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The Analog Applications Journal (AAJ) is a digest of technical analog 
articles published quarterly by Texas Instruments. Written with design 
engineers, engineering managers, system designers and technicians in mind, 
these “how-to” articles offer a basic understanding of how TI analog products 
can be used to solve various design issues and requirements. Readers will find 
tutorial information as well as practical engineering designs and detailed 
mathematical solutions as they relate to the following applications:

• Automotive

• Industrial

• Communications

• Enterprise Systems

• Personal Electronics

AAJ articles include many helpful hints and rules of thumb to guide readers 
who are new to engineering, or engineers who are just new to analog, as well 
as the advanced analog engineer. Where applicable, readers will also find 
software routines and program structures and learn about design tools. These 
forward-looking articles provide valuable insights into current and future 
product solutions. However, this long-running digest also gives readers 
archival access to many articles about legacy technologies and solutions that 
are the basis for today’s products. This means the AAJ can be a relevant 
research tool for a very wide range of analog products, applications and  
design tools. 

Introduction
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Designers of low-distortion analog  circuits in 
industrial data acquisition, seismic measurement, 
and high-fidelity audio are aware that many 
operational amplifiers (op amps) produce greater 
distortion when configured as non-inverting ampli-
fiers. In the non-inverting configuration, the input 
signal appears as a common-mode signal at both 
inputs. The subtraction performed by the op amp 
on the two inputs is finite and slightly non-linear, 
producing a small amount of additional distortion 
at the op amp  output. This effect is often referred 
to as common-mode  distortion.[1]

It is less widely known that some op amps show 
more severe common-mode distortion when the 
input-signal source has a high output impedance. 
Using the TL072, a JFET-input  general-purpose 
op amp, let’s compare the  output distortion for 
two source impedances. Figure 1 shows the 
TL072’s output distortion when the source imped-
ance is 20 W and 10 kW. The total harmonic dis-
tortion and noise (THD+N) is substantially 
increased in the 10-kW case – more than could be 
attributed to the additional source resistor.

This behavior is typical of older JFET-input op 
amps like the TL072 and limits their usability in 
many circuits such as Sallen-Key active filters.[2] 
At the time, JFETs offered some advantages over 
bipolar transistors when used as the input devices 
of an op amp. For example, the reduced current 
noise allowed JFET-input op amps to be used in 
high-impedance applications. Furthermore, JFETs 
could be fabricated with the existing bipolar semi-
conductor processes, giving them a major advan-
tage over MOSFETs. 

Figure 2 shows the cross section of a p-channel 
JFET fabricated using ion implantation on a 
p-type substrate in a junction-isolation process.[3] 
The channel was formed by implanting p-type 
impurities into an n-type region. An n-type region 
is then implanted on top of the channel (n-type top  
gate) and connected to the region below the channel to 
form the gate.

The junction between the p-type substrate and n-type 
gate acts as a reverse-biased diode. This allows the JFET 
to have extremely low input current, while creating a par-
asitic capacitance (CGSS) from the gate to the substrate.

At the interface of p-type and n-type semiconductor 
material, a process of diffusion occurs where electrons and 
holes migrate across the interface leaving behind charged 

ions on their respective sides. The migrating charge carri-
ers recombine with the opposing charge carriers from the 
opposite side and are eliminated, which produces an area 
with no mobile charge carriers. This area is called the 
depletion region because the mobile charge carriers have 
been depleted. In this region, the semiconductor material 
behaves as an insulator. The resulting structure resembles 
a capacitor with n- and p-type regions being the conduc-
tive electrodes, and the depletion region acts as the 
dielectric. Due to the large contact area between the gate 

Distortion and source impedance in  
JFET-input op amps
By John Caldwell
Analog Applications Engineer

Figure 1. THD+N measurement of a TL072 op amp

0.0001

0.001

T
o

ta
l 

H
a

rm
o

n
ic

 D
is

to
rt

io
n

 a
n

d
 N

o
is

e
( %

)

0.01

0.1

1

10 100 1 k 10 k 100 k

Frequency (Hz)

10 kΩ

20 Ω

Figure 2. Ion-implanted p-channel JFET structure
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and the substrate, the gate-to-substrate capacitance, CGSS, 
is typically much larger than the gate-to-source and gate-
to-drain capacitances.[3] Therefore, the CGSS of the input 
JFETs is the dominant contributor to the input common-
mode capacitance of these op amps.

Like all capacitors, the capacitance of the p-n junction is 
dependent on the area of its electrodes and the distance 
they are separated. Although the area of the junction is 
fixed, the width of the depletion region is not. It depends 
on the direction and intensity of the electric field across 
the depletion region. 

During the initial diffusion, the ions left behind by the 
diffusing charge carriers produce an electric field which 
opposes further diffusion. This is called the built-in voltage 
of the junction. The application of an external voltage to 
the junction has the effect of growing or shrinking the 
width of the depletion region and changing the capaci-
tance of the junction. The gate-to-substrate capacitance of 
a JFET varies as a function of gate-to-substrate voltage 
according to the equation:
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GSS

GSS
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+
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(1)

In Equation 1, CGSS0 is the junction capacitance at 0 V, 
VGSS is the gate-to-substrate voltage. Further, ψ0 is the 
built-in voltage of the junction, which typically is about 
0.7 V. In most op amps, the substrate is held at the nega-
tive supply voltage (VEE). Therefore, as the common-
mode voltage changes, the VGSS term in Equation 1 
changes, which increases or decreases the gate-to- 
substrate capacitance, CGSS.

In Figure 3, input common-mode capacitances, CCM1 
and CCM2, were added to represent CGSS of the input JFETs.

The input common-mode capacitance of the non- 
inverting input, CCM1, must be charged and discharged by 
a small current, IS, from the input source, VS. If the input 
capacitance is not a constant, but depends on the input 
voltage, the charging current drawn from the source is no 
longer linearly related to the rate-of-change of the input 
voltage signal: 
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This behavior is similar to the voltage coefficient of dis-
crete ceramic capacitors.[4,5] The change in capacitance 
with applied voltage distorts the current in the capacitor. 
This distorted current drawn from the source produces a 
distorted signal at the op-amp input due to the voltage 
drop across RS.

 V V I RIN S S S= −  
(3)

It is possible to cancel this distortion by placing a resis-
tance equal to the source impedance in the op amp’s feed-
back loop. This produces an identical distortion signal at 

the op amp’s inverting input. Because the distortion is now 
common to both inputs, it is removed by the op amp’s 
common-mode rejection. Unfortunately, the resistance in 
the feedback path introduces additional noise and also can 
cause stability issues if it is very large.[6] 

Ideally, to preserve low distortion when operating with 
high source impedances, the input common-mode capaci-
tance needs to be stabilized to a constant value. One 
method to accomplish this is to fabricate the op amp with 
a dielectrically isolated (DI) process. As shown in Figure 4, 
DI processes use a layer of dielectric material, such as sili-
con dioxide (SiO2), to isolate devices from the substrate 
and other adjacent structures. These processes were origi-
nally introduced to improve the speed of on-chip transis-
tors by reducing the capacitance at their collectors.[3] 

An additional benefit of dielectric isolation is that the 
JFET’s gate-to-substrate capacitance no longer varies with 
the input common-mode voltage. The value of the gate-to-
substrate capacitance is determined by the size of the 
device and width of the isolation layer, which is completely 
unaffected by an applied electric field. Furthermore, the 
isolation layer prevents the diffusion of charge  carriers 
across the p-n interface that would form a depletion 

Figure 3. The varying common-mode 
capacitances of a JFET-input op amp
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region. There is still an electric field across the 
barrier, but its effect on the mobile charge car-
riers in the silicon is not large enough to affect 
the total capacitance. 

In Figure 5, the common-mode capacitance 
of two op amps was measured very precisely 
with a network analyzer. The TL072 op amp 
was fabricated with a standard junction- 
isolated process. Over the measurement range, 
the input common-mode capacitance varies 
from 4.87 pF at +10 V to 7.10 pF at –10 V, a 
total change of 2.23 pF. As expected, the input 
common-mode capacitance increases with 
negative common-mode voltages because the 
gate-to-substrate voltage is decreasing. 

Alternatively, the OPA1642 was fabricated 
with a DI process. The input common-mode 
capacitance is greatly stabilized and shows a 
variation of only 30 fF over the entire measure-
ment range.

The improved stability of the input common-
mode capacitance is immediately apparent in 
distortion measurements. Figure 6 shows the 
measured THD+N of the OPA1642 configured 
in a gain of +1 for source impedances of 20 W 
and 10 kW. Unlike the TL072, the distortion of 
the OPA1642 is unaffected by an increase in 
source impedance.

The need for JFET-input op amps is still 
prevalent today because they continue to offer 
a unique combination of low noise, low bias 
current, and excellent AC/DC performance. 
The introduction of DI processes in their fabri-
cation and the resulting stabilization of the 
input capacitance allow modern JFET-input op 
amps to achieve extremely low distortion 
regardless of source impedance. 
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Figure 5: Common-mode capacitance of two 
JFET-input op amps
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Figure 6. THD+N measurements of an OPA1642 op amp
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SPICE models for Precision DACs

The challenge – complete system 
verification
Predicting the performance of a design before it is 
implemented is a challenge faced by every design 
engineer. IC designers have myriads of tools and 
models at their disposal to simulate their designs 
even before fabrication. However, when consider-
ing the full system design, there are very few com-
ponents for which accurate models exist. 

This means that a full system-level verification 
has to be done manually by the designer via bud-
geting, spot checks, modeling, visual inspection 
and modifications based on previous experience. 
Unfortunately, this leaves a potential for errors and 
bugs in the design. In some cases, several board 
revisions are required to achieve the intended 
functionality and performance. 

The building blocks – Precision DAC 
models
The latest TINA-TI™ software models for precision 
DACs, such as the DAC8411 family from Texas 
Instruments, enable full system-level verification. 
The DAC8411 family consists of 8- to 16-bit single-
channel, voltage-output digital-to-analog convert-
ers (DACs). The SPICE models for this family are 
available in two variants. The first is a parallel 
n-bit wide interface with output buffer, compatible 
with all TINA versions (Figure 1).

The second is a serial peripheral interface (SPI) 
with output buffer, compatible with professional 
TINA-TI software (Figure 2).

Both variants can be useful in simulating the 
analog signal chain from the DAC output buffer. 
The SPI model with the output buffer completely 
models the full DAC functionality. It can be used to 
simulate the digital signal chain from the DAC’s 
input. 

The output buffer model for the DAC includes 
common DC parameters such as end-point errors 
with respective temperature coefficients, quies-
cent current, as well as AC parameters such as 
capacitive load stability, slew rate, settling time, 
and power-on glitch, among others. For example, simula-
tion results for DAC8411 gain (Gerr) and offset (Offs) 
error are shown in Figure 3. Note that the gain error is a 
percentage of the full-scale range, and the offset error is in 
microvolts (µV). 

By Rahul Prakash
Electrical Design Engineer

Figure 1. DAC parallel interface model
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Figure 3. Gain and offset error DC simulations
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Figure 4 shows a transient simulation that was per-
formed on the DAC with a code step from quarter to 
three-quarter scale. The plot shows close correlation of 
the simulated plot to the datasheet plot for this analysis. 

The models also allow the designer to enter specific 
 values for some parameters such as the DAC gain and 
 offset errors. This is particularly useful in running what-if 
simulations for estimating system performance.

Bringing it together – complete system models
Case Study: 0- to 20-mA DAC
One of the most common DAC applications is to create a 
0- to 20-mA signal in an industrial automation system, also 
known as a three-wire system. There are multiple ways to 
implement this system that range from a fully discrete 
implementation using a DAC, operations amplifiers, and 
passive components, to fully-integrated implementations 
using devices such as the DAC8760.

For this exercise, let’s design a basic 0- to 20-mA system 
using a fully discrete implementation with TINA models 
for the DAC8411 and OPA192 (Figure 5).

Theory of operation
This implementation uses models for the DAC8411, two 
OPA192 operational amplifiers (OP1 and OP2), two MOS 
transistors (T1 and T2), and four resistors (R1, R2, R4, 
and RLOAD). This system generates an output load cur-
rent into RLOAD that is proportional to a 16-bit input digi-
tal code. For this design, OP1 and OP2 are required to 
handle rail-to-rail inputs.

In order to understand this basic system, we will assume 
that OP1 and OP2 are ideal. However, subsequent sections 
use the OPA192 TINA models to simulate the complete 
system. The DAC8411 model converts the 16-bit DAC 
code into a proportional analog output voltage (VDAC) in 
the 0- to 5-V range. This voltage is then applied to the 
positive input of the operational amplifier (OP2). The neg-
ative input of OP2 is also driven to the DAC output voltage 
(VDAC), thus forcing a current through resistor R4 
(VDAC/R4). The operational amplifier (OP2) ensures this 
current by controlling the gate voltage of MOSFET (T2). 
This current is drawn from the sup-
ply (V2) via resistor R1. This com-
pletes the first stage of this design 
in which a code proportional cur-
rent is generated.

The operational amplifier (OP1) 
maintains equal voltage drops 
across R1 and R2. Since the value 
of R2 in this design is a 100 times 
less than R1, for an equal voltage 
drop, the current flowing through 
R2 must be a 100 times greater 
than the current flowing through R1. 
This current can be expressed by 
the formula (VDAC/R4) × (R1/R2). 

The operational amplifier (OP1) 
ensures this current by controlling 

Figure 4. Transient simulation showing half-
scale settling time
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the gate of MOSFET T1. The drain of the T1 is connected to 
the 250-W load resistor (RLOAD) via an ammeter (AM1).

Simulation setup and results
The test-bench configuration shown in Figure 6 uses an 
ideal 16-bit analog-to-digital converter (ADC) to convert a 
0- to 1-V analog signal (VG2) into the 16-bit code for the 
system. A DC sweep of VG2 generates full 16-bit code for 
the system. The resulting output current is shown in 
Figure 7.

Figure 8 shows a transient analysis for the same circuit. 
The DAC code is toggled from zero scale to full scale and 
the resulting output current is plotted.

Real system non-idealities 
Previously, the 0- to 20-mA system was simulated with 
DAC8411 and OPA192 parameters modeled as typical. As 
with any integrated chip, the parameters listed in the 
datasheet have a typical value, and for some, a max/min 
value. The intent of placing these boundaries is to guaran-
tee a level of performance on these parameters over a 
specified temperature range, supply voltages, and process 
variations. Thus, it is useful to have the system simulated 
for these variations in the specifications.

The latest TINA-TI 
software models for the 
DAC allow designers to 
modify some critical 
parameters and run 
what-if simulations. To 
illustrate this feature, an 
example simulation was 
chosen in which the DAC 
offset voltage is varied 
from a typical to the 
maximum value. This 
spec is captured in the 
models by the OFFS 
parameter shown in 
Figure 9. 

Figure 6. Input interface test bench for 
0- to 20-mA DAC system

Figure 7. DAC system simulation of 
output current DC sweep
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output current transient
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Figure 10 shows the system’s DC performance 
(system output current of model in Figure 5) 
for two  values of DAC offset voltage. 

Note that the green curve is the simulation 
result with the worst-case offset voltage (3 mV), 
and the red curve is with offset voltage set to 
typical value of 0.05 mV. For simplicity, the 
 displayed output current in Figure 10 is zoomed 
in to show the offset in the output. This particu-
lar simulation is useful to predict the response 
of the system for the worst-case DAC offset 
voltage. 

Conclusion
The DAC models described allow full system 
verification. However, the level of accuracy and 
system parameters that can be verified depend 
on the accuracy of the models as well as the 
capability of the simulation tool. Using the sys-
tem shown in Figure 5 as an example, the level 
of verification depends on the DAC models, 
operational amplifiers, MOSFETs, and discrete 
components along with the capability of the TINA simula-
tor. The simulator capability can be improved by using the 
professional version of the simulation software. This leaves 
the accuracy of the component models to be the limiting 
factor for comprehensiveness of the system verification.
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Figure 10. DAC system simulation for output-current DC 
sweep with user-adjusted offset error
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Isolated sensing systems with  
low power consumption

Current-shunt-monitor (CSM) ICs have been a mainstay in 
industrial applications for many years. Designed for either 
unidirectional or bidirectional current monitoring, CSMs 
offer excellent performance when used in either high-side 
or low-side current-shunt applications. However, many 
modern applications require some level of insulation to 
protect the end user from hazardous voltages. 

The level of insulation that a particular circuit needs is 
driven mainly by the type of end equipment and where 
the end equipment will be deployed. For instance, is the 
end equipment a solar inverter to be mounted on a roof 
top or is it part of a servo motor drive used on an indus-
trial robot? Global location of the end equipment plays a 
part as well. In the United States the Underwriters 
Laboratory (UL) maintains safety standards for various 
end-equipment. For Canada, it is the Canadian Standards 
Association (CSA). Europe has the International 
Electromechanical Commission (IEC) and the Association 
for Electrical, Electronic and Information Technologies 
(referred to as the VDE). 

There are four main categories of insulation. The first is 
functional, which offers no protection against electric 
shock. As the name implies, functional insulation is pro-
vided to allow proper operation of a circuit or device. 
Think of this as the minimum trace spacing across a 
printed circuit board from a shunt resistor to the input 
terminals of the monitoring device. 

The second level of insulation is basic. Basic insulation 
relates to the ability of an isolation device (an optocoupler 
or digital isolator, for example) to provide a level of pro-
tection against electric shock across an isolation barrier.

Next is supplemental or double insulation. This is an 
independent insulation layer that is applied in addition to 
basic insulation to ensure protection against electric shock 
in the event that the basic insulation fails. This is similar 
to adding a section of heat-shrink tubing over an input 
wiring harness. The fourth category is reinforced insula-
tion. Reinforced insulation is a single insulation system 
that provides a level of protection against electric shock 
equal to double insulation.

For a typical insulation example, the AMC1305 is a pre-
cision, delta-sigma (ΔΣ) modulator with the output sepa-
rated from the input circuitry by a capacitive isolation 
barrier that is highly resistant to magnetic interference. 
This barrier is certified to provide reinforced isolation of 
up to 7000 VPK, according to the VDE V 0884-10, UL1577, 

and CSA standards. As shown in Figure 1, the isolation 
barrier of this device is constructed with two series capaci-
tors, each having an equivalent of basic insulation through 
a silicon dioxide (SiO2) layer of 13.5 µm (27 µm total). 
The surge immunity is rated to ±10,000 V and the working 
voltage is 1500 VDC and 1000 VRMS, respectively.

Unlike traditional CSM devices that provide an analog 
output, the AMC1305 provides a digital bit stream. The 
differential analog input is a switched-capacitor circuit 
feeding a second-order delta-sigma modulator stage that 
digitizes the input signal into a 1-bit output stream. The 
converter’s isolated output (DOUT) provides a digital bit-
stream of ones and zeroes that are synchronous to an 
externally provided clock source at the CLKIN pin. The 
output bit-stream can be fed directly to the SD-24B mod-
ule of an MSP430™ microcontroller (MCU) or the sigma-
delta filter module (SDFM) of a C2000™ Delfino™ 
TMS320F2837x MCU.

In addition to dictating the level of isolation required, 
the type of application determines how many currents and 
voltages need to be monitored. In many cases, the vari-
ables of a polyphase system are monitored. One of the 
most common types of polyphase system is the three-
phase case. Typically, three currents and three voltages 
could be measured in three-phase systems, and sometimes 
a fourth voltage is measured, primarily in cases where a 
connection to neutral or ground is available.

Supplying power to the sensing circuitry is greatly sim-
plified when the variables measured in a polyphase system 
have low common-mode voltages with respect to a com-
mon reference point. This could be the case when per-
forming low-side current measurements and voltage 
measurements using resistive dividers. However, many 
systems require measuring currents and voltages that can 

By Jose Duenas
Applications Engineer
Tom Hendrick
Applications Engineer

Figure 1. Example of the dual-capacitor 
isolation barrier
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have significantly different common-mode 
components. In such cases, isolated power 
supplies are required and the design 
becomes a bit more complex.

Consider the system depicted in Figure 2. 
There are seven circuit functions that could 
be monitored: Three line currents, three 
phase-to-phase voltages and one common-to-
ground voltage. For simplicity, only three 
current shunts (RS) are depicted and the 
divider circuits for voltage measurement are 
not shown.

Depending upon which power transistors 
(elements labeled 1 through 6) are conduct-
ing, the common-mode voltage of the shunt 
resistors can be either near the full DC-Link 
voltage or near ground potential. 

In order to take advantage of a design 
using isolated delta-sigma modulators, each 
of the seven monitoring circuits require a 
separate isolated power supply for the high side of the 
delta-sigma modulators. The term “high side” is often used 
to refer to the analog input side of the galvanic isolation 
barrier. 

For example, in a system with a 48-V DC-Link voltage, 
one approach to design the required power supply could 

start by producing 3.3 VDC from the 48-VDC source with 
a buck-bias, step-down switching regulator (Figure 3). 
Figure 4 shows how a second stage could generate an iso-
lated 5-VDC supply from the 3.3-VDC supply with a small 
isolation transformer in conjunction with a transformer 
driver.

Figure 2. Example of a polyphase system 
with current shunts (RS)
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Table 1 compares two scenarios. In one scenario, seven 
AMC1305 units were used for monitoring. Figures 3 and 4 
show the circuits that fulfilled the power requirements for 
the design with seven AMC1305 devices. The second sce-
nario used an alternative device for the delta-sigma modu-
lator and different components were used for the 48-V to 
3.3-V power section. 

The alternative-device scenario shows the implications 
of using seven units of a device that has higher power con-
sumption on its analog input side (high side). 

TI’s family of isolated delta-sigma modulators includes 
some components with a specified input range of ±250 mV 
and others of ±50 mV. Compared to devices with a higher 
input range, devices with a lower input range allow system 
designers to reduce power dissipation in the sensing- 
current shunt by 80%. 

Using a low-power, isolated-sensing solution brings 
about more efficient acquisition systems (from an energy 
point of view) as well as better performance. The greatest 
impact that higher power consumption can have in the 
acquisition system’s performance is in gain-error drift and 
offset-error drift. An isolated delta-sigma modulator with 
higher power consumption is bound to experience a 
higher internal temperature rise during normal operation. 
Moreover, the ambient temperature of the isolated delta-
sigma modulator is bound to be higher for systems with 
power-management circuitry that is tasked to deliver more 
than three times more power. The combination of higher 
internal and ambient temperatures in systems with higher 
power consumption yields solutions with more errors and 
poorer signal-to-noise ratio (SNR).

Table 1. A comparison between two acquisition systems based on isolated delta-sigma modulators

ISOLATED 
DELTA-SIGMA 
MODULATOR

IAVDD  
(max) 
(mA)

UNITS PER 
SYSTEM

SUM OF CURRENTS 
REQUIRED IN THE 

5-VDC BUSES  
(mA)

EFFICIENCY OF 
THE 3.3-VDC TO 

5-VDC STAGE 
(%)

POWER REQUIRED 
ON THE 3.3-V BUS 

(W)

CURRENT 
REQUIRED FROM 

THE 3.3-V BUS 
(A)*

POWER DRAWN 
FROM THE  

48-VDC BUS  
(W)

AMC1305 7 7 49 54 0.45 0.155 0.69

Alternative 
Device 36 7 252 74 1.7 0.57 2.27

* An additional 10% to 12% margin has been added to the current requirement.

The best-in-class drift performance provided by the 
AMC1305 reduces temperature dependency and yields 
higher system performance over a wider temperature 
range. Also, gain-error drift is cut by as much as 58% and 
offset drift by 74% when compared to the closest 
competitor.

Conclusion
Many modern applications require isolation. The specific 
isolation level needed is driven by the type of end equip-
ment in question and the regulatory body certifying the 
equipment.

Although power consumption is sometimes neglected as 
a key design criterion, the performance and efficiency of 
isolated sensing systems can be greatly improved by care-
fully selecting devices that have high-precision, isolated 
front-ends with optimized power-consumption specifica-
tions, such as the TI family of AMC1305 products.
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www.ti.com/4q14-AMC1305M25 
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Design a transition-mode, bridgeless PFC with 
a standard PFC controller

Introduction
This article presents design information for using a stan-
dard, low-cost, power factor correction (PFC) controller 
to construct a high-efficiency transition-mode (TM) 
bridgeless-PFC power supply. Driven by the Northwest 
Energy Efficiency Alliance’s 80 PLUS® program,[1] com-
puter power-supply manufacturers are eager to investigate 
ways to improve converter efficiency. A standard power-
supply system with high power-factor requirements is 
shown in Figure 1. 

The rectified input voltage is boosted to a level higher 
than the maximum input to ensure that a high power factor 
is achieved over the whole input range. After the boost 
PFC, an isolated DC/DC converter steps the boost voltage 
down through a safety isolated transformer. For a two-
stage power supply with 400-W output power, power dissi-
pation of the bridge diodes could go up to 6 W with a full 
load and the input at 120 VAC/60 Hz. That is a 1.5% effi-
ciency reduction just because of the power dissipation by 
the bridge diodes. As a result, bridgeless PFCs[2] (a combi-
nation of rectifier and boost converters) 
replace conventional PFCs for better con-
verter efficiency. However, the complexity 
of bridgeless-PFC control makes its control-
ler more expensive than a standard analog-
PFC controller. Additionally, the parasitic 
capacitance on the bridgeless-PFC MOSFETs 
creates more electromagnetic interference 
(EMI) than the conventional PFC.[3] 

The aforementioned issues greatly increase the cost of a 
bridgeless PFC circuit. An alternative bridgeless PFC with 
return diodes[4] is shown in Figure 2.

Slow-recovery return diodes, DR1 and DR2 in Figure 2, 
alleviate EMI concerns. Moreover, the same pulse-width 
modulation (PWM) signal can be used to drive both 
MOSFETs, which greatly reduces control complexity and 
controller cost. 

This article focuses on the design considerations 
of using low-cost standard analog-PFC controllers for 
TM-bridgeless PFCs with return diodes. Two 370-W refer-
ence boards were built for performance evaluations with 
the UCC28051 TM-PFC controller; a TM-bridgeless PFC 
and a TM-conventional PFC. The results show that over 
97% efficiency can be achieved with the TM-bridgeless 
PFC prototype at 120 VAC, which is about 1% higher than 
that of the TM-conventional PFC prototype. 

Digital controllers such as TI’s C2000™ real-time 
 microcontrollers[5] are also widely used for controlling 
bridgeless PFCs.

By Sheng-Yang Yu
Application Engineer, Power Design Services

Figure 1. Conventional two-stage power-supply 
system with high power-factor requirements
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Circuit operations and design considerations
Circuit operations
The circuit operations of a TM-bridgeless 
PFC, shown in Figure 3, are similar to a boost 
converter. When VAC > 0 (or Va – Vb > 0), the 
main currents flow through the first boost 
converter components, L1, S1, D1, C1 and 
the load, then back to the source through 
DR2. When VAC < 0 (or Va – Vb < 0), the main 
currents flow through the second boost con-
verter components, L2, S2, D2, C1 and the 
load, then back to the source through DR1. 
The return diodes allow both switches S1 
and S2 to be on and off at the same time to 
keep the boost converters operating normally.

Design considerations
A standard TM-PFC controller relies on the 
sensing results of current-sensing and zero-
current-detection (ZCD) circuits as the on/
off trigger of the driving signal. A current-
sensing circuit is used to detect the peak 
value of the inductor current to turn off the 
switch. A ZCD circuit detects the zero- 
current point of the inductor current to turn 
on the switch.

Another characteristic of a standard 
TM-PFC controller is that the switching-frequency range 
is much narrower than costly digital controllers. It is 
important to properly design the PFC inductors because 
they determine the switching frequency. There are three 
key considerations when applying a standard TM-PFC 
controller to the TM-bridgeless PFC: Current-sensing cir-
cuit design, ZCD design, and PFC-inductor design.

Current-sensing design
Power resistors for a peak current-sensing circuit (RCS1 
and RCS2 in Figure 4a) are no longer the first choice for 
bridgeless-PFC current sensing. This is mainly because 
there are two switch legs to be sensed. If each switch is in 
series with a current-sensing resistor, then additional cir-
cuitry is needed to be sure the controller receives the 
 current-sensing signal from the desired switch leg. Because 
these circuits generally require higher current-sensing 
resistance, higher power losses occur with current- 
sensing resistors. Higher resistance is needed for RCS1 and 
RCS2 because of the diode voltage drop. 

Instead of using current-sensing resistors, current trans-
formers for current sensing are  suggested as shown in 
Figure 4b. Diodes in the current- sensing circuit with cur-
rent transformers ensure that peak-current from the 
desired switching leg is detected and also minimize power 
losses in the current-sensing circuit. 

Figure 3. Operations of bridgeless PFC with return diodes
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Zero-current-detection design
In a standard TM-boost PFC, ZCD is achieved by detecting 
the voltage signal from an auxiliary winding of the PFC 
inductor (Figure 5a). This ZCD circuit uses the inductor’s 
voltage-second characteristic. When boost diode D1 is con-
ducting, positive voltage appears at the IC’s ZCD pin. Also, 
with a proper turns-ratio design of L1, VZCD is greater than 
VREF. Once the inductor current decreases to zero, the 
inductor’s voltage changes its polarity. Now the ZCD volt-
age changes from positive (VZCD > VREF) to negative 
(VZCD < VREF). This voltage polarity-changing transient is 
detected by the internal comparator and pulls the driving 
signal high to turn on S1. 

When using a TM-bridgeless PFC, all zero-current 
events must be detected. It may be necessary to apply the 
ZCD circuit for a TM-boost PFC to both inductors in the 
TM-bridgeless PFC and include blocking diodes. However, 
blocking diodes extend the VZCD falling duration and make 
the ZCD pin sensitive to noise, which causes incorrect 
trigger and protection. Instead of using the inductor auxil-
iary winding, a series-connected RC circuit (Figure 5b) 
provides a simple detection option. 

When both S1 and S2 are turned off, there is still one 
switch (generally MOSFET) conducting current through 
its body diode. Hence, a voltage difference is created 
between the two switch legs. The capacitors in the ZCD 
circuit are charged and result in VZCD > VREF. The voltage 
difference becomes zero when the inductor current goes 
to zero, which makes VZCD < VREF and triggers the turn-on 
event. In short, this circuit uses the capacitor charge/dis-
charge to achieve ZCD.

PFC inductor design
Unlike a continuous-conduction-mode (CCM) PFC circuit, 
a TM PFC requires various switching frequencies in an AC 
cycle to ensure that the inductor current is discharged to 
zero before the next switching cycle begins. Generally, an 
analog TM-PFC controller has a narrower operational fre-
quency range than a digital controller. Therefore, choosing 
the proper inductance for the boost inductors in the 
TM-bridgeless PFC becomes an important task to ensure 
that the switching frequencies are within the IC limits in 
most conditions. The inductor value can be calculated.
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where ton_max is the maximum on time of switches S1 and 
S2 at the minimum input voltage (Vin_min), and fsw_min is 
the minimum switching frequency at Vin_min. The rms 
value of the input current (Iin(rms)), can be determined by 
Iin(rms) = Pout/(Vin(rms) × η), where η is the PFC efficiency.

Figure 5. Zero current detection circuits
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Once inductance is determined, the converter switching 
frequencies over an AC switching period with a fixed-
input AC voltage can be found.
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where Di is the duty cycle in the i-th switching action, 
ωAC = 2πfAC and fAC is the AC switching frequency. The 
time that the i-th switching begins is xi, so with 
x1 = 0, xi + 1 can be determined.
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Now consider a TM-bridgeless PFC with a 380-V output 
voltage, 380-W output power, and universal AC input 
range of 90 to 264 VAC. With fsw_min set to be 65 kHz and 
η assumed to be 96%, the inductance can be calculated as 
104 µH with Equation 1. Now apply equations 2 and 3 with 
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the calculated inductance. The switching frequency varia-
tions at 120 VAC and 240 VAC are shown in Figure 6. The 
results show that a high power factor can be ensured in 
both low-line and high-line inputs for this design  
(fsw_max ≅ 400 kHz) because the switching frequencies 
during high-current operation are all below the controller’s 
frequency limitation.

Circuit implementation and experimental 
verifications
Two 380-W, TM-PFC reference boards (conventional- 
boost and bridgeless) were built to compare performance. 
For boost switches, an N-channel MOSFET with RDS(on) = 
140 mW was used for the boost PFC and N-channel 
MOSFETs with RDS(on) = 199 mW were used for the 
bridgeless PFC. The UCC28051 TM-PFC controller and 
inductors with a PQ3220 ferrite core were applied to both 
reference boards. Note that two 260-µH inductors were 
connected in parallel for the boost PFC reference board to 
share the magnetic flux density and power losses on the 
boost inductor. Two 100-µH inductors were used as boost 
inductors in the bridgeless-PFC reference board. Identical 
low-cost bridge diodes were used for the rectifier in the 
conventional-boost PFC and for the return diodes in the 
bridgeless PFC. Current sensing with current transformers 
and a RC-connected ZCD circuit was applied to the 
bridgeless-PFC reference board.

Inductor current waveforms of the TM-bridgeless PFC 
are shown in Figure 7. Notice that when one inductor pro-
cesses a switching operation, the other inductor conducts 
negative current. This is because the inductance of the 
boost inductors is very low at the 50-/60-Hz frequencies. 
Therefore, part of the return current flows back to the 
source through the boost inductors instead of the return 
diodes.

Figure 6. Switching frequencies of 
TM-bridgeless PFC over a half AC cycle
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Figure 8 compares the efficiency of these two proto-
types. In the light- to mid-load range, an efficiency 
improvement of approximate 1% was noted for the 
TM-bridgeless PFC compared to the boost PFC. The 
power-factor measurements of the prototypes are shown 
in Figure 9. The high power factor was obtained for both 
120 VAC and 240 VAC, which verifies the previous analysis.

Conclusion
Design considerations of a low-cost TM-bridgeless PFC 
show that standard PFC controllers can be used to greatly 
reduce overall circuit cost while keeping the advantages of 
a bridgeless PFC circuit. Experimental comparisons to the 
conventional TM PFC show strong evidence of efficiency 
improvement with the TM-bridgeless PFC. 
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Figure 9. Power factor for TM-bridgeless PFC
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Power-supply sequencing for FPGAs
By Sami Sirhan 
Analog Systems Engineering
Sureena Gupta 
Applications Engineer

Introduction
Power-supply sequencing is an important aspect to con-
sider when designing with a field programmable gate array 
(FPGA). Typically, FPGA vendors specify power-sequenc-
ing requirements because an FPGA can require anywhere 
from three to over ten rails. 

By following the recommended power sequence, exces-
sive current draw during startup can be avoided, which in 
turn prevents damage to devices. Sequencing the power 
supplies in a system can be accomplished in several ways. 
This article elaborates on sequencing solutions that can be 
implemented based on the level of sophistication needed 
by a system. 

Sequencing solutions addressed in this article are:

1. Cascading PGOOD pin into enable pin

2. Sequencing using a reset IC

3. Analog up/down sequencers

4. Digital system health monitors with PMBus interface

Method 1: Cascading PGOOD pin into enable pin
A basic, cost-effective way to implement sequencing is to 
cascade the power good (PG) pin of one power supply 
into the enable (EN) pin of the next sequential supply 
(Figure 1). The second supply begins to turn on when the 
PG threshold is met, usually when the supply is at 90% of 
its final value. This method offers a low-cost approach, but 
timing cannot be eas-
ily controlled. Adding 
a capacitor to the EN 
pin can introduce tim-
ing delays between 
stages. However, this 
method is unreliable 
during temperature 
variations and repeated 
power cycling. 

Also, this method 
does not support 
power-down 
sequencing.

Figure 1. Cascading PGOOD pin into enable pin
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Method 2: Sequencing using a reset IC
Another simple option to consider for power-up sequenc-
ing is a reset IC with time delay. With this option, the reset 
IC monitors the power rails with tight threshold limits. 
Once the power rail is within 3% or less of its final value, 
the reset IC enters the wait period defined by the solution 
before powering up the next rail. The wait period can be 
programmed into the reset IC using EEPROM or be set by 
external capacitors. A typical multi-channel reset IC is 
shown in Figure 2. The advantage of using a reset IC for 
power-up sequencing is that the solution is monitored. 
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Each rail is confirmed to be within regulation before 
releasing the next rail and there is no need for a PGOOD 
pin on the power converter. The drawback of using a 
reset-IC solution for sequencing is that it does not imple-
ment power-down sequencing.

Method 3: Analog up/down sequencers
Implementing power-up sequencing can be easier than 
implementing power-down sequencing. To achieve power-
up and power-down sequencing, there are simple analog 
sequencers (Figure 3) that can reverse (Sequence 1) or 
even mix (Sequence 2) the power-down sequence relative 
to the power-up sequence. Upon power up, all the flags 
are held low until EN is pulled high. After EN is asserted, 
each flag goes open drain (pull-up resistor is required) 
sequentially after an internal timer has elapsed. The 
power-down sequence is the same as power up, but in 
reverse order. 

Cascading multiple sequencers
Sequencers can be cascaded together to support many 
power rails, as well as provide fixed and adjustable delay 
times between enable signals. In Figure 4, two sequencers 
cascade together to achieve six sequenced rails. Upon 
power up, the AND gate ensures that the second 
sequencer does not trigger until it has received both an 
EN signal and rail C has triggered. On power down, the 
AND gate ensures that the second sequencer sees the EN 
falling edge, irrespective of output C. The OR gate ensures 
that the first sequencer is triggered with the EN rising 
edge. Upon power down, the OR gate ensures that the 
first sequencer can’t see the EN falling edge until D has 
fallen. This guarantees power-up and power-down 
sequencing, but does not offer a monitored sequence.

Monitored up/down sequencing
Monitored sequencing can be added to the circuit in 
Figure 4 by simply adding a couple of AND gates between 
the FlagX output and the PG pin as shown in Figure 5. In 
this example, PS2 is enabled only if PS1 is greater than 
90% of its final value. This method offers a low-cost, moni-
tored sequencing solution.

Method 4: Digital system health monitors with 
PMBus interface
If a system requires the utmost flexibility, a good solution 
is a PMBus/I2C-compatible, digital-system health monitor 
such as the UCD90120A. Such solutions offer maximum 
control for any sequencing need by allowing the designer 
to configure ramp up/down times, on/off delays, sequence 
dependencies, and even voltage and current monitoring.

Figure 4. Cascading multiple analog sequencers
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Digital-system health monitors come with a graphical 
user interface (GUI) that can be used to program power-
up and power-down sequencing along with other system 
parameters (Figure 6). Some digital system health moni-
tors also have non-volatile-error and peak-value logging 
that helps with system-failure analysis in case of a brown-
out event. 

FPGA sequencing requirements examples 
FPGA vendors such as Xilinx or Altera provide either a 
recommended or required power-up sequence in their 
datasheets that are easily accessible online. Sequencing 
requirements vary between vendors and vary from one 
vendor’s FPGA family to another. Also listed in datasheets 
are timing requirements for ramp-up and shutdown. The 
recommended power-down sequence is typically the 
reverse order of the power-up sequence. An example of 
power-up sequencing is shown in Figure 7.

Conclusion
There are several sequencing solutions that can be utilized 
to follow the requirements specified by FPGA vendors. 
System requirements may include power monitoring in 
addition to power-up and power-down sequencing, but the 
optimal power solution for an FPGA will depend on sys-
tem complexity and specifications. 

Related Web sites
www.ti.com/4q14-LM3880

www.ti.com/4q14-TPS62085

www.ti.com/4q14-TPS386000

www.ti.com/4q14-UCD90120A
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Figure 7. Example of a FPGA 
power-logic sequence
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