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Understanding frequency variation in the 
DCS-Control™ topology

Introduction
A common requirement in automotive, communications 
equipment and industrial markets is to avoid interfering 
with specific frequency ranges, such as the AM radio band, 
to minimize disturbances for sensitive electronics, such as 
sensors. One example for reducing interference from 
power supplies is setting their switching frequency above 
the sensitive frequencies to keep switching noise at a 
higher frequency. 

If the frequency is set below sensitive frequencies, then 
higher-frequency harmonics would be in band and possibly 
cause interference. Most modern power supplies do not 
use an actual oscillator to set their switching frequency, as 
in traditional voltage- or current-mode control. Instead, 
either the on-time or off-time is controlled, which then 
provides a relatively constant operating frequency. 

DCS-Control™ topology is an example of a topology 
that is on-time based, which efficiently provides the low-
noise and fast-transient response needed in many applica-
tions. While the switching frequency of this topology does 
vary, this variation is understood, controlled, and usually 
sufficient for frequency-sensitive applications such as 
automotive, communications equipment, test and 
measurement, and factory automation.

Application example
Figure 1 shows the basic block diagram of the 

DCS-Control topology used in a typical automotive info-
tainment device.[1, 2]

As explained in Reference 1, the timer (tON_MIN) is 
responsible for providing a controlled switching frequency 
by adjusting the on-time based on VIN and VOUT through 
Equation 1.

t 400 nsON = ×
V

V
OUT

IN  

(1)

The 400-ns value sets the ideal switching frequency to 
2.5 MHz when the DCS-Control device is operating with 
the on-time set by the timer. However, due to circuit 
losses, propagation delays, and in some specific applica-
tion conditions, operation does not always follow the 
on-time set by the timer. As a result, the frequency varies. 
The reasons for this variation are grouped together based 
on the duty cycle, ideally VOUT/VIN, at which the device 
operates.

Measured data explains the principles behind the 
DCS-Control topology’s frequency variation. To better 
explain the concepts, the TPS62130 (catalog version) was 
chosen and it offers two switching frequencies: 2.5 MHz 
and 1.25 MHz. The 2.5-MHz data exactly matches the 
TPS62130A-Q1 data because both converters offer the 
2.5-MHz setting. All data was taken on the evaluation 
module with a 2.2-µH inductor and two 22-µF output 
capacitors (to overcome the DC bias effect).[3]

By Chris Glaser
Applications Engineer

Figure 1. Block diagram of the DCS-Control™ 
topology in the TPS62130A-Q1 converter
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Moderate duty cycles
In the typical application of converting the 12-V car 
battery to 5 V for universal serial bus (USB) ports, the 
required duty cycle is not extremely high or low. 
Frequency variation in this case is very low because the 
on- and off-times are not at their extremes. Figure 2 
shows the measured switching frequency, on-time, and 
off-time with a 5-V output voltage, two frequency settings, 
and two different load currents. A moderate duty cycle 
refers to those input voltages above 9 V for the 2.5-MHz 
setting and above 7 V for the 1.25-MHz setting.

Figure 2b shows the reason behind the low levels of 
frequency variation. The on-time matches very well to the 
ideal on-time set by the timer and to Equation 1 for both 
loads and frequency settings. The reasons for the small 
frequency variation with moderate duty cycles are: over-
coming losses and propagation delays. 

In Figure 2a, the frequency increases with heavier loads 
due to losses. Higher loads require slightly higher duty 
cycles to overcome resistive losses in the circuit. Since the 
on-times are the same for both the 1-A load and 3-A load, 
the off-time is decreased to achieve the higher duty cycle 
(Figure 2c). The same on-time and a shorter off-time 
results in a shorter period and higher frequency.

Also, the frequency decreases slightly with increasing 
input voltage. Because the on-time decreases with increas-
ing input voltage, fixed propagation delays in the device 
have a more significant effect on the achieved on-time for 
smaller on-time values. The timer sets the on-time to 
achieve a certain frequency, but its output signal goes 
through the control and gate driver (shown in Figure 1) 
before reaching the power transistors. This path takes 
some finite amount of time. For example, if a 200-ns 
on-time is desired and the propagation delay is 20 ns, the 
actual on-time is 220 ns, which is 10% higher than desired. 
But, if the input voltage increases and the desired on-time 
reduces to 100 ns, the same 20-ns delay produces a 20% 
increase in the actual on-time. This effect is further 
pronounced for low duty cycles.

High duty cycles
While a car battery nominally operates at ~12 V, transients 
from high-current loads, such as starting the engine, can 
reduce the battery voltage. To the power supply this 
appears as a line transient, which means more advanced 
regulation is required in some applications. As long as the 
input voltage does not decrease below the level of the 
output voltage, the DCS-Control topology maintains 
output regulation during such line and load transients. 

Figure 2. TPS62130 with a 5-V output
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Figure 3 shows measured data for a 3.3-V output. When 
the input voltage of the converter drops, the duty cycle 
increases. At high duty cycles, the switching frequency 
decreases due to losses and a minimum off-time. High 
duty cycles refers to the left-most portion of Figures 2a 
and 3a where the switching frequency decreases from its 
nominal value towards zero. 

High duty cycles demonstrate a minimum off-time in the 
topology. Since high duty cycles occur at a lower input 
voltage and higher output voltage, the energy stored in the 
inductor during the on-time is lower. This outcome is 
because there is much less voltage across the inductor. To 
maximize efficiency, a minimum off-time is included to 
ensure that sufficient energy is delivered to the output. 
This is especially helpful in power-save mode, in which a 
certain amount of energy is delivered so the output stays 
higher for a longer time. This results in a gap between 
switching pulses and higher efficiency. From Figure 3c, 
once the minimum off-time is reached (around a 6-V input 
voltage for the 2.5-MHz setting), the on-time begins to rise 
from ideal in order to achieve the required increase in 
duty cycle that corresponds to the lower input voltage. 
Figure 2c and Figure 3c show the 120-ns approximate 
value of the minimum off-time.

Furthermore, the minimum off-time is quickly reached 
at high duty cycles because the input voltage value is 
lower as well. At input voltages below 6 V, the resistance 
of the high-side MOSFET (RDS(on)) inside the DCS-Control 
device increases, thus creating higher losses and a greater 
required extension of the duty cycle. For example, 3-A 
loads show longer on-times than 1-A loads at lower input 
voltages.

Low duty cycles
Low duty cycles occur with lower output voltages, such as 
1 V and 1.8 V. The relatively high 12-V input voltage 
requires duty cycles of sometimes less than 10%. With 
respect to the desired 400-ns period, this requires 
on-times near and even below 40 ns. Such small on-times 
are challenging for any converter to achieve, or are actu-
ally impossible due to absolute minimum on-times. The 
TPS62130 data sheet notes a typical 80-ns absolute 
minimum on-time that occurs in these cases. This is the 
primary source of frequency variation at low duty cycles. 
Fixed propagation delays added to small on-times are 
another source of variation, as explained before. Figure 4 
shows measured data for a 1.8-V output voltage.

Figure 3. TPS62130 with a 3.3-V output
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The 2.5-MHz curves in Figure 4b clearly show a minimum 
on-time in the 80-ns range. This sets an upper boundary 
on the achievable switching frequency. The 1.25-MHz 
curves show good frequency variation similar to Figures 2a 
and 3a. Due to smaller on-times with this 1.8-V output, 
fixed propagation delays cause a sharper downward 
frequency shift versus higher output voltages, which result 
in a lower frequency.

Additionally, the bumpiness seen in the 2.5-MHz curves 
(Figure 4a) shows a third impact to the on-time: the 
comparator. During a transient, the comparator extends 
the on-time past the output of the timer to deliver more 
energy to the output to make the output voltage recover 
faster. This is a key aspect of a hysteretic converter and 
explains the fast transient response of the DCS-Control 
topology.

While the 80-ns minimum on-time and the output of the 
timer do not change much over the input voltage range, 
the output signal does change due to the changing ripple on 
the inductor current. There is increased ripple with higher 
input voltages. Having more ripple across the equivalent 
series resistance (ESR) and equivalent series inductance 
(ESL) in the output capacitors creates more signal for the 
comparator on which to react, making the system faster. 
Between 12 and 13 V, there is enough signal and the 
comparator no longer controls the on-time. The minimum 
on-timer controls it. Thus, higher frequency is achieved 
above this input voltage.

One solution to the lower frequency is a two-stage 
conversion of the 12 V to the load. A two-stage conversion 
(via 5 V, for example) to very-low output voltages achieves 
a higher frequency in both stages because of the more 
moderate on-times of each stage. 

Finally, the lower switching frequency that occurs with 
lower output voltages will increase the inductor current 
ripple, but this ripple is already lowered because of the 
low output voltage (Equation 2). Lower output voltages 
have less current ripple to begin with. When following the 
datasheet recommendations for inductance and switching 
frequency, this lower switching frequency does not limit 
the output current below the 3-A device rating. 

∆IL(max) = ×
−

×
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Conclusion
The switching frequency of the DCS-Control topology and 
other non-oscillator-based control topologies vary with 
changes in the application conditions. Depending on the 
duty cycle, the on-time and the frequency are affected by 
losses, the minimum off-time, the absolute minimum 
on-time, propagation delays, or the comparator. This 
behavior is understood and expected, and output voltage 
regulation is maintained. The lower operating frequency 
provides higher efficiency with no reduction in output 

current capability. High-frequency operation is maintained 
for the common applications of USB ports and system rails 
with higher voltages.
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Figure 4. TPS62130 with a 1.8-V output
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