
1SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Application Report
SNLA267A–March 2019–Revised June 2019

How to Design a FPD-Link III System Using DS90UB953-
Q1 and DS90UB954-Q1

Cole Macias and Mandeep Singh

ABSTRACT
FPD-Link III devices such as the DS90UB95x-Q1 can support cameras in Advanced Driver Assist
Systems (ADAS) in the automotive industry. There are complications that can occur in system
implementation due to the complexity of the technology, so it is important to ensure proper design. The
purpose of this document is to systematically design a SERDES system using the DS90UB953-Q1 and
DS90UB954-Q1.

Contents
1 Overview .. 3

1.1 System Level Functionality .. 3
2 Basic Design Rules.. 4

2.1 IDX and MODE Pin Verification... 4
2.2 Successful I2C Communication With 953 and 954 ... 10
2.3 I2C Passthrough Verification .. 12
2.4 Basic Diagnostic and Error Registers .. 12

3 Designing the Link Between SER and DES .. 14
3.1 Back Channel Configuration ... 15
3.2 BIST... 16
3.3 AEQ ... 20
3.4 CML Out ... 21

4 Designing Link Between SER and Image Sensor ... 21
4.1 Sensor Initialization Using SER GPIOs .. 21
4.2 CLKOUT .. 23

5 Designing Link Between DES and ISP .. 24
5.1 Frame Sync .. 24
5.2 Port Forwarding ... 29
5.3 Pattern Generation .. 29

6 Hardware Design ... 31
6.1 Basic I2C Connectors .. 31
6.2 AC Capacitor on FPD3 Link ... 32
6.3 Capacitance Used in Loop Filter .. 32
6.4 Critical Signal Routing .. 32
6.5 Time Domain Reflection .. 33
6.6 Return Loss and Insertion Loss .. 33
6.7 Power-over-Coax (PoC) ... 33
6.8 Voltage and Temperature Sensing ... 34

7 Appendix... 34
7.1 Scripts... 34
7.2 Acknowledgments ... 49

List of Figures

1 Simplified Block Diagram of DS90UB953/DS90UB954-Q1 System .. 3
2 Basic Design Rules Flowchart ... 4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com

2 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

3 Clocking System Diagram .. 6
4 Illustration of Synchronous Clocking .. 7
5 Illustration of Non-Synchronous Mode With External Oscillator ... 8
6 Illustration of Non-Synchronous Mode With Always on Clock (AON) .. 8
7 Illustration of Two Ports ... 11
8 Flowchart for SER and DES Link .. 15
9 BIST Script Flowchart ... 17
10 Image Sensor and SER Link Design .. 21
11 Flowchart for Initializing the Image Sensor Using GPIO’s .. 22
12 Clocking System Diagram... 23
13 DES and ISP Link Flowchart ... 24
14 Steps for Controlling SER GPIOs Remotely and Locally ... 24
15 Block Diagram of Controlling SER GPIOs Over BC ... 25
16 Block Diagram of Controlling SER GPIOs Remotely .. 26
17 Block Diagram of Internally Generated Frame Sync .. 27
18 Block Diagram of Externally Generated Frame Sync ... 28
19 Hardware Design Flowchart .. 31
20 Simplified Block Diagram of DS90UB953-Q1/DS90UB954-Q1 System .. 32

List of Tables

1 Serial Control Bus Addresses for IDX on the 953 ... 5
2 Serial Control Bus Addresses for IDX on the 954 ... 5
3 DS90UB953-Q1 Strap Configuration Mode Select.. 6
4 DS90UB954-Q1 Strap Configuration Mode Select.. 6
5 Mode Clock Calculation Table ... 9
6 Mode Clock Settings With Descriptions of fo and f1 .. 9
7 Bit Description of SER_ALIAS_ID Register With Example ... 11
8 Bit Description of FPD3_PORT_SEL Register 0x4C .. 12
9 Communication of I2C Devices Using Various Passthrough Settings .. 12
10 DS90UB954-Q1 Registers Used for Diagnostics and Checking Errors... 13
11 DS90UB953-Q1 Registers Used for Diagnostics and Checking Errors... 14
12 Settings for Bidirectional Configuration (BCC_CONFIG) Register 0x58 on 954................................... 16
13 RESET_CTL Register Description on 953 .. 17
14 DEVICE_STS Register Description on 954... 18
15 GENERAL_STATUS Register Description for Lock on 953 .. 18
16 DS90UB954-Q1 Registers Used in BIST Script ... 19
17 DS90UB953-Q1 Registers Used in BIST Script ... 20
18 Channel Monitor Loop-Through Output Configuration of the 954 ... 21
19 Bit Description of GPIO_INPUT_CTRL Register 0x0E.. 22
20 Bit Description of LOCAL_GPIO_DATA Register 0x0D... 22
21 Example Using GPIO_INPUT_CTRL Register 0x0E for Local SER GPIO Control 25
22 Example Using LOCAL_GPIO_DATA Register 0x0D for Local SER GPIO Control 25
23 Example Using LOCAL_GPIO_DATA Register 0x0D for Local SER GPIO Control 26
24 BC_GPIO_CTL0 Registers From the 954 Data Sheet .. 26
25 Example using BC_GPIO_CTL0 Register 0x6E for Remote SER GPIO Control.................................. 27
26 Registers Used When Configuring GPIOS and Frame Sync on the 953 and 954 28

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Image
Signal

Processor

(ISP)

Full HD
Image Sensor FPD-Link III

(over Coax or STP)

DS90UB953-Q1

Serializer

DS90UB954-Q1
or

DS90UB960-Q1
Deserializer

DOUT+/- RIN+/-

MIPI CSI-2

D3P/N

CLKP/N

D2P/N

D1P/N

D0P/N

 I2C

 HS-GPIO

MIPI CSI-2

D3P/N

CLKP/N

D2P/N

D1P/N

D0P/N

 I2C

 HS-GPIO

www.ti.com Overview

3SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Trademarks
All trademarks are the property of their respective owners.

1 Overview

1.1 System Level Functionality
The DS90UB954-Q1 FPD-Link III deserializer, in conjunction with an ADAS FPD-Link III serializer,
supports the video transport needs with an ultra-high-speed forward channel and an embedded
bidirectional control channel. After the DS90UB954-Q1 receives the data, the device outputs the data from
a configurable MIPI CSI-2 port. The CSI-2 port may be configured as either a single CSI-2 output with four
lanes up to 1.662 Gbps per lane, or as two 2-lane CSI-2 outputs that can send replicated data on both
ports. The engineer can use a second differential clock for the second replicated output when the device is
configured for dual CSI-2 outputs that can support one clock lane and one or two data lanes each. The
DS90UB954-Q1 can support multiple data formats and different resolutions as provided by the sensor.
Conversion between different data formats is not supported. The CSI-2 Tx module accommodates both
image data and non-image data (including synchronization or embedded data packets).

The DS90UB953-Q1 serializes data from high-resolution image sensors or other sensors using the MIPI
CSI-2 interface. The DS90UB953-Q1 serializer is optimized to interface with the DS90UB954-Q1
deserializer (dual hub) or the DS90UB960-Q1 deserializer (quad hub) as well as potential future
deserializers. The interconnect between the serializer and the deserializer can be either a coaxial or
shielded twisted-pair (STP) cable. The DS90UB953-Q1 was designed to support multi-sensor systems
such as surround view, and as such has the ability to synchronize sensors through the DS90UB954-Q1
and DS90UB960-Q1 hub.

Figure 1. Simplified Block Diagram of DS90UB953/DS90UB954-Q1 System

Due to the complexity of this system, there are a variety of issues that can be avoided by proper design.
The purpose of this guide is the help the user systematically design a system using the 953 and 954. The
following chapters show the typical concepts and tests and how to implement them. This guide lists basic
design rules as a checklist that should be followed to ensure proper initialization of the system. The items
described in the suggested checklist are the building blocks of the system. Without them, the system will
not work as expected.

Following the completion of the basic design rules section, this guide provides analysis of the three
important links in the ADAS System using DS90UB953-Q1 and DS90UB954-Q1:
1. The link between the serializer (SER) and deserializer (DES)
2. The link between the serializer and imager sensor
3. The link between the deserializer and Image Signal Processor (ISP)

Important procedures and design considerations are highlighted and explained in the form of script
examples, general steps, and flow charts.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Basic
Design Rules

Confirm hardware
configuration using
Hardware section

Confirm correct MODE pin
configuration

Confirm correct IDX pin
configuration

Locally read device ID of 953
(0x00) and 954

(0x00)

Validate correct SER ID
(0x5B) and SER ALIAS ID

(0x5C) on 954

Confirm Lock status on 954
(0x04) and 953 (0x52)

Confirm correct I2C pass
through settings on 954

(0x58)

Look for CRC errors on 953
(0x52) and 954 (0x4D). If
there are errors consult

SER-and-DES-Link section

Initialize camera over back
channel from 954. If not,
consult SER-and-Image-

Sensor-Link section

Read the CSI output from
ISP using the 954. If not,

consult ISP-DES-Link
section

Basic Design Rules www.ti.com

4 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

At the end of this guide is a set of hardware design topics that are commonly discussed when designing a
SERDES system.

2 Basic Design Rules
This chapter describes a list of key items that are fundamental when powering on the system. These items
define the functionality of the entire system. To get the system up and running quickly, TI recommends to
check these items before moving forward.

Figure 2. Basic Design Rules Flowchart

2.1 IDX and MODE Pin Verification
Each IDX and Mode pin contains a voltage divider to the respective IDX and Mode pins on the 953 and
954. The IDX and Mode pins read the voltage on the pin, and the internal comparators decide which IDX
or Mode is assigned to each device. As a result, the required voltage supply and the ratio of the resistor
divider are used to set the IDX and Mode pins.
1. Ensure commands refer to correct I2C addresses by checking the IDX pin.

a. The IDX pin configures the control interface to one of many possible device addresses used in I2C
communication. Usually for 1.8-V or 3.3-V referenced I2C I/O voltage, a pullup resistor and a
pulldown resistor is used to set the appropriate voltage on the IDX input pin of both devices.

b. The IDX resistor divider must be referred to Pin #25 on the 953 and Pin #35 on the 954. Tables
that hold appropriate resistor values for setting IDX are shown below.

c. For example the 953 can have an open pullup resistor, a 40.2-kΩ pulldown resistor, and an I2C
supply of 1.8 V to achieve a device ID of 0x30. This is shown in Table 1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Basic Design Rules

5SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 1. Serial Control Bus Addresses for IDX on the 953

IDX
VTARGET VOLTAGE RANGE

VIDX
TARGET

VOLTAGE
SUGGESTED STRAP
RESISTORS (1% TOL) I2C 8-BIT

ADDRESS
12C 7-BIT
ADDRESS

I2C I/O
VOLTAGE

RATIO
MIN

RATIO
TYP

RATIO
MAX VVDD = 1.8 V RHIGH (kΩ) RLOW (kΩ)

1 0.000 0.00 0.131 0.000 Open 40.2 0x30 0x18 1.8 V
2 0.178 0.214 0.256 0.385 180 47.5 0x32 0x19 1.8 V
3 0.537 0.564 0.591 1.015 82.5 102 0x30 0x18 3.3 V
4 0.652 0.679 0.706 1.223 68.1 137 0x32 0x19 3.3 V

Table 2. Serial Control Bus Addresses for IDX on the 954

NO.
VIDX VOLTAGE RANGE VIDX TARGET

VOLTAGE
SUGGESTED STRAP
RESISTORS (1% TOL)

PRIMARY ASSIGNED I2C
ADDRESS

VMIN VTYP VMAX
(V); VDD1P8 = 1.8

V RHIGH (KΩ) RLOW (KΩ) 7-BIT 8-BIT

0 0 0 0.131 ×
V(VDD18)

0 OPEN 10.0 0x30 0x30

1 0.179 ×
V(VDD18)

0.213 ×
V(VDD18)

0.247 ×
V(VDD18)

0.374 88.7 23.2 0x32 0x32

2 0.296 ×
V(VDD18)

0.330 ×
V(VDD18)

0.362 ×
V(VDD18)

0.582 75.0 35.7 0x34 0x34

3 0.412 ×
V(VDD18)

0.443 ×
V(VDD18)

0.474 ×
V(VDD18)

0.792 71.5 56.2 0x36 0x36

4 0.525 ×
V(VDD18)

0.559 ×
V(VDD18)

0.592 ×
V(VDD18)

0.995 78.7 97.6 0x38 0x38

5 0.642 ×
V(VDD18)

0.673 ×
V(VDD18)

0.704 ×
V(VDD18)

1.202 39.2 78.7 0x3A 0x3A

6 0.761 ×
V(VDD18)

0.792 ×
V(VDD18)

0.823 ×
V(VDD18)

1.420 25.5 95.3 0x3C 0x3C

7 0.876 ×
V(VDD18)

V(VDD18) V(VDD18) 1.8 10.0 OPEN 0x3D 0x3D

2. Ensure devices are in correct mode by checking the MODE.
a. As shown in Table 3, the DS90UB953-Q1 can operate in one of many different modes that define

the clocking the 953. The default mode is selected by the bias voltage applied to the MODE pin
(21) during power up. To set this voltage, a potential divider between VDD and GND is used to
apply the appropriate bias. TI recommends that this potential divider should be referenced to the
potential on the VDDD pin (25). After power up, the MODE can be read or changed through
register access. On the 953, register 0x03 controls MODE_SEL.

b. As shown in Table 4, the DS90UB954-Q1 can operate in many different modes that define the
expected imager data format. Mode is defined on power up through a voltage divider to the Mode
pin (37). While the 954 can be placed in different modes, the only compatible mode with the 953 is
the CSI-2 Mode. After power up, the mode can be controlled by the first 2 bits of the
PORT_CONFIG register with address of 0x6D.

c. The most common deserializer mode configuration for a 954 and 953 system is to use a CSI-2 port
and a coaxial cable between the devices. As a result, a pullup resistor of 78.7 kΩ, a pulldown
resistor of 97.6 kΩ, and 1.8 V for VDD are used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Image

Signal

Processor

(ISP)

1.8V 1.8 V

MIPI CSI-2

FPD-Link III

DS90UB953

Serializer

DS90UB954

Deserializer

REFCLK

(fo)
CLK_IN

Forward Channel(FC)

Bidirectional Control

Channel (BCC)

CLK_OUT

1920 x 1200

60 fps

Image Sensor

MIPI CSI-2

Synchronous: NA

Non Sync CLK_IN: f1

CLK GEN

Internal

AON Clock

Basic Design Rules www.ti.com

6 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 3. DS90UB953-Q1 Strap Configuration Mode Select

MODE
NO.

VTARGET VOLTAGE RANGE VTARGET STRAP
VOLTAGE

SUGGESTED STRAP RESISTORS
(1% TOL)

DESCRIPTION
RATIO MIN RATIO TYP RATIO MAX (V); V(VDD) = 1.8

V RHIGH (kΩ) RLOW (kΩ)

1 0.000 0.000 0.133 0.000 OPEN 10 CSI-2
Synchronous
mode – FPD-
Link III Clock
reference
derived from
deserializer 2

2 0.288 × V(VDD) 0.325 × V(VDD) 0.367 × V(VDD) 0.586 75 35.7 CSI-2 Non-
synchronous
CLK_IN – FPD-
Link III Clock
reference
derived from
external clock
reference input
CLK_IN pin

3 0.412 × V(VDD) 0.443 × V(VDD) 0.474 × V(VDD) 0.792 71.5 56.2 CSI-2 Non-
synchronous
AON – FPD-
Link III Clock
reference
derived from
internal AON
clock.

Table 4. DS90UB954-Q1 Strap Configuration Mode Select

MODE
NO.

VTARGET VOLTAGE RANGE VTARGET STRAP
VOLTAGE

SUGGESTED STRAP RESISTORS
(1% TOL)

RX MODE
VMIN VTYPTARGET VMAX

(V); VDD1P8 =
1.8 V RHIGH (kΩ) RLOW (kΩ)

0 0 0 0.131 × VDD18 0 OPEN 10 CSI

1 0.525 × VDD18 0.559 × VDD18 0.592 × VDD18 0.995 78.7 97.6 CSI

2.1.1 REF Clock, CLK IN, AON and Frequency Selection

Figure 3. Clocking System Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Image

Signal

Processor

(ISP)

1.8V 1.8 V

MIPI CSI-2

FPD-Link III

DS90UB953

Serializer

DS90UB954

Deserializer

REFCLK
(fo)

CLK_IN

Forward Channel (FC)

CLK_OUT

1920 x 1200

60 fps
Image Sensor

MIPI CSI-2

Synchronous: NA

Non Sync CLK_IN: f1

Bidirectional Control

Channel (BCC)

CLK GEN

Internal
AON Clock

www.ti.com Basic Design Rules

7SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

The DS90UB953-Q1 supports two different clocking schemes controlled by the MODE pin and
MODE_SEL register, 0x03. They are the synchronous and non-synchronous CLK_IN.

2.1.1.1 Synchronous Mode

Figure 4. Illustration of Synchronous Clocking

The first mode, synchronous, is an internally generated clock. This clock reference is extracted from back
channel on the bidirectional communications link, and the internal PLLs take the extracted signal to
generate the required clocks. This allows multiple cameras within a system to operate in the same clock
domain and allows more space on the PCB. As shown in Figure 4, REFCLK (f0) is input signal on the
deserializer that is required for precise frequency operation. Refer to the REFCLK section in the 954 data
sheet for more information. The RECLK specifications for the 953 states that REFCLK must range from 24
to 26 MHz, and this signal sends two bits across the back channel: high and low. As a result, multiply the
REFCLK frequency by two when calculating the BC and FC rate. This is summarized in Table 5.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Image

Signal

Processor

(ISP)

1.8V 1.8 V

MIPI CSI-2

FPD-Link III

DS90UB953

Serializer

DS90UB954

Deserializer

REFCLK

(fo)
CLK_IN

Forward Channel (FC)

CLK_OUT

1920 x 1200

60 fps

Image Sensor

MIPI CSI-2

Synchronous: NA

Non Sync CLK_IN: f1

CLK GEN

Internal
AON Clock

Bidirectional Control
Channel (BCC)

Image

Signal

Processor

(ISP)

1.8V 1.8 V

MIPI CSI-2

FPD-Link IIIDS90UB953

Serializer

DS90UB954

Deserializer

REFCLK

(fo)
CLK_IN

Forward Channel (FC)

CLK_OUT

1920 x 1200

60 fps

Image Sensor

MIPI CSI-2

Synchronous: NA

Non Sync CLK_IN: f1

CLK GEN

Internal
AON Clock

Bidirectional Control
Channel (BCC)

Basic Design Rules www.ti.com

8 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

2.1.1.2 Non-Synchronous CLK_IN Mode

Figure 5. Illustration of Non-Synchronous Mode With External Oscillator

The second mode, non-synchronous CLK_IN, uses an external oscillator as a reference and generates
the required clock for the FPD forward channel for that reference. Referring to Figure 5, the external clock
must be fed into the CLK_IN pin (20) on the 953, running at a constant rate (f1) proportional to the
REFCLK (f0), and a BC rate is then programmed to be less than or equal to 10 Mbps. Register 0x05,
GENERAL_CFG, on the 953 holds parameters for the PLL clock control. Bits [6:4] of this register control
the CLKIN divider. The CLKIN Divider can be divided by 1 or 2 by assigning these bits to 0b000 or 0b001,
respectively. This division must be accounted for when calculating the FC rate which is shown in Table 5.

2.1.1.3 Non-Synchronous AON Mode

Figure 6. Illustration of Non-Synchronous Mode With Always on Clock (AON)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

02× 80(f)×(32 / 40)CSI Throughput 160(25M)×(32 / 40)
= = = 800Mbps

Lane 4 4

0CSI Throughput = 2× 80(f)×(32 / 40) = 160(25M)×(32 / 40) = 3.2 Gbps

0FC Rate = 2×80(f) = 160(25M) = 4 Gbps

0BC Rate = 2(f) = 2(25M) = 50 Mbps

www.ti.com Basic Design Rules

9SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

The third mode, non-synchronous internal clocking mode, the serializer uses the internal Always on Clock
(AON) as the reference clock for the forward channel. The OSCCLK_SEL select must be asserted
0x05[3]=1 to enable maximum data rate when using internal clock mode, and the CLK_OUT function is
disabled. A separate reference is provided to the image sensor or ISP. When in CSI-2 mode, the CSI-2
interface may be synchronous to this clock. The CSI-2 rate must be lower than the line rate. For example,
with the internal clock of 24.2 MHz the FPD-Link III forward channel rate is 3.872 Gbps, the CSI-2
throughput must be ≤ 3.1 Gbps (See Table 5).

2.1.1.4 CSI Throughput
When calculating CSI throughput, it is important to account for the extra 8 bits in the 40-bit forward
channel payload that are used for redundancy, parity, check sum, DC balancing, embedded clock, control,
and error checking. A normal CSI payload is 32 bits, and adding these 8 bits will reduce the actual amount
of data that is transferred. This is why 4.16 Gbps of data transfer is actually a maximum of 3.32 Gbps of
CSI throughput.

Because there are four data lanes available, the maximum value of CSI throughput per lane is calculated
as 832 Mbps after dividing the maximum possible CSI throughput by 4. Even if two lanes in use, the
maximum throughput is still divided 4. As a result, the maximum CSI throughput is 832 Mbps, regardless
of how many lanes are used. Note that this is a limitation of the serializer and not the deserializer. This
information is found in Table 5.

2.1.1.5 Clocking and Frequency Selection Example
Using the correct resistor divider values at the MODE pin, the device will power up in synchronous mode.
REFCLK (f0) is 25 MHz, which is the recommended value. Use Table 5 for reference. To calculate the
CLK_OUT, see Section 4.2.

954 Back Channel Bit Rate:
(1)

953 Forward Channel Bit Rate:
(2)

953 CSI Throughput:
(3)

CSI Throughput per Lane:

(4)

Table 5. Mode Clock Calculation Table

MODE 953 CLK_IN
(MHz)

954
REFCL
K (MHz)

954 BC
RATE

(Mbps)

953 FORWARD
(FC) RATE

(Mbps)
953 CSI

THROUGHPUT
MAX CSI

THROUGHPUT
MAX

CSI/LANE CLK_OUT

Synchronous NA fo 2 × fo fo × 160 ≤ fo × 160 ×
32/40 3.32 Gbps 832 Mbps FC / HS_CLK_DIV) ×

(M/N)

Non Sync
CLK_IN

f1 /
CLKIN_DIV

NA 10 Mbps
f1 × 80 ≤ f1 × 80 × 32/40 3.32 Gbps 832 Mbps FC / HS_CLK_DIV) ×

(M/N)

f2 /
CLKIN_DIV f2 × 40 ≤ f2 × 40 × 32/40 3.32 Gbps 832 Mbps FC / HS_CLK_DIV) ×

(M/N)

Non Sync
AON NA NA 10 Mbps f3 × 80 ≤ f3 × 80 × 32/40 3.32 Gbps 832 Mbps N/A

Table 6. Mode Clock Settings With Descriptions of fo and f1

POSSIBLE RANGE (MHz) DIVIDE
fo 24 to 26 N/A
f1 25 to 52 for CLKIN_DIV = 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Basic Design Rules www.ti.com

10 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 6. Mode Clock Settings With Descriptions of fo and f1 (continued)
POSSIBLE RANGE (MHz) DIVIDE

f2 50 to 104 for CLKIN_DIV = 2

f3 48.4 to 51 for CLKIN_DIV = 1, OSCCLK_SEL
= 1

2.2 Successful I2C Communication With 953 and 954
1. Read Device ID of derserializer and serializer locally.

• On both the 953 and 954, register 0x00 contains the I2C_DEVICE_ID that is necessary for I2C
communication. Communicating locally does not require transactions across the bidirectional
control channel (BCC), which means I2C commands are made directly to the device.

• Using the device ID that is established by the IDX pin, use a read command to access the value in
register 0x00. If the correct value is returned then communication to the device was received. If the
value returned was different than expected, see Section 2.1 about verifying the IDX pin. If the
value returned was zero, then communication to the device may not be functioning properly.

• The Python code used in Analog Launch Pad (ALP) for this operation is represented below where
the 954_ID is the 8-bit address assigned by the IDX pin, 0x00 is the address where the read will
occur, and 1 is number of bytes returned after the read command occurs:

board.ReadI2C(954_ID,0x00,1)
2. Verify that the deserializer and serializer are locked.

• The LOCK status serves the purpose of validating the link integrity of the connection between the
SER and DES. When the LOCK status is high, the PLL in the DES is locked and validates the data
and clock recovered from the serial input.

Note that the deserializer and serilaizer may not be locked in the beginning stages of bringing up
the system. As a result, continue to check the basic design rules and verify that they are correct.

• On the 954, the DEVICE_STS can be found in register 0x04. Bit [2] holds the lock status of the
device. In addition to the lock status, the device status holds many status flags regarding the
reference clock, pass, power-up initialization, and check sum configuration. A healthy link between
the SER and DES is indicated by the value 0xCF.

3. Read the Device ID of serializer using the deserializer.
• After using I2C locally and verifying a lock between devices, the next step is to send a transaction

over the BCC and verify that it works. A basic way to do this is to read the SER ID using the DES
which is found in register 0x5C on the 954.

• To read the device ID of the SER from the DES, the Alias ID must be used for I2C transactions.
Simply reading register 0x00 of the SER Alias ID should return the value set by the IDX pin. For
more information about aliasing, see Section 2.2.1.

2.2.1 Aliasing
Device Alias ID refers to the alternate 7-bit address assigned to either the serializer, deserializer, or
remote slave. The Device Alias can help differentiate devices that have the same Device ID or physical
I2C address. TI recommends that the I2C master always use the device alias to communicate with a
remote I2C slave.

For example, the DS90UB954-Q1 can support two serializers like the DS90UB953-Q1. If both serializers
are 953s that house the same camera, the device IDs and default alias IDs for the corresponding devices
will be the same. As a result, the best practice is to write a unique alias ID to each device. Note that these
conventions only apply when the I2C passthrough is enabled. Refer to Section 2.3 on I2C passthrough for
more information.

I2C addresses are always 7 bits (binary). The majority of the registers on the DS90UB95x-Q1 associated
with I2C addresses uses bits [7:1] for the address, and bit 0 is either reserved or used for some other
purpose. Therefore, while loading an address value to a specific register, it is always left-shifted by 1 bit.
For example, 0x50 (101 0000) left-shifted by 1 bit is 0xA0 (1010 0000). This operation can be represented
as, 0x50<<1 which is equal to 0xA0.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Basic Design Rules

11SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 7. Bit Description of SER_ALIAS_ID Register With Example

ADDR. 0x5C[7:1] 0x5C[0]
Bits 101 0000 0
Dec. Remote SER Alias ID Automatically Acknowledges I2C writes to

SER

If a defined alias ID does not follow this convention, problems can arise. For example, register 0x5C on
the 954 holds the SER_ALIAS_ID. If bit [0] of the 8-bit address is set to 1, transactions using this alias ID
will be automatically acknowledged. As a result, the controller (or master) sends the slave address and
does not listen for a response from the slave when communicating with the serializer on the bus. All writes
are attempted regardless of the forward channel lock state or status of the remote Serializer Acknowledge.
This can be problematic when validating the link between the SER and DES.

2.2.2 Port Selection on 954

Figure 7. Illustration of Two Ports

The DS90UB954-Q1 has two ports (Port 0 and Port 1) that allow the user to interface two serializers—and
subsequently, two image sensors—with one 954. As a result, the entire register space for Port 0 is similar
but independent to Port 1. Therefore, the port must be accounted for when doing read or write commands
to registers on the 954.

The FPD3_PORT_SEL register, with address of 0x4C, has the ability to control which port is read and
which port has permission to write. Specifically, bit [4] controls which port is read where 0 indicates that
read commands access port 0 and 1 indicates that read commands access port 1. Finally, bits [1] and [0]
control write permissions for port 1 and port 0, respectively. Any combination of RX port registers can be
written simultaneously. This is summarized in Table 8.

Broadcast mode refers to writing both to the port 0 and port 1 serializers simultaneously. This can
achieved by defining both alias IDs to be the same and enabling writes to both ports.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Basic Design Rules www.ti.com

12 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 8. Bit Description of FPD3_PORT_SEL Register 0x4C

ADDR. 0x4C[7:5] 0x4C[4] 0x4C[3:2] 0x4C[1:0]
Bits 0X0 X 00 XX

Desc. Holds physical port number
and reserved bits

Determines which port is
read. Reserved Enables writes for Port 1

and Port 0

2.3 I2C Passthrough Verification
The Bidirectional Control Channel Configuration register is located on the 954 and holds I2C passthrough
and back channel controls. Respectively, bits [6] and [7] enable I2C passthrough and I2C passthrough all.
I2C passthrough controls the way that I2C commands are mapped through the BCC. The BCC_CONFIG
register has the address of 0x58.

I2C passthrough, bit [6] of 0x58, allows communication to slaves (SER) and remote slaves (image sensor)
using their alias ID. As a result, it is not possible to communicate to the SER using its device ID defined by
the IDX pin. See Section 2.2.1 for more information.

NOTE: TI recommends enabling this bit for normal operation of the 953 and 954 system.

I2C passthrough all, bit [7] of 0x58, allows communication to slave devices using their alias ID or device
ID.

NOTE: Communication with remote slaves is not ensured while this bit is enabled. This setting
should not be used except for debugging purposes or for certain situations where data must
be sent in a critical timing window and an acknowledgment (ACK) is not required during the
I2C communication.

A summary of these settings are shown in Section 3.2.3.

Table 9. Communication of I2C Devices Using Various Passthrough Settings

I2C
PASSTHROU

GH BIT
0x58[6]

I2C PASSTHROUGH ALL BIT
0x58[7]

COMMUNICATE WITH REMOTE SERIALIZER ENSURED
COMMUNICATION WITH
REMOTE SLAVE WITH

ALIAS AND ID DEFINED
WITHOUT SER ALIAS

DEFINED
WITH SER ALIAS

DEFINED

1 0 No Yes Yes
1 1 Yes Yes No
0 1 Yes Yes No
0 0 No No No

2.4 Basic Diagnostic and Error Registers
This section discusses the various errors and registers used in 953 and 954 systems. Various errors will
be presented and discussed using basic definitions. The various registers pertaining to the errors are
found in the tables below. More information regarding these registers can be found in the data sheet.

Parity Errors: Parity errors refer to errors that occur over the forward channel. These errors are caused
by irregular changes to data, as it is recorded when it is entered in memory. Note that these errors only
have to do with the link between the SER and DES (found in Section 3), which means they are
independent of CSI errors. Check addresses 0x55, 0x56, and 0x4D on the 954.

Cyclic Redundancy Check (CRC) Errors: CRC errors refer to errors that occur over the back channel.
These errors are caused by accidental changes to the data. The redundancy in the transmitted data is
checked and flagged. Note that these errors only have to do with the link between the SER and DES
(found in Section 3), which means they are independent of CSI errors. Check addresses 0x4D on the 954
and 0x55 and 0x56 on the 953.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Basic Design Rules

13SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and DS90UB954-
Q1

BIST CRC Errors: BIST CRC Errors refer to errors generated during the Built-In Self Test (BIST) between
the 954 and 953. Note that these errors only have to do with the link between the SER and DES (found in
Section 3), which means they are independent of CSI errors. For more information about BIST, refer to
Section 3.2. Check addresses.

CSI Errors: CSI errors refer to errors in CSI data packets. These can be Checksum, Length, or ECC
errors. CSI errors can occur across any of the links, however, they usually occur when designing the link
between the DES and ISP (found in Section 5) is designed.

CSI Checksum Errors: CSI Checksum errors refer to an error detected in the packet data portion of the
CSI packet.

CSI Length Errors: CSI length errors refer to an error detected in expected packet length. Packet length
errors occur if the data length field in the packet header does not match the actual data length for the
packet.

CSI Error Correcting Code (ECC) Errors: CSI ECC errors refer to errors in CSI data packets that are 1
or 2 bits off from their correct value. Errors that are 1 bit, are automatically corrected while errors that are
2 bits are detected but not corrected.

FPD III Encoder Error: FPD III Encoder error refers to errors in the FPD-Link III encoding that has been
detected by the receiver. These are also tied to the Link error count and Link error threshold.

Buffer Error: Buffer errors refer to the overflow condition that has occurred on the packet buffer FIFO.

Table 10. DS90UB954-Q1 Registers Used for Diagnostics and Checking Errors

DEVICE REGISTER NUMBER REGISTER NAME REGISTER DESCRIPTION

954 0x04 DEVICE_STS

General flags of device status and
communication between DES and SER:

check sum config, power up
initialization, refclk valid, pass, lock

954 0x05 PAR_ERR_THOLD_HI
Parity error threshold high byte that

provides 8 most bits of threshold value.
Flagged in RX_PORT_STS1

954 0x06 PAR_ERR_THOLD_LO
Parity error threshold low byte that

provides 8 most bits of threshold value.
Flagged in RX_PORT_STS1

954 0x4D RX_PORT_STS1

Flags for various detected errors: BCC
CRC error, Lock status Change, BCC
sequencing error, Parity Error, Pass,

and Lock

954 0x4E RX_PORT_STS2

Flags for various detected errors: Line
Length Unstable, Line Length changed,
FPD3 Encoder error, packet buffer error,
CSI Error, frequency stable, FPD3 CLK

detect, Line count change
954 0x55 RX_PAR_ERR_HI 8 MSBs of FPD3 Parity Errors
954 0x56 RX_PAR_ERR_LO 8 LSBs of FPD3 Parity Errors
954 0x57 BIST_ERR_COUNT Returns BIST error count

954 0x7A CSI_RX_STS Has general flags for CSI errors: Packet
length, check sum, 2-bit ECC, 1-bit ECC

954 0x7B CSI_ERR_COUNTER Returns counts number of CSI packets
received with errors

954 0xB9 LINK_ERROR_COUNT
Enables serial link data integrity error
count, link error count threshold, and

waiting for SFLITER to stabilize

954 0xD0 PORT_DEBUG
Indicates SER is in BIST mode. If not
SER is not in BIST and bit [5] is high,

could indicate error

954 0x24 INTERRUPT_STS

If interrupt enabled, flags when and
where interrupts occurred: global

interrupt, CSI Transmit port 0, RX port 1
and port 0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Designing the Link Between SER and DES www.ti.com

14 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 10. DS90UB954-Q1 Registers Used for Diagnostics and Checking Errors (continued)
DEVICE REGISTER NUMBER REGISTER NAME REGISTER DESCRIPTION

954 0x36-0x37 CSI_TX_ICR, CSI_TX_ISR Detects CSI RX errors and enables
interrupts if necessary

954 0xD8-0xDB
PORT_ICR_LO, PORT_ICR_HI,

PORT_ISR_HI, and
PORT_ISR_LO

Interrupts on various errors: see the 954
data sheet register table for more

information

Table 11. DS90UB953-Q1 Registers Used for Diagnostics and Checking Errors

DEVICE REGISTER NUMBER REGISTER NAME REGISTER DESCRIPTION

953 0x49 BC_CTRL
Back channel control used for clearing
CRC and BIST errors and TX-RX link

detect timer value

953 0x52 GENERAL_STS

General flags that indicate status of
errors (BCC, BIST CRC, CRC, Link
Lost) and communication between

DES and SER

953 0x54 BIST_ERR_CN1 8 bits that count the CRC errors in
BIST mode

953 0x55 CRC_ERR_CNT1 CRC Error count (LSB)
953 0x56 CRC_ERR_CNT2 CRC Error count (MSB)

953 0x5C CSI_ERR_CNT
Counts number of CSI packets

received with errors since the last read
of the counter

953 0x5D CSI_ERR_STATUS
Shows Line Length mismatch, Check
sum error, ECC 2-bit error detected,

ECC 1-bit Error Detect

953 0x5E CSI_ERR_DLANE01
Shows errors for lanes 0 and 1: single

bit error in sync, multi error in sync,
control error in HS request Mode

953 0x5F CSI_ERR_DLANE23
Shows errors for lanes 2 and 3: single

bit error in sync, multi error in sync,
control error in HS request Mode

953 0x60 CSI_ERR_CLK_LANE CLK Lane: control error in HS request
mode, Invalid LP state detected

953 0x79 BCC_STATUS
Error flags over BCC: master timeout,
slave error, slave time out, and SER

Response

953 0x77 ECC_ERR_SEL Choose to force many different ECC
errors

3 Designing the Link Between SER and DES
The link between the 953 and 954 is a core link that ensures proper communication between devices.
Considering back channel configuration, BIST, AEQ, CML, and internal pattern generation will ensure that
the link between the SER and DES is functional.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

SER and DES Link

Run BIST and take note of
any errors that occur

Confirm Backchannel is
correctly configured on 953

(0x32)

Bring BC Link Detect and
CRC to GPIO on 954 (0x59)
or 953 and check for stability

Check for Lock Change
Status, Parity errors, and

CRC errors on 954 (0x4D)

Check for stable EQ value
on 954 (0xD3) and Forward

Channel errors on 954
(0x4D)

Access CSI-2 Pattern
Generator and Timing

registers through Indirect
Address Control on 954

(0xB0-0xB2) and check CSI
output

Use CMLOUT and confirm if
eye diagram meets

specifications

www.ti.com Designing the Link Between SER and DES

15SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Figure 8. Flowchart for SER and DES Link

3.1 Back Channel Configuration
As shown in Section 2.1.1, the 953 is compatible with certain back channel frequencies. Furthermore, the
954 has the ability to adjust the back channel frequency to be compatible with the connected device. The
process for changing the back channel configuration is shown below:
1. On the 954, configure the back channel frequency select for 953 compatibility using the BCC

Configuration register.
• The BCC_CONFIG register can be found at the 0x58 address. This register has the settings for

I2C passthrough, which is explained in Section 2.3, as well as the BC frequency selector. By
setting bits [2:0] to 0b110, the back channel will be set to the 953 default rate of 50 Mbps.

• Note that DS90UB913A-Q1 and DS90UB933-Q1 have different defaults for back channel rates. As
a result, they can be adjusted accordingly. See the 954 data sheet in the BCC_CONFIG register
description for more information.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Designing the Link Between SER and DES www.ti.com

16 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 12. Settings for Bidirectional Configuration (BCC_CONFIG) Register 0x58 on 954

PAGE ADDR
(HEX) REGISTER NAME BIT(S) FIELD TYPE DEFAULT DESCRIPTION

RX 0x58 BCC_CONFIG

7

I2C
PASSTH
ROUGH

ALL

RW 0
I2C Passthrough All Transactions
0: Disabled
1: Enabled

6
I2C

PASSTH
ROUGH

RW 0

I2C Passthrough to serializer if decode
matches
0: Passthrough Disabled
1: Passthrough Enabled

5 AUTO
ACK ALL RW 0

Automatically Acknowledge all I2C writes
independent of the forward channel lock
state or status of the remote
Acknowledge
0: Disable
1: Enable

4 BC_ALW
AYS_ON RW 1

Back channel enable
0: Back channel enable requires setting
of either I2C_PASS_THROUGH and
I2C_PASS_THROUGH_ALL. This bit
may only be written through a local I2C
master.
1: Back channel is always enabled
independent of I2C_PASS_THROUGH
and I2C_PASS_THROUGH_ALL

3

BC CRC
GENERA

TOR
ENABLE

RW 1
Back Channel CRC Generator Enable
0: Disable
1: Enable

2:0 BC FREQ
SELECT RW, S 0x0

Back Channel Frequency Select. Default
value set by strap condition upon
asserting PDB = HIGH.
000: 2.5 Mbps (default for DS90UB933-
Q1 or DS90UB913A-Q1 compatibility)
001- 011: Reserved
100: 10 Mbps (default for CSI
Asynchronous back channel
compatibility)
101: 25 Mbps
110: 50 Mbps (default for DS90UB953-
Q1 CSI Synchronous back channel
compatibility)
111: 100 Mbps
Note that changing this setting will result
in some errors on the back channel for a
short period of time. If set over the
control channel, the deserializer should
first be programmed to Auto-Ack
operation to avoid a control channel time-
out due to lack of response from the
serializer.

3.2 BIST
An optional At-Speed Built-In Self Test (BIST) feature supports testing of the high-speed serial link and the
back channel without external data connections. This is useful in the prototype stage, equipment
production, in-system test, and system diagnostics.

3.2.1 BIST Configuration and Status
The BIST mode is enabled by BIST configuration register 0xB3. The test may select either an external
PCLK or the internal oscillator clock (OSC) frequency in the Serializer. In the absence of PCLK, the user
can select the internal OSC frequency at the deserializer through the BIST configuration register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Confirm LOCK

Clear Errors

Enable BIST Check for Errors

Clear BIST Errors

953 and 954 Digital Reset
(0x01)

954 and 953 Device IDs
(0x00)

954 Device Status
(0x04)

Enable RX Port0 Write
on 954 (0x4C)

Clear CRC and BIST CRC
errors on 953 (0x49)

Read BCC Error Status
on 953 (0x79)

General Status of 953
(0x52)

BIST Error count before
BIST on 953 (0x54)

Read BIST_CTL, enable
BIST, and read

BIST_CTL again on 954
(0xB3)

Read RX_PORT_STS1
on 954 (0x4D)

Force error in
PORT_DEBUG if desired

On 954 (0xD0)

Read RX_PORT_STS1
on 954 (0x4D)

Disable BIST on 954
(0xB3)

Disable RX Port0 Write
on 954 (0x4C)

953 General Status
(0x52)

954 Device Status
(0x04)

BIST Error Count after
BIST on 953 (0x54)

www.ti.com Designing the Link Between SER and DES

17SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the Back
Channel. The serializer outputs a continuous stream of a pseudo-random sequence and drives the link at
speed. The deserializer detects the test pattern and monitors it for errors. The serializer also tracks errors
indicated by the CRC fields in each back channel frame. While the lock indications are required to identify
the beginning of proper data reception, for any link failures or data corruption, the best indication is the
contents of the error counter in the BIST_ERR_COUNT register 0x57 for each RX port.

3.2.2 BIST Procedure

Figure 9. BIST Script Flowchart

The following steps will explain how BIST is conducted between the DS90UB953-Q1 and DS90UB954-
Q1. After basic rules have been followed, BIST will determine the health of the link between the SER and
DES only. Example code is listed in Section 7.1.1 and a list of registers used in the code is shown in
Table 16 and Table 17.

Table 13. RESET_CTL Register Description on 953

ADDR. 0x01[7:3] 0x01[2] 0x01[1] 0x01[0]
Bits XXX X 0 1
Desc. Reserved Restart ROM Auto-Load Digital reset including

registers
Digital reset except
registers

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Designing the Link Between SER and DES www.ti.com

18 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

1. Use the reset register to reset the entire digital block and set the serializer (SER) and
deserializer (DES) to a known state.
• Register 0x01 is the RESET_CTL register on both the 953 and 954.
• Note that bit [0] in REST_CTL does not reset the registers. Bit [1] controls the digital reset

responsible for clearing registers. Generally, it is better to conduct a digital reset without clearing
the registers to save time initial troubleshooting steps.

Table 14. DEVICE_STS Register Description on 954

ADDR. 0x04[7] 0x04[7] 0x04[7] 0x04[7] 0x04[7] 0x04[7] 0x04[1:0]
Bits X X X X 1 1 XX
Desc. Configuration

Checksum
Passed

Power-up
Initialization
Complete

Reserved REFCLK Valid PASS Status LOCK Status Reserved

Table 15. GENERAL_STATUS Register Description for Lock on 953

ADDR. 0x52[7] 0x52[6] 0x52[5] 0x52[4] 0x52[3] 0x52[2] 0x52[1] 0x52[0]
Bits X 1 X X X 1 X 1
Desc. Reserved LOCK

Status
Reserved BC Link lost BIST Error

detected
FC High-
speed lock
detected

BC error
detected

BC Link
detected

2. Confirm that SER and DES are locked by accessing the respective devices IDs and DES device
status.
• As mentioned before, verifying the correct SER and DES device IDs indicates that the correct DES

device ID and SER alias ID is used when making I2C commands. The DEVICE_ID for both
devices can be found in register 0x00 while the SER_ALIAS_ID can be found on the deserializer in
register 0x5C.

• The DES device status will indicate if the LOCK status is high. As mentioned before, the LOCK
status serves the purpose of validating the link integrity of the connection between the SER and
DES. When the LOCK status is high, the PLL in the DES is locked and validates the data and
clock recovered from the serial input. As a result, the value should be 0xCF. DEVICE_STS on the
954 can be found in register 0x04.

3. Enable the write permission for RX Port0.
• On the DES, this bit allows data to be written to RX port 0 registers. Any combination of RX port

registers can be written simultaneously. This applies to all paged FPD3 Receiver port registers.
Remember, configuring parameters that pertain to RX port 0 registers require a write command. If
permission to write RX port 0 is not given, then register values will not be changed even with
correct write commands. The FPD3_PORT_SEL can be found in register 0x4C.

4. On the SER, clear any previous errors in the system before enabling BIST by clearing the CRC
errors and BIST CRC errors in addition to reading the BCC status and SER general status.
• BIST CRC errors and CRC errors are cleared to ensure that the next BIST test only includes errors

from the specified test. These errors are housed in the BC_CTRL register located at 0x49 on the
953. Value 0x28 selects the self-clearing bits to clear the BIST CRC and CRC errors.

• Reading the bidirectional control channel (BCC) status has two functions. First, if there are any
errors that occurred over the BCC, they may be flagged and categorized in this register. Second,
reading this register may clear a flag that is raised in the SER general status register that can only
be cleared when the BCC status register is read. The BCC_STATUS register is located at 0x79 on
the 953.

• The general status of the SER holds indicators for many different types of errors, including BIST
CRC ERR and the RX LOCK DETECT. Verifying its value before BIST will show the changes that
occur after BIST. A typical general status will indicate the value 0x45 showing that RX Lock Detect,
HS PLL Lock, and Link Detect flags are high. GENERAL_STS can be found at register 0x52 on
the 953.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Designing the Link Between SER and DES

19SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and DS90UB954-
Q1

5. Read the BIST error counter before BIST.
• In addition to checking the indicator if an error occurred, it is important to read the number errors

before the test. If one error is forced, we expect this value to be 0x01 after the BIST has
completed. The BIST_ERR_CNT can be found in register 0x54 of the 953.

6. On the DES, read the BIST control register, enable the BIST, force the singular, multiple, or no
errors, and read the RX port status after the BIST starts and before the BIST ends.
• The BIST control register enables the BIST as well as various parameters important for BIST. Bit

[0] of the BIST control represents BIST_EN. Reading it before and then after enabling BIST helps
show that BIST has been enabled. By using the sleep command, BIST can run as long as the user
desires. BIST_CTL can be located in register 0xB3 of the 954.

• The RX port status, like the general status and BCC status on the 954, houses many useful error
flags. These flags include: the BCC CRC error, lock status change, BCC sequence error, parity
error, receiver pass indication, lock status, and locked to recovered clock status. Consider bit [4]
which indicates the LOCK_STS_CHG. By reading this value right after the BIST is enabled, and
right before the BIST is disabled, the user is able to tell if the lock status changed during BIST. It is
important to read this register after BIST is started because enabling and disabling the BIST forces
the devices to relock. RX_PORT_STS1 can be found in register 0x4D.

• The port debug register is used for debugging various functions by enabling build in errors or tests.
Bit [0] is self-clearing and controls the FORCE_ONE_BC_ERROR function. Bit [1], by comparison,
controls FORCE_BC_ERRORS and must be cleared. This is helpful for testing the error detection
of the system. The PORT_DEBUG register can be found at 0xD0 of the 954.

7. Disable the BIST and write permissions of RX Port0.
• Disabling the BIST is done through the BIST control register, 0xB3, on the DES. BIST uses all

functionality of the BCC and disabling the BIST reestablishes communication between the SER
and DES.

• This bit allows data to be written to RX port 0 registers. Any combination of RX port registers can
be written simultaneously. This applies to all paged FPD3 Receiver port registers. Because only
reads are required at this stage the BIST, it is good practice to disable the write permission. The
FPD3_PORT_SEL can be found in register 0x4C.

8. Check for errors on the SER general status, DES device status, and BIST error count.
• The general status of the 953, with register value 0x52, that was checked before BIST gave a

value of 0x45. With the introduction of an error, a value of 0x4D is read from the register. This
value indicates that the RX Lock Detect, HS PLL Lock, Link Detect, and BIST CRC Error flags are
high.

• The device status of the 954 was checked before BIST. Despite forcing an error in the system, the
status should read still read 0xCF because the devices should still be LOCKED.

• Before BIST was enabled, all possible BIST CRC errors were cleared and the BIST CRC error
count was read. After forcing one error during BIST, one error should be displayed in the
BIST_ERR_CNT. If the count is 0x01, that means that the devices were LOCKED, any errors that
occurred were only produced during the BIST test, the error detection system is working as
intended, and the link between the SER and DES is not producing any errors.

The LOCK and PASS statuses ensure that the serializer and deserializer are communicating effectively.
By using the built-in self test (BIST), the LOCK between devices can be accurately evaluated. As a result,
this is a fundamental step to ensure proper design of the board.

3.2.3 List of Registers Used in BIST Script

Table 16. DS90UB954-Q1 Registers Used in BIST Script

DEVICE REGISTER NUMBER REGISTER NAME REGISTER DESCRIPTION

954 0x00 DEVICE_ID I2C device ID for DES. Used in I2C
commands

954 0x01 RESET_CTL Responsible for digital resets and analog
power down

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Designing the Link Between SER and DES www.ti.com

20 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 16. DS90UB954-Q1 Registers Used in BIST Script (continued)
DEVICE REGISTER NUMBER REGISTER NAME REGISTER DESCRIPTION

954 0x5C SER_ALIAS_ID I2C alias ID that is used to communicate to
SER from DES

954 0x04 DEVICE_STS
General flags that indicate status of device

and communication between DES and
SER

954 0x4C FPD3_PORT_SEL RX port register

954 0xB3 BIST_CTL Various parameters important for control
of BIST

954 0x4D RX_PORT_STS1 General flags that indicate various errors

954 0xD0 PORT_DEBUG Port used for debugging various functions
of DES

954 0x55 RX_PAR_ERR_HI Shows 8 most significant bits of errors that
occur on the forward channel

954 0x56 RX_PAR_ERR_LOW Shows 8 least significant bits of errors that
occur on forward channel

Table 17. DS90UB953-Q1 Registers Used in BIST Script

DEVICE REGISTER NUMBER REGISTER NAME REGISTER DESCRIPTION

953 0x00 DEVICE_ID I2C device ID for SER. Used in I2C
commands

953 0x01 RESET_CTL Responsible for digital resets and analog
power down

953 0x49 BC_CTRL Back channel control used for clearing
errors and TX-RX link detect timer value

953 0x79 BCC_STATUS Group of error flags that indicate various
errors over BCC

953 0x52 GENERAL_STS
General flags that indicate status of errors

and communication between DES and
SER

953 0x54 BIST_ERR_CNT 8 bits that count the CRC errors in BIST
mode

3.3 AEQ
On the 954, the receiver inputs provide an adaptive equalization filter to compensate for signal
degradation from the interconnect components. To determine the maximum cable reach, consider the
factors that affect signal integrity such as jitter, skew, ISI, crosstalk, and so forth. The equalization status
and configuration are selected through AEQ registers 0xD2–0xD3. For more in depth AEQ control, see the
AEQ register with an address of 0x42.

If these register values are continuously read and the values jump sporadically, then the AEQ is not
properly compensating for factors that affect signal integrity. If the deserializer loses Lock, the adaptive
equalizer will reset and perform the Lock algorithm again to reacquire the serial data stream being sent by
the serializer.

In addition, the AEQ values may settle to a state that is overcompensating for the factors that affect signal
integrity. If the AEQ values seem to be higher than expected in the AEQ_STATUS register (0xD3), set
AEQ_RESTART (0xD2[3]) to 1, and let the AEQ values resettle. If the system continually settles to the
wrong value on power up, then reset the 954 before port forwarding is enabled.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

(QVXUH�*3,2¶V�RQ�953 are
set up correctly by checking
GPIO_INPUT_CTRL (0x0E)
and LOCAL_GPIO_DATA

(0x0D)

Confirm CLKOUT frequency
is correctly configured on the
953 (0x06 and 0x07). Probe

CLKOUT pin (19)

Image Sensor
and SER Link

www.ti.com Designing the Link Between SER and DES

21SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

3.4 CML Out
The DS90UB954-Q1 includes an internal Channel Monitor Loop (CML)-through output on the
CMLOUTP/N pins 38 and 39, respectively. A buffered loop-through output driver is provided on the
CMLOUTP/N to observe jitter after equalization for each of the two RX receive channels. The CMLOUT
monitors the post EQ stage, thus providing the recovered input of the deserializer signal. The measured
serial data width on the CMLOUT loop-through is the total jitter including the internal driver, AEQ, back
channel echo, and so forth. Each channel also has its own CMLOUT monitor and can be used for debug
purposes. This CMLOUT is useful in identifying gross signal conditioning issues. Typically, these pins are
routed to test points and not connected. For monitoring CMLOUT, be sure to terminate with 100-Ω
differential load.

For more information regarding CMLOUT, refer to the Channel Monitor Loop-Through Output Driver
section in the 594 data sheet. Example code fore enabling CMLOUT FPD3 RX Port 0 is given in
Section 7.1.4 while the process is given in Table 18.

Table 18. Channel Monitor Loop-Through Output Configuration of the 954

FPD-Link III RX Port 0 FPD-Link III RX Port 1

ENABLE MAIN LOOP-THROUGH DRIVER 0xB0 = 0x14; 0xB1 = 0x00; 0xB2 = 0x80 0xB1 = 0x03; 0xB2 = 0x28
0xB1 = 0x04; 0xB2 = 0x28

SELECT CHANNEL MUX 0xB1 = 0x02; 0xB2 = 0x20 0xB1 = 0x02; 0xB2 = 0xA0

SELECT RX PORT
0xB0 = 0x04; 0xB1 = 0x0F;
0xB2 = 0x01 0xB1 = 0x10;

0xB2 = 0x02

0xB0 = 0x08; 0xB1 = 0x0F;
0xB2 = 0x01 0xB1 = 0x10;

0xB2 = 0x02

DISABLE MAIN LOOP-THROUGH DRIVER 0xB0 = 0x14; 0xB1 = 0x00; 0xB2 = 0x00 0xB1 = 0x03 ; 0xB2 = 0x08
0xB1 = 0x04; 0xB2 = 0x08

DESELECT CHANNEL MUX 0xB1 = 0x02; 0xB2 = 0x20 0xB1 = 0x02; 0xB2 = 0x20

DESELECT RX PORT
0xB0 = 0x04; 0xB1 = 0x0F;
0xB2 = 0x00 0xB1 = 0x10;

0xB2 = 0x00

0xB0 = 0x08; 0xB1 = 0x0F;
0xB2 = 0x00 0xB1 = 0x10;

0xB2 = 0x00

4 Designing Link Between SER and Image Sensor

Figure 10. Image Sensor and SER Link Design

4.1 Sensor Initialization Using SER GPIOs
The following steps will generally explain how the initialization of the image sensor occurs from the
DS90UB953-Q1. It is important that the link between the SER and DES is working. If the link between the
SER and DES is not working, then you will not be able to use the DES to talk to the SER—and
subsequently—the image sensor. Example code is listed in Section 7.1.2.

In the example script, the traces on the PCB connect GPIO0 to the imager reset, GPIO1 to the imager
power down, GPIO2 to the SER WP, and GPIO3 to frame sync.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Initializing Image
Sensor with GPIOs

On the 953, assign
DSSURSULDWH�*3,2¶V�DV�

outputs using
GPIO_INPUT_CTRL

(0x0E)

Confirm assignment of
image sensor pins to specific
*3,2¶V�(i.e. GPIO3 to active

low IM_RESET)

Configure
LOCAL_GPIO_DATA for
local or remote control
using GPIO_RMTEN

(0x0D, bits [7:4])

Set logic value of GPIO to
bring image sensor out of

power down mode and reset
the device using

LOCAL_GPIO_DATA
(0xD0)

Initialize camera using
appropriate slave alias ID

and script provided by
camera manufacturer

Designing Link Between SER and Image Sensor www.ti.com

22 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Figure 11. Flowchart for Initializing the Image Sensor Using GPIO’s

1. On the serializer enable the appropriate General-Purpose Input/Output (GPIO) pins for output
mode.
• On the serializer, GPIO_INPUT_CTRL controls whether GPIO0-3 are configured as inputs or

outputs. The first 4 bits [3:0] control whether they are used as inputs, and the last 4 bits [7:4] are
used as outputs. Because all GPIOs in this example refer to settings that can be set, all GPIOs are
set to outputs. This register has the value of 0x0E.

• GPIO0 and GPIO1 on the 953 can be used for sensing the voltage applied to its input. See
Section 6.8 for more information. As a result, GPIO2 and GPIO3 should be used before assigning
other GPIO pins.

Table 19. Bit Description of GPIO_INPUT_CTRL Register 0x0E

ADDR. 0x0D[7:4] 0x0D[3:0]
Bits XXXX 0000

Desc. Controls if GPIO3-0 are outputs Controls if GPIO3-0 are inputs

2. Using the serializer, bring to the imager to a known state by bringing the camera out of power-
down mode and resetting the camera. This can be accomplished by controlling the GPIO pins.
• On the 953, GPIO0-3 can be locally written to use the LOCAL_GPIO_DATA register. This register

can be found at value 0x0D. The last 4 bits [7:4] (GPIO_RMTEN) force the selected GPIO pins to
be remotely controlled by the deserializer, which is not required in this example. The concept of
remotely controlling GPIOs is discussed in Section 5.1.1.

• Furthermore, the first 4 bits [3:0] (GPIO_OUT_SRC) of the LOCAL_GPIO_DATA register control
the logical output of the GPIO registers. Note that the corresponding GPIOs can only be changed
when remote enable is disabled and the GPIOs are configured as outputs.

• In the example script, both the imager reset and imager power-down controls are active low. By
setting the GPIO1 (IM_PWDN_B) and GPIO2 (SER_WP) to high, the camera is brought out to
power-down mode. Then, GPIO0 (IM_RESET) can be held low, which initializes the camera reset.
Finally GPIO0 is brought high again to allow initialization of the camera.

Table 20. Bit Description of LOCAL_GPIO_DATA Register 0x0D

ADDR. 0x0E[7:4] 0x0E[3:0]
Bits 0000 XXXX

Desc. Enables remote control of SER GPIO3-0 Controls logical outputs of GPIO3-0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

FC M
CLK_OUT = ×

HS_CLK_DIV N

Image
Signal

Processor

(ISP)

 1.8V 1.8 V

MIPI CSI-2

FPD-Link III

DS90UB953

Serializer

DS90UB954

Deserializer

REFCLK
(fo)

CLK_IN

Forward Channel (FC)

Back Channel (BC)

CLK_OUT

1920 x 1200
60 fps

Image Sensor

MIPI CSI-2

Synchronous: NA
Non Sync CLK_IN: f1
Non Sync CSI_Clk: f2

www.ti.com Designing Link Between SER and Image Sensor

23SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

3. The camera is then initialized by programing the image sensor.
• For example, data can be written to a 32-bit address of the image sensor. This is usually provided

by the camera manufacturer. Using ALP, the Python command can be written as:
board.WriteI2C(Slave_Alias_ID, Address_pt1, [Address_pt2,Data])
where:
– Slave_Alias_ID is the I2C alias device ID of the image sensor
– Address_pt1 and Address pt2 make up the address (that is, 0x1234 where Address_pt1 =

0x12 and Address_pt2 = 0x34)
– Data is the data written to that address.

This initialization is not provided in the example script.
• When the camera has finished initializing, more current will be pulled from the power supply. This

will indicate that the camera has successfully initialized. Consider the current limiting setting of the
voltage supply. If the total current consumed after initialization is over the current limit of the
supply, the voltages in the system will not be regulated correctly.

4.2 CLKOUT

Figure 12. Clocking System Diagram

The 953 clock outline is intended as a reference clock for the image sensor. Note that the CLK_OUT/IDX
pin (19) also assigns the I2C device ID on power up. See Section 2.1 for information. After power up, the
clock out frequency is defined by Equation 5.

where
• FC is the forward channel data rate,
• M, HS_CLK_DIV, and N are parameters set by the CLKOUT control registers 0x06 and 0x07 on the

953. (5)

For more information for calculating FC, see Section 2.1.1.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

If controlling
SER GPIOs Remotely

On the 954, assign BC
GPIOs to constant value,
frame sync signal, or DES

GPIO using BC_GPIO_CTL
(0x6E-0x6F)

On the 954, disable or
enable DES GPIOs as inputs

using
GPIO_INPUT_CTL

(0x0F)

On the 954, assign
value to DES GPIOs

and set as outputs using
GPIOx_PIN_CTL

(0x10-0x16)

On the 953, assign
appropriate GPIOs as

outputs using
GPIO_INPUT_CTRL

(0x0E)

On the Configure
LOCAL_GPIO_DATA

for local or remote
control using

GPIO_RMTEN
(0x0D, bits [7:4])

Controlling
SER GPIOs

On the 953, set logic value
of GPIO using

LOCAL_GPIO_DATA
(0x0D)

If controlling
SER GPIOs Locally

If linking
Remote SER GPIO to DES GPIOs

Access CSI-2 Pattern
Generator and Timing

registers through Indirect
Address Control on 954

(0xB0-0xB2) and check CSI
output

Verify CSI output enable and
forwarding is enabled

Check if frame valid and
lines are working as

expected

DES and ISP Link

Designing Link Between DES and ISP www.ti.com

24 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

The PLL that generates CLK_OUT is a digital PLL that will have very low jitter if the ratio N/M is an
integer. However, if N/M is not an integer, then the jitter on the signal will be approximately equal to
HS_CLK_DIV/FC. As a result, if it is not possible to have an integer ratio of N/M, it is best to select a small
value for HS_CLK_DIV.

If a particular frequency is required, for a system (for example, 37.125 MHz), then using values of
M=0x09, N=0xF2, and HS_CLK_DIV=4 will result in an output frequency of 37.19 MHz and a frequency
error of 0.175% with jitter of about 1 ns. Alternately, you could use M=0x01, N=0x1E, and HS_CLK_DIV=4
and get an output frequency of 37.037 MHz and a frequency error of 0.24% with much less jitter. A third
alternative would be to use the M=0x01, N=0x1E, and HS_CLK_DIV=4, but rather than using a 25-MHz
clock frequency for the DS90UB954-Q1 reference, use a frequency of 25.059 MHz for the DS90UB953-
Q1 to get both a low jitter and low frequency error.

5 Designing Link Between DES and ISP

Figure 13. DES and ISP Link Flowchart

5.1 Frame Sync
Most multiple image-sensor systems require that the image data all arrive to the image signal processor
(ISP) at the same time. The use of a frame synchronization signal (FrameSync) ensures that data for
every frame is sent to every deserializer simultaneously. From there, the synchronized data can be
forwarded to the ISP. The frame sync signal can be sent across the back channel from an internally
generated signal from the DES or an externally generated signal gathered by the DES GPIOs.

Figure 14. Steps for Controlling SER GPIOs Remotely and Locally

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Image Sensor DS9OUB953
Serializer

DS9OUB954
Serializer

Image
Sensor

Processor

(ISP)

FC

BC
GPIOx

MIPI
CSI-2

MIPI
CSI-2

I2C to SER

LOCAL_GPIO_
DATA (0x0D) and

GPIO_INPUT_
CTRL (0x0E)

GPIOx

Copyright © 2017, Texas Instruments Incorporated

www.ti.com Designing Link Between DES and ISP

25SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

5.1.1 Using SER GPIOs From the DES
There are two ways to control the GPIOs of the SER using the deserializer: sending I2C commands
across the back channel to the SER, or forwarding the SER GPIOs across the back channel using remote
enable and controlling them from the DES. Because SER GPIOs are often connected to pins of the image
sensor, it is important to understand how to control them.

Figure 15. Block Diagram of Controlling SER GPIOs Over BC

As shown in Figure 15, the first method of controlling the serializer GPIOs is to send a write command
over the back channel (BC) and control the appropriate registers on the 953. GPIO_INPUT_CTRL controls
whether GPIO0-3 are configured as inputs or outputs. The first 4 bits [3:0] control whether they are used
as inputs, and the last 4 bits [7:4] are used as outputs. This register has the address of 0x0E.

For example, the code below sends an I2C transaction over the BC using the 953 Alias ID, finds the
GPIO_INPUT_CTRL register, and configures all four GPIOs on the 953 as outputs:

board.WriteI2C(953_Alias_ID,0x0E,0xF0)

Table 21. Example Using GPIO_INPUT_CTRL Register 0x0E for Local SER GPIO Control

ADDR. 0x0E[7:4] 0x0E[3:0]
Bits 1111 0000

Desc. Controls if GPIO3-0 are outputs Controls if GPIO3-0 are inputs

Furthermore, the LOCAL_GPIO_DATA (0x0D) register controls the SER GPIOs. The last 4 bits [7:4] of
this register (GPIO_RMTEN) force the selected GPIO pins to be remotely controlled by the deserializer.
These bits will not be used in this method. In addition, the first 4 bits [3:0] (GPIO_OUT_SRC) of the
control the logical output of the GPIO registers. Note the corresponding GPIOs can only be changed when
remote enable is disabled and the GPIOs are configured as outputs.

For example, the code below sends another I2C transaction over the BC using the 953 Alias ID, finds the
LOCAL_GPIO_DATA register, and sets every SER GPIO to high. This is because the previous line of
code set every GPIO to outputs—the last 4 bits for remote enable are 0, and the first 4 bits are set to logic
1:

board.WriteI2C(953_Alias_ID,0x0D,0x0F)

Table 22. Example Using LOCAL_GPIO_DATA Register 0x0D for Local SER GPIO Control

ADDR. 0x0D[7:4] 0x0D[3:0]
Bits 0000 1111

Desc. Enables remote control of SER GPIO3-0 Controls logical outputs of GPIO3-0

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Image Sensor DS9OUB953
Serializer

DS9OUB954
Serializer

Image
Sensor

Processor

(ISP)

FC

BC
GPIOx

MIPI
CSI-2

MIPI
CSI-2

BC_GPIO
CTLx

(0x6E-
0x6F)

GPIOx
(Remote
Enabled)

GPIOx
PIN CTL
(0x10-
0x16)

Copyright © 2017, Texas Instruments Incorporated

Designing Link Between DES and ISP www.ti.com

26 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

An application of this process is described in Section 4.1.

Figure 16. Block Diagram of Controlling SER GPIOs Remotely

As shown in Figure 16, the second method of controlling the serializer GPIOs is to remotely enable the
SER GPIOs for access from the BC GPIO control of the DES. Then, the back channel GPIO control can
be configured to mirror the DES GPIOs or different functions.

As mentioned before, the LOCAL_GPIO_DATA register controls the SER GPIOs. The last 4 bits [7:4] of
this register (GPIO_RMTEN) force the selected GPIO pins to be remotely controlled by the deserializer.
For example, the code below sends an I2C transaction over the BC using the 953 Alias ID, finds the
GPIO_INPUT_CTRL register, and configures all four GPIOs on the 953 to be controlled by the DES:

board.WriteI2C(953_Alias_ID,0x0D,0xF0)

Table 23. Example Using LOCAL_GPIO_DATA Register 0x0D for Local SER GPIO Control

ADDR. 0x0D[7:4] 0x0D[3:0]
Bits 1111 0000

Desc. Enables remote control of SER GPIO3-0 Controls logical outputs of GPIO3-0

Because the GPIOs are remote enabled, the GPIOs of the SER are forwarded to the DES, wait to be
defined, and later send the data back to the SER. These forwarded GPIOs are stored on the DES in the
form of BC GPIOs.

Table 24. BC_GPIO_CTL0 Registers From the 954 Data Sheet

ADDR
(HEX)

REGISTER
NAME BIT(S) FIELD TYPE DEFAU

LT DESCRIPTION

0x6E BC_GPIO_
CTL0

7:4 BC_GPIO1_SEL RW 0x8

Back channel GPIO1 Select:
Determines the data sent on GPIO1 for the port
back channel.
0xxx : Pin GPIOx where x is BC_GPIO1_SEL[2:0]
1000 : Constant value of 0
1001 : Constant value of 1
1010 : FrameSync signal
1011 - 1111 : Reserved

3:0 BC_GPIO0_SEL RW 0x8

Back channel GPIO0 Select:
Determines the data sent on GPIO0 for the port
back channel.
0xxx : Pin GPIOx where x is BC_GPIO0_SEL[2:0]
1000 : Constant value of 0
1001 : Constant value of 1
1010 : FrameSync signal
1011 - 1111 : Reserved

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

954 Deserializer

BC_GPIOx

BC_GPIOxSerializer
GPIOx

Serializer
GPIOx

FPD-Link III

FPD-Link III
FrameSync
Generator

www.ti.com Designing Link Between DES and ISP

27SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Because the GPIOs are remote enabled, the GPIOs of the SER are now forwarded to the DES, wait to be
defined, and later send the data to the SER. These forwarded GPIOs are stored on the DES in the form of
BC GPIOs. The BC_GPIO_CTL register, with an address of 0x6E and 0x6F, controls the state of the
forwarded GPIOs. For example, the first 4 bits [3:0] of 0x6E control the BC_GPIO0, while the last 4 bits
[7:4] of 0x6E control the BC_GPIO1. Configuring these 4 bits will select one of many different functions,
such as sending constant values of 0 or 1, internally generating Frame Sync signals, or following the
values of a DES GPIO.

If the BC GPIOs are not defined by one of the internally generated functions, they must be linked to one of
the seven different GPIOs on the 954. Because GPIOs can function as inputs or outputs, a signal defined
by the GPIOs of the 954—and subsequently the BC GPIO of the DES—will be visible on GPIO pins of the
953.

For example, the below code will define GPIO1 of the SER as 1, and link the GPIO0 of the DES to the
GPIO0 of the SER. To reiterate, probing the GPIO1 pin of the SER will show 1, while probing the GPIO0
pin of the SER will be the same as probing the GPIO0 pin of DES. Note that this will not require an I2C
transaction across the BC:

board.WriteI2C(954_ID,0x6E,0x90)

Table 25. Example using BC_GPIO_CTL0 Register 0x6E for Remote SER GPIO Control

ADDR. 0x6E[7:4] 0x6E[3:0]
Bits 1001 0000

Desc. Determines data sent to SER GPIO1 (selected for
constant value of 1)

Determines data sent to SER GPIO0 (selected to
link to DES GPIO0)

After forwarding the BC GPIOs to one of the DES GPIOs, the DES GPIOs can be configured as an output
using the GPIOx_PIN_CTL with addresses of 0x10-0x16. In addition, the GPIOx_PIN_CTL has controls to
select the source of the output generated to the GPIO. Bits [4:2] select the output source, such as RX Port
0, Device Status, and so forth. Bits [7:5] select the output based on what source was selected, such as the
RX Port Lock indicator. Bits [1] and [0] control the logical output and output enable bits, respectively.

For example, the below code will make the DES GPIO0 an output for an internally generated FrameSync
signal that is forwarded to SER GPIO0:

board.WriteI2C(954_ID,0x0F,0x00)
board.WriteI2C(954_ID,0x10,0x91)

An application of this process is explained in Section 5.1.2.

5.1.2 Internal and External Frame Sync Configuration
TI recommends that frame sync is always sent from the deserializer using Internal or External Frame
Sync. In multi-camera systems, it is important that every frame sync is sent to each camera at the same
time. If the system uses the SER GPIOs to send a frame sync signal to the Image Sensor, the SER
GPIOs must always be remote enabled whether the frame sync is internally or externally generated.

Figure 17. Block Diagram of Internally Generated Frame Sync

As shown in Figure 17, internally generated frame sync signals come from an internal block of the 954.
Defining a GPIO for an internal frame sync generator can be accessed in any BC_GPIO_CTLx register
(0x6E-0x6F).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

954 Deserializer

BC_GPIOx

BC_GPIOxSerializer
GPIOx

Serializer
GPIOx

FPD-Link III

FPD-Link III

GPIOy

GPIOy

Designing Link Between DES and ISP www.ti.com

28 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and DS90UB954-
Q1

Configuring the internal frame sync mode is done in the FS_CTL register with an address of 0x18.
Enabling the internal FrameSync mode is done by setting the first bit of the FS_CTL register (0x18 [0]) to
a value of 1, which is the FS_GEN_ENABLE control. The last four bits of the FS_CTL register, FS_MODE
field (0x18 [7:4]), controls the clock source used for the FrameSync generation. The second bit in
FS_CTL—the FS_GEN_MODE field (0x18 [1])—configures whether the duty cycle of the FrameSync is
50/50 or whether the high and low periods are controlled separately.

The FrameSync high and low periods are controlled by the FS_HIGH_TIME_x and FS_LOW_TIME_x
(0x19–0x1C) registers. For more information regarding how to program high and low time frame sync,
refer to the 954 data sheet. The resolution of the FrameSync generator clock (FS_CLK_PD) is derived
from the back channel frame period. The frame period can be found in the first 3 bits of the BC_CONFIG
register—the BC FREQ SELECT (0x58 [2:0]). For 50-Mbps back channel operation, the frame period is
600 ns (30 bits × 20 ns/bit).

An example on how to enable the Frame sync this way is shown in Section 5.1.1.

Figure 18. Block Diagram of Externally Generated Frame Sync

In External FrameSync mode, an external signal inputs to the DS90UB954-Q1 through one of the GPIO
pins on the device. As shown in Figure 18, the external FrameSync signal may be propagated to one or
more of the attached FPD3 serializers through a GPIO signal in the back channel. The expected skew
timing for external FrameSynch mode is on the order of one back channel frame period.

Enabling the external FrameSync mode is done by setting the last 4 bits of the FS_CTL register (0x18
[7:4]) that indicates the FS_MODE control. The value should be between 0x8 (GPIO0 pin) to 0xF (GPIO7
pin). Set FS_GEN_ENABLE to 0 for this mode.

To send the FrameSync signal on a port’s BC_GPIOx signal, the BC_GPIO_CTL0 (0x6E) or
BC_GPIO_CTL1 (0x6F) register should be programmed for that port to select the FrameSync signal.

5.1.3 Tables for Using GPIOs and Frame Sync

Table 26. Registers Used When Configuring GPIOS and Frame Sync on the 953 and 954

DEVICE REGISTER NAME REGISTER NAME REGISTER DESCRIPTION

953 0x0E GPIO_INPUT_CTRL Determines if SER GPIOs are inputs
or outputs

953 0x0D LOCAL_GPIO_DATA
Determines if SER GPIOs are

remotely enabled and are the logical
outputs of the GPIO

954 0x6E-0x6F BC_GPIO_CTLx Defines the BC GPIO on the DES

954 0x10-0x16 GPIO_PIN_CTLx
Determines if the GPIO is output and

defines the logical output, output
source, and output

954 0x4C FPD3_PORT_SEL RX port register
954 0x0F GPIO_INPUT_CTL Determines if GPIO0-7 are inputs

954 0x18 FS_CTL
Controls frame sync source, frame

sync mode, generates a single pulse,
and enables frame sync generation

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Designing Link Between DES and ISP

29SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Table 26. Registers Used When Configuring GPIOS and Frame Sync on the 953 and
954 (continued)

DEVICE REGISTER NAME REGISTER NAME REGISTER DESCRIPTION

954 0x19-0x1A FS_HIGH_TIMEx Controls the high time of the frame
sync signal

954 0x1B-0x1C FS_LOW_TIMEx Controls the low time of the frame
sync signal

954 0x58 BC_CONFIG Sets I2C Passthrough settings, auto
ACK, BC enable, and BC frequency

5.2 Port Forwarding
Video stream forwarding is handled by the forwarding control in the DS90UB954-Q1 on FWD_CTL1
register 0x20. The forwarding control pulls data from the video buffers for each FPD3 RX port and
forwards the data to one of the CSI-2 output interfaces. It also handles generating transitions between the
LP and HS modes as well as sending synchronization frames. The forwarding control monitors each of the
video buffers for packet and data availability.

Forwarding from input ports may be disabled using per-port controls. Each of the forwarding engines may
be configured to pull data from either of the two video buffers, although both buffer may only be assigned
to one CSI-2 Transmitter at a time unless in replicate mode. The two forwarding engines operate
independently.

The CSI transmitter control can be found in the DS90UB954-Q1 on FWD_CTL2 register 0x21. The control
holds the CSI replicate mode (0x21[7]) and the forwarding mode options. The two main forwarding options
are synchronized and round-robin/best effort. Synchronized forwarding (0x21[3:2]) offers synchronization
of all incoming data stored within the buffer. If packets arrive within a certain window, the forwarding
control will attempt to synchronize the video buffer data. When using round-robin/best effort forwarding
(0x21[0]), no attempt is made to synchronize the video traffic. When multiple sources have data available
to forward, the data will be forwarded in a round-robin fashion.

For more information about CSI-2 Forwarding modes, including the difference between basic synchronized
and line-interleaved forwarding, refer to the CSI-2 Forwarding section in the 954 data sheet.

An example script can be found in Section 7.1.3.

5.3 Pattern Generation
Pattern Generation is when the engineer uses an internal block of the 954 or 953 to generate CSI data.
The generation of this data is used to check links in the system without directly using the CSI data
gathered by the image sensor. As soon as the image sensor is used for checking CSI data, multiple links
of the system are used, which makes identifying problems with a specific link problematic.

As a result, using the 954 pattern generation function and forwarding the data to the ISP will help identify
whether or not there are problems with the CSI data traveling across the link between the DES and ISP. If
the patterns generated match the output of the ISP, the link between the DES and ISP is healthy. The
process can then be repeated with the pattern generation on the 953, which determines the health of the
SER and DES link, and finally with the CSI data of the image sensor that determines the health of the
SER and Image Sensor Link.

While this process is helpful in identifying which links are healthy, minimal insight is gained regarding the
root problem of the link.

5.3.1 Accessing Indirect Registers
Pattern generation is access through the CSI-2 Pattern Generator and Timing Registers. Indirect registers
hold many different registers—such as the CSI-2 Pattern Generation, Timing registers, and Analog
controls—that are located at offsets of the main register space.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Designing Link Between DES and ISP www.ti.com

30 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

The indirect address mechanism involves setting the control register to select the desired block, setting
the register offset address, and reading or writing the data register. In addition, an auto-increment function
is provided in the control register to automatically increment the offset address following each read or write
of the data register.

For writes, the process on both the 953 and the 954 is as follows:
1. Write to the IND_ACC_CTL register (0xB0) to select the desired register block.
2. Write to the IND_ACC_ADDR register (0xB1) to set the register offset.
3. Write the data value to the IND_ACC_DATA register (0xB2).

If auto-increment is set in the IND_ACC_CTL register, repeating step 3 will write additional data bytes to
subsequent register offset locations.

For reads, the process on both the 953 and the 954 is as follows:
1. Write to the IND_ACC_CTL register (0xB0) to select the desired register block.
2. Write to the IND_ACC_ADDR register (0xB1) to set the register offset.
3. Read from the IND_ACC_DATA register (0xB2).

If auto-increment is set in the IND_ACC_CTL register, repeating step 3 will read additional data bytes from
subsequent register offset locations.

5.3.2 Pattern Generation From DES to ISP and SER to DES
Pattern generator can be programmed to use different clock sources, the back channel recovered clock,
the CSI2-clock, or the external CLK_IN pin. The output of the pattern generator is in 32-bit format. The
output of the pattern generator and the output of the 32-bit CSI-2 parallel data are muxed before the data
are transmitted to the TX data path module. Depending on the deserializer, the pattern generator output
can be sent to a 40-bit mode or 28-bit mode data path.

The general flow for pattern generation is to enable CSI, CSI select, and pattern generation. Because the
pattern generation simulates the CSI data, the pattern that appears must be configured before the rest of
the parameters are defined. Because the data will come up as colored bars, the pattern configure register
configures the number of color bars and the size of the block where fixed pattern is enabled.

The CSI data type must be defined through the Pattern Generator CSI DI register. While there are many
different types of color spaces and various ways to define image data, such as RGB888 or YUV420 8-bit,
the PGEN_CSI_DI register defaults to 0x24 indicating RGB888. This means a scale of red, green, and
blue will define the colors that are used.

Because the pixels will be arranged in frames on the screen, the line size, bar size, active lines per frame,
the total lines, line period, vertical back porch, and vertical front porch must be defined. Finally, the
corresponding bytes are defined when the values for each color bar are referenced.

For more information regarding the register descriptions used during pattern generation, refer to the Digital
Page 0 Indirect Register table in the 954 data sheet. Examples for pattern generation using the 954 and
the 953 are found in Section 7.1.11 and Section 7.1.10, respectively.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Confirm correct AC coupling
caps on FPD III

Ensure proper POC network
design

Validate capacitors on 953
Loop Filter pins (19, 9)

Consider return loss of
transmission channel

Consider reasonable Time
Domain Reflection (TDR)

specifications

Confirm critical signal routing
is optimized

Hardware

Confirm I2C pull ups for SDA
and SCL

www.ti.com Hardware Design

31SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

6 Hardware Design

Figure 19. Hardware Design Flowchart

6.1 Basic I2C Connectors
The I2C-compatible interface for each device consists of the clock (SCL) and data (SDA) pins. These two
signals have open-drain I/Os. Both signals must be pulled up to VDD by an external resistor. A logic zero
is transmitted by driving the output low. A logic one is transmitted by releasing the output and allowing it to
be pulled up externally. The appropriate pullup resistor values will depend upon the total bus capacitance
and operating speed.

Each serializer or deserializer determines its I2C slave address from a resistor termination circuit attached
to the IDX pin. This value is loaded into the I2C Device ID register at address 0x00. See the device data
sheets for IDX configuration requirements and available I2C addresses for each device.

6.1.1 I2C Pullups for SDA and SCL
The I2C SDA and SCL pins on the 954 and 953 are open-drain and require pullup resistors for operation.
External 1-kΩ to 4.7-kΩ pullup resistors to the digital supply voltage—VDDIO on the 954 or VDDD on the
953—are recommended per I2C interface standards. Note that I2C communication to image sensors or
microcontrollers may require different or the same digital supply voltages.

If the digital supply voltages are different between devices, I2C voltage level shifters are recommended to
translate between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V logical signal levels necessary for
communication. For example, the TCA9406 is a 2-bit, bidirectional I2C and SMBus voltage-level translator
with an output enable (OE) input. It is operational from 1.65 V to 3.6 V on the A-side—referenced to
VCCA—and from 2.3 V to 5.5 V on the B-side—referenced to VCCB.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A
http://www.ti.com/product/TCA9406

IDX

MIPI CSI-2

HS_GPIO
(SPI)

Image
Signal

Processor

(ISP)

Full HD
Image Sensor

1920x1200

60fps

I2C

 1.8 V 1.8 V

MIPI CSI-2

D3P/N

D2P/N

D1P/N

D0P/N

CLKP/N

FPD-Link III
(over Coax or STP)

HS_GPIO
(SPI)

IDX
I2C

DS90UB953

Serializer

0.033 µF 0.033 µF

DOUT-

DS90UB954

Deserializer

D3P/N

D2P/N

D1P/N

D0P/N

CLKP/N

DOUT+ RIN0+

RIN0-
0.015 µF 0.015 µF

50 �� 50 ��

Hardware Design www.ti.com

32 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

6.2 AC Capacitor on FPD3 Link

Figure 20. Simplified Block Diagram of DS90UB953-Q1/DS90UB954-Q1 System

The DS90UB953-Q1 FPD-Link III architecture is a 40-bit frame, high-speed synchronous back channel
when communicating with 954 and 960. However, the mode that the device is operating in can change the
data rate of the serial data output signal. For synchronous mode where the reference oscillator is provided
by the deserializer, the serial data rate is 4 Gbps presented as a differential CML output on the DOUTP
and DOUTN pins.

As shown in Figure 20, the signals at DOUTP and DOUTN must be AC-coupled with a series capacitor
before the interconnect that leads to the deserializer. This AC-coupling capacitor will have a value of 0.033
μF when the device is running in 4-Gbps mode. At lower data rates, a larger coupling cap will be required.
When connecting to a coax cable, the AC-coupling cap on the dummy side of the output (DOUTN) should
also have an AC-coupling capacitor. This value should be half of the AC-coupling cap going to the cable
(0.015 µF), and DOUTN should have a 50-Ω load on DOUTN. This load is needed because the AC and
DC loads seen by DOUTP and DOUTN should be balanced. The capacitor on DOUTN should be half the
value of the capacitor on DOUTP because the signal path must be balanced for the AC-coupling cap near
the serializer and deserializer ends of the cable.

As mentioned previously, the AC capacitors will change if either the 953 or 954 are interfaced with lower
data-rate parts such as 913A, 914A, 933, and 934. With a lower data-rate, the frequency band of interest
is now lower in frequency and requires a larger capacitor.

6.3 Capacitance Used in Loop Filter
On the 953, there are two pins labeled LPF1 (9) and LPF2 (12), these are filter capacitors for two of the
PLLs within the DS90UB953-Q1. LPF1 should have a 0.022-µF capacitor connected to the VDD_PLL pin
(pin 11). The capacitor connected between LPF1 and VDDPLL should enclose as small of a loop as
possible. LPF2 should have a 0.1-μF capacitor connecting the pin to GND. One of these PLLs generates
the high-speed clock that is used for the serialization of the output, and the other is used for the PLL used
in the CSI-2 receive port.

Noise coupled into these pins will degrade the performance of the PLLs in the DS90UB953-Q1, so the
caps must be placed close to the pins that they are connected to, and the area of the loop enclosed must
be minimized. Pin 10 is a bypass capacitor pin for the internal regulator for the PLL. The bypass capacitor
can be mounted on the other side of the board so that the LPF1 capacitor can be placed very close to
pins 9 and 11 with short connections.

6.4 Critical Signal Routing
Circuit board layout and stack-up for the FPD-Link III devices should be designed to provide a low-noise
power feed to the device. It is also good layout practice to separate high-frequency or high-level inputs
and outputs to minimize unwanted stray noise pickup, feedback, and interference.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Hardware Design

33SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

The engineer can use thin dielectrics (2 to 4 mils) for power or ground sandwiches to improve power
system performance. This arrangement provides plane capacitance for the PCB power system with low-
inductance parasitics, which has proven to be especially effective at high frequencies, and makes the
value and placement of external bypass capacitors less critical.

Some devices provide separate power and ground pins for different portions of the circuit. This is done to
isolate switching noise effects between different sections of the circuit. Separate planes on the PCB are
typically not required.

Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin
pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits, such as
PLLs. Use a four-layer board minimum with a power and ground plane.

Place the LVCMOS signals away from the differential lines to prevent coupling from the LVCMOS lines to
the differential lines. Differential impedance of 100 Ω are typically recommended for STP interconnect and
single-ended impedance of 50 Ω for coax interconnect. The closely coupled lines can help ensure that
coupled noise will appear as common-mode, and thus is rejected by the receivers. The tightly coupled
lines will also radiate less.

6.5 Time Domain Reflection
The FPD link signals coming from the DS90UB953-Q1 are carrying 4-Gbps data, and as a result, the
traces must be controlled impedance transmission lines. If the traces are not controlled impedance, then
the reflections generated are liable to cause problems with the LOCK.

Time domain reflection (TDR) measurements simply measure impedance running through a signal path.
So long as the characteristic impedance is a good match to the 50-Ω coax cable, the trace length will not
be a major factor. Connectors, components, and other items in the signal path can vary the impedance
seen by the signal path.

6.6 Return Loss and Insertion Loss
When talking about loss, it is important to consider cables, the Power-over-Coax circuit on each side of
the SERDES system, the connectors, the layout, and the AEQ settings.

Insertion Loss simply refers to the amount of loss that occurs when a signal is sent across the
transmission line. We want the insertion loss to be as close to 0 dB as possible—which means minimal
loss. The DS90UB954-Q1 has an adaptive equalizer at the input, which allows the device to compensate
for various lengths of cable, provided the total attenuation stays within maximum allowable limits.

Return Loss is the loss of the signal power resulting from a discontinuity in the characteristic impedance of
the transmission line. In other words, when signal is sent across the transmission channel, an amount of
the signal will be reflected and returned back to the transmitter. It is most commonly encountered at the
interface of one portion of the transmission line and another–such as the connector to a cable or board.
Return Loss has been historically represented in dB. If the engineer wants to minimize the reflection of the
signal, return loss must be as small as possible. This is usually represented by larger negative numbers in
dB.

When discussing coax cables, it is important to note that a coax cable can be designed to be arbitrarily
thin, and therefore low-cost and flexible. However, as the cable gets thinner, the losses increase. Inline
Connectors also add loss to the signal. The frequency characteristics of inline connector loss differ from
cables, and can often be considered as relatively flat across frequency. Connector manufacturers will
specify the loss of their connectors, but typical FAKRA connectors have a loss of 0.1 to 0.2 dB per
connector.

6.7 Power-over-Coax (PoC)
The Power-over-Coax (PoC) capability requires the use of circuitry following certain specifications
connected to both ends of the cable. These specifications include impedance versus frequency
characteristics and return loss. The PoC circuit must have low impedance at DC, but to not interfere with
the data path, the characteristic impedance must be large over the band of the forward channel and back
channel (10 MHz to 2 GHz) compared to the 50-Ω impedance of the coax line.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Hardware Design www.ti.com

34 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

The critical consideration is the return loss profile after adding the PoC network. Limits on return loss
make sure that the impedance of the PoC network is high enough that high-speed path signal integrity is
maintained. The PoC network offers low impedance at DC to allow an efficient power transfer to the DC-
DC powering the serializer and the camera, but also offers high impedance at the frequencies used for
data transfer. Depending upon the current consumption of the camera and serializer board, there could be
200 to 500 mA of current going through the network. As a result, the engineer must check the inductor
current limits before finalizing components to ensure that the PoC network components do not saturate at
these current levels. A good starting point for the PoC Network to provide high impedance at the high
frequencies is to use the recommended network in the EVM schematic.

For more information, see the Power-over-Coax design guidelines for the DS90UB953-Q1 application note
(SNLA272).

6.8 Voltage and Temperature Sensing
The DS90UB953-Q1 supports voltage measurement and temperature measurement. Temperature
sensing will measure the internal temperature of the chip and GPI00 and GPIO1 pins are used for the
voltage sensing. One of the usage of the voltage sensor is to monitor the PoC network on the board. Each
GPIOs will have an individual setting for high and low voltage threshold. When the GPIOs voltage is
outside the threshold range, an alarm bit can be set and sent to the deserializer. In a similar manner, the
temperature sensor will trigger an alarm bit when the internal temperature of DS90UB953-Q1 is outside
the range.

The measurement of the voltage and temperature will be performed in a round-robin manner. When the
DS90UB953-Q1 reset state machine is in a normal mode, the sensor will start monitoring the voltage on
GPIO0, GPIO1 pins, and internal temperature of the device. The monitoring will cycle every 1 ms per
measurement, the reading will be stored in the register, and an alarm bit is set when the measured
voltage or temperature is not within range set.

By default the sensor is disabled, and it can be enabled through a register setting. If one of the sensors is
disabled, the round-robin will reduce to two sensor measurements and so forth. Registers regarding
voltage and temperature sensing can be found in registers 0x15-0x1B.

NOTE: By default, the GPIO0/1 are used after power up for voltage sensing, while the GPIO2/3 are
use for general-purpose signaling.

7 Appendix

7.1 Scripts
The scripts listed are BIST, Example Sensor Initialization, CSI Enable and Port Forwarding, Enabling
CMLOUT FPD3 RX Port 0 on 954, Remote Enabled SER GPIO Toggle, Local SER GPIO Toggle, Internal
FrameSync on 953 GPIO1, External FrameSync on 953 GPIO0, SER GPIOs as Inputs and Output to DES
GPIO, Pattern Generation on the 953, Pattern Generation on the 954, Monitor Errors for Predetermined
Time, 954 and 953 CSI Register Check, and Time Till Lock Script on 953.

7.1.1 BIST Script

BIST_953_954_WithForcedError.py
##
revision 1.1 June 13, 2017
##
########

######################
##
This script file is used to check the link between the 953 and 954
##
The Built In Self Test (BIST) generates a puesdo random sequence
and checks for CRC errors between transmitted and received sequence.
##

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A
http://www.ti.com/lit/pdf/SNLA272

www.ti.com Appendix

35SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Rev. 1.1
Added Parity Errors, restructured code
##
##
######################
print "\n\n"
import time

Define 954 and 953 Addresses
UB953 = 0x30 #953 SER Alias ID,
check 0x5C on 954 for confirmation
UB954 = 0x7A #954 Device ID, check
0x00 on 954 for confirmation

Port selection, Passthrough, and aliasing
#board.WriteI2C(UB954, 0x4C, 0x01) #Enable Port 0
writes
#board.WriteI2C(UB954, 0x58, 0x5E) #I2C Pass through
Enabled and BC = 50Mbps
#board.WriteI2C(UB954, 0x5C, 0x18) #953 Alias defined
as 0x18

Digital Reset except for registers
board.WriteI2C(UB953, 0x01, 0x01) #Resets 953
time.sleep(0.5)
board.WriteI2C(UB954, 0x01, 0x01) #Resets 954
time.sleep(0.5)

print ("Devices Reset")

Confirm Devices can communicate with each other
print ("954 Device ID (0x00):", hex(board.ReadI2C(UB954, 0x00, 1))) #954 Device ID,
should be 0x7A, check 0x00 for confirmation
time.sleep(0.5)
print ("953 Device ID (0x00):", hex(board.ReadI2C(UB953, 0x00, 1))) #953 Device ID,
should be 0x30, check 0x5B for confirmation

print ("--")
time.sleep(0.5)

Read Receiver Lock Status
print ("Receiver Lock Status (0x04):", hex(board.ReadI2C(UB954, 0x04, 0x1)))

#0x04 is DEVICE_STS of 954
print ("Should read 0xCF")

print ("--")
time.sleep(1)

Enable write for Port0 of FPD3_PORT_SEL
board.WriteI2C(UB954, 0x4C, 0x01) #0x4C is
FPD3_PORT_SEL

Clear Errors and Error Count
board.WriteI2C(UB953, 0x49, 0x28) #0x49 is BC_CTRL.
0x28 selects BIST_CRC ERR CLR and CRC ERR CLR

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Appendix www.ti.com

36 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

print ("Read BCC Error Status (0x79):", hex(board.ReadI2C(UB953, 0x79, 1))) #Clear possible
BCC_Error by Reading BCC Error Status
print ("Consult Register 0x79 on the SER for more information")

print ("--")

print ("Pre-
Error Link Status of 953 (0x52):", hex(board.ReadI2C(UB953, 0x52,1))) #0x52 is
GENERAL_STS of 953
print ("Should read 0x45 = RX Lock Detect, HS PLL Lock, Link Detect")

print ("--")

print ("BIST CRC Error count (0x54) on 953 before forced error.", hex(board.ReadI2C(UB953, 0x54,
1)))#0x54 is BIST ERR CNT

print ("--")

time.sleep(1)

Enabling BIST, Error, and Lock-Change Status
print ("Read BIST CTL register (0xB3) Before BIST ENABlED", hex(board.ReadI2C(UB954, 0xB3,
1))) #0xB3 is BIST_CTL, bit 1 controls if enabled or not
print ("Should read 0x00 or 0x08\n")

board.WriteI2C(UB954, 0xB3, 0x01) #Enable BIST using
BIST_CTL

print ("Read BIST CTL (0xB3) register After BIST ENABLED", hex(board.ReadI2C(UB954, 0xB3, 1)))
#0xB3 is BIST_CTL

print ("Should read 0x01")

time.sleep(0.25)
print ("--")
print ("Read BIST Lock Status Change of 954 RIGHT AFTER BIST enabled (0x4D):",
hex(board.ReadI2C(UB954, 0x4D,1))) #0x4D is RX_PORT_STS1 of 954
print ("Read to clear BIST enable Lock Status Change.")

board.WriteI2C(UB954, 0xD0, 0x01) #Force 1 Error, 0xD0
is PORT_DEBUG register

#board.WriteI2C(UB954, 0xD0, 0x02) #Force Continuous
errors, 0xD0 is PORT_DEBUG register
time.sleep(10) #Can run BIST for
as long as needed
#board.WriteI2C(UB954, 0xD0, 0x00) #If forced
continuous errors, stop forcing errors

print ("Read Post-
BIST Lock Status Change of 954 RIGHT BEFORE BIST disabled (0x4D):", hex(board.ReadI2C(UB954,
0x4D,1))) #0x4D is RX_PORT_STS1 of 954
print ("Should read 0x03, If lock status changed during BIST, will read 0x13")

Disable BIST and Port0
board.WriteI2C(UB954, 0xB3, 0x00) #Disable BIST, using
BIST_CTL
board.WriteI2C(UB954, 0x4C, 0x00) #0x4C is
FPD3_PORT_SEL

print ("--")
time.sleep(1)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Appendix

37SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Check if Error(s) occurred
print ("Post-
Error Link Status of 953 (0x52):", hex(board.ReadI2C(UB953, 0x52,1))) #0x52 is
GENERAL_STS of 953
print "Should read 0x4D = RX Lock Detect, HS PLL Lock, Link Detect, and BIST CRC Error"

print ("Receiver Lock Status (0x04):", hex(board.ReadI2C(UB954, 0x04, 0x1)))
#0x04 is DEVICE_STS of 954

print ("Should read 0xCF")

print ("--")

print ("BIST CRC Error count (0x54) on 953.", hex(board.ReadI2C(UB953, 0x54, 1))) #0x54 is BIST
ERR CNT
print ("Parity Error count MSB (0x56) on 954.", hex(board.ReadI2C(UB954, 0x56, 1))) #0x56 is
number of Parity error 8 most significant bits
print ("Parity Error count LSB (0x55) on 954.", hex(board.ReadI2C(UB954, 0x55, 1))) #0x55 is
number of Parity error 8 least significant bits

print ("--")

#print ("953 Device ID (0x00):", hex(board.ReadI2C(UB953, 0x00, 1))) #953 Device ID,
should be 0x30, check 0x5B for confirmation,

#Usually use this
to see if 954 is stuck in BIST mode

Clear BIST Errors on 953
board.WriteI2C(UB953, 0x49, 0x28) #0x49 is BC_CTRL.
0x28 selects BIST_CRC ERR CLR and CRC ERR CLR

print "\n\n" #New line Printed

7.1.2 Example Sensor Initialization Script

SensorPowerOnAndReset.py
##
revision 1.0 6/13/17
##
########

import time

Set up Variables
UB953 = 0x30 #could be alias or device ID depending if run locally or remotely

Set GPIO2 and GPIO3 to outputs, where GPIO2 = RESET and GPIO3 = PWDN
board.WriteI2C(UB953,0x0E,0xC0)
Set GPIO2 and GPIO3 to High - bring OVT10640 out of power down mode
board.WriteI2C(UB953,0x0D,0x0C)
time.sleep(0.1)
Bring GPIO3 low to place 10640 in reset
board.WriteI2C(UB953,0x0D,0x08)
time.sleep(1)
Bring GPIO3 high again to prepare 10640 for initialization
board.WriteI2C(UB953,0x0D,0x0C)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Appendix www.ti.com

38 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

7.1.3 CSI Enable and Port Forwarding Script

CSI_EN_and_PortForwarding.py
##
revision 1.0 6/13/17
##
########

import time

devAddr = 0x7A

Set CSI_EN and set to continuous clock mode
print "CSI_EN"
board.WriteI2C(devAddr,0x33,0x03)
time.sleep(0.5)

Set forwarding of RX port 0 to CSI output
print "FWD_PORT0"
board.WriteI2C(devAddr,0x20,0x20)
time.sleep(0.5)

7.1.4 Enabling CMLOUT FPD3 RX Port 0 on 954

EnableCMLOUT_Port0_953.py
##
revision 1.0 6/13/17
##
########

import time

board.WriteReg(0xB0,0x14) # FPD3 RX Shared, page 0
board.WriteReg(0xB1,0x00) # Offset 0 (reg_0_sh)
board.WriteReg(0xB2,0x80) # Enable loop through driver
board.WriteReg(0xB1,0x02) #
board.WriteReg(0xB2,0x20) #
board.WriteReg(0xB1,0x03) #
board.WriteReg(0xB2,0x28) #
board.WriteReg(0xB1,0x04) #
board.WriteReg(0xB2,0x28) #
#
board.WriteReg(0xB0,0x18) #
board.WriteReg(0xB1,0x0F) #
board.WriteReg(0xB2,0x01) #
board.WriteReg(0xB1,0x10) #
board.WriteReg(0xB2,0x02) # Enable CML data output

7.1.5 Remote Enabled SER GPIO Toggle Script

RemoteEnabledSER_GPIOs_toggle.py
##
revision 1.0 6/13/17
##
########

#Makes 953 GPIO0-3 high and low by remote enabling them

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Appendix

39SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

print "\n"
import time

Define 954 and 953 Addresses
UB953 = 0x18 #953 SER Alias ID, check 0x5C on 954 for
confirmation
UB954 = 0x60 #954 Device ID, check 0x00 on 954 for
confirmation

Alias ID of SER
board.WriteI2C(UB954,0x5C,0x18)

Be sure to check Passthrough Settings!!! in 0x58, BCC CONFIG
#board.WriteI2C(UB954,0x58,0x58)

Port Select to enable writes to Port0
board.WriteI2C(UB954,0x4C,0x01)

Enable GPIO0-3 as outputs on 953
board.WriteI2C(UB953,0x0E,0xF0)

Remote Enable GPIO0-3 on 953
board.WriteI2C(UB953,0x0D,0xF0)

for y in range(0,300):
board.WriteI2C(UB954,0x6E,0x88) #Switch GPIO0 and GPIO1 to low or 0
board.WriteI2C(UB954,0x6F,0x88) #Switch GPIO2 and GPIO3 to low or 0
time.sleep(0.0000024)

board.WriteI2C(UB954,0x6E,0x99) #Switch GPIO0 and GPIO1 to high or 1
board.WriteI2C(UB954,0x6F,0x99) #Switch GPIO2 and GPIO3 to high or 1
time.sleep(0.0000024)

7.1.6 Local SER GPIO Toggle Script

LocalSER_GPIOs_toggle.py
##
revision 1.0 6/13/17
##
########

#Makes GPIO1 high and low by using sending and I2C Command across the BCC

print "\n"
import time

Define 954 and 953 Addresses
UB953 = 0x18 #953 SER Alias ID, check 0x5C on 954 for
confirmation
UB954 = 0x60 #954 Device ID, check 0x00 on 954 for
confirmation

Alias ID of SER
board.WriteI2C(UB954,0x5C,0x18)

Be sure to check Passthrough Settings!!! in 0x58, BCC CONFIG
#board.WriteI2C(UB954,0x58,0x58)

Port Select to enable writes to Port0
board.WriteI2C(UB954,0x4C,0x01)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Appendix www.ti.com

40 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Enable GPIO0-3 as outputs on 953
board.WriteI2C(UB953,0x0E,0xF0)

for y in range(0,300):
board.WriteI2C(UB953,0x0D,0x00) #Switch GPIO1 to low or 0
time.sleep(0.0000024)

board.WriteI2C(UB953,0x0D,0x02) #Switch GPIO1 to high or 1
time.sleep(0.0000024)

7.1.7 Internal FrameSync on 953 GPIO1

InternalFrameSync_GPIO1.py
##
revision 1.0 6/13/17
##
########

print "\n"
import time
#GPIO1 Internal Frame Sync on 953

Define 954 and 953 Addresses
UB953 = 0x18 #953 SER Alias ID, check 0x5C on 954 for confirmation
UB954 = 0x60 #954 Device ID, check 0x00 on 954 for confirmation

Alias ID of SER
board.WriteI2C(UB954,0x5C,0x18)

Port Select to enable writes
board.WriteI2C(UB954,0x4C,0x01)

Enable GPIO0-3 as outputs on 953
board.WriteI2C(UB953,0x0E,0xF0)

Enable Remote of GPIO0 and GPIO1 from DES
board.WriteI2C(UB953,0x0D,0xF0)

BC GPIO Control: Link BC GPIO0-1 (SER GPIO0 and GPIO1) to Frame Sync
board.WriteI2C(UB954,0x6E,0xAA)

FS CTL: Enable Frame Sync and set Internal Frame Sync for Port0
board.WriteI2C(UB954,0x18,0x01)

Create an aproximate 400kHz square wave for Frame Sync
High Time
board.WriteI2C(UB954,0x1A,0x01)

Low Time
board.WriteI2C(UB954,0x1C,0x01)

7.1.8 External FrameSync on 953 GPIO0

ExternalFrameSyncGPIO0.py
##
revision 1.0 6/13/17
##
########

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Appendix

41SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

print "\n"
import time
#GPIO0 External Frame Sync on 953
#Note: Script assumes Frame Sync Signal is applied to GPIO0 on DES

Define 954 and 953 Addresses
UB953 = 0x18 #953 SER Alias ID, check 0x5C on 954 for confirmation
UB954 = 0x60 #954 Device ID, check 0x00 on 954 for confirmation

Alias ID of SER
board.WriteI2C(UB954,0x5C,0x18)

Port Select to enable writes
board.WriteI2C(UB954,0x4C,0x01)

Enable GPIO0-3 as outputs on 953
board.WriteI2C(UB953,0x0E,0xF0)

Enable Remote of GPIO0-3 from DES
board.WriteI2C(UB953,0x0D,0xF0)

BC GPIO Control: Link BC GPIO0 and GPIO1 to DES GPIO0
board.WriteI2C(UB954,0x6E,0x00)

GPIO Input CTRL: Make all DES GPIOs Inputs
board.WriteI2C(UB954,0x0F,0x7F)

FS CTL: EN FS and state External Frame Sync comes from GPIO0
board.WriteI2C(UB954,0x18,0x81)

7.1.9 SER GPIOs as Inputs and Output to DES GPIO

Sensing953GPIOsTo954GPIO.py
##
revision 1.0 6/13/17
##
########

Use 953 GPIO0 as input that can be fed to DES GPIO0

import time

UB954 = 0x60
UB953ID = 0x30
UB953 = 0x18

Set up Port0
board.WriteI2C(UB954, 0x4C, 0x01) #Select Port 0

Set up Back Channel Config (0x58)
#board.WriteI2C(UB954,0x58,0x5E) #50Mbps BC and Pass through on

Set up SER ID
#board.WriteI2C(UB954,0x5B,UB953ID)
Set up SER Alias ID
board.WriteI2C(UB954,0x5C,UB953) #Set up SER alias

Set SER GPIO NOT as outputs
board.WriteI2C(UB953, 0x0D, 0x00) #no remote enable, no outputs
Set SER GPIO0 as Input
board.WriteI2C(UB953, 0x0E, 0x01) #Only GPIO0 is output
Set FC CTL for GPIO forwarding

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Appendix www.ti.com

42 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

board.WriteI2C(UB953, 0x33, 0x05) #One GPIO forwarded and DCA CRC Enabled (by default)
#Note, if you want to use forwarding for more GPIOs use

convention below
#One GPIO = GPIO0 only
#Two GPIOs = GPIO0 and GPIO1 only
#Four GPIOs = GPIO0-3 sent

Make all DES GPIOs input disabled
board.WriteI2C(UB954, 0x0F, 0x00) #GPIO0-6 Input Disabled
Make DES GPIO0 linked to RX0 and GPIO0
board.WriteI2C(UB954, 0x10, 0x01) #0x10[4:2] = 000: RX Port 0

#0x10[7:5] = 000: received GPIO0-3
#0x10[1] = 0: Output value of GPIO0
#0x10[0] = 1: GPIO0 Output Enabled

7.1.10 Pattern Generation on the 953 Script

PatternGenerationOn953.py
##
revision 1.0
##
########

import time

953 config
runTime = 3

board.devAddr = 0x30

CSI sel and CSI enable
board.WriteReg(0x32, 0x01)
time.sleep(0.5)
board.WriteReg(0x33, 0x01)
time.sleep(0.5)

enable pat gen
board.WriteReg(0xB0, 0x00)
board.WriteReg(0xB1, 0x01)
board.WriteReg(0xB2, 0x01) #enable pattern generator

board.WriteReg(0xB1, 0x02)
board.WriteReg(0xB2, 0xB3) #fixed color pattern, 8 color bars, block size of 5

board.WriteReg(0xB1, 0x03)
board.WriteReg(0xB2, 0x24) #CSI Data Identifier (0x24 = RGB888, 0x2C = RAW12, 0x2B = RAW10)

board.WriteReg(0xB1, 0x04)
board.WriteReg(0xB2, 0x16) #line size (15:8)

board.WriteReg(0xB1, 0x05)
board.WriteReg(0xB2, 0x80) #line size (7:0)

board.WriteReg(0xB1, 0x06)
board.WriteReg(0xB2, 0x02) #bar size (15:8)

board.WriteReg(0xB1, 0x07)
board.WriteReg(0xB2, 0xd0) #bar size (7:0)

board.WriteReg(0xB1, 0x08)
board.WriteReg(0xB2, 0x04) #active lines per frame (15:8)

board.WriteReg(0xB1, 0x09)
board.WriteReg(0xB2, 0x38) #active lines per frame (7:0)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Appendix

43SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

board.WriteReg(0xB1, 0x0a)
board.WriteReg(0xB2, 0x04) #total lines per frame (15:8)

board.WriteReg(0xB1, 0x0b)
board.WriteReg(0xB2, 0x65) #total lines per frame (7:0)

board.WriteReg(0xB1, 0x0c)
board.WriteReg(0xB2, 0x0B) #line period (15:8)

board.WriteReg(0xB1, 0x0d)
board.WriteReg(0xB2, 0x93) #line period (7:0)

board.WriteReg(0xB1, 0x0e)
board.WriteReg(0xB2, 0x21) #vertical back porch

board.WriteReg(0xB1, 0x0f)
board.WriteReg(0xB2, 0x0a) #vertical front porch

#
board.WriteReg(0xB1, 0x10)
board.WriteReg(0xB2, 0x00) #1st byte of fixed color

board.WriteReg(0xB1, 0x11)
board.WriteReg(0xB2, 0x00) #2nd byte of fixed color

board.WriteReg(0xB1, 0x12)
board.WriteReg(0xB2, 0xFF) #3rd byte of fixed color

board.WriteReg(0xB1, 0x13)
board.WriteReg(0xB2, 0xff) #4th byte of fixed color

board.WriteReg(0xB1, 0x14)
board.WriteReg(0xB2, 0xff) #5th byte of fixed color

board.WriteReg(0xB1, 0x15)
board.WriteReg(0xB2, 0x00) #6th byte of fixed color

board.WriteReg(0xB1, 0x16)
board.WriteReg(0xB2, 0x00) #7th byte of fixed color

board.WriteReg(0xB1, 0x17)
board.WriteReg(0xB2, 0x0f) #8th byte of fixed color

board.WriteReg(0xB1, 0x18)
board.WriteReg(0xB2, 0xf0) #9th byte of fixed color

board.WriteReg(0xB1, 0x19)
board.WriteReg(0xB2, 0x00) #10th byte of fixed color

board.WriteReg(0xB1, 0x1A)
board.WriteReg(0xB2, 0x00) #11th byte of fixed color

board.WriteReg(0xB1, 0x1B)
board.WriteReg(0xB1, 0x3f) #12th byte of fixed color

board.WriteReg(0xB1, 0x1C)
board.WriteReg(0xB2, 0xc0) #13th byte of fixed color

board.WriteReg(0xB1, 0x1D)
board.WriteReg(0xB2, 0x00) #14th byte of fixed color

board.WriteReg(0xB1, 0x1E)
board.WriteReg(0xB2, 0x00) #15th byte of fixed color

board.WriteReg(0xB1, 0x1F)
board.WriteReg(0xB2, 0x00) #16th byte of fixed color

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Appendix www.ti.com

44 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

7.1.11 Pattern Generation on the 954 Script

PatternGenerationOn954.py
##
revision 1.0
##
########

import time

board.devAddr = 0x7A

CSI sel and CSI enable
board.WriteReg(0x32, 0x01)
time.sleep(0.5)
board.WriteReg(0x33, 0x01)
time.sleep(0.5)

enable pat gen
board.WriteReg(0xB0, 0x00)
board.WriteReg(0xB1, 0x01)
board.WriteReg(0xB2, 0x01) #enable pattern generator

board.WriteReg(0xB1, 0x02)
board.WriteReg(0xB2, 0xB9) #fixed color pattern, 8 color bars, block size of 9

board.WriteReg(0xB1, 0x03)
board.WriteReg(0xB2, 0x2C) #CSI Data Identifier (0x24 = RGB888, 0x2C = 12-bit)

board.WriteReg(0xB1, 0x04)
board.WriteReg(0xB2, 0x16) #line size (15:8)

board.WriteReg(0xB1, 0x05)
board.WriteReg(0xB2, 0x80) #line size (7:0)

board.WriteReg(0xB1, 0x06)
board.WriteReg(0xB2, 0x02) #bar size (15:8)

board.WriteReg(0xB1, 0x07)
board.WriteReg(0xB2, 0xd0) #bar size (7:0)

board.WriteReg(0xB1, 0x08)
board.WriteReg(0xB2, 0x02) #active lines per frame (15:8)

board.WriteReg(0xB1, 0x09)
board.WriteReg(0xB2, 0xd0) #active lines per frame (7:0)

board.WriteReg(0xB1, 0x0a)
board.WriteReg(0xB2, 0x04) #total lines per frame (15:8)

board.WriteReg(0xB1, 0x0b)
board.WriteReg(0xB2, 0x1a) #total lines per frame (7:0)

board.WriteReg(0xB1, 0x0c)
board.WriteReg(0xB2, 0x0c) #line period (15:8)

board.WriteReg(0xB1, 0x0d)
board.WriteReg(0xB2, 0x67) #line period (7:0)

board.WriteReg(0xB1, 0x0e)
board.WriteReg(0xB2, 0x21) #vertical back porch

board.WriteReg(0xB1, 0x0f)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Appendix

45SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

board.WriteReg(0xB2, 0x0a) #vertical front porch

#0xff0, 0x000, 0x000, 0xff0, 0x000, 0x000
board.WriteReg(0xB1, 0x10)
board.WriteReg(0xB2, 0xff) #1st byte of fixed color

board.WriteReg(0xB1, 0x11)
board.WriteReg(0xB2, 0x00) #2nd byte of fixed color

board.WriteReg(0xB1, 0x12)
board.WriteReg(0xB2, 0x00) #3rd byte of fixed color

board.WriteReg(0xB1, 0x13)
board.WriteReg(0xB2, 0x00) #4th byte of fixed color

board.WriteReg(0xB1, 0x14)
board.WriteReg(0xB2, 0xff) #5th byte of fixed color

board.WriteReg(0xB1, 0x15)
board.WriteReg(0xB2, 0x00) #6th byte of fixed color

board.WriteReg(0xB1, 0x16)
board.WriteReg(0xB2, 0x00) #7th byte of fixed color

board.WriteReg(0xB1, 0x17)
board.WriteReg(0xB2, 0x00) #8th byte of fixed color

board.WriteReg(0xB1, 0x18)
board.WriteReg(0xB2, 0x00) #9th byte of fixed color

board.WriteReg(0xB1, 0x19)
board.WriteReg(0xB2, 0x00) #10th byte of fixed color

board.WriteReg(0xB1, 0x1A)
board.WriteReg(0xB2, 0x00) #11th byte of fixed color

board.WriteReg(0xB1, 0x1B)
board.WriteReg(0xB1, 0x00) #12th byte of fixed color

board.WriteReg(0xB1, 0x1C)
board.WriteReg(0xB2, 0x00) #13th byte of fixed color

board.WriteReg(0xB1, 0x1D)
board.WriteReg(0xB2, 0x00) #14th byte of fixed color

board.WriteReg(0xB1, 0x1E)
board.WriteReg(0xB2, 0x00) #15th byte of fixed color

board.WriteReg(0xB1, 0x1F)
board.WriteReg(0xB2, 0x00) #16th byte of fixed color

7.1.12 Monitor Errors for Predetermined Time Script

953_954_Screen_CRC_Parity_CSI_InTime.py
##
revision 1.0 6/13/17
##
########

import time

devAddr_954 = 0x7A
devAddr_953 = 0x18

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Appendix www.ti.com

46 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

waitTime = 10 #Note this time is in seconds

print "\n"
print "devAddr_954 = 0x7A"
print "devAddr_953 = 0x18"

Clear previous errors

board.ReadI2C(devAddr_954,0x4D)
time.sleep(0.1)
board.ReadI2C(devAddr_954,0x55)
time.sleep(0.1)
board.ReadI2C(devAddr_954,0x56)
time.sleep(0.1)
board.ReadI2C(devAddr_954,0x7A)
time.sleep(0.1)
board.ReadI2C(devAddr_954,0x7B)
time.sleep(0.1)

board.WriteI2C(devAddr_953,0x49,0x08)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x79)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x55)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x56)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x5C)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x5D)
time.sleep(0.1)

Program time to wait
print "Wait ", waitTime, " seconds"
time.sleep(waitTime)

Print Registers
print "BC Status:", hex(board.ReadI2C(devAddr_953,0x52))
time.sleep(0.1)
print "CRC Error HI:", hex(board.ReadI2C(devAddr_953,0x56))
time.sleep(0.1)
print "CRC Error LO:", hex(board.ReadI2C(devAddr_953,0x55))
time.sleep(0.1)

print "FC Status:", hex(board.ReadI2C(devAddr_954,0x4D))
time.sleep(0.1)
print "Parity Error HI:", hex(board.ReadI2C(devAddr_954,0x55))
time.sleep(0.1)
print "Parity Error LO:", hex(board.ReadI2C(devAddr_954,0x56))
time.sleep(0.1)

print "953 CSI Status:", hex(board.ReadI2C(devAddr_953,0x5D))
time.sleep(0.1)

print "954 CSI Status:", hex(board.ReadI2C(devAddr_954,0x7A))
time.sleep(0.1)

print "CSI Error = ", hex(board.ReadI2C(devAddr_953, 0x5C, 1))
time.sleep(0.1)
print "Packet Header data = ", hex(board.ReadI2C(devAddr_953, 0x61, 1))
time.sleep(0.1)
print "Packet Header Word Count 0 = ", hex(board.ReadI2C(devAddr_953, 0x62, 1))
time.sleep(0.1)
print "Packet Header Word Count 1 = ", hex(board.ReadI2C(devAddr_953, 0x63, 1))
time.sleep(0.1)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Appendix

47SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

Clear Errors after test
board.ReadI2C(devAddr_954,0x4D)
time.sleep(0.1)
board.ReadI2C(devAddr_954,0x55)
time.sleep(0.1)
board.ReadI2C(devAddr_954,0x56)
time.sleep(0.1)
board.ReadI2C(devAddr_954,0x7A)
time.sleep(0.1)
board.ReadI2C(devAddr_954,0x7B)
time.sleep(0.1)

board.WriteI2C(devAddr_953,0x49,0x08)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x79)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x55)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x56)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x5C)
time.sleep(0.1)
board.ReadI2C(devAddr_953,0x5D)
time.sleep(0.1)

7.1.13 954 and 953 CSI Register Check Script

954_953_CSI_RegisterCheck.py
##
revision 1.0 6/13/17
##
########

print "\n\n"

SERalias = 0x18
DES = 0x7A

print("954 0x04: Device Status", hex(board.ReadI2C(DES, 0x04, 1)))
print("954 0x4D: RX Port Status", hex(board.ReadI2C(DES, 0x4D, 1)))
print("954 0x72: Map for Virtual Channel ID", hex(board.ReadI2C(DES, 0x72, 1)))
print("954 0x7A: CSI_RX_STS for Length and checksum errors", hex(board.ReadI2C(DES, 0x7A, 1)))
print("954 0x7B: CSI_ERR_COUNTER", hex(board.ReadI2C(DES, 0x7B, 1)))
print("954 0x7C: Port Config 2", hex(board.ReadI2C(DES, 0x7C, 1)))
print("954 0x33: CSI CTL", hex(board.ReadI2C(DES, 0x5F, 1)))
print("954 0x34: CSI STS", hex(board.ReadI2C(DES, 0x60, 1)))
print("954 0x4E: RX PORT STS2, Line Count Change, and CSI Error", hex(board.ReadI2C(DES, 0x4E,
1)))
print("954 0x55: RX Parity Error HI", hex(board.ReadI2C(DES, 0x55, 1)))
print("954 0x56: RX Parity Error LO", hex(board.ReadI2C(DES, 0x56, 1)))

print("--")

print("953 0x52: General Status", hex(board.ReadI2C(SERalias, 0x52, 1)))
print("953 0x5C: CSI_ERR_CNT", hex(board.ReadI2C(SERalias, 0x5C, 1)))
print("953 0x5D: CSI Error Status, check Length and Checksum errors", hex(board.ReadI2C(SERalias,
0x5D, 1)))
print("953 0x5E: CSI Error Data lanes 0 and 1", hex(board.ReadI2C(SERalias, 0x5E, 1)))
print("953 0x5F: CSI Error Data Lanes 2 and 3", hex(board.ReadI2C(SERalias, 0x5F, 1)))
print("953 0x60: CSI Error Clock Lane", hex(board.ReadI2C(SERalias, 0x60, 1)))
print("953 0x61: CSI Packet Header Data", hex(board.ReadI2C(SERalias, 0x61, 1)))
print("953 0x62: CSI Packet Header Word Count LSB", hex(board.ReadI2C(SERalias, 0x62, 1)))
print("953 0x63: CSI Packet Header Word Count MSB", hex(board.ReadI2C(SERalias, 0x63, 1)))
print("953 0x64: CSI ECC, bit 7 does line length Change", hex(board.ReadI2C(SERalias, 0x64, 1)))

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Appendix www.ti.com

48 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

print("953 0x79: BCC Status: Types of BCC Errors", hex(board.ReadI2C(SERalias, 0x79, 1)))
print("953 0x56: CRC Error count: MSB", hex(board.ReadI2C(SERalias, 0x56, 1)))
print("953 0x55: CRC Error count: LSB", hex(board.ReadI2C(SERalias, 0x56, 1)))

7.1.14 Time Till Lock Script on 953

TimeTillLock_953.py
##
revision 1.0 6/13/17
##
########

#Note, run this script locally on 953 before powering on the 953. Then power on the 953 within 7
seconds
#Resolution of timing can be tweaked using the resolution variable (in number of seconds)

##
Variables
import time

UB953ID = 0x30

resolution = 0.1

temp = 0x00
count = 0

pwd = 0x00
temp2 = 0

print "\n"

##
This waits 7 seconds for 953 to be powered on until continuing with script

while ((pwd & 0x40) != 0x40):
pwd = board.ReadI2C(UB953ID, 0x51, 1)
time.sleep(resolution)
temp2 = temp2 + resolution
if temp2 > 7:

pwd = 0x40
print "Timed out"

###
Reset can be used to simulate powering up the system

#time.sleep(1.5)

#board.WriteI2C(UB953ID,0x01,0x01) # Digital Reset without clearing registers
#board.WriteI2C(UB953ID,0x01,0x02) # Digital Reset with clearing registers

##
Prints general status for 35 seconds or until lock occurs

while ((temp & 0x05) != 0x05):
temp = board.ReadI2C(UB953ID,0x52,1)
print "General Status = ", hex(temp)
time.sleep(resolution)
count = count + resolution
if count > 35:

temp = 0x05
print "time out waiting for lock"

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

www.ti.com Appendix

49SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

How to Design a FPD-Link III System Using DS90UB953-Q1 and
DS90UB954-Q1

print "Lock established in approximately ", count, " seconds."

print "\n"

7.2 Acknowledgments
The authors, Cole Macias and Mandeep Singh, would like to thank Ramsin Ziazadeh, Justin Prayogo,
Tattiana Davenport, Jason Blackman, George Alphonse, Liam Keese, Dave Lewis, Andy McLean, Zoe
Nuyens, Davor Glisic, and Manickam Palaniappan for their technical contributions and guidance during the
creation of this design guide.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

Revision History www.ti.com

50 SNLA267A–March 2019–Revised June 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (March 2019) to A Revision ... Page

• Changed DS90UB935-Q1 to DS90UB953-Q1 in simplified block diagram graphic .. 3
• Fixed typo in flowchart graphic... 22

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA267A

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	How to Design a FPD-Link III System Using DS90UB953-Q1 and DS90UB954-Q1
	1 Overview
	1.1 System Level Functionality

	2 Basic Design Rules
	2.1 IDX and MODE Pin Verification
	2.1.1 REF Clock, CLK IN, AON and Frequency Selection
	2.1.1.1 Synchronous Mode
	2.1.1.2 Non-Synchronous CLK_IN Mode
	2.1.1.3 Non-Synchronous AON Mode
	2.1.1.4 CSI Throughput
	2.1.1.5 Clocking and Frequency Selection Example

	2.2 Successful I2C Communication With 953 and 954
	2.2.1 Aliasing
	2.2.2 Port Selection on 954

	2.3 I2C Passthrough Verification
	2.4 Basic Diagnostic and Error Registers

	3 Designing the Link Between SER and DES
	3.1 Back Channel Configuration
	3.2 BIST
	3.2.1 BIST Configuration and Status
	3.2.2 BIST Procedure
	3.2.3 List of Registers Used in BIST Script

	3.3 AEQ
	3.4 CML Out

	4  Designing Link Between SER and Image Sensor
	4.1 Sensor Initialization Using SER GPIOs
	4.2 CLKOUT

	5 Designing Link Between DES and ISP
	5.1 Frame Sync
	5.1.1 Using SER GPIOs From the DES
	5.1.2 Internal and External Frame Sync Configuration
	5.1.3 Tables for Using GPIOs and Frame Sync

	5.2 Port Forwarding
	5.3 Pattern Generation
	5.3.1 Accessing Indirect Registers
	5.3.2 Pattern Generation From DES to ISP and SER to DES

	6 Hardware Design
	6.1 Basic I2C Connectors
	6.1.1 I2C Pullups for SDA and SCL

	6.2 AC Capacitor on FPD3 Link
	6.3 Capacitance Used in Loop Filter
	6.4 Critical Signal Routing
	6.5 Time Domain Reflection
	6.6 Return Loss and Insertion Loss
	6.7 Power-over-Coax (PoC)
	6.8 Voltage and Temperature Sensing

	7  Appendix
	7.1 Scripts
	7.1.1 BIST Script
	7.1.2 Example Sensor Initialization Script
	7.1.3 CSI Enable and Port Forwarding Script
	7.1.4 Enabling CMLOUT FPD3 RX Port 0 on 954
	7.1.5 Remote Enabled SER GPIO Toggle Script
	7.1.6 Local SER GPIO Toggle Script
	7.1.7 Internal FrameSync on 953 GPIO1
	7.1.8 External FrameSync on 953 GPIO0
	7.1.9 SER GPIOs as Inputs and Output to DES GPIO
	7.1.10 Pattern Generation on the 953 Script
	7.1.11 Pattern Generation on the 954 Script
	7.1.12 Monitor Errors for Predetermined Time Script
	7.1.13 954 and 953 CSI Register Check Script
	7.1.14 Time Till Lock Script on 953

	7.2 Acknowledgments

	Revision History
	Important Notice

