifier Challenges Choppers on Drift
Submit Documentation Feedback

Copyright © 1973–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA655B


Op Amp Effects www.ti.com

Figure 8. Gain vs Temperature for the LM121

6 Op Amp Effects

The LM121 is nominally used with a standard type of operational amplifier. The op amp functions as the
second and ensuing stages of the amplifying system. When the LM121 is connected to an op amp, the
two devices may be treated (and used) just as a single op amp. The inputs of the combination are the
inputs of the LM121 and the output is from the op amp. Feedback, as with any op amp, is applied back to
the inputs. Figure 9 shows the general configuration of an amplifier using the LM121.

The offset voltage and drift of the op amp used have an effect on overall performance and must be
considered. (The bias and offset currents of today's op amp are low enough to be ignored.) Although the
exact effects of the op amp stage are difficult and tedious to calculate, a few approximations will show the
sources of drift.

Op amp drift is perhaps the most important source of error. Drift of the op amp is directly reduced by the
gain of the LM121. The drift referred to the input is given by:

(2)

If the op amp has a drift of 10 μV/°C and the LM121 is operated at a gain of AV = 50, there will be a 0.2
μV/°C component of the total drift due to the op amp. It is therefore important that the LM121 be operated
at relatively high gain to minimize the effects of op amp drift. Lower gains for the LM121 will give
proportionately less reduction in op amp drift. Of course, a moderately low drift op amp such as the
LM108A eases the problem.

Op amp offset voltage also has an effect on total drift. For purpose of analysis, assume the LM121 to be
perfect with no offset or drift of its own. Then, any offset seen when the LM121 is connected to an op amp
is due to the op amp alone. The offset is equal to:

(3)

or, the offset is reduced by the gain of the LM121. For example, with a gain of 50 for the LM121, 2 mV of
offset on the op amp appears as 40 μV of offset at the LM121 input. Unlike offset due to a mismatch in the
LM121, this 40 μV of offset does not cause any drift. However, when the system is nulled so the offset at
the input of the LM121 is zero, 40 μV of imbalance has been inserted into the LM121. The imbalance
caused by nulling the offset induced by the op amp causes a drift of about 0.14 μV/°C. With the system
nulled, the drift due to op amp causes a drift of about 0.15 μV/°C. With the system nulled, the drift due to
op amp offset can be expressed as:

(4)

In actual operation, drift due to op amp offsets will usually be better than predicted. This is because offset
voltage and drift are not independent. With the LM121 there is a strong, predictable, correlation between
offset and drift. Also, there is a correlation with op amps, but it is not as strong. The drift of the op amp
tends to cancel the drift induced in the LM121 when the system is nulled.
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In the previous example, the drift due to the op amp offset was 0.15 μV/°C. If the op amp has a drift of 3.6
μV/°C per millivolt of offset (like the LM121), it will have a drift of 7.2 μV/°C. This drift is reduced by the
gain of the LM121 (AV = 50) to 0.14 μV/°C. This 0.14 μV/°C will cancel the 0.14 μV/°C drift due to
balancing the LM121. Since op amps do not always have a strong correlation between offset and drift, the
cancellation of drifts is not total. Once again, high gain for the LM121 and a low offset op amp helps
achieve low drifts.

7 Frequency Compensation

The additional gain of the LM121 preamplifier, when used with an operational amplifier, usually
necessitates additional frequency compensation. This is because the additional gain introduced by the
LM121 must be rolled-off before the phase shift through the LM121 and op amp reaches 180°. The
additional compensation depends on the gain of the LM121 as well as the closed loop gain of the system.
Two frequency compensation techniques are shown here that will operate with any op amp that is unity
gain stable.

When the closed loop gain of the op amp with the LM121 is less than the gain of the LM121 alone, more
compensation is needed. The worst case situation is when there is 100% feedback, such as a voltage
follower or integrator, and the gain of the LM121 is high. When high closed loop gains are used, for
example AV = 1000, and only an additional gain of 100 is inserted by the LM121, the frequency
compensation of the op amp will usually suffice.

*Frequency compensation — see text for values

Figure 9. General Purpose Amplifier Using the LM121
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The basic circuit of the LM121 in Figure 9 shows two compensation capacitors connected to the op amp
(disregarding the 30 pF frequency compensation for the op amp alone). The capacitor from pin 6 to pin 2
around the op amp acts as an integrating capacitor to roll off the gain. Since the output of the LM121 is
differential, a second capacitor is needed to roll off pin 3 of the op amp. These capacitors are CC1 and CC2

in Figure 9.

With capacitors equal, the circuit retains good AC power supply rejection. The approximate value of the
compensation capacitors is given by:

(5)

where, RSET is the current set resistor from each current source and where ACL is closed loop gain. Table 2
shows typical capacitor values.

An alternate compensation scheme was developed for applications requiring more predictable and
smoother roll off. This is useful where the amplifier's gain is changed over a wide range. In this case, CC1

is made large and connected to V+ rather than ground. The output of the LM121 is rendered single ended
by a 0.01 μF bypass capacitor to V+. Overall frequency compensation then is achieved by an integrating
capacitor around the op amp:

(6)

Table 2. Typical Compensation Capacitors for Various Operating Currents and Closed Loop Gains
(Values given apply to LM101A, LM108, and LM741 type amplifiers)

Closed Current Set Resistor

Loop

Gain 120 kΩ 60 kΩ 30 kΩ 12 kΩ 6 kΩ
AV = 1 68 pF 130 pF 270 pF 680 pF 1300 pF

AV = 5 15 pF 27 pF 50 pF 130 pF 270 pF

AV = 10 10 pF 15 pF 27 pF 68 pF 130 pF

AV = 50 1 pF 3 pF 5 pF 15 pF 27 pF

AV = 100 1 pF 3 pF 5 pF 10 pF

AV = 500 1 pF 1 pF 3 pF

AV = 1000

For use with higher frequency op amps such as the LM118 the bandwidth may be increased to about 2
MHz. If closed loop gain is greater than unity “C” may be decreased to:

(7)

8 Applications

No attempt will be made to include precision op amp applications as they are well covered in other
literature. The previous sections detail frequency compensation and drift problems encountered in using
very low drift op amps. The circuit shown in Figure 9 will yield good results in almost any op amp
application. However, it is important to choose the operating current properly. From the curves given it is
relatively easy to see the effects of current changes. High currents increase gain and reduce op amp
effects on drift. Bias and offset current also increase at high current. When the operating source
resistance is relatively high, errors due to high bias and offset current can swamp offset voltage drift
errors. Therefore, with high source impedances it may be advantageous to operate at lower currents.
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Another important consideration is output common mode voltage. This is the voltage between the outputs
of the LM121 and the positive power supply. Firstly, the output common mode voltage must be within the
operating common mode range of the output op amp. At currents above 10 μA there is no problems with
the LM108, LM101, and LM741 type devices. Higher currents are needed for devices with more limited
common mode range, such as the LM118. As the operating current is increased, the positive common
mode limit for the LM121 is decreased. This is because there is more voltage drop across the internal 50k
load resistors. The output common mode voltage and positive common mode limits are about equal and
given by:

(8)

If it is necessary to increase the common mode output voltage (or limit), external resistors can be
connected in parallel with the internal 50 kΩ resistors. This should only be done at high operating currents
(80 μA) since it reduces gain and diverts part of the input stage current from the internal biasing circuitry.
A reasonable value for external resistors is 50 kΩ.

The external resistors should be of high quality and low drift, such as wirewound resistors, since they will
affect drift if they do not track well with temperature. A 20 ppm/°C difference in external resistor
temperature coefficient will introduce an additional 0.3 μV/°C drift.

An unusually simple gain of 1000 instrumentation amplifier can be made using the LM121. The amplifier
has a floating, full differential, high impedance input. Linearity is better than 1%, depending upon input
signal level with maximum error at maximum input. Gain stability, as shown in Figure 10, is about ±2%
over a −55°C to +125°C temperature range. Finally, the amplifier has very low drift and high CMRR.

Figure 10. Instrumentation Amplifier Gain vs Temperature

Figure 11 shows a schematic of the instrumentation amplifier. The LM121 is used as the input stage and
operated open-loop. It converts an input voltage to a differential output current at pins 1 and 8 to drive an
op amp. The op amp acts as a current to voltage converter and has a single-ended output.

Resistors R1 and R2 with null pot R3 set the operating current of the LM121 and provide offset adjustment.
R4 is a fine trim to set the gain at 1000. There is very little interaction between the gain and null pots.
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*Offset adjust
†Gain trim
‡Better than 1% linearity for input signals up to ±10 mV gain stability typical ±2% from −55°C to +125°C CMRR 110
dB.

Figure 11. Gain of 1000 Instrumentation Amplifier

This instrumentation amplifier is limited to a maximum input signal of ±10 mV for good linearity. At high
signal levels the transfer characteristic of the LM121 becomes rapidly non-linear, as with any differential
amplifier. Therefore, it is most useful as a high gain amplifier.

Since feedback is not applied around the LM121, CMRR is not dependent on resistor matching. This
eliminates the need for precisely matched resistor as with conventional instrumentation amplifiers.
Although the linearity and gain stability are not as good as conventional schemes, this amplifier will find
wide application where low drift and high CMRR are necessary.

A precision reference using a standard cell is shown in Figure 12. The low drift and low input current of
the LM121A allow the reference amplifier to buffer the standard cell with high accuracy. Typical long term
drift for the LM121 operating at constant temperature is less than 2 μV per 1000 hours.

To minimize temperature gradient errors, this circuit should be shielded from air currents. Good single-
point wiring should also be used. When power is not applied, it is necessary to disconnect the standard
cell from the input of the LM121 or it will discharge through the internal protection diodes.

9 Conclusions

A new preamplifier for operational amplifiers has been described. It can achieve voltage drifts as low as
many chopper amplifiers without the problems associated with chopping. Operating current is
programmable over a wide range so the input characteristics can be optimized for the particular
application. Further, using a preamp and a conventional op amp allows more flexibility than a single low-
drift op amp.
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Figure 12. 10V Reference
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