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Automotive EMC-compliant reverse-battery 
protection with ideal-diode controllers

Introduction
Given the emergence of new trends in automotive elec-
tronics such as autonomous driving and car infotainment 
systems, system designers are facing new challenges when 
designing automotive front-end power systems. Discrete 
reverse-battery protection solutions like Schottky diodes 
and P-channel field-effect transistors (FETs) are no longer 
a viable solution for the 100- to 1,000-W power levels 
required in electronic control unit (ECU) designs due to 
their poor efficiency, need for thermal management and 
the space they consume on a printed circuit board. The 
need to adhere to strict automotive electromagnetic 
compatibility (EMC) testing limits adds another layer of 
complexity when designing these front-end power systems.

This article highlights how a dual gate-drive architecture 
driving back-to-back power N-channel FETs helps simplify 
the design of a reverse-battery protection system and 
enables designers to adhere to EMC compliant testing 
limits set by various standards or original equipment 
manufacturers (OEMs).

Reverse-battery protection
Reverse-battery protection activates when battery termi-
nals are incorrectly connected during jump start, vehicle 
maintenance or service because a connection error can 
damage the components in ECUs if they are not rated to 
handle reverse polarity. Reverse-battery protection is an 
important feature for semiconductor components that 
operate directly from a vehicle battery.

There are various solutions available to realize reverse 
polarity protection. A common solution is series diode in 
the positive path, and another is a P-channel metal-oxide 
semiconductor field-effect transistor (MOSFET)-based 
architecture. However, ideal-diode controllers driving 
N-channel FET-based reverse-battery protection circuits 
are gaining wider acceptance because of system-level 
benefits in terms of efficiency, size and cost, along with 
the ability to comply with EMC-compliant testing limits. 
Figure 1 compares these three solutions and lists their 
performance benefits.
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Figure 1. Common schemes for reverse-battery protection 
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Automotive EMC testing
An automotive battery connects to multiple loads, includ-
ing ECUs, relays and motors. Several system-level events, 
such as turning inductive loads on or off, can create 
voltage transients on the battery supply lines. Capacitive 
and inductive coupling via lines other than the battery 
supply lines can also create electrical transients.

International Organization for Standardization (ISO) 
7637-2, ISO 16750-2, Japanese Automotive Standards 
Organization A-1 and Society of Automotive Engineers 
J1113-11 all specify automotive electrical line transient’s 
behavior and impact. Apart from these automotive indus-
try standards, many automotive OEMs have their own 
standards. One such standard is LV 124, which was drawn 
up by representatives from Audi AG, BMW AG, Daimler 
AG, Porsche AG and Volkswagen AG. Figure 2 illustrates 
some of the tests specified in LV 124.

All reverse-battery protection devices must meet 
system-level tests. Some tests, such as LV 124 E-06 
(superimposed alternating voltage) and E-10 (short inter-
ruption) are very hard to meet with diode and P-channel 
FET-based reverse-battery protection solutions. The LV 124 
E-06 test applies a superimposed alternating voltage while 
the engine is running. This test requires an AC peak-to-
peak ripple as high as 6 V on a 13.5-VDC battery voltage, 
swept from 15 Hz to 30 kHz. The LV 124 E-10 test applies 
short interruptions at the input, typically for a duration 
ranging from 10 µs to few milliseconds to check whether 
electronic modules are immune to short interruptions in 

the battery supply. Such interruptions can occur due to 
events such as contact and line errors or bouncing relays. 
To achieve functional pass status A, electronic modules 
must function properly with up to 100-µs interruptions in 
input power.

To achieve active rectification of a 6-V, 30-kHz peak-to-
peak AC input voltage during the E-06 test, and to meet 
class A performance during the E-10 test, having the gate 
turn off and on quickly is a very important feature. This 
article addresses specific challenges when implementing a 
single gate-drive, ideal-diode controller that can comply 
with LV 124 E-06 and E-10 test requirements.

Reverse-battery protection with back-to-back FETs
Apart from driving a single N-channel FET to realize 
reverse-battery protection, many systems need driving of 
back-to-back connected N-channel FETs. Back-to-back 
connected FETs offer flexibility to designers by offering 
in-rush current limiting, overvoltage protection control 
and load disconnection. In order to avoid large current 
peaks while starting up, in-rush current control is required 
with huge millifarad capacitive loads. The overvoltage 
protection feature enables the use of output electrolytic 
capacitors with a lower voltage rating, which in turn helps 
reduce the overall solution size for space-constrained 
applications such as advanced driver-assistance system 
camera modules. The load disconnect feature enables a 
reduction of quiescent current when the system is in sleep 
mode. Dual battery systems for power multiplexer designs 
also require a back-to-back FET-based reverse-battery 
protection solution.

Figure 2. LV 124 system-level EMC tests
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Ideal-diode controller with single gate-drive 
driving back-to-back FETs
Figure 3 shows an ideal-diode controller with single gate-
drive architecture driving back-to-back FETs. This topol-
ogy is known as a common source topology.

When applying a superimposed alternating voltage to 
the system, the output bulk capacitor (C2) charges to the 
peak input voltage. Whenever the input voltage falls below 
the output voltage, the ideal-diode controller detects a 
reverse current and turns off FETs Q1 and Q2. When the 
input voltage rises higher than the output voltage, the 
ideal-diode controller needs to turn on both FETs quickly, 
a process that requires charging the gate capacitance 
greater than the threshold voltage (VT) of both FETs. The 
minimum charge pump drive strength required to realize 
active rectification is given by Equation 1.

		  ICP = (QG1 + QG2) × fSW	 (1)

where QG1 and QG2 are the total gate charge for FETs Q1 
and Q2, respectively, and fSW is the AC superimpose 
frequency of the E-06 test.

Equation 1 shows that the total gate charge needed to 
turn on the FETs is a combination of the individual gate 
charges of FETs Q1 and Q2. This gate charge varies with 
the drain-to-source voltage across the FET at the turn-on 
time. Because a single gate-drive architecture drives two 
FETs at the same time, this architecture requires a charge 
pump with a higher gate-drive strength. As mentioned 
previously, this is one of the specific challenges associated 
with implementing a single gate-driver architecture. A 
charge pump with insufficient drive for both FETs can 
result in skipped cycles during active rectification, as well 
as higher power losses across the FETs caused by 
increased switching losses and higher input peak currents 
during the E-06 test. The single gate-drive architecture 
also results in a higher output-voltage droop during E-10 
testing, resulting in inferior system performance. 

Figure 3. An ideal-diode controller with single 
gate-drive for back-to-back connected FETs
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Ideal-diode controller with dual gate-drive 
driving back-to-back FETs
Figure 4 shows the Texas Instruments LM74800-Q1 ideal-
diode controller with an integrated dual gate drive. The 
DGATE output drives the first FET (Q1) to replace a 
Schottky diode for reverse input protection and output 
voltage holdup, while the HGATE output drives the second 
FET (Q2) to realize power-path on and off control, in-rush 
current limiting and overvoltage protection. A strong charge 
pump with a 20-mA, peak GATE current driver and short 
turn-on and turn-off delay times ensure a fast transient 
response, which helps stay under LV 124 EMC testing limits.

The LM74800-Q1 rectifies the superimposed alternating 
voltage (the E-06 test) by controlling DGATE, turning Q1 
off quickly to cut off reverse current, and turning Q1 on 
quickly during forward conduction. Q2 remains on, as it is 
controlled by the HGATE driver stage. Having Q1 operate 
as an active rectifier while keeping Q2 on effectively 
reduces the output-voltage droop to a maximum of the 
body-diode drop only, and also results in improved power-
supply rejection ratio (PSRR) performance when compared 
to a single gate-drive architecture.

Charge pump loading is reduced by half compared to a 
single gate-drive architecture. The minimum charge pump 
drive current required to realize active rectification is 
given by Equation 2.

		  ICP = QG1 × fSW	 (2)

where QG1 is the total gate charge of Q1 and fSW is the AC 
superimpose frequency of the E-06 test.

Because only Q1 turns on and off during E-06 and E-10 
tests, the peak current required to charge the gate is 
lower than it is for a single gate-drive architecture. Due to 
Q1 switching, the Miller region is very minimal due to the 
drain-to-source voltage transition from the body diode 
drop to I × RDS(on). The total charge (QG) follows a dotted 
line, as shown in Figure 4.

Active rectification with fast turn-off and turn-on of Q1 
results in an AC-rectified current profile and lower root-
mean-square currents. Active rectification improves PSRR 
performance, thereby reducing filtering requirements, 
which is valuable in end products such as audio amplifiers. 
Active rectification also reduces the power dissipation in 
Q1 and the output electrolytic capacitors by more than 
half compared to a single gate-drive-based controller, 
thereby reducing the heating effect and increasing the 
lifetime of the end product, such an ADAS sensor fusion.

Figure 4. LM74800-Q1 ideal-diode 
controller driving back-to-back FETs
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Performance comparison of single and dual  
gate-drive architectures
It is clear that the single gate-drive architecture needs a 
higher total gate charge for a given gate-drive voltage level 
to fully turn on back-to-back connected FETs. This total 
gate-charge value depends on many variables, such as the 
drain-to-source voltage, the Miller effect of the FETs, the 
total output capacitance and the load current when the 
FET turns on. Assuming identical operating conditions for 
both architectures and ignoring the Miller effect, the total 
gate charge required for single gate-drive architecture is 
about two times that required for dual gate-drive 
architecture.

Table 1 shows performance comparison of single and 
dual gate-drive architectures with respect to the minimum 

Table 1. Comparison of single vs. dual gate-drive architectures

Parameter

Topology

Single Gate-Drive Architecture Dual Gate-Drive Architecture

Minimum charge pump drive strength (ICP_MIN) 
at fSW = 30 kHz (QG1 + QG2) × fSW = (13 nC + 13 nC) × 30 kHz = 780 µA QG1 × fSW = 13 nC × 30 kHz = 390 µA

Minimum charge pump drive strength (ICP_MIN) 
at fSW = 200 kHz (QG1 + QG2) × fSW = (13 nC + 13 nC) × 200 kHz = 5200 µA QG1 × fSW = 13 nC × 200 kHz = 2600 µA

charge-pump and current drive strength required to 
achieve an active rectification. The main cause of perma-
nently superimposed alternating voltages in the electrical 
system is the energy transformer (e. g. alternator or a 
DC-DC converter) that powers the electrical system.

AC superimposed frequency of up to 30 kHz usually 
comes from an alternator and 200 kHz from a DC-DC 
converter. The comparison in Table 1 considers commonly 
used N-FETs with a total gate charge of 13 nC at a gate-
drive voltage of 6 V and an AC superimposed frequency of 
30 kHz and 200 kHz. 

Figure 5 shows performance comparison of single and 
dual gate-drive architectures when subjected to LV 124 
E-06 and E-10 test. Test conditions under which perfor-
mance is captured for each architecture is also highlighted 
in Figure 5.

Figure 5. Comparing single and dual gate-drive architectures in the context of LV 124 E-06 and E-10 tests

Time (200 µs/div)

V
IN

(5 V/div)

V
OUT

(5 V/div)

I
IN

(10 A/div)

GATE
(10 V/div)

3x higher

input ripple

current

V droops during E-06 test
OUT

Time (200 µs/div)

V
IN

(5 V/div)

V
OUT

)(5 V/div

I
IN

(10 A/div)

DGATE
(10 V/div)

V does not droop during E-06
OUT

test (Active rectification)

Lower input ripple current

(a) E-06: Single gate drive (b) E-06: Dual gate drive (LM7480-Q1)

E-06 test: fSW = 30 kHz, VIN = 6 VP-P, output capacitor = 330 µF, ILoad = 2 A

E-10 test: Input short duration = 200 µs, output capacitor = 47 µF, ILoad = 1 A

Time (200 µs/div)

V
IN

(10 V/div)

V
OUT

(10 V/div)

I
OUT

(5 A/div)

Gate
(20 V/div)

V droops during
OUT

E-10 test

GATE takes longer time to recover

once input short is removed

Time (200 µs/div)

V
IN

(10 V/div)

V
OUT

(10 V/div)

I
IN

(10 A/div)

HGATE
(20 V/div)

DGATE
(20 V/div)

HGATE remains on during input

microshort event

DGATE recovers quickly once input

microshort is removed

(c) E-10: Single gate drive (d) E-10: Dual gate drive (LM7480-Q1)

http://www.ti.com/adj


Texas Instruments	 6	 ADJ 4Q 2020

PowerAnalog Design Journal

Conclusion
Ideal-diode controllers are gaining popularity for systems 
with front-end reverse-battery protection because of the 
benefits they offer with respect to size and thermal perfor-
mance over conventional power diode and P-FET-based 
solutions. Reverse-battery protection devices are 
subjected to stringent automotive EMC transients, and 
their ability to handle EMC transients directly affects 
overall system reliability. A dual gate-drive architecture, 
with separate gate control of back-to-back connected 
FETs enables robust and superior system-level perfor-
mance during EMC compliance tests. Such architecture 
also offers flexibility with various features such as in-rush 
current control, overvoltage protection and load 
disconnect.
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