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ABSTRACT

The purpose of this document is to define the 100Mb Transmit and Receive latencies of the Texas
Instruments Semiconductor DP83848 and DP83849 Ethernet Transceiver family, and to document their
contributions for end-to-end packet transfer in both MII and RMII modes of operation.
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1 Introduction

In many real-time system implementations, the Ethernet packet data transfer latencies are important
parameters for proper system operation. The fixed and variable components of the transmit and receive
latencies within the Ethernet Physical Layer can be critical components of the system latency calculations.

The architecture of the DP83848 Ethernet Transceiver and the DP83849 Dual Ethernet Transceiver is
designed to limit the variability of the receive data latencies and therefore provides for very deterministic
system delay. In particular, the DP83848 and DP83849 do not suffer from a common non-determinism
due to aligning receive data to the receive clock, thus providing significantly more deterministic receive
data latency in both MII and RMII modes. In addition, the DP83849 reduces a common non-determinism
in the Transmit RMII latency.

Product Applicability:

DP83848C

DP83848I

DP83848VYB

DP83848YB

DP83848M

DP83848T

DP83848Q-Q1

DP83848H

DP83848J

DP83848K

DP83849C

DP83849I

DP83849ID

DP83849IF

1.1 Non-Dependencies

The DP83848 and DP83849 do not suffer from dependencies on certain modes of operation. These
include the following functions or modes of operation:

• MDI vs. MDIX

• Auto vs. Manual MDI/MDIX configuration

• Auto-negotiation vs. Forced modes of operation

• Half- vs. Full-Duplex operation

2 MII System Latency

MII system latency is the delay from the transmitting Mac to the receiving Mac as measured at the MII
interface. Transmit MII data is generated synchronous to the Transmit MII clock generated by the Transmit
Phy. Receive MII data is generated synchronous to the Receive MII clock. The Receive MII clock is
recovered from the data by the Receive Phy. Because the Receive MII clock is recovered from the
Receive data, the skew between the Transmit and Receive MII clocks is more a function of the data delay
and does not have a relationship to the Receive Phy’s reference clock, REF_CLK2.

Figure 1 shows the basic components of a single transmit to receive Ethernet path from the Transmit Mac
to the Receive Mac over twisted pair cable (100BASE-TX). The total transmit time of the link, from
measurement at the Transmit MII to the Receive MII is:

tpTotalPhyMII = tpPhyTxMII + tpCable + tpPhyRxMII
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Figure 1. MII System Timing Diagram for Twisted Pair

In addition to twisted pair mode, the DP83849 also supports fiber mode (100BASE-FX). The system is
similar to the above diagram with the addition of fiber transceivers between the Phy and the fiber medium.
In this case, tpCable could be replaced with:

tpCable = tpXcvrTX + tpFxCable + tpXcvrRX

where txXcvrTX and tpXcvrRX are the transmit and receive latencies for the fiber transceivers. tpFxCable
is the propagation delay for the signal on the fiber medium.

2.1 MII Transmit Latency

MII Transmit latency is measured from transmit data at the MII interface to the first bit transmitted on the
wire (usually Cat5 cable). To eliminate system dependencies (transmit data setup to TX_CLK),
measurement is made from the rising edge of TX_CLK that samples the transmit data. The latency
measurement is made from TX_EN assertion to first bit of JK symbol on the wire. As the latency is
consistent for all transmit data nibbles, measurements could be made from the Start of Frame Delimiter
(SFD) or any other data in the packet. While the measurements are not made relative to the reference
clock, REF_CLK1, it is worth noting that TX_CLK is phase aligned to REF_CLK1.

Figure 2. Phy Transmit Delay Diagram

As illustrated in Figure 2, Transmit Delay time, tpPhyTxMII, is comprised of a fixed delay and an
uncertainty in propagation delay due to Process, Voltage, and Temperature (PVT) variations. The fixed
delay is nominally 5 bit times (bit time = 10ns) and the uncertainty is significantly less than 1 bit time.
Transmit Delay time is the same for both twisted pair and fiber modes of operation.
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2.2 MII Receive Latency

MII Receive latency is measured from the first symbol bit received on the wire (usually Cat5 cable) to the
data symbol on the Receive MII data bus. The measurement is made from the first bit of JK to the wire to
the first bit of preamble (which replaces JK) on the MII interface. As with the transmit side, the
measurements are made to the RX_CLK rising edge which samples the receive data. The measurement
may also be made from the first bit of SFD on the wire to the SFD (0xD) on the RX MII.

Figure 3. Phy Receive Delay Diagram

Many 100Mb Ethernet Phy devices will have delay uncertainty of 1 to 5 bit times (in 8ns bit time
increments). This is the result of aligning the incoming receive data to an arbitrary phase of the 125MHz
recovered clock. The DP83848 and DP83849 eliminate this uncertainty in the receive latency by deriving
the receive clock (RX_CLK) from the data alignment. This process can in theory occur at the beginning of
each packet (following assertion of CRS), but in practice will only occur for the first packet. Since IDLE
data is sent as data symbols, subsequent packets will all arrive with the same alignment as the initial
received packet. By eliminating this variability, the DP83848 and DP83849 provide significantly more
deterministic receive latency.

Receive Delay time, tpPhyRxMII (see Figure 3), is comprised of a fixed delay and an uncertainty in
propagation delay due to Process, Voltage, and Temperature (PVT) variations. The fixed delay, as
measured to the rising RX_CLK edge, is nominally 25.5 bit times (bit time = 10ns) for twisted pair mode
and 16 bit times for fiber mode. The PVT uncertainty is less than 1 bit time.

If a realignment of the RX_CLK is required at the start of a packet (again, this should only occur for the
first packet), the realignment is accomplished by holding the RX_CLK high for an extra 8ns to 32ns prior
to the assertion of RX_DV. This mechanism guarantees that RX_DV and RXD transition coincident with
the falling edge of RX_CLK, thus guaranteeing setup and hold times are consistent. In addition, the
mechanism guarantees that the minimum clock high and low times will not be violated. The result is that
the RX_CLK high time may be between 20ns and 52ns prior to RX_DV assertion for the first packet.

2.3 MII System Latency Measurements in Twisted Pair Mode

The following End-to-End measurements were made for the total propagation delay between two
DP83848 devices operating in 100Mb full-duplex and MII mode and connected through a Cat5 twisted pair
cable. Measurements were made from the TX_CLK which samples TX_EN at the Transmit MII, to
RX_CLK which samples first preamble data on the Receive MII. The measurements were repeated 10
times with a power cycle between each measurement. A power cycle is more likely to reveal any phase
alignment issues than just dropping link. Measurements were made using a logic analyzer with 250ps
resolution. Note that measurements were made on a single device at nominal voltage and room
temperature. Results will vary slightly across Process/Voltage/Temperature. See Figure 4 and Figure 5.
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Figure 4. MII System Delay Measurement

Figure 5. Example Trace for MII Latency Measurement

The first set of measurements was made using a straight 10m cable.

Table 1. Measurements of tpTotalPhyMII with 10m Cable

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 356.75 357.5 356.5 358 356.5 357.25 356.5 358 357.25 358

• Min: 356.50ns

• Max: 358.00ns

• Range: 1.5ns

A second set of measurements was made in loopback using a loopback plug (0m cable).
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Table 2. Measurements of tpTotalPhyMII with 0m Loopback Cable

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 310.5 310.5 310.5 310.5 310.5 311.25 310.5 310.5 310.5 310.5

• Min: 310.50ns

• Max: 311.25ns

• Range: 0.75ns

Based on these results, the 10m Cat5 cable delay (tpCable) is approximately 46ns greater than the delay
for the loopback plug. Measurements of the 10m cable showed a delay of approximately 49ns as
measured at the pins of the RJ45 connectors. In both cases the variability in the system tests is
significantly less than 1 bit time.

2.4 MII System Latency Measurements in Fiber Mode

The following End-to-End measurements were made for the total propagation delay between two
DP83849 devices operating in 100Mb full-duplex and MII mode. The devices were connected through
Agilent HFBR5803 fiber transceivers and 10ft of fiber cable. The test procedure was otherwise identical to
the procedure in Section 2.3.

The following measurements were made for delay through the system:

Table 3. Measurements of tpTotalPhyMII with FX transceivers and 10ft Fiber Cable

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 233.5 233.25 233.25 233 233 233.5 233.25 233.25 233.75 233.5

• Min: 233.00ns

• Max: 233.75ns

• Range: 0.75ns

The nominal Phy transmit and receive delays add to 21 bit times (or 210ns). This leaves an approximate
tpCable of 23ns for delay through the fiber transceivers and the fiber cable. As expected, the variability in
the system tests is significantly less than 1 bit time.

3 RMII System Latency

RMII system latency is the delay from the transmitting Mac to the receiving Mac as measured at the RMII
interface. Transmit RMII data is generated based on the Transmitting Station’s 50MHz reference clock,
REF_CLK1. Receive RMII data is generated based on the Receiving Station’s 50MHz reference clock,
REF_CLK2. The two reference clocks are independent.

Figure 6 shows the basic components of a single transmit to receive Ethernet path from the Transmit Mac
to the Receive Mac over twisted pair cable (100BASE-TX). The total transmit time of the link, from
measurement at the Transmit RMII to the Receive RMII is:

tpTotalPhyRMII = tpPhyTxRMII + tpCable

+ tpPhyRxRMII
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Figure 6. MII System Timing Diagram

In addition to twisted pair mode, the DP83849 also supports fiber mode (100BASE-FX). The system is
similar to the above diagram with the addition of fiber transceivers between the Phy and the fiber medium.
In this case, tpCable could be replaced with:

tpCable = tpXcvrTX + tpFxCable + tpXcvrRX

where txXcvrTX and tpXcvrRX are the transmit and receive latencies for the fiber transceivers. tpFxCable
is the propagation delay for the signal on the fiber medium.

3.1 RMII Transmit Latency

RMII Transmit latency is measured from transmit data at the RMII interface to the first bit transmitted on
the wire (usually Cat5 cable). To eliminate system dependencies (transmit data setup to REF_CLK1),
measurement is made from the rising edge of REF_CLK1 that samples the transmit data. The
measurement is made from TX_EN assertion to first bit of JK on the wire. As the latency is consistent for
all transmit data nibbles, measurements could be made from the Start of Frame Delimiter (SFD) or any
other data in the packet. See Figure 7 for this illustration.

Figure 7. Phy RMII Transmit Delay Diagram

3.1.1 DP83848 RMII Transmit Latency

In RMII mode, the DP83848 derive a 25MHz clock from the 50MHz Reference clock, REF_CLK1. The
DP83848 then generates an internal 125MHz transmit clock from this 25MHz clock. The 25MHz clock is
also used to generate the alignment of symbol data for serialization, including the transmission of IDLE
symbols. The symbol clock may not be aligned with the first two bits (or di-bit) of data on the RMII
interface. When the device switches from sending IDLEs to sending packet data, it must keep the same
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symbol alignment. Thus if the RMII data is not aligned to the symbol clock, the data must be delayed by
20ns to match the symbol alignment. Because of this, there is a 20ns variability in the Transmit Delay time
(note that the delay is either 0 or 20ns, not any intermediate value). This variability will be selected at
initialization time (reset) and will not change once the device is operational. This variability will be referred
to as the RMII Transmit variability in subsequent paragraphs.

Transmit Delay time, tpPhyTxRMII, includes an uncertainty in propagation delay due to Process, Voltage,
and Temperature (PVT) variations. Due to the 20ns (2 bit times) RMII Transmit variability, the delay is
nominally 17 or 19 bits times. The PVT uncertainty is significantly less than 1 bit time.

3.1.2 DP83849 RMII Transmit Latency

In RMII mode, the DP83849 reduces the Transmit Latency variability in RMII mode. An IEEE 802.3
receiver must be able to detect the Start of Stream Delimiter at any alignment and does not require that
IDLE bits arrive in an integer number of symbols. The receiver must operate on a stream of single bits as
recovered from the physical medium. If the RMII data is not aligned to the symbol clock, the DP83849 will
realign the symbol clock with the closest 125MHz Transmit clock. In this case, the DP83849 will send a
series of IDLE symbols plus 1 to 4 additional IDLE bits before sending the Start of Stream Delimiter. Since
the 125MHz Transmit clock is not an integer multiple of the frequency of the reference clock, one phase of
the reference clock is aligned with the negative edge of the 125MHz Transmit clock. In this case there is
an additional 4ns latency to sample data to the positive edge of the Transmit clock. The result is a 4ns
variability in RMII Transmit latency, which will be selected at initialization time (reset) and should not
change once the device is operational.

Transmit Delay time, tpPhyTxRMII, includes an uncertainty in propagation delay due to Process, Voltage,
and Temperature (PVT) variations. In addition to minimizing the RMII Transmit variability, the DP83849
also reduced the nominal delay. Due to the 4ns (0.4 bit times) RMII Transmit variability, the delay is
nominally 10.8 or 11.2 bits times. The PVT uncertainty is significantly less than 1 bit time. Transmit Delay
time is the same for both Twisted Pair and Fiber modes of operation.

3.2 RMII Receive Latency

RMII Receive latency is measured from the first symbol bit received on the wire (usually Cat5 cable) to the
data symbol on the Receive RMII data bus. The measurement is made from the first bit of JK on the wire
to the first bit of preamble (which replaces JK) on the RMII interface. As with the transmit side, the
measurements are made to the REF_CLK2 rising edge which samples the receive data. The
measurement may also be made from the first bit of SFD on the wire to the SFD on the RX MII. Although
not an official part of the RMII specification, RX_DV is shown in Figure 8 rather than the combined
CRS_DV signal.

Figure 8. Phy Receive Delay Diagram

Many 100Mb Ethernet Phy devices will have delay uncertainty of 1 to 5 bit times (in 8ns bit time
increments). This is the result of aligning the incoming receive data to an arbitrary phase of the 125MHz
recovered clock. The DP83848 eliminates this uncertainty in the receive latency by deriving the receive
clock from the data alignment. This process can in theory occur at the beginning of each packet (following
assertion of CRS), but in practice will only occur for the first packet. Since IDLE data is sent as data
symbols, subsequent packets will all arrive with the same alignment as the initial received packet. By
eliminating this variability, the DP83848 provides significantly more deterministic receive latency.
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RMII latency includes additional delays to transfer data from the recovered Receive clock domain to the
reference clock domain (REF_CLK2). The result is an uncertainty of up to 20ns due to the potential skew
between the reference clocks. This 20ns variation will be referred to as the RMII Receive variability in
subsequent paragraphs. In addition the RMII interface must include an elasticity buffer to tolerate
frequency differences between the transmitting and receiving stations. Due to the clock domain boundary
and the elasticity buffer, the overall magnitude of the delay is greater than in MII mode.

Receive Delay time, tpPhyRxRMII, includes an uncertainty in propagation delay due to Process, Voltage,
and Temperature (PVT) variations. The receive delay, as measured to the rising REF_CLK2 edge, is
nominally 40 to 42 bit times (bit time = 10ns) for Twisted Pair mode and 29 to 31 bit times for Fiber mode.
The PVT uncertainty is less than 1 bit time.

3.2.1 Effects of RMII Frequency Offset on Latency

Because RMII data is transferred between two clock domains with a frequency offset, data latency can
vary across a single packet. The initial latency (for preamble/SFD) is essentially fixed, but the latency for
subsequent data in a packet could have an increasing or decreasing latency dependent on the difference
in the clock frequency. Assuming each reference clock is +/-50ppm, then the worst case frequency
difference is a total of +/-100ppm.

For example, assume the transmitting clock is at 0ppm, but the destination clock is running at -50ppm.
This means the destination clock is running slower (49.9975 MHz) than the source clock (50.0000 MHz).
This corresponds to a REF_CLK2 clock period of 20.001ns. For each di-bit transferred on the RMII, the
subsequent data will have an increased latency of 1ps.

For a 64-byte packet, data transferred is 8 preamble + 64 data bytes = 72 bytes = 288 di-bits. Thus, the
final nibble of data will have a latency approximately 288ps longer than for the first nibble of preamble. For
a 1514 byte packet, data transferred is 8 preamble + 1514 data bytes = 1522 bytes = 6088 di-bits. Thus,
the final nibble of data will have a latency approximately 6.088ns greater than for the first nibble of
preamble.

For the worst case where source and destination are +50ppm and -50ppm, the initial/final latency
difference will be as large as 1.2 bit times for a full-size Ethernet frame. On the other hand, the total
packet transfer time is dependent on the destination reference clock frequency. This is because the total
packet latency is the initial latency plus the packet transfer time across the destination RMII

Total packet transfer time can be determined as:

tpPacketTotal = tpTotalPhyRMII + ((PktLength + 8)

* 4 / Clk2Freq)

Clock2Freq is the frequency of the destination RMII clock, REF_CLK2.

Figure 9 illustrates RMII total packet transfer time.

Figure 9. RMII Total Packet Transfer time

The final data latency, tpFinalPhyRMII can be determined based on the difference between the clock
periods and the packet length:

tpFinalPhyRMII = tpTotalPhyRMII + (PktLength + 8)

* 4 * (1/Clk2Freq - 1/Clk1Freq)
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The system designer needs to be aware of which latency times are important: initial data latency, final
data latency, or the total packet transfer time.

3.2.2 RMII Programmable Elasticity Buffer

The DP83848 has a programmable Elasticity Buffer to provide tolerance for frequency offset between the
transmitting and receiving devices. The typical latency numbers assume the minimum FIFO setting for the
elasticity buffer, which is appropriate for standard Ethernet Frames at frequency tolerance of +/-50ppm.
For larger frame sizes or to tolerate larger frequency offsets, the Elasticity Buffer can be programmed to
handle the larger amount of data variation by changing the FIFO threshold. The first stage (default setting)
provides 2 bits of tolerance, which is plenty to handle the 1.2bit variance for standard Ethernet frames at
+/-50ppm. Each of the 3 additional FIFO stages adds 4-bits to the total tolerance, but in doing so, also
adds 4 bits to the receive latency. Thus if a system changes the Elasticity Buffer setting, the designer
should expect an equal change in initial data latency.

3.3 RMII System Latency Measurements

The following End-to-End measurements were made for the total propagation delay between two
DP83848 devices operating in 100Mb full-duplex and RMII mode. Measurements were made from the
REF_CLK1 which samples TX_EN at the Transmit RMII, to REF_CLK2 which samples first preamble data
on the Receive RMII. The measurements were repeated 20 times with a power cycle between each
measurement. Doing a full power cycle on both transmit and receive Phy devices is necessary to show the
variability due to the transmitter alignment. Just dropping the link could show any receive effects but, in
some cases, will not show the RMII Transmit variability described in Section 3.

In addition to the delay number, a measurement was made of the reference clock skew between the
transmitting and receiving Phy devices (REF_CLK1 to REF_CLK2). Measurements were made using a
logic analyzer with 250ps resolution. Note that measurements were made on a single device at nominal
voltage and room temperature. Results will vary slightly across Process/Voltage/Temperature.

Measurements were repeated for the DP83849 using the same method.

Figure 10. RMII System Delay Measurement
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Figure 11. Example Trace for RMII Latency Measurement

3.3.1 DP83848 RMII System Latency Measurements

The first set of measurements was made using a straight 10m cable.

Table 4. Measurements of tpTotalPhyRMII with 10m Cable

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 638.5 645.5 629.5 637 644.25 633.5 646 619.25 619 650

Clock Skew (ns) 17.75 5 9.5 17 3.75 13.75 6 19.5 19.25 10.25

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Delay (ns) 620.25 650.75 618.5 647 620.5 634.5 654 621.5 627 651.75

Clock Skew (ns) 0.25 10.75 18.5 6.75 0.5 14.5 13.75 1.5 7 11.25

• Min: 618.50ns

• Max: 654.00ns

• Range: 35.50ns

The limited number of data points and the range of reference clock skews does not quite show the
possible range of values. As described in Section 3, the total range of variability for the DP83848 is 40ns.
The contributors are the 0ns/20ns step RMII Transmit variability (Section 3.1.1) and the 0ns-20ns range
for RMII Receive variability (Section 3.2).

3.3.2 DP83848 RMII Transmit Variability

A second set of measurements was made with a loopback plug (0m cable). In loopback, the reference
clock is the same for transmit and receive (0ns skew), eliminating that source of variability. Since the
variability is limited, only 10 sets of measurements were made. This test shows just the 0ns/20ns step
variability due to the phase of the Transmit Reference clock.
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Table 5. Measurements of tpTotalPhyRMII with 0m Loopback Cable

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 580.25 580.25 580.25 580.25 580.25 580.25 600 600 597.75 600.25

Clock Skew (ns) 0 0 0 0 0 0 0 0 0 0

• Min: 580.25ns

• Max: 600.25ns

• Range: 20ns

Note that a 46ns approximate cable delay, as determined from MII measurements, places these data
within the range of values for the 10m cable. Also, note that this is not necessarily the minimum delay
since the minimum delay is likely to be at a clock skew value that is non-zero.

3.3.3 DP83848 RMII Receive Variability

A third set of measurements was made using just a re-link (by unplug/plug the cable). This mechanism
shows the limitations in this test as it eliminates any variation on the transmit RMII. The uncertainty that
remains is just the Receive variability. For this test, 20 measurements were made with a 10m straight
cable.

Table 6. Measurements of tpTotalPhyRMII Dropping Link (10m Cable)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 644.75 646.75 637.5 649.25 651.5 645.75 650.25 645.5 647.5 640.75

Clock Skew (ns) 4.25 6.25 17 8.75 10.75 5.25 9.75 5 7 0.25

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Delay (ns) 640.25 638.75 652.5 652.75 638.25 645.25 649 651.75 638 646

Clock Skew (ns) 19.5 18.25 12 12.25 17.75 4.75 8.5 11.25 17.5 5.5

• Min: 638.00ns

• Max: 652.75ns

• Range: 14.75ns

The limited number of data points and the range of reference clock skews does not show the possible
range of values. Since only receive variability applies, the total range of variability is 20ns.

3.3.4 DP83849 RMII System Latency Measurements in Twisted Pair Mode

The first set of measurements was made using a straight 10m cable.

Table 7. Measurements of tpTotalPhyRMII with 10ft Cable

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 562.75 569.5 557.25 557.25 556.75 562.5 567 561.5 559.25 555.25

Clock Skew (ns) 2.75 9.5 17.25 17.25 16.75 2.5 7 1.5 19.25 15.25

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Delay (ns) 560.75 555.75 570 560.5 566.75 571.25 550.75 555.5 560.5 572.75

Clock Skew (ns) 0.75 15.75 10 0.5 6.75 11.25 10.75 15.5 0.5 12.75

• Min: 550.75ns

• Max: 572.75ns

• Range: 22.0ns

The limited number of data points and the range of reference clock skews does not quite show the
possible range of values. As described in Section 3 and Section 3.2, the total range of variability for the
DP83849 is 24ns. The contributors are the 0ns/4ns step RMII Transmit variability (Section 3.1.2) and the
0ns-20ns range for RMII Receive variability (Section 3.2).
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3.3.5 DP83849 RMII Transmit Variability

A second set of measurements was made with a loopback plug (0m cable). In loopback, the reference
clock is the same for transmit and receive (0ns skew), eliminating that source of variability. Since the
variability is limited, only 10 sets of measurements were made. Since the step variability is only 4ns for the
DP83849, the test is unable to show this variability. Since the reference clocks are identical, only
variations in multiples of reference clocks will be detected. The results showed a consistent value of
520ns. This test shows just the Transmit Variability is less than 1 reference clock period.

Table 8. Measurements of tpTotalPhyRMII with 0m Loopback Cable

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 520 520 520 520 520 520 520 520 520 520

Clock Skew (ns) 0 0 0 0 0 0 0 0 0 0

• Min: 520.00ns

• Max: 520.00ns

• Range: 0ns

Note that a 46ns approximate cable delay, as determined from MII measurements, places these data
within the range of values for the 10m cable. Also, note that this is not necessarily the minimum delay
since the minimum delay is likely to be at a clock skew value that is non-zero.

3.3.6 DP83849 RMII Receive Variability

A third set of measurements was made using just a re-link (by unplug/plug the cable). This mechanism
shows the limitations in this test as it eliminates any variation on the transmit RMII. The uncertainty that
remains is just the Receive variability. For this test, 20 measurements were made with a 10m straight
cable.

Table 9. Measurements of tpTotalPhyRMII Dropping Link (10m Cable)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 556.5 563.75 575.25 564 568 565.5 567.25 562 559 572.75

Clock Skew (ns) 16.5 3.75 15.25 4 8 5.5 7.25 2 19 12.75

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20

Delay (ns) 573.75 557.25 561.25 567 560.5 555.75 558 567.5 562.75 575.75

Clock Skew (ns) 1375 17.25 1.25 7 0.5 15.75 18 7.5 2.75 15.75

• Min: 555.75ns

• Max: 575.75ns

• Range: 20.00ns

Although the test involved a limited number of datapoints, it does appear to show the full possible range of
values. Since only receive variability applies, the total range of variability is 20ns.

3.3.7 DP83849 RMII System Latency Measurements in Fiber Mode

The RMII system latency measurements were also made between two DP83849 devices operating in
100Mb full-duplex Fiber mode. The devices were connected through Agilent HFBR5803 fiber transceivers
and 10ft of fiber cable. The test procedure was otherwise identical to the procedure described in
Section 3.3.1.

Table 10. Measurements of tpTotalPhyRMII with 10ft of Fiber Cable

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 430.25 425.25 430.75 443.75 440.25 433.75 446.75 440.5 435.75 433.5

Clock Skew (ns) 10.25 5.25 11 3.75 0.25 13.75 6.75 0.5 15.75 13.5

#11 #12 #13 #14 #15 #16 #17 #18 #19 #20
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Table 10. Measurements of tpTotalPhyRMII with 10ft of Fiber Cable (continued)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Delay (ns) 430.75 430.75 437 429.25 434.25 434.75 440.5 430.25 438 430

Clock Skew (ns) 10.75 10.75 17 9.25 14.25 14.75 0.5 10.25 18 10

• Min: 426.25ns

• Max: 446.75ns

• Range: 21.50ns

The limited number of data points and the range of reference clock skews does not quite show the
possible range of values. As described in Section 3 and Section 3.2, the total range of variability for the
DP83849 is 24ns. The contributors are the 0ns/4ns step RMII Transmit variability Section 3.1.2) and the
0ns-20ns range for RMII Receive variability (Section 3.2).

4 Conclusions

This document provides detailed information on the transmit and receive latencies of the National
Semiconductor DP83848 and DP83849 Ethernet Transceiver family. The information should be used as a
guide for system designers who are concerned with the overall system latencies for data transfer. The
following table summarizes the transmit and receive latencies for various modes of operation (1 bit time =
10ns). The table also includes the uncertainty due to clock alignment for each mode of operation. The
uncertainty does not include the small amount of variability due to variations in Process, Voltage, or
Temperature.

Table 11. Summary of Transmit and Receive Latencies

Transmit Latency Receive Latency Total TX+RXMII Uncertainty (ns) Uncertainy t(ns)(bit times) (bit times) Uncertainty (ns)

DP83848 100BASE-TX 5 0 25.5 0 0

DP83849 100BASE-TX 5 0 25.5 0 0

DP83849 100BASE-FX 5 0 16 0 0

RMII

DP83848 100BASE-TX 17 or 19 20 40 or 42 20 40

DP83849 100BASE-TX 10.8 or 11.2 4 40 or 42 20 24

DP83849 100BASE-FX 10.8 or 11.2 4 29 or 31 20 24

The results show that in MII mode, the device has minimal uncertainty in latency, even in the receive
direction. The DP83848 and DP83849 do not suffer from a common 1 to 5 bit variability due to
aligning receive data to the receive clock.

In RMII mode, the main sources of non-determinism are due to uncertainty in data alignment relative to
the 50MHz reference clock. Some variability is due to the nature of the RMII interface and will exist with
any RMII Ethernet device. The DP83849 reduces the RMII Transmit variability from 20ns to 4ns. The
DP83849 produces the minimum RMII Receive variability of 20ns. Again, RMII receive latency does not
include the 1 to 5 bit time variability due to receive data alignment.

In addition, it is important to note that system latencies are very much dependent on the cable connecting
the two devices. This document has not attempted to quantify variations due to cable length or cable type,
other than to show that the variation does exist and can be significant.

Opportunities exist to further reduce fixed components and variances in end-end system latency. By better
understanding customer needs and system requirements, National Semiconductor will continue to offer
devices delivering industry leading performance for Industrial and Real-time Ethernet applications.
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