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ABSTRACT

This application report discusses how the performance of high-speed pipeline ADCs can be optimized by
designing the right clock circuitry, a good analog input network, as well as how to get the data at these
high speeds undistorted from the ADC onto an FPGA or ASIC.
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1 Introduction

The performance of integrated high-speed pipeline analog-to-digital converters (ADCs) is reaching new
heights. Resolution, sampling speed, and dynamic performance have pushed to new limits. The
ADC14V155 is amongst the best-in-class converters, delivering 57 percent higher full-power bandwidth
than competing 14-bit ADCs. The challenge is to keep the static and especially dynamic performance at
the levels that are given in the device-specific data sheet. Designers must select components around the
converter very carefully.

One application example is the ADC14V155 that has a resolution of 14 bits and samples at up to 155
MSPS. It uses differential pipeline architecture and its unique low jitter sample-and-hold stage yields a full
power bandwidth of 1.1 GHz. This high input bandwidth makes it a very good candidate for all types of
communication receivers, but especially for undersampling. The device can sample signals up to 450 MHz
bandwidth, providing flexibility for the system frequency planning and allowing migration from single carrier
architectures to a multi-carrier approach where a single ADC digitizes several carriers.

Another area where this ADC can be used is for fast test and measurement equipment. Data leaves the
chip on a parallel low voltage differential signaling (LVDS) interface in a dual data rate (DDR) format to
allow clean data transmission onto modern FPGAs. To further reduce noise and power the device features
a separate power supply for the output interface (1.8V) and the analog section (3.3V). Typically the device
uses under one Watt power. At input frequencies of 70 MHz, the part typically performs with a signal-to-
noise ratio (SNR) of 71.7dBFS and spurious free dynamic range (SFDR) of 86.9dBFS.

2 Clock Jitter – the Enemy to SNR Performance

At high input frequencies and resolution, clock jitter/data jitter becomes one of the biggest limitations to
ADC SNR performance. The maximum jitter without degrading SNR must be below the quantization noise
(1/2LSB) and can be calculated as:

(1)

When the input voltage swing Vin (p-p) is optimized to swing full scale the first term becomes one and jitter is
only dependant on resolution (N) and input frequency (fin). Measurements of SNR performance on ADCs
with 11-14-bit resolution shows that for input frequencies above 100 MHz the total system jitter should be
no more than 200 fs for the 11-bit ADC and around 100 fs for the ADC14V155 (11.5 ENOB).

Figure 1. 11-14 bit ADC SNR Performance and Jitter Limits
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www.ti.com Subsampling Pitfalls

Using that information can help target what the clock source specification and design to implement. Most
clock products are defined by their frequency and phase noise, found in the device-specific data sheets
plots. Phase noise and jitter are describing the same phenomenon or problem where phase noise is
represented in the frequency domain and jitter is derived from it by integrating the phase noise plot.
Consequently, it provides a good insight on what causes jitter on the ADC clock, which then can be
addressed and eliminated by subsequent circuit design. A good start is to divide the diagram into the two
areas: close-in phase noise and broadband noise. Broadband noise can easily be filtered out, so we have
to concentrate on the close-in phase noise. A clock source is needed which has low close-in noise and it
should roll off as steeply as possible at the lowest offset.

The reason why broadband noise has to be filtered out is that the signal on the ADC clock input is
convolved with the analog input. The very high input bandwidth of 1.1 GHz of the ADC14V155 is matched
with a very high clock input bandwidth. That means that a lot of the broadband noise from the clock
source, if not filtered away, will alias back into the first Nyquist zone and may degrade SNR.

3 Subsampling Pitfalls

If subsampling is used, you might even be caught by another trap. Subsampling refers to the situation
where the clock frequency is more than twice the signal frequency, which violates the Nyquist theorem of
fs should be greater than two times fin to avoid aliasing. Subsampling causes the signal and its harmonics
to alias back into the first Nyquist band, but as long as we know which frequencies they are aliased to, a
frequency plan can be layed out in a way such that the signal of interest is not corrupted by aliased
harmonic spurs.

One popular frequency plan is to use an input frequency that aliases to fs/4. In this frequency plan, all of
the harmonics will alias to DC, fs/4 or fs/2. The benefit of this plan is that it gives the biggest separation
between harmonic distortion spurs, which simplifies filtering and it centers the fundamental frequency in
the Nyquist band. However, this frequency plan also masks all of the ADC’s harmonic spurs by
overlapping them and makes the ADC output spectrum look much better then it actually is. To see the true
performance, you have to offset the input frequency by 0.1-1 MHz, which unmasks overlapping spurs.
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4 ADC Clock Receiver

Unfortunately, even the clock receiver circuitry inside the ADC itself will generate some jitter. The reason
for this is that any supply noise will change the clock receiver’s tripping point slightly and this noise will be
converted into phase noise when a clock signal with finite slope is applied. This is an analogy of amplitude
modulation (AM) to phase modulation (PM), where AM is the supply noise converted to PM clock noise,
which is then jitter in the time domain view. The longer the transition time of the clock, the more jitter is
added. Applying a high slew rate clock will minimize this effect. Consequently, a square wave clock input
with fast transition times is the best choice and gives the best SNR.

Figure 2. Swing Time vs rms Jitter of a Differential Clock and Single-Ended Clock

In the lab and for testing concepts, high quality signal generators are the best option offering frequency
agility. Once the frequency plan is fixed, a crystal oscillator provides the purest clock. If multiple clocks are
required on the PCB, then one of the LMK03000/2000 series precision clock conditioners from Texas
Instruments is a good choice.

5 The Input Network

In the selection and testing phase of an ADC, signal generators are used to drive the input. Clearly, the
measured ADC performance are no better than the purity of the signal applied to its inputs. That means
filtering of the signal generator output is mandatory to limit the generator’s harmonic distortion and noise
from reaching the ADC inputs. A typical synthesizer second harmonic distortion (H2) will be between -40
dBc and -50 dBc while the ADC14V155 H2 at 238 MHz can be as low as -85 dBFS. It is recommended to
use tunable bandpass filters like Trilithic VF series filters providing 90 dB 2nd and 3rd harmonic attenuation.

Filtering the input signal is certainly critical in the final product application. The ADC14V155 has an
extremely wide input bandwidth of 1.1 GHz, which means it will sample the entire of spectrum including all
unwanted noise components like described in the sampling pitfalls section. Even if the ADC samples only
at 155 MHz, noise above this frequency will be aliased back into the first Nyquist band, which has a
negative effect on SNR, but if you bandpass filter the input signal around its center frequency, the problem
can be avoided.

In most practical examples, the ADC will be coupled to the input signal via a transformer and/or amplifier.
Figure 3 shows a circuit example to drive the ADC14V155 using a DVGA LMH6515. Between the ADC
and the amplifier a fourth order filter with 25 MHz bandwidth centered around 169 MHz is used. The
resistors R16 and R19 provide input common mode bias to the ADC and set the load impedance of the
filter. Be careful not to have the impedance too high, even though that reduces the filter attenuation, it also
degrades SFDR. The best trade-off between ADC and amplifier distortion has been found to be 500Ω.
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www.ti.com The Input Network

Figure 3. Example Circuit to Drive the Input of the ADC14V155

To maximize SFDR performance, an additional RC network can be used and tuned to the applications
input frequency. The network consists of two serial resistors connected to the input pins of the ADC and a
shunt capacitor. These resistors and the capacitor affect settling time due to disturbances from the sample
and hold circuitry at the ADC input. The RC combination provides also a last lowpass filter before the ADC
and the cutoff frequency will impact noise rejection and harmonic attenuation. A higher value shunt
capacitor will lower the cutoff frequency of the lowpass filter and will improve low frequency distortion (at
the expense of input bandwidth.)
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5.1 Frequency Sweeps Illustrating SFDR Performance With Different Filter Settings

6 AN-1721 High Speed ADCs With Interfacing, Driving and Clocking Schemes SNAA049A–September 2007–Revised April 2013
Submit Documentation Feedback

Copyright © 2007–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNAA049A


60 80 100 120 140 160 180 200 220 240

FIN (MHz)

60.00

65.00

70.00

75.00

80.00

85.00

90.00

S
F

D
R

 (
dB

c)

0: ser R +
18 pF diff cap

0: ser R +
27 pF diff cap

0: ser R +
8.2 pF diff cap

0: ser R +
0 pF diff cap 0: ser R +

4.7 pF diff cap

60 80 100 120 140 160 180 200 220 240

FIN (MHz)

68.50

69.00

69.50

70.00

70.50

71.00

71.50

72.00

S
N

R
 (

dB
F

S
) 0: ser R +

27 pF diff cap

0: ser R +
0 pF diff cap

0: ser R +
8.2 pF diff cap

0: ser R +
18 pF diff cap

0: ser R +
4.7 pF diff cap

www.ti.com Decoupling

The device-specific data sheet of the ADC14V155 shows 12.1Ω resistors and a 15 pF capacitor, which
exhibits a good compromise over a wide fin range.

6 Decoupling

After selecting the right low jitter clock and providing a clean, filtered signal to the input of the ADC, there
is one more area of focus. Noise can also couple into the ADC through its reference and supply pins. The
best practices are to place the decoupling capacitors as close as possible to the ADC package and pins
as possible. Every millimeter counts! At least two different capacitor values for decoupling must be used:
0.1 uF and 0.01 uF, and they have to be connected to the power and ground planes directly. Long traces
introduce parasitic resistance and inductance must be avoided.

While measuring SNR and SFDR performance of the ADC14155 in both LLP and TQFP packages, lead
length can be problematic if not addressed. Testing showed that with the leads length of the TQFP
package, the decoupling caps must be placed on the back of the board directly under the reference and
supply pin for optimal performance. SNR degraded almost 3 dB with top side decoupling and SFDR
degraded over 3 dB.

7 Output Interface

Once we have converted our analog signal, we can present the result to a further processing step such as
an FPGA or ASIC. For many years, CMOS output stages were used to transfer digitized data. The output
level of a CMOS stage is load dependant and the signal is voltage mode. A single-ended type output
means also no common-mode rejection of noise. With raising switching speeds, the current to drive
capacitive loads increases, reducing CMOS voltage swing. At around 150 MHz the data transfer on a
CMOS interface becomes unreliable. A new type of interface has to be used and LVDS is an excellent
candidate.

An LVDS driver provides a constant current of 3.5 mA in a differential scheme. 100Ω termination resistors
have to be used between the differential output lines as close as possible to the receiver pins. The
ADC14V155 uses an interleaved DDR output scheme where odd bits are presented first and then even
bits on the same pins. The outputs change state at rising AND falling clock edges. This saves 50% or 14
pins on the package and the same amount of connections on the receiving device. Besides the data pins,
the Over-Range Indicator (OVR) and Data-Ready Strobe (DRDY) are provided in LVDS format.
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8 Conclusion

The ADC14V155 is a new generation ADC with superior performance. This advanced device delivers high
precision with a very wide bandwidth. The surrounding components play a critical role in determining the
signal integrity to cascading stages. System performance can be achieved by following some key design
and layout techniques.
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