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Design a transition-mode, bridgeless PFC with 
a standard PFC controller

Introduction
This article presents design information for using a stan-
dard, low-cost, power factor correction (PFC) controller 
to construct a high-efficiency transition-mode (TM) 
bridgeless-PFC power supply. Driven by the Northwest 
Energy Efficiency Alliance’s 80 PLUS® program,[1] com-
puter power-supply manufacturers are eager to investigate 
ways to improve converter efficiency. A standard power-
supply system with high power-factor requirements is 
shown in Figure 1. 

The rectified input voltage is boosted to a level higher 
than the maximum input to ensure that a high power factor 
is achieved over the whole input range. After the boost 
PFC, an isolated DC/DC converter steps the boost voltage 
down through a safety isolated transformer. For a two-
stage power supply with 400-W output power, power dissi-
pation of the bridge diodes could go up to 6 W with a full 
load and the input at 120 VAC/60 Hz. That is a 1.5% effi-
ciency reduction just because of the power dissipation by 
the bridge diodes. As a result, bridgeless PFCs[2] (a combi-
nation of rectifier and boost converters) 
replace conventional PFCs for better con-
verter efficiency. However, the complexity 
of bridgeless-PFC control makes its control-
ler more expensive than a standard analog-
PFC controller. Additionally, the parasitic 
capacitance on the bridgeless-PFC MOSFETs 
creates more electromagnetic interference 
(EMI) than the conventional PFC.[3] 

The aforementioned issues greatly increase the cost of a 
bridgeless PFC circuit. An alternative bridgeless PFC with 
return diodes[4] is shown in Figure 2.

Slow-recovery return diodes, DR1 and DR2 in Figure 2, 
alleviate EMI concerns. Moreover, the same pulse-width 
modulation (PWM) signal can be used to drive both 
MOSFETs, which greatly reduces control complexity and 
controller cost. 

This article focuses on the design considerations 
of using low-cost standard analog-PFC controllers for 
TM-bridgeless PFCs with return diodes. Two 370-W refer-
ence boards were built for performance evaluations with 
the UCC28051 TM-PFC controller; a TM-bridgeless PFC 
and a TM-conventional PFC. The results show that over 
97% efficiency can be achieved with the TM-bridgeless 
PFC prototype at 120 VAC, which is about 1% higher than 
that of the TM-conventional PFC prototype. 

Digital controllers such as TI’s C2000™ real-time 
microcontrollers[5] are also widely used for controlling 
bridgeless PFCs.
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Figure 1. Conventional two-stage power-supply 
system with high power-factor requirements
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Figure 2. Bridgeless PFC with return diodes

L1

L2 Load

EMI
Filter

VAC

a

b

+
C1

DR1

D1 D2

DR2 S1 S2

http://www.ti.com/aaj


Texas Instruments	 15	 AAJ 4Q 2014

IndustrialAnalog Applications Journal

Circuit operations and design considerations
Circuit operations
The circuit operations of a TM-bridgeless 
PFC, shown in Figure 3, are similar to a boost 
converter. When VAC > 0 (or Va – Vb > 0), the 
main currents flow through the first boost 
converter components, L1, S1, D1, C1 and 
the load, then back to the source through 
DR2. When VAC < 0 (or Va – Vb < 0), the main 
currents flow through the second boost con-
verter components, L2, S2, D2, C1 and the 
load, then back to the source through DR1. 
The return diodes allow both switches S1 
and S2 to be on and off at the same time to 
keep the boost converters operating normally.

Design considerations
A standard TM-PFC controller relies on the 
sensing results of current-sensing and zero-
current-detection (ZCD) circuits as the on/
off trigger of the driving signal. A current-
sensing circuit is used to detect the peak 
value of the inductor current to turn off the 
switch. A ZCD circuit detects the zero-
current point of the inductor current to turn 
on the switch.

Another characteristic of a standard 
TM-PFC controller is that the switching-frequency range 
is much narrower than costly digital controllers. It is 
important to properly design the PFC inductors because 
they determine the switching frequency. There are three 
key considerations when applying a standard TM-PFC 
controller to the TM-bridgeless PFC: Current-sensing cir-
cuit design, ZCD design, and PFC-inductor design.

Current-sensing design
Power resistors for a peak current-sensing circuit (RCS1 
and RCS2 in Figure 4a) are no longer the first choice for 
bridgeless-PFC current sensing. This is mainly because 
there are two switch legs to be sensed. If each switch is in 
series with a current-sensing resistor, then additional cir-
cuitry is needed to be sure the controller receives the 
current-sensing signal from the desired switch leg. Because 
these circuits generally require higher current-sensing 
resistance, higher power losses occur with current- 
sensing resistors. Higher resistance is needed for RCS1 and 
RCS2 because of the diode voltage drop. 

Instead of using current-sensing resistors, current trans-
formers for current sensing are suggested as shown in 
Figure 4b. Diodes in the current-sensing circuit with cur-
rent transformers ensure that peak-current from the 
desired switching leg is detected and also minimize power 
losses in the current-sensing circuit. 

Figure 3. Operations of bridgeless PFC with return diodes
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Zero-current-detection design
In a standard TM-boost PFC, ZCD is achieved by detecting 
the voltage signal from an auxiliary winding of the PFC 
inductor (Figure 5a). This ZCD circuit uses the inductor’s 
voltage-second characteristic. When boost diode D1 is con-
ducting, positive voltage appears at the IC’s ZCD pin. Also, 
with a proper turns-ratio design of L1, VZCD is greater than 
VREF. Once the inductor current decreases to zero, the 
inductor’s voltage changes its polarity. Now the ZCD volt-
age changes from positive (VZCD > VREF) to negative 
(VZCD < VREF). This voltage polarity-changing transient is 
detected by the internal comparator and pulls the driving 
signal high to turn on S1. 

When using a TM-bridgeless PFC, all zero-current 
events must be detected. It may be necessary to apply the 
ZCD circuit for a TM-boost PFC to both inductors in the 
TM-bridgeless PFC and include blocking diodes. However, 
blocking diodes extend the VZCD falling duration and make 
the ZCD pin sensitive to noise, which causes incorrect 
trigger and protection. Instead of using the inductor auxil-
iary winding, a series-connected RC circuit (Figure 5b) 
provides a simple detection option. 

When both S1 and S2 are turned off, there is still one 
switch (generally MOSFET) conducting current through 
its body diode. Hence, a voltage difference is created 
between the two switch legs. The capacitors in the ZCD 
circuit are charged and result in VZCD > VREF. The voltage 
difference becomes zero when the inductor current goes 
to zero, which makes VZCD < VREF and triggers the turn-on 
event. In short, this circuit uses the capacitor charge/dis-
charge to achieve ZCD.

PFC inductor design
Unlike a continuous-conduction-mode (CCM) PFC circuit, 
a TM PFC requires various switching frequencies in an AC 
cycle to ensure that the inductor current is discharged to 
zero before the next switching cycle begins. Generally, an 
analog TM-PFC controller has a narrower operational fre-
quency range than a digital controller. Therefore, choosing 
the proper inductance for the boost inductors in the 
TM-bridgeless PFC becomes an important task to ensure 
that the switching frequencies are within the IC limits in 
most conditions. The inductor value can be calculated.
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where ton_max is the maximum on time of switches S1 and 
S2 at the minimum input voltage (Vin_min), and fsw_min is 
the minimum switching frequency at Vin_min. The rms 
value of the input current (Iin(rms)), can be determined by 
Iin(rms) = Pout/(Vin(rms) × η), where η is the PFC efficiency.

Figure 5. Zero current detection circuits
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Once inductance is determined, the converter switching 
frequencies over an AC switching period with a fixed-
input AC voltage can be found.
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where Di is the duty cycle in the i-th switching action, 
ωAC = 2πfAC and fAC is the AC switching frequency. The 
time that the i-th switching begins is xi, so with 
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Now consider a TM-bridgeless PFC with a 380-V output 
voltage, 380-W output power, and universal AC input 
range of 90 to 264 VAC. With fsw_min set to be 65 kHz and 
η assumed to be 96%, the inductance can be calculated as 
104 µH with Equation 1. Now apply equations 2 and 3 with 
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the calculated inductance. The switching frequency varia-
tions at 120 VAC and 240 VAC are shown in Figure 6. The 
results show that a high power factor can be ensured in 
both low-line and high-line inputs for this design  
(fsw_max ≅ 400 kHz) because the switching frequencies 
during high-current operation are all below the controller’s 
frequency limitation.

Circuit implementation and experimental 
verifications
Two 380-W, TM-PFC reference boards (conventional- 
boost and bridgeless) were built to compare performance. 
For boost switches, an N-channel MOSFET with RDS(on) = 
140 mΩ was used for the boost PFC and N-channel 
MOSFETs with RDS(on) = 199 mΩ were used for the 
bridgeless PFC. The UCC28051 TM-PFC controller and 
inductors with a PQ3220 ferrite core were applied to both 
reference boards. Note that two 260-µH inductors were 
connected in parallel for the boost PFC reference board to 
share the magnetic flux density and power losses on the 
boost inductor. Two 100-µH inductors were used as boost 
inductors in the bridgeless-PFC reference board. Identical 
low-cost bridge diodes were used for the rectifier in the 
conventional-boost PFC and for the return diodes in the 
bridgeless PFC. Current sensing with current transformers 
and a RC-connected ZCD circuit was applied to the 
bridgeless-PFC reference board.

Inductor current waveforms of the TM-bridgeless PFC 
are shown in Figure 7. Notice that when one inductor pro-
cesses a switching operation, the other inductor conducts 
negative current. This is because the inductance of the 
boost inductors is very low at the 50-/60-Hz frequencies. 
Therefore, part of the return current flows back to the 
source through the boost inductors instead of the return 
diodes.

Figure 6. Switching frequencies of 
TM-bridgeless PFC over a half AC cycle
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Figure 7. Inductor current of TM-bridgeless 
PFC at 350-W output
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Figure 8 compares the efficiency of these two proto-
types. In the light- to mid-load range, an efficiency 
improvement of approximate 1% was noted for the 
TM-bridgeless PFC compared to the boost PFC. The 
power-factor measurements of the prototypes are shown 
in Figure 9. The high power factor was obtained for both 
120 VAC and 240 VAC, which verifies the previous analysis.

Conclusion
Design considerations of a low-cost TM-bridgeless PFC 
show that standard PFC controllers can be used to greatly 
reduce overall circuit cost while keeping the advantages of 
a bridgeless PFC circuit. Experimental comparisons to the 
conventional TM PFC show strong evidence of efficiency 
improvement with the TM-bridgeless PFC. 
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Figure 9. Power factor for TM-bridgeless PFC
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