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Introduction

The transition of vehicle architectures from domain- to 

zone-based is significantly changing automotive power 

distribution, with semiconductor switch-based solutions 

(see Figure 1) replacing the traditional melting fuses used 

for wire harness protection. These solutions offer benefits 

such as less variability in fuse-time currents, which can 

then potentially reduce the cable diameter, weight and 

cost of the wire harness. Semiconductor switches are 

also resettable remotely, which means that the fuses do 

not have to be easily accessible, giving designers the 

ability to place the fuses in locations that can reduce 

cable lengths from the power source to the load.
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Figure 1. Domain-based Power distribution architecture.
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Figure 2. Zone-based Power distribution architecture.

The system design challenges when using 

semiconductor switches as smart fuse devices include 

lowering the quiescent current when the switch is in 

the on state, as well as turning on outputs powering 

large capacitive loads typically seen at the load (the 

electronic control unit [ECU] input). ECUs have an input 

capacitance ranging from 47µF to 5mF and startup 

time considerations (fast charging time <1ms, medium 

charging time <10ms, slow charging time <50ms) based 

on the ECU type and number of ECUs connected 

together on each Power Distribution Box (PDB) output. 

Charging these ECU input capacitors through the metal-

oxide semiconductor field-effect transistor (MOSFET) 

switch within the ECU startup time is one of the primary 

system design challenges of a zone-based architecture.

In this article, we’ll discuss various techniques to address 

the challenge of driving capacitive loads using high-side 

switch controllers.

Output-voltage slew-rate control

In this method, placing the capacitor (C) between gate-

GND, the slew rate of the gate and the output voltage 

limits the inrush current. The circuit configuration with 

output voltage slew-rate control is shown in Figure 3.

Equation 1 and Equation 2 calculate the inrush current 

and power dissipation at startup as:

IINR = COUT  × dVOUTdt (1)PD Vout = 0 = VIN  ×  IINR (2)

Because the MOSFET is operating in a saturation region, 

the inrush current should be low enough to keep the 

power dissipation within its safe operating area (SOA) 

during startup. MOSFETs can handle more energy (1/2 

COUTVIN 2) when their power dissipation is reduced and 

spread over longer durations. Thus, the inrush interval 

needs to stretch out over a longer period of time to 

support higher capacitive loads.

This method is suitable for slow charging requirements 

(for example, 5mF and 50ms), but the design must 

always include a trade-off between COUT, the FET SOA, 

the charging time and the operating temperature. For 

example, charging 5mF to 12V takes 40ms with an 

inrush current limit of 1.5A using TI’s high-side, switching 

controller, the TPS1211-Q1 as gate driver. Reference [11] 

iterates a procedure on how to check the FET SOA 

during startup using this method, while reference [2] is an 

online tool for estimating the SOA margin for a specific 

MOSFET.
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Figure 3. Circuit for output voltage slew-rate control.

Parallel precharge path

This approach is typically used in high-current parallel 

FET-based designs that need an additional gate driver to 

drive a precharge FET, as shown in Figure 4. You can use 

Equation 3 to select the precharge resistor (Rpre-ch) in 

the precharge path to limit the inrush current to a specific 

value:

Rpre − ch =   VINIINR (3)

Because the precharge resistor handles all of the power 

stress during startup, it should be able to handle both 

average and peak power dissipation, expressed by 

Equation 4 and Equation 5:

Pavg =  Epre − chTpre − ch = 0.5  ×  COUT  ×  VIN25  ×  Rpre − ch  ×  COUT  (4)

Ppeak =    VIN2 Rpre − ch   (5)
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Figure 4. Circuit with a precharge resistor and FET in a parallel path.
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In this case, fast output charging is possible – at the 

cost of a very bulky precharge resistor. For example, 

charging 5mF to 12V in 10ms would require a 0.4Ω 

precharge resistor at a 36W rating with a peak power-

handling capacity of 360W, resulting in a bulky wire-

wound resistor. Thus, this solution is not viable for many 

types of end equipment, as there are many channels 

on the same PCB. Each channel would need a bulky 

resistor, resulting in a space-inefficient solution.

Automatic PWM-based capacitor charging

As shown in Figure 5, the high-side driver outputs in the 

PCB connect to remote ECUs through lengthy cables 

varying from 1m to several meters. As an example, a 50A 

wire (8AWG) harness has 2mΩ-per-meter and 1.5µH-per-

meter characteristics. The D1 diode is a part of the 

system design that allows the freewheel path for the 

cable harness inductive current. The high-side drivers 

have strong gate-drive outputs capable of driving FETs 

in parallel with short (<1µs) turnon and turnoff times, 

providing overcurrent and short-circuit protection. The 

cable parasitic, D1 diode and high-side MOSFETs form a 

typical buck regulator configuration.

During startup, the uncharged output capacitor draws 

inrush current and triggers a short-circuit event when the 

inrush current hits the short-circuit protection threshold 

(ISCP). The high-side driver turns off the power path and 

reinitiates turnon after a retry period (TAUTO-RETRY). This 

process continues until the output capacitance is fully 

charged, as shown in Figure 6, after which the high-side 

driver goes into normal operation and drives the load.
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Figure 5. Circuit representation for pulse-width modulation (PWM) charging using a high-side driver.
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Figure 6. PWM charging method conceptual waveforms during startup.

Figure 7 illustrates the control operation. As you can see, 

this approach has two variables, ISCP and TAUTO-RETRY, 

which need to be set for the high-side driver based on 

the input voltage (VIN), load capacitance and required 

charging time. A higher ISCP threshold or a shorter 

TAUTO-RETRY delay allow faster output charging, making 

the solution universal for any value of load capacitance.

Figure 7. Flow chart of the PWM charging control method.
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This solution leverages the existing available real estate 

in a typical high-side driver system (the cable harness 

inductance and D1 diode) and creates an efficient 

charging method by operating the high-side MOSFETs 

in switching mode. Unlike traditional approaches, the 

proposed solution no longer depends on the FET SOA 

and does not require bulky precharge resistors, nor a 

precharge FET and driver. The solution uses the inherent 

short-circuit protection feature of the high-side driver and 

runs autonomously without any external control signals 

or complex algorithms.

Design considerations and test results

Consider this system design example for a 50A load:

• Battery voltage (VBATT) = 12V.

• Load capacitance (CLOAD) = 5mF.

• 1.5m cable = 8AWG connecting the high-side driver 

to the ECU, leading to Lcable = 2.25µH.

• Charging time (Tcharge) = 10ms

• Freewheeling diode drop (VD1) = 0.7V.

The design involves selecting the ISCP and TAUTO-RETRY 

parameters. For a 50A load design, the ISCP threshold is 

usually set at 20% above the maximum load current, so 

in this example, that would be 50A × 1.2 = 60A.

Now, to compute TAUTO-RETRY, see Figure 6 and use 

the current-voltage relationship of the capacitor at the 

midpoint of Tcharge/2 to get Equation 6:

  Istart +  Imid3 ×  Tcharge2 =  CLOAD  × VBATT2 (6)

where:

Istart = ISCP × TON1 + TOFF12 × TON1 + TAUTO − RETRY (7)

and

Imid = ISCP × 2  ×  TON_mid2 × TON_mid + TAUTO − RETRY (8)

The time intervals TON1, TOFF1 and TON_mid can be 

calculated using Equation 9 to Equation 11:

TON1 = Lcable × ISCPVBATT (9)

TOFF1 = Lcable × ISCPVD1 (10)

TON_mid = Lcable × ISCPVBATT2 (11)

Substituting the known parameters VBATT, Lcable, ISCP, 

VD1 and CLOAD and solving for TAUTO-RETRY gives a retry 

delay of <200µs to achieve a charging time of 10ms.

Figure 8 and Figure 9 show the application schematic 

and test setup to charge a 5mF load capacitance using 

the TPS1211-Q1 high-side driver. TAUTO-RETRY is 180µs, 

which results in a charging time of 7ms, as shown in 

Figure 10.
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Figure 8. Typical application schematic for driving a capacitive 
load.

Figure 9. Test setup using the TPS1211-Q1 evaluation module 
with a 1.5m cable harness.
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Figure 10. Startup with a 5mF load capacitance using the 
TPS1211-Q1 in switching mode.

Conclusion

Semiconductor-based smart fuse solutions are gaining 

popularity over traditional melting fuses in automotive 

power distribution given their significantly improved 

fuse time-current characteristics and resettability through 

software. These benefits enable a reduction in overall 

cable harness weight because the cables are thinner and 

shorter.

One of the system design challenges with 

semiconductor-based smart fuse solutions is whether 

the capacitor load charging can meet the system 

startup time requirements. TI’s high-side switch controller 

devices offer various techniques to address the 

challenges of capacitive load driving.
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