
Application Report
SNLA228–October 2014

Understanding EEPROM Programming for High Speed
Repeaters and Mux Buffers

Michael Lu, Prescott Siao

ABSTRACT
System designers often use EEPROM (Electrically Erasable Programmable Read-Only Memory) to
program a set of customized high speed repeater and mux buffer start-up settings that are different from
the default. Using the information here will make repeater EEPROM configuration and programming easy
to implement and understand. This application note addresses SMBus-to-EEPROM mapping for 2-channel
repeaters, 8-channel repeaters (8-channel uni-directional and 4-lane bi-directional), and 2:1/1:2 mux
buffers. In addition, this application note provides guidance and several examples regarding how to read
the Intel hex file format as it relates to each programmed TI device. With a complete understanding of how
to program and interpret EEPROM hex files for TI’s 2-channel repeaters, 8-channel repeaters, and 2:1/1:2
mux buffers, system designers are better equipped to generate their own customized hex files and
increase the efficiency of their final designs. The information in this Application Report applies to the
DS80PCIxxx, DS100BRxxx, and DS125BRxxx drivers as well as the DS100MB203 and DS125MB203
mux buffers.

Contents
1 Introduction .. 2
2 EEPROM Physical Configuration ... 3

2.1 EEPROM Configuration for Single Device .. 3
2.2 EEPROM Configuration for Multiple Devices .. 4

3 SMBus-to-EEPROM Mapping.. 5
4 EEPROM Hex File Format ... 9
5 EEPROM Device Data Fundamentals... 10

5.1 Base Header ... 10
5.2 Address Map Header ... 10
5.3 Cyclic Redundancy Check (CRC) Calculation... 11
5.4 Number of Devices versus Number of Slots... 11

6 Example 1: EEPROM Hex File for 1 Device, CRC Disabled ... 12
7 Example 2: EEPROM Hex File for 4 EEPROM slots, CRC Enabled.. 13
8 Example 3: EEPROM Hex File for 12 Devices, CRC Disabled .. 14
9 Summary .. 15
10 References .. 15

All trademarks are the property of their respective owners.

1SNLA228–October 2014 Understanding EEPROM Programming for High Speed Repeaters and Mux
BuffersSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

Introduction www.ti.com

1 Introduction
EEPROM is non-volatile memory used in electronic devices to store data that must be saved when power
is removed. This non-volatile memory is particularly important when an application requires different start-
up configurations than the factory default settings. Upon device power-up, data saved in the EEPROM will
load automatically to the device. If EEPROM is not used, interface system designs require external access
to the SMBus SDA and SCL lines in order to set individual registers after each power-up. With EEPROM,
designers eliminate the requirement for an external microprocessor or software driver to provide their
desired register settings.

Programming EEPROM for TI’s high speed repeaters requires an understanding of how EEPROM relates
to the high speed repeater Slave Mode SMBus registers. When generating EEPROM hex images for one
of TI’s high speed repeaters, the following must be considered:
• Users must map EEPROM address bits correctly to the matching device SMBus register bits. Note that

only a subset of SMBus register settings are mapped to EEPROM.
• The contents of an EEPROM are typically stored in Intel hex-file format. The format at times can

appear cryptic, especially when multiple devices are programmed to the EEPROM.
• Programming multiple device slots requires either two or three additional address map header bytes

per device to denote the CRC and starting address of each device slot.

To address these design challenges, this application note explains how to map SMBus registers to
EEPROM addresses, how to interpret the Intel hex file format, and how to program EEPROM data for
multiple devices.

2 Understanding EEPROM Programming for High Speed Repeaters and Mux SNLA228–October 2014
Buffers Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

EEPROM

A
D

0

A
D

1

A
D

2

DS80PCI800
Device ID: 0xB0

S
D

A

S
C

L

{

A
D

0

A
D

1

A
D

2

S
D

A

S
C

L

A
D

3

Float one or both of these
pins if EEPROM required is

larger than 256 bytes

Customized registers settings
loaded from EEPROM to

device upon startup

MCU External
SMBus Master

SDA

SCL

External SMBus Control (Optional)

R
E

A
D

_E
N

A
LL_D

O
N

E

Optional LED to indicate
EEPROM Load Completion

LED turns on when
ALL_DONE pin asserts low
by tying LED anode to VDD

or 3.3V.

VDD

SDA

SCL

220

www.ti.com EEPROM Physical Configuration

2 EEPROM Physical Configuration
EEPROM programming depends on the number of repeaters that share the same SMBus interface. It is
therefore important to understand how an EEPROM is configured to interface with TI’s repeaters and mux
buffers. The following subsections provide insight about EEPROM connections for single and multiple
devices.

2.1 EEPROM Configuration for Single Device
A simplified block diagram of EEPROM connected to a single device is shown in Figure 1. If a single
device operates in SMBus Master Mode, the EEPROM loads specific SMBus register bits into the device
when READ_EN is asserted low. While data is loading to the device, the device operates as a master
over the bus and requests data from the EEPROM. Once the EEPROM contents are successfully read,
the ALL_DONE pin asserts low. In most repeater and mux buffer EVMs, an LED is attached to the
ALL_DONE pin to notify that a successful read has occurred. Once the ALL_DONE pin asserts low, the
device releases control of the bus and resumes operation in SMBus slave mode. At this point, an optional
external SMBus control MCU master may be used for any additional programming or monitoring, though it
is not required.

Figure 1. Example of EEPROM Used to Program a Single DS80PCI800

3SNLA228–October 2014 Understanding EEPROM Programming for High Speed Repeaters and Mux
BuffersSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

EEPROM

A
D

0

A
D

1

A
D

2

DS80PCI800
Device ID: 0xB0

S
D

A

S
C

L

{
A

D
0

A
D

1

A
D

2

S
D

A

S
C

L

A
D

3

Float both of these pins.
Note: EEPROM > 256 bytes

required for 4+ devices

Customized registers settings loaded from EEPROM to each connected
device upon startup.

Note: To avoid SDA/SCL bus contention amongst devices, ALL_DONE
for each device is tied to READ_EN of the next device in sequence

R
E

A
D

_E
N

A
LL_D

O
N

E

DS80PCI800
Device ID: 0xB2

A
D

0

A
D

1

A
D

2

S
D

A

S
C

L

A
D

3

R
E

A
D

_E
N

VDD

A
LL_D

O
N

E

DS80PCI800
Device ID: 0xB8

A
D

0

A
D

1

A
D

2

S
D

A

S
C

L

A
D

3

R
E

A
D

_E
N

A
LL_D

O
N

E

DS80PCI800
Device ID: 0xB6

A
D

0

A
D

1

A
D

2

S
D

A

S
C

L

A
D

3

R
E

A
D

_E
N

VDD

A
LL_D

O
N

E DS80PCI800
Device ID: 0xB4

A
D

0

A
D

1

A
D

2

S
D

A

S
C

L

A
D

3

R
E

A
D

_E
N

VDD

A
LL_D

O
N

E

VDDVDD

Optional LED to indicate
EEPROM Load Completion

LED turns on when
ALL_DONE pin asserts low
by tying LED anode to VDD

or 3.3V.

VDD

220

MCU External
SMBus Master

SDA

SCL

SDA

SCL

External SMBus Control (Optional)

EEPROM Physical Configuration www.ti.com

2.2 EEPROM Configuration for Multiple Devices
The sequential behavior in which the READ_EN and ALL_DONE pins function are ideal for systemically
programming EEPROM contents to multiple devices that share the same SMBus lines. By asserting the
READ_EN pin of the first device low, the EEPROM will load the first device's contents into the first device.
During this time, no other device can take control of the SMBus lines until this first device finishes and
asserts its ALL_DONE pin low. Therefore, the ALL_DONE pin of the first device can be tied directly to the
READ_EN pin of the second device in the sequence to indicate when the second device can take control
of the SMBus lines. This daisy chain process continues until the last device loads its settings from the
EEPROM successfully. Daisy chaining is a recommended practice for loading EEPROM settings to
multiple devices connected to the same SMBus lines, and this implementation prevents bus contention
that can occur when two devices try to read from the EEPROM simultaneously.

A simplified block diagram of EEPROM connected to multiple devices is shown in Figure 2. In this
example, there are 5 x DS80PCI800 repeaters. Note how daisy chaining is used to implement sequential
EEPROM loading.

Figure 2. Example of EEPROM Used to Program Five DS80PCI800 Devices

4 Understanding EEPROM Programming for High Speed Repeaters and Mux SNLA228–October 2014
Buffers Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

www.ti.com SMBus-to-EEPROM Mapping

3 SMBus-to-EEPROM Mapping
When populating EEPROM addresses, it is important to understand how the device SMBus Slave
registers map to the EEPROM. The EEPROM only takes a subset of the SMBus register bits. SMBus
register bits that are not stored in EEPROM cannot be changed from default at device startup. A table of
the DS125BR401A SMBus-to-EEPROM mapping is shown in Table 1.

To read the table, the blue column represents the EEPROM address byte, while columns 2-9 show Bits
7:0 for the corresponding EEPROM address. The matching SMBus register bit for each EEPROM address
bit is shown in green, and the respective default value for that bit is shown in the row directly below. For
example, EEPROM Address 0x05[4] maps to SMBus Slave Mode Reg 0x04[1], where the default value is
0, while EEPROM Address 0x06[2] maps to SMBus Slave Mode Reg 0x0B[6], where the default value is
1.

Though TI’s 2-channel repeaters, 8-channel repeaters, and 2:1/1:2 mux buffers differ from one another
regarding the function description of each specific SMBus register bit, they all share the same SMBus-to-
EEPROM register bit-to-bit mapping.

NOTE: The first three bytes of the EEPROM always contain a base header to control initialization of
all devices connected to the same SMBus lines.

5SNLA228–October 2014 Understanding EEPROM Programming for High Speed Repeaters and Mux
BuffersSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

SMBus-to-EEPROM Mapping www.ti.com

Table 1. EEPROM Address Map from DS125BR401A - Single Device with Default Value
EEPROM Address Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CRC_EN ADDR Map Present EEPROM > 256 Reserved DEVICE COUNT [3] DEVICE COUNT [2] DEVICE COUNT [1] DEVICE COUNT [0]Description Bytes0 (0x00)
Default Value 0x00 0 0 0 0 0 0 0 0

Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
1 (0x01)

Default Value 0x00 0 0 0 0 0 0 0 0

Max EEPROM Max EEPROM Max EEPROM Max EEPROM Max EEPROM Max EEPROM Max EEPROM Max EEPROM
Description

2 (0x02) Burst size [7] Burst size [6] Burst size [5] Burst size [4] Burst size [3] Burst size [2] Burst size [1] Burst size [0]

Default Value 0x00 0 0 0 0 0 0 0 0

Description PWDN_CH7 PWDN_CH6 PWDN_CH5 PWDN_CH4 PWDN_CH3` PWDN_CH2 PWDN_CH1 PWDN_CH0

SMBus Register 3 (0x03) 0x01 [7] 0x01 [6] 0x01 [5] 0x01 [4] 0x01 [3] 0x01 [2] 0x01 [1] 0x01 [0]

Default Value 0x00 0 0 0 0 0 0 0 0

Description Reserved Reserved Reserved Reserved OVRD_PWDN CH7_EQ_LIM CH6_EQ_LIM CH5_EQ_LIM

SMBus Register 4 (0x04) 0x02 [5] 0x02 [4] 0x02 [3] 0x02 [2] 0x02 [0] 0x04 [7] 0x04 [6] 0x04 [5]

Default Value 0x00 0 0 0 0 0 0 0 0

Description CH4_EQ_LIM CH3_EQ_LIM CH2_EQ_LIM CH1_EQ_LIM CH0_EQ_LIM Reserved OVRD_SD_TH Reserved

SMBus Register 5 (0x05) 0x04 [4] 0x04 [3] 0x04 [2] 0x04 [1] 0x04 [0] 0x06 [4] 0x08 [6] 0x08 [5]

Default Value 0x04 0 0 0 0 0 1 0 0

Description OVRD_IDLE OVRD_RX_DET OVRD_MODE_B Reserved Reserved Reserved Reserved Reserved

SMBus Register 6 (0x06) 0x08 [4] 0x08 [3] 0x08 [2] 0x08 [1] 0x08 [0] 0x0B [6] 0x0B [5] 0x0B [4]

Default Value 0x07 0 0 0 0 0 1 1 1

Description Reserved Reserved Reserved Reserved CH0_IDLE_AUTO CH0_IDLE_SEL CH0_RXDET_1 CH0_RXDET_0

SMBus Register 7 (0x07) 0x0B [3] 0x0B [2] 0x0B [1] 0x0B [0] 0x0E [5] 0x0E [4] 0x0E [3] 0x0E [2]

Default Value 0x00 0 0 0 0 0 0 0 0

Description CH0_EQ_7 CH0_EQ_6 CH0_EQ_5 CH0_EQ_4 CH0_EQ_3 CH0_EQ_2 CH0_EQ_1 CH0_EQ_0

SMBus Register 8 (0x08) 0x0F [7] 0x0F [6] 0x0F [5] 0x0F [4] 0x0F [3] 0x0F [2] 0x0F [1] 0x0F [0]

Default Value 0x2F 0 0 1 0 1 1 1 1

Description CH0_SCP CH0_MODE Reserved Reserved Reserved CH0_VOD_2 CH0_VOD_1 CH0_VOD_0

SMBus Register 9 (0x09) 0x10 [7] 0x10 [6] 0x10 [5] 0x10 [4] 0x10 [3] 0x10 [2] 0x10 [1] 0x10 [0]

Default Value 0xAD 1 0 1 0 1 1 0 1

Description CH0_DEM_2 CH0_DEM_1 CH0_DEM_0 Reserved CH0_IDLE_THA_1 CH0_IDLE_THA_0 CH0_IDLE_THD_1 CH0_IDLE_THD_0

SMBus Register 10 (0x0A) 0x11 [2] 0x11 [1] 0x11 [0] 0x12 [7] 0x12 [3] 0x12 [2] 0x12 [1] 0x12 [0]

Default Value 0x40 0 1 0 0 0 0 0 0

Description CH1_IDLE_AUTO CH1_IDLE_SEL CH1_RXDET_1 CH1_RXDET_0 CH1_EQ_7 CH1_EQ_6 CH1_EQ_5 CH1_EQ_4

SMBus Register 11 (0x0B) 0x15 [5] 0x15 [4] 0x15 [3] 0x15 [2] 0x16 [7] 0x16 [6] 0x16 [5] 0x16 [4]

Default Value 0x02 0 0 0 0 0 0 1 0

Description CH1_EQ_3 CH1_EQ_2 CH1_EQ_1 CH1_EQ_0 CH1_SCP CH1_MODE Reserved Reserved

SMBus Register 12 (0x0C) 0x16 [3] 0x16 [2] 0x16 [1] 0x16 [0] 0x17 [7] 0x17 [6] 0x17[5] 0x17[4]

Default Value 0xFA 1 1 1 1 1 0 1 0

Description Reserved CH1_VOD_2 CH1_VOD_1 CH1_VOD_0 CH1_DEM_2 CH1_DEM_1 CH1_DEM_0 Reserved

SMBus Register 13 (0x0D) 0x17 [3] 0x17 [2] 0x17 [1] 0x17 [0] 0x18 [2] 0x18 [1] 0x18 [0] 0x19 [7]

Default Value 0xD4 1 1 0 1 0 1 0 0

6 Understanding EEPROM Programming for High Speed Repeaters and Mux SNLA228–October 2014
Buffers Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

www.ti.com SMBus-to-EEPROM Mapping

Table 1. EEPROM Address Map from DS125BR401A - Single Device with Default Value (continued)
EEPROM Address Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description CH1_IDLE_THA_1 CH1_IDLE_THA_0 CH1_IDLE_THD_1 CH1_IDLE_THD_0 CH2_IDLE_AUTO CH2_IDLE_SEL Reserved Reserved

SMBus Register 14 (0x0E) 0x19 [3] 0x19 [2] 0x19 [1] 0x19 [0] 0x1C [5] 0x1C [4] 0x1C [3] 0x1C [2]

Default Value 0x00 0 0 0 0 0 0 0 0

Description CH2_EQ_7 CH2_EQ_6 CH2_EQ_5 CH2_EQ_4 CH2_EQ_3 CH2_EQ_2 CH2_EQ_1 CH2_EQ_0

SMBus Register 15 (0x0F) 0x1D [7] 0x1D [6] 0x1D [5] 0x1D [4] 0x1D [3] 0x1D [2] 0x1D [1] 0x1D [0]

Default Value 0x2F 0 0 1 0 1 1 1 1

Description CH2_SCP CH2_MODE Reserved Reserved Reserved CH2_VOD_2 CH2_VOD_1 CH2_VOD_0

SMBus Register 16 (0x10) 0x1E [7] 0x1E [6] 0x1E [5] 0x1E [4] 0x1E [3] 0x1E [2] 0x1E [1] 0x1E [0]

Default Value 0xAD 1 0 1 0 1 1 0 1

Description CH2_DEM_2 CH2_DEM_1 CH2_DEM_0 Reserved CH2_IDLE_THA_1 CH2_IDLE_THA_0 CH2_IDLE_THD_1 CH2_IDLE_THD_0

SMBus Register 17 (0x11) 0x1F [2] 0x1F [1] 0x1F [0] 0x20 [7] 0x20 [3] 0x20 [2] 0x20 [1] 0x20 [0]

Default Value 0x40 0 1 0 0 0 0 0 0

Description CH3_IDLE_AUTO CH3_IDLE_SEL CH3_RXDET_1 CH3_RXDET_0 CH3_EQ_7 CH3_EQ_6 CH3_EQ_5 CH3_EQ_4

SMBus Register 18 (0x12) 0x23 [5] 0x23 [4] 0x23 [3] 0x23 [2] 0x24 [7] 0x24 [6] 0x24 [5] 0x24 [4]

Default Value 0x02 0 0 0 0 0 0 1 0

Description CH3_EQ_3 CH3_EQ_2 CH3_EQ_1 CH3_EQ_0 CH3_SCP CH3_MODE Reserved Reserved

SMBus Register 19 (0x13) 0x24 [3] 0x24 [2] 0x24 [1] 0x24 [0] 0x25 [7] 0x25 [6] 0x25 [5] 0x25 [4]

Default Value 0xFA 1 1 1 1 1 0 1 0

Description Reserved CH3_VOD_2 CH3_VOD_1 CH3_VOD_0 CH3_DEM_2 CH3_DEM_1 CH3_DEM_0 Reserved

SMBus Register 20 (0x14) 0x25 [3] 0x25 [2] 0x25 [1] 0x25 [0] 0x26 [2] 0x26 [1] 0x26 [0] 0x27 [7]

Default Value 0xD4 1 1 0 1 0 1 0 0

Description CH3_IDLE_THA_1 CH3_IDLE_THA_0 CH3_IDLE_THD_1 CH3_IDLE_THD_0 OVRD_FAST_IDLE HI_IDLE_TH_CH0-3 HI_IDLE_TH_CH4-7 FAST_IDLE_CH0-3

SMBus Register 21 (0x15) 0x27 [3] 0x27 [2] 0x27 [1] 0x27 [0] 0x28 [6] 0x28 [5] 0x28 [4] 0x28 [3]

Default Value 0x09 0 0 0 0 1 0 0 1

Description FAST_IDLE_CH4-7 LO_GAIN_CH0-3 LO_GAIN_CH4-7 CH4_IDLE_AUTO CH4_IDLE_SEL CH4_RXDET_1 CH4_RXDET_0 Reserved

SMBus Register 22 (0x16) 0x28 [2] 0x28 [1] 0x28 [0] 0x2B [5] 0x2B [4] 0x2B [3] 0x2B [2] 0x2C [7]

Default Value 0x80 1 0 0 0 0 0 0 0

Description Reserved Reserved Reserved Reserved Reserved CH4_EQ_1 CH4_EQ_0 CH4_SCP

SMBus Register 23 (0x17) 0x2C [6] 0x2C [5] 0x2C [4] 0x2C [3] 0x2C [2] 0x2C [1] 0x2C [0] 0x2D [7]

Default Value 0x5F 0 1 0 1 1 1 1 1

Description Reserved Reserved Reserved Reserved CH4_VOD_2 CH4_VOD_1 CH4_VOD_0 CH4_DEM_2

SMBus Register 24 (0x18) 0x2D [6] 0x2D [5] 0x2D [4] 0x2D [3] 0x2D [2] 0x2D [1] 0x2D [0] 0x2E [2]

Default Value 0x5A 0 1 0 1 1 0 1 0

Description CH4_DEM_1 CH4_DEM_0 Reserved CH4_IDLE_THA_1 CH4_IDLE_THA_0 CH4_IDLE_THD_1 CH4_IDLE_THD_0 CH5_IDLE_AUTO

SMBus Register 25 (0x19) 0x2E [1] 0x2E [0] 0x2F [7] 0x2F [3] 0x2F [2] 0x2F [1] 0x2F [0] 0x32 [5]

Default Value 0x80 1 0 0 0 0 0 0 0

Description CH5_IDLE_SEL CH5_RXDET_1 CH5_RXDET_0 Reserved Reserved Reserved Reserved Reserved

SMBus Register 26 (0x1A) 0x32 [4] 0x32 [3] 0x32 [2] 0x33 [7] 0x33 [6] 0x33 [5] 0x33 [4] 0x33 [3]

Default Value 0x05 0 0 0 0 0 1 0 1

7SNLA228–October 2014 Understanding EEPROM Programming for High Speed Repeaters and Mux
BuffersSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

SMBus-to-EEPROM Mapping www.ti.com

Table 1. EEPROM Address Map from DS125BR401A - Single Device with Default Value (continued)
EEPROM Address Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Description Reserved CH5_EQ_1 CH5_EQ_0 CH5_SCP Reserved Reserved Reserved Reserved

SMBus Register 27 (0x1B) 0x33 [2] 0x33 [1] 0x33 [0] 0x34 [7] 0x34 [6] 0x34 [5] 0x34 [4] 0x34 [3]

Default Value 0xF5 1 1 1 1 0 1 0 1

Description CH5_VOD_2 CH5_VOD_1 CH5_VOD_0 CH5_DEM_2 CH5_DEM_1 CH5_DEM_0 Reserved CH5_IDLE_THA_1

SMBus Register 28 (0x1C) 0x34 [2] 0x34 [1] 0x34 [0] 0x35 [2] 0x35 [1] 0x35 [0] 0x36 [7] 0x36 [3]

Default Value 0xA8 1 0 1 0 1 0 0 0

Description CH5_IDLE_THA_0 CH5_IDLE_THD_1 CH5_IDLE_THD_0 CH6_IDLE_AUTO CH6_IDLE_SEL CH6_RXDET_1 CH6_RXDET_0 Reserved

SMBus Register 29 (0x1D) 0x36 [2] 0x36 [1] 0x36 [0] 0x39 [5] 0x39 [4] 0x39 [3] 0x39 [2] 0x3A [7]

Default Value 0x00 0 0 0 0 0 0 0 0

Description Reserved Reserved Reserved Reserved Reserved CH6_EQ_1 CH6_EQ_0 CH6_SCP

SMBus Register 30 (0x1E) 0x3A [6] 0x3A [5] 0x3A [4] 0x3A [3] 0x3A [2] 0x3A [1] 0x3A [0] 0x3B [7]

Default Value 0x5F 0 1 0 1 1 1 1 1

Description Reserved Reserved Reserved Reserved CH6_VOD_2 CH6_VOD_1 CH6_VOD_0 CH6_DEM_2

SMBus Register 31 (0x1F) 0x3B [6] 0x3B [5] 0x3B [4] 0x3B [3] 0x3B [2] 0x3B [1] 0x3B [0] 0x3C [2]

Default Value 0x5A 0 1 0 1 1 0 1 0

Description CH6_DEM_1 CH6_DEM_0 Reserved CH6_IDLE_THA_1 CH6_IDLE_THA_0 CH6_IDLE_THD_1 CH6_IDLE_THD_0 CH7_IDLE_AUTO

SMBus Register 32 (0x20) 0x3C [1] 0x3C [0] 0x3D [7] 0x3D [3] 0x3D [2] 0x3D [1] 0x3D [0] 0x40 [5]

Default Value 0x80 1 0 0 0 0 0 0 0

Description CH7_IDLE_SEL CH7_RXDET_1 CH7_RXDET_0 Reserved Reserved Reserved Reserved Reserved

SMBus Register 33 (0x21) 0x40 [4] 0x40 [3] 0x40 [2] 0x41 [7] 0x41 [6] 0x41 [5] 0x41 [4] 0x41 [3]

Default Value 0x05 0 0 0 0 0 1 0 1

Description Reserved CH7_EQ_1 CH7_EQ_0 CH7_SCP Reserved Reserved Reserved Reserved

SMBus Register 34 (0x22) 0x41 [2] 0x41 [1] 0x41 [0] 0x42 [7] 0x42 [6] 0x42 [5] 0x42 [4] 0x42 [3]

Default Value 0xF5 1 1 1 1 0 1 0 1

Description CH7_VOD_2 CH7_VOD_1 CH7_VOD_0 CH7_DEM_2 CH7_DEM_1 CH7_DEM_0 Reserved CH7_IDLE_THA_1

SMBus Register 35 (0x23) 0x42 [2] 0x42 [1] 0x42 [0] 0x43 [2] 0x43 [1] 0x43 [0] 0x44 [7] 0x44 [3]

Default Value 0xA8 1 0 1 0 1 0 0 0

Description CH7_IDLE_THA_0 CH7_IDLE_THD_1 CH7_IDLE_THD_0 Reserved Reserved Reserved Reserved Reserved

SMBus Register 36 (0x24) 0x44 [2] 0x44 [1] 0x44 [0] 0x47 [3] 0x47 [2] 0x47 [1] 0x47 [0] 0x48 [7]

Default Value 0x00 0 0 0 0 0 0 0 0

Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

SMBus Register 37 (0x25) 0x48 [6] 0x4C [7] 0x4F [6] 0x4C [5] 0x4C [4] 0x4C [3] 0x4C [0] 0x59 [0]

Default Value 0x00 0 0 0 0 0 0 0 0

Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

SMBus Register 38 (0x26) 0x5A [7] 0x5A [6] 0x5A [5] 0x5A [4] 0x5A [3] 0x5A [2] 0x5A [1] 0x5A [0]

Default Value 0x54 0 1 0 1 0 1 0 0

Description Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

SMBus Register 39 (0x27) 0x5B [7] 0x5B [6] 0x5B [5] 0x5B [4] 0x5B [3] 0x5B [2] 0x5B [1] 0x5B [0]

Default Value 0x54 0 1 0 1 0 1 0 0

8 Understanding EEPROM Programming for High Speed Repeaters and Mux SNLA228–October 2014
Buffers Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

www.ti.com EEPROM Hex File Format

4 EEPROM Hex File Format
Hex files are an ASCII text file with the extension .hex, and the EEPROM format of choice for TI repeaters
and mux buffers is the Intel hex file format. Intel hex file format is widely used for storing and transferring
data in ROM, EEPROM, and microcontrollers. In an Intel hex file, each line consists of hexadecimal data.
Below is an example of the first few lines of a .hex file for the DS80PCI800.

:20000000600010003300005800007D0000A20000C70000EC00001101003601005B010080EE
:200020000100A50100CA01000000000000000000000000000004270003ED20003ED2002FD4
:20004000AD4002FA1409E05F428005F5A8005F5A8005F5A800005454000004270003ED2039
:20006000003ED2002FAD4002FA1409E05F428005F5A8005F5A8005F5A80000545400000411
:20008000270003ED20003ED2002FAD4002FA1409E05F428005F5A8005F5A8005F5A8000066

Each hex file line conforms to a specific format. The following color scheme differentiates the meaning of
the format for each line. Below is an example of how the first line is interpreted:

In order to evaluate the checksum of each hex line, every byte in the line is summed together, and the
two’s complement is taken from the sum. The checksum is the least significant byte of this result. In the
hex line example above, the checksum is calculated below:

Ex: 20 + 00 + 00 + 00 + 60 + 00 + 10 + 00 + 33 + 00 + 00 + 58 + 00 + 00 + 7D + 00 + 00 + A2 + 00 + 00
+ C7 + 00 + 00 + EC + 00 + 00 + 11 + 01 +00 + 36 + 01 + 00 +5B +01 + 00 + 80 = 512

then do two's complement
1'h + not(512'h) = 1'h + 2ED'h = 2EE'h (1)

NOTE: Application tools are often used to calculate this checksum automatically.

Every line with the exception of the last line of hex will follow this format scheme. The last line of hex will
always be the End-of-File (EOF) record, shown as: 00000001FF.

9SNLA228–October 2014 Understanding EEPROM Programming for High Speed Repeaters and Mux
BuffersSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

EEPROM Device Data Fundamentals www.ti.com

5 EEPROM Device Data Fundamentals
Each repeater and mux buffer EEPROM file contains one base header. Depending on the system design,
a CRC and address map header may also be used after the base header. A detailed explanation about
the contents of these headers and other key fundamentals are discussed in the subsections below.

5.1 Base Header
The first three bytes define the Base Header. The meaning of the first three bytes is explained in Table 2.

Table 2. Base Header Information

BYTE BIT NO. BIT NAME DESCRIPTION
1 = CRC enable. If enabled, each device will have a CRC value specific to the
base header (3 bytes), address map header (2 or 3 bytes, if applicable), and data

7 CRC_EN (37 bytes).
0 = CRC disabled. If disabled, the CRC value is not computed, and CRC checking
is ignored.
1 = Address Map Header enable. If enabled, a 2 or 3 byte address map header will
be placed after the base header to indicate the start address of each device’s

6 ADDR Map Enable EEPROM.
0 = Address Map Header disable. If disabled, the first device's EEPROM

0 information will immediately follow the base header.
1 = Required EEPROM size is more than 256 bytes. This is necessary if there are
more than 4 EEPROM slots.5 EEPROM > 256 Bytes 0 = Required EEPROM size is 256 bytes or less. This value indicates that up to 4
EEPROM slots can be programmed.

4 RES Reserved. Set bit to 0.
DEVICE COUNT = (Total number of Devices) - 1

3:0 DEVICE COUNT Note: This value is not used by the device when the EEPROM loads data, though
it is a useful debugging reference.

1 7:0 RES Reserved. Set bits to 0.
Max EEPROM Burst Maximum number of bytes that are read during a burst read operation. A value of2 7:0 Size 0x10 is suitable for all EEPROMs using TI’s high speed repeaters and mux buffers.

5.2 Address Map Header
When multiple devices are used, address map headers are necessary. In order to assign the correct
EEPROM data to the correct device, each device must know the location where it can obtain the correct
register settings. Details about where this information exists in the address map header are given in
Table 3.

Table 3. Address Map Header Information

BYTE BIT NO. BIT NAME DESCRIPTION
8-Bit CRC value for each device. CRC is computed from the base header (3 bytes),

0 7:0 CRC Value address map header (2 or 3 bytes, if applicable), and EEPROM data specific to the
device (37 bytes).

Device EEPROM Start Start address for device-specific EEPROM data. Recall that Address 0x00-0x02 of1 7:0 Address device EEPROM is stored in the base header.
7:0 RES Reserved. Set bits to 0.

2 Device EEPROM Start These bits are only set if EEPROM Size > 256 bytes. Up to 3 MSB bits can be2:0 Address MSBs appended to the front of the EEPROM start address indicated in Byte 1.

NOTE: Byte 2 is present only if EEPROM > 256 bytes, as indicated by asserting Base Header
Address 0x00[5] = 1. For example, if the EEPROM start address is located at Address
0x1F4, 9 bits are required. Thus, Address Map Header Byte 1 = 0xF4, and Address Map
Header Byte 2 = 0x01. If EEPROM ≤ 256 bytes, then the address map header will be 2
bytes, not 3 bytes.

10 Understanding EEPROM Programming for High Speed Repeaters and Mux SNLA228–October 2014
Buffers Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

www.ti.com EEPROM Device Data Fundamentals

5.3 Cyclic Redundancy Check (CRC) Calculation
Sometimes, systems require a CRC check to ensure communication integrity between EEPROM and
target device. When the CRC is enabled in the Base Header (Address 0x00[7] = 1), each device
programmed by the EEPROM will have a specific CRC value in its respective Address Map Header Byte
0. The CRC is calculated via the CRC-8 polynomial, where the input x = [Base Header (3 Bytes) +
Address Map header (1 or 2 Bytes) + Device Data (37 Bytes)]. An example is provided below:

Table 4. EEPROM CRC-8 Example

Section Value (Hex)
Base Header 0xC00010

Address Map Header 0x23

0x000004070000AA80000AA80000AA80000AA8Device Data
00800155000015500001550000155000005454

0xC0001023000004070000AA80000AA80000AA8000CRC-8 Input
0AA800800155000015500001550000155000005454

Computed CRC-8 0xB6(Address Map Header Byte 0)

5.4 Number of Devices versus Number of Slots
There is an important distinction between the number of devices and the number of slots. The number of
devices pertains to the total number of physical devices present on the line. A maximum of 16 devices can
be programmed from the EEPROM. However, the number of slots pertains to the total number of unique
SMBus register settings to load from the EEPROM. Thus, the required size of the EEPROM depends
more on the number of unique EEPROM slots that are used compared to the number of devices that will
be programmed.

Oftentimes, multiple devices share the same SMBus register settings. If multiple devices share the exact
same SMBus register settings, then they can share the same EEPROM slot. In contrast, if different
register settings are required for any of the devices connected to the same EEPROM, each different set of
SMBus register settings will require its own EEPROM slot.

11SNLA228–October 2014 Understanding EEPROM Programming for High Speed Repeaters and Mux
BuffersSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

Example 1: EEPROM Hex File for 1 Device, CRC Disabled www.ti.com

6 Example 1: EEPROM Hex File for 1 Device, CRC Disabled
The simplest case for programming EEPROM is programming for a single device. The following are key
factors to consider when programming a single device:
• Address Map Header can typically be disabled, since the EEPROM does not need to reference the

start address of multiple-device EEPROM data.
• Single-device configurations will not require more than 256 bytes of EEPROM.
• Only one slot is needed.

Below is an example of a hex file for a single DS80PCI800 device, shown in Figure 3. The data relevant to
the DS80PCI800 EEPROM address bits is highlighted in green.

Figure 3. Example of a Hex File for a Single DS80PCI800 Device

From the DS80PCI800 hex file, the base header bytes are 0x000010. From Table 2, this means the
following:
• CRC is disabled (Address 0x00[7] = 0’b).
• No address map header is used (Address 0x00[6] = 0’b).
• EEPROM ≤ 256 bytes (Address 0x00[5] = 0’b).
• DEVICE COUNT = 1 Device (Address 0x00[3:0] = 0000’b).
• Max EEPROM Burst size = 16 bytes (Address 0x02 = 0x10).

Since no address map header is used, the remaining 37 bytes following the base header in the green-
highlighted section are device-specific data. In the SMBus-to-EEPROM mapping table, these bytes match
with the descriptions of EEPROM Address 0x03-0x27.

12 Understanding EEPROM Programming for High Speed Repeaters and Mux SNLA228–October 2014
Buffers Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

www.ti.com Example 2: EEPROM Hex File for 4 EEPROM slots, CRC Enabled

7 Example 2: EEPROM Hex File for 4 EEPROM slots, CRC Enabled
When programming EEPROM with up to 4 EEPROM slots, the following are considered:
• Address Map Header must be used.
• If 1-4 EEPROM slots are needed, then EEPROM size ≤ 256 bytes is adequate.
• Address Map Header will be 2 bytes.

Below is an example of a hex file for 4 x DS80PCI800 devices (4 unique EEPROM slots) that are CRC
enabled, shown in Figure 4.

Figure 4. Example of a Hex File for 4 x DS80PCI800 Devices
(4 Unique EEPROM Slots) that are CRC enabled

The base header bytes are 0xC30010. From Table 2, the following is derived:
• CRC is enabled (Address 0x00[7] = 1’b).
• Address map header is enabled (Address 0x00[6] = 1’b).
• EEPROM ≤ 256 bytes (Address 0x00[5] = 0’b).
• DEVICE COUNT = 4 Devices (Address 0x00[3:0] = 0011’b).
• Max EEPROM Burst size = 16 bytes (Address 0x02 = 0x10).

There are four address map headers specific for each device. Note that only two bytes are used for the
address map header, since the EEPROM ≤ 256 bytes. From Table 3, the following is derived:
• Device 0 [CRC, Start Address] = [0xB6, 0x23]
• Device 1 [CRC, Start Address] = [0x55, 0x48]
• Device 2 [CRC, Start Address] = [0x6D, 0x6D]
• Device 3 [CRC, Start Address] = [0xDF, 0x92]

By searching for the start address relevant to each device, the remaining 37 bytes for that device’s
register settings can be found. For example, in Device 3, the 37 bytes of device data begin at EEPROM
Address 0x92.

13SNLA228–October 2014 Understanding EEPROM Programming for High Speed Repeaters and Mux
BuffersSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

Example 3: EEPROM Hex File for 12 Devices, CRC Disabled www.ti.com

8 Example 3: EEPROM Hex File for 12 Devices, CRC Disabled
When programming EEPROM for more than 4 EEPROM slots, the following are considered:
• Address Map Header must be used.
• If more than 4 EEPROM slots are required, then EEPROM size > 256 bytes is required. This means

that the Address Map Header is 3 bytes.

Below is an example of a hex file for 12 x DS100BR111 devices (11 unique EEPROM slots), shown in
Figure 5.

Figure 5. Example of a Hex File for 12 x DS100BR111 Devices (11 Unique EEPROM Slots)

14 Understanding EEPROM Programming for High Speed Repeaters and Mux SNLA228–October 2014
Buffers Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

www.ti.com Summary

The base header bytes are 0x6B0010. From Table 2, the following is derived:
• CRC is disabled (Address 0x00[7] = 0’b).
• Address map header is enabled (Address 0x00[6] = 1’b).
• EEPROM > 256 bytes (Address 0x00[5] = 1’b).
• DEVICE COUNT = 12 Devices (Address 0x00[3:0] = 1011’b).
• Max EEPROM Burst size = 16 bytes (Address 0x02 = 0x10).

Since CRC is disabled, each Address Map Header Byte 0 is 0x00. In this example, Device 10 and Device
11 share the same address map header. This occurs if multiple devices are programmed with identical
SMBus register settings.

There are 10 unique address map headers for 11 devices. Unlike the previous examples, the address
map header here has 3 bytes, since the EEPROM > 256 bytes. Recall that when the address map header
is 3 bytes, the 3 LSBs of the Address Map Header Byte 2 become the 3 MSBs of the EEPROM start
address. Thus, from Table 3, the following is derived:
• Device 0 [Start Address] = 0x33
• Device 1 [Start Address] = 0x58
• Device 2 [Start Address] = 0x7D
• Device 3 [Start Address] = 0xA2
• Device 4 [Start Address] = 0xC7
• Device 5 [Start Address] = 0xEC
• Device 6 [Start Address] = 0x111
• Device 7 [Start Address] = 0x136
• Device 8 [Start Address] = 0x15B
• Device 9 [Start Address] = 0x180
• Device 10 [Start Address] = 0x1A5
• Device 11 [Start Address] = 0x1A5

By searching for the start address relevant to each device the remaining 37 bytes that are used to
program the device can be found. For example, in Device 6, the 37 bytes of device data begin at
EEPROM Address 0x111.

9 Summary
In this application note, the benefits of EEPROM are explored as they relate to TI’s high speed 2-channel
repeaters, 8-channel repeaters, and 2:1/1:2 mux buffers. Device-specific EEPROM concepts such as the
Base Header, Address Map Header, CRC, and EEPROM data slot are explained in detail. In addition, the
requirements of Intel hex format are revealed to help users differentiate between EEPROM sections
relevant to formatting and EEPROM sections relevant to the device settings. With a complete
understanding of how to program and interpret these EEPROM hex files, system designers are better
equipped to generate their own customized hex files and increase the efficiency of their final designs.

10 References
1. "Intel Hexadecimal Object File Format Specification", Revision A, 1/6/88.
2. DS80PCI800 Datasheet (SNLS334)
3. DS125BR401A Datasheet (SNLS466)

15SNLA228–October 2014 Understanding EEPROM Programming for High Speed Repeaters and Mux
BuffersSubmit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SNLS334
http://www.ti.com/lit/pdf/SNLS466
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNLA228

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Understanding EEPROM Programming for High Speed Repeaters and Mux Buffers
	1 Introduction
	2 EEPROM Physical Configuration
	2.1 EEPROM Configuration for Single Device
	2.2 EEPROM Configuration for Multiple Devices

	3 SMBus-to-EEPROM Mapping
	4 EEPROM Hex File Format
	5 EEPROM Device Data Fundamentals
	5.1 Base Header
	5.2 Address Map Header
	5.3 Cyclic Redundancy Check (CRC) Calculation
	5.4 Number of Devices versus Number of Slots

	6 Example 1: EEPROM Hex File for 1 Device, CRC Disabled
	7 Example 2: EEPROM Hex File for 4 EEPROM slots, CRC Enabled
	8 Example 3: EEPROM Hex File for 12 Devices, CRC Disabled
	9 Summary
	10 References

	Important Notice

