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Introduction

Analog Applications Journal is a collection of analog application articles
designed to give readers a basic understanding of TI products and to provide
simple but practical examples for typical applications. Written not only for
design engineers but also for engineering managers, technicians, system
designers and marketing and sales personnel, the book emphasizes general
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific
circuits but as examples of how devices could be used to solve specific design
requirements. Readers will find tutorial information as well as practical
engineering solutions on components from the following categories:

e Data Acquisition

e Power Management

e Interface (Data Transmission)
e Amplifiers: Op Amps

Where applicable, readers will also find software routines and program
structures. Finally, Analog Applications Journal includes helpful hints and
rules of thumb to guide readers in preparing for their design.
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Data Acquisition

Clock jitter analyzed in the time

domain, Part 1

By Thomas Neu

Systems and Applications Engineer

Introduction

Newer high-speed ADCs come outfitted
with a large analog-input bandwidth (about
three to six times the maximum sampling

Figure 1. Two input signals sampled at 100 MSPS show the
same sample points due to aliasing

frequency) so they can be used in under-
sampling applications. Recent advances in
ADC design extend the usable input range
significantly so that system designers can
eliminate at least one intermediate fre-
quency stage, which reduces cost and power
consumption. In the design of an undersam-
pling receiver, special attention has to be
given to the sampling clock, because at
higher input frequencies the jitter of the
clock becomes a dominant factor in limiting
the signal-to-noise ratio (SNR).

Part 1 of this three-part article series
focuses on how to accurately estimate jitter

Voltage (V)

from a clock source and combine it with the
aperture jitter of the ADC. In Part 2, that
combined jitter will be used to calculate the
ADC’s SNR, which will then be compared

10 20 30 40 50
Time (ns)

against actual measurements. Part 3 will

show how to further increase the SNR of the ADC by
improving the ADC’s aperture jitter, with a focus on opti-
mizing the slew rate of the clock signal.

Review of the sampling process

According to the Nyquist-Shannon sampling theorem, the
original input signal can be fully reconstructed if it is sam-
pled at a rate that is at least two times its maximum fre-
quency. Assuming that an input signal of up to 10 MHz is
sampled at 100 MSPS; it doesn’t matter whether the signal
is located in the baseband (the first Nyquist zone) at 0 to
10 MHz or undersampled in a higher Nyquist zone at 100
to 110 MHz (see Figure 1). (Sampling in a higher [second,
third, etc.] Nyquist zone is commonly referred to as under-
sampling or subsampling.) However, proper anti-aliasing
filtering is required in front of the ADC to sample the
desired Nyquist zone and to avoid confusion when the
original signal is being reconstructed.

Jitter in the time domain

Looking closely at one sampling point reveals how timing
uncertainty (clock jitter or clock phase noise) creates
amplitude variation. As the input frequency increases due
to undersampling in a higher Nyquist zone (e.g., from

f; = 10 MHz to fy = 110 MHz), a fixed amount of clock jitter
generates a larger amount of amplitude deviation (noise)

Figure 2. Clock jitter creates more amplitude
error with faster input signals

f, =110 MHz

Amplitude Variation
Due to Clock Jitter

f, =10 MHz

Clock Jitter
(Phase Noise)

Clock

v

from the ideal sample point. Furthermore, Figure 2 sug-
gests that the slew rate of the clock signal itself has an
impact on variations in the sampling instant. The slew rate

= ======7T= J
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determines how fast the clock signal passes through the
zero crossing point. In other words, the slew rate directly
impacts the trigger threshold of the clock circuitry inside
the ADC.

If there is a fixed amount of thermal noise on the internal
clock buffer of the ADC, then the slew rate gets converted
into timing uncertainty as well, which degrades the inher-
ent aperture jitter of the ADC. As can be seen in Figure 3,
the aperture jitter is completely independent of the clock
jitter (phase noise), but those two jitter components
combine at the sampling instant. Figure 3 also shows that
the aperture jitter increases as the slew rate decreases.
The slew rate is usually directly dependent on the clock
amplitude.

SNR degradation caused by clock jitter

There are several factors that limit the SNR of the ADC,
such as quantization noise (typically not noticeable in
pipeline converters), thermal noise (which limits the SNR
at low input frequencies), and clock jitter (SNRj;y0;) (see
Equation 1 below). The SNR ., component, which is lim-
ited by the input frequency, f;y (depending on the Nyquist
zone), and by the total amount of clock jitter, ty; .., can be
calculated as

SNR it [dBe | =—20x1og(2mx fiyg X tigier)- 2)

As expected, with a fixed amount of clock jitter, the SNR
degrades as the input frequency increases. This is illus-
trated in Figure 4, which shows the SNR
of a 14-bit pipeline converter with a fixed
clock jitter of 400 fs. If the input fre-
quency increases by one decade, such as
from 10 MHz to 100 MHz, the maximum
achievable SNR due to clock jitter is

Texas Instruments Incorporated

increases, the 400-fs clock jitter gets more and more domi-
nant until it completely takes over at ~300 MHz. Even
though the SNR due to clock jitter at an input frequency
of 100 MHz is reduced by 20 dB per decade compared to
the SNR at 10 MHz, the total SNR is degraded by only

Figure 3. Clock jitter and ADC aperture jitter
combine at sampling instant

Combined

4 Clock Jitter
Clock Jitter

1]

1

4—
—— Aperture —”
Jitter

Vot

(AT S AN YW R P Y

Thermal Noise

Clock with Lower
Slew Rate

Clock with High
Slew Rate

v

Figure 4. Fixed 400-fs clock jitter reduces SNR by
20 dB per decade

reduced by 20 dB. 110 oo e
As already mentioned, another major \ ‘\ —0.05 ps
factor that limits the ADC’s SNR is the 100 ~ ~ —0.1ps
ADC’s thermal noise, which doesn’t S~ N —0.2 ps
. . ~ NS NN
change with input frequency. A 14-bit 90 T N N —0.4 ps 14-Bit ADC |
pipeline converter typically has a thermal 5 “\ \\ \\s N Thermal Noise
noise of ~70 to 74 dB, also shown in @ ~ N <\ Nl =73dBc
) i ) I ™ S|
Figure 4. The ADC’s thermal noise, which v 0 g | N ~ M
can be found in the data sheet, is equiva- = - \\ \\ N~
lent to the SNR at the lowest specified 70 bt S L i‘\ \\\ ha ™~
input frequency (10 MHz in this exam- | £y =10t0 100 MHz \\ N YN
ple), where clock jitter is not yet a factor. SNR =92 to 72 dBc N \\\
Let’s analyze the 14-bit ADC with a 60 | ™
thermal noise of ~73 dB and a clock cir- .
cuitry with 400 fs of jitter. At low input 50
frequencies such as 10 MHz, the SNR of 10 100 1000
this ADC is pretty much defined by its fin (MHz)
thermal noise. As the input frequency

\/( _ SNRQuantization Noise
SNR zpg [dBc | =-20x1log \\10 20
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Figure 5. Resulting ADC SNR is limited by thermal noise
and clock jitter
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~3.5 dB (down to 69.5 dB) because of the 73-dB thermal clock frequency by 10 kHz to 20 MHz—either in picosec-
noise (see Figure 5): onds or as a phase-noise plot, which can be integrated to

obtain the jitter information. However, 10 kHz on the low
end and 20 MHz on the high end are sometimes not the
5 5 right boundaries to use, as they are highly dependent
73 dBc 72 dBc . .

\/ ( - ) ( - j upon other system parameters, as will be explained later.
20xlog\\10 20 J +{10 20 ) =69.5dBc The importance of setting the right integration limits is
illustrated in Figure 6, where a phase-noise plot is overlaid
with its jitter content per decade. It can be seen that the
resulting jitter can be quite different if the lower limit is
set to a 100-Hz or 10-kHz offset. Likewise, setting the
upper integration limit to 10 or 20 MHz yields a drastically
different result than setting it to 100 MHz, for example.

SNR jipyor = —20x10g(2mx 100 MHzx 400 fs) = 72 dBc

SNR spc = =

Now it becomes obvious that if the ADC’s thermal noise
increases, the clock jitter will become very important
when higher input frequencies are sampled. A 16-bit ADC,
for example, has a thermal noise floor of ~77 to 80 dB.
According to the curves in Figure 4, in order to minimize
the effect of clock jitter on SNR at an input frequency

of 100 MHz, the clock jitter needs to be on the order of
150 fs or better.

Figure 6. Jitter contribution from clock phase noise

.. .. Iculated per decad
Determining the sample clock jitter R

As demonstrated earlier, the sample clock jitter con-

sists of the timing uncertainty (phase noise) of the 0 ‘ ‘ HHH
clock as well as the aperture jitter of the ADC. Those _20 360 fs
two components combine as follows:
-40
2 2

tJitter = \/(tJitter,Clockflnput) + (tAperturefADC) 3) —60
The aperture jitter of the ADC can be found in the data o -80
sheet. It is important to remember that this value is %
typically specified in combination with either clock S = "\
amplitude or slew rate. Lower clock amplitudes result %_ -120 N
in slower slew rates and increase the aperture jitter 5 140 131 fs "\».‘ 128 fs
accordingly. ~

- . -160
Jitter from the clock input 0t [ arre] OF
The output jitter of devices in the clocking chain (oscil- -180
lator, clock buffer, or PLL) is typically specified over a 100 UL OIKEN I COIKER 1M R UM 00IM
frequency range that is offset from the fundamental Offset Frequency (Hz)
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Determining the proper lower integration limit

In the sampling process, the input signal gets mixed with
the sampling clock’s signal, including its phase noise. When
an FFT analysis of the input signal is performed, the pri-
mary FF'T bin is centered over the input signal. The phase
noise around the sampled signal (either from the clock or
the input signal) determines the amplitude of the bins
adjacent to the primary bin, as illustrated in Figure 7.
Therefore, all the phase noise with an offset frequency of
less than half the bin size gets lumped into the bin of the
input signal and doesn’t add to the noise. Hence, the lower
limit of the phase-noise integration bandwidth should be
set to half the FFT bin size. The FF'T bin size is calculated

Figure 7. Close-in phase noise determines
amplitude of FFT bins around primary bin

Input Signal \

Texas Instruments Incorporated

fBin

A 4

Phase Noise
Signature from

Clock Signal
as follows:

Sampling Rate
FFT Size

Bin Size =

To further illustrate this point, an experiment using the
ADSbH4RF63 was set up with two different FFT sizes—
131,072 and 1,048,576 points. The sampling rate was set
to 122.88 MSPS, and the clock phase noise is shown in
Figure 8. A 6-MHz, wide-bandpass filter was added to the
clock input to limit the amount of wideband noise contrib-
uted to the jitter. A 1-GHz input signal was chosen to
ensure that the SNR degradation was due solely to clock
jitter. Figure 8 shows that the jitter results of the phase-
noise integration from half a bin size to 40 MHz are drasti-
cally different for the two FF'T sizes, and the SNR measure-

"2 fgin

Table 1. SNR measurements for two FFT sizes

ments in Table 1 reflect that as well. FFT SIZE 1, BIN SIZE SNR AT 1 GHz
. . - _— POINTS H dBFS
Setting the proper upper integration limit (131 072) (4629) ( o~ )
The phase-noise plot in Figure 6 had a jitter contribution of ’ i
~360 fs with the frequency offset between 10 and 100 MHz. 1,048,576 59 51.9

This is far more than the entire jitter contribution of ~194 fs
with the offset between 100 Hz and 10 MHz. Therefore,
the chosen upper integration limit can drastically affect
the calculated clock jitter and how well the predicted
SNR will match the actual measurement.

To determine the right limit, one has to remember 0
something very important from the sampling process:

Figure 8. Integrated jitter for two FFT sizes with
different lower integration limits

T T TTIm T 1T
60 Hz to 40 MHz

Noise and spurs on the clock signal alias in-band from -20 Litter = 350 fs
other Nyquist zones just like they would if they were _40 |
500 Hz to 40 MHz

present on the input signal (see Reference 1). Hence,

if the phase noise of the clock input is not band-limited 5 -60 i Litter = 50 fs
and doesn’t have a rolloff at a higher frequency, then the g _g0

upper integration limit is set by the bandwidth of the g l [

transformer (if used) and the clock input of the ADC g— -100 '“’l.\

itself. In some cases the clock input bandwidth can be < _120 A,

very large; for example, the ADS54RF63 has a clock \
input bandwidth of ~2 GHz to allow higher-order
harmonics for very fast clock slew rates.

To verify that the clock phase noise needs to be
integrated all the way up to the clock input bandwidth,
another experiment was set up. The ADS54RF63 was
again operated at 122.88 MSPS with an input signal of
1 GHz to ensure that the SNR jitter was limited. Broad-
band white noise of 50 MHz to 1 GHz was generated with

p 4

3

10M 100 M

10 100 1k 10k 100k 1M
Offset Frequency (Hz)

j=======7T= J
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Figure 9. Test setup to verify clock input noise
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Signal 122.88 MHz
Generator
Coupler
Power 0.5 to 1000 MHz
‘ Combiner |::|
| =
! 1
50 O RF Amp
50 to 1000 MHz _ Data
Gain = 30 dB Low-Pass fin =1 GHz ki k] o

Filter
(LPF)

an RF amplifier and added to the sampling
clock as shown in Figure 9. Then different
low-pass filters (LPF's) were used to limit
the amount of noise being added to the

Figure 10. Overlaid measured FFT plots with different
noise contributions

clock signal. 0
The clock input bandwidth of the

ADSH4RF63 is ~2 GHz, but since the RF _20 — No LPF fow=1GHz ||
amplifier and the transformer both have a —300-MHz LPF fs = 122.88 MSPS
3-dB bandwidth of ~1 GHz, the effective 100-MHz LPF with added
3-dB clock input bandwidth is reduced to —40 — 1-MHz LPF noise T
~500 MHz. The measured SNR results in

Table 2 confirm that for this setup the —60

clock input bandwidth indeed is around
500 MHz. A comparison of the FEF'T plots in
Figure 10 further confirms how the wide-
band noise from the RF amplifier limits the
noise floor and degrades the SNR.

This experiment showed that the phase
noise of the clock needs to be either very
low or band-limited, ideally through a tight
bandpass filter. Otherwise the upper inte-
gration limit, set by the clock bandwidth
of the system, can degrade the ADC’s

FFT Amplitude (dB)

10 20 30 40 50 60
Frequency (MHz)

SNR substantially.

Conclusion

This article has shown how to accurately estimate the
sampling-clock jitter and determine the proper upper and
lower integration boundaries. Part 2 will show how to use
this estimation to derive the ADC’s SNR and how this
result compares against actual measurements.

Table 2. SNR measurements for setup in Figure 9

SETUP SNR (dBFS)
No filter 39.9
300-MHz LPF 436
100-MHz LPF 494
1-MHz LPF 577
Analog Applications Journal 30 2010 AW i
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Coupled inductors broaden DC/DC

converter usage

By Jeff Falin

Senior Applications Engineer

Introduction

Recently, inductor manufacturers have begun to release
off-the-shelf coupled inductors. Consisting of two separate
inductors wound on the same core, coupled inductors typ-
ically come in a package with the same length and width
as that of a single inductor of the same inductance value,
only slightly taller. The price of a coupled inductor is also
typically much less than the price of two single inductors.
The windings of the coupled inductor can be connected in
series, in parallel, or as a transformer. This article high-
lights four DC/DC converter topologies that meet common
application needs with coupled inductors.

Clearly understanding the specifications of coupled
inductors is essential to using them to their full advantage.
Most of these coupled inductors have the same number of
turns—i.e., a 1:1 turns ratio—but some newer ones have a
higher turns ratio. The coupling coefficient, K, of coupled
inductors is typically around 0.95, much lower than a
custom transformer’s coefficient of greater than 0.99. The
mutual inductance of coupled inductors makes them per-
form somewhat inefficiently in flyback applications and
can cause non-ideal (e.g., rounded instead of triangular)
inductor waveforms. Also, the current specifications for a
coupled inductor are different depending on whether its
windings are physically connected in series or in parallel.
For example, when the windings are connected in series,

the equivalent inductance is more than twice the rated
inductance due to the mutual inductance. The saturation
and RMS current ratings must be applied to the current
flowing simultaneously through both windings, unless
otherwise stated in the data sheet. With this understand-
ing of the specifications, some examples of coupled induc-
tors in real applications can now be examined.

More efficient SEPIC with smaller footprint

While not new, the DC/DC single-ended primary induc-
tance converter (SEPIC) topology was not popular until
recently, despite the ever-present need for a converter
capable of regulating an output voltage that is in-between
a higher and lower input voltage (for example, an unreg-
ulated wall wart providing 12 V). Any boost converter/
controller can be configured as a SEPIC, but this was
rarely used until recently. Two factors have contributed to
the SEPIC’s newfound popularity: (1) IC manufacturers
have begun making more boost controllers with current-
mode control to simplify compensation, and (2) inductor
manufacturers have begun making single-packaged cou-
pled inductors that minimize the converter’s overall PCB
footprint. Specifically, the power-supply footprint of many
applications with two separate inductors can be reduced by
a third when a coupled inductor is used instead. Figure 1
shows a SEPIC using the Texas Instruments (TI) TPS61170
and the Wuerth 744877220.

Figure 1. SEPIC using the Tl TPS61170 and Wuerth 744877220

744877220 (22 pH)

V

©to1sv) [ U

SwW

Vour
(12 V at 325 mA)

T
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Even more appealing, using a SEPIC with a 1:1 coupled
inductor forces the inductor ripple current to split between
the two windings, allowing the use of half the inductance
that two single inductors would require for the same ripple
current. Compared to two single inductors at twice the
inductance value in a package of the same size, the cou-
pled inductor has lower DC resistance, which helps
increase overall converter efficiency. Specifically, with a
15-V input and a 12-V, 325-mA output, the SEPIC in
Figure 1 exceeds 91% efficiency. See Reference 1 for
more information.

ZETA converter with smaller footprint

A ZETA converter provides the same buck and boost func-
tionality as a SEPIC by using two inductors and a coupling
capacitor, but with a buck controller instead of a boost
controller. Figure 2 shows the TI TPS40200 and the
Coiltronics DRQ74 in a ZETA configuration. Benefiting

Power Management

from the split-inductor ripple current like the SEPIC, this
ZETA converter requires half the inductance for the same
ripple current. Also like the SEPIC, its overall power-
supply footprint is a third smaller than with two separate
inductors. Since the output inductor current flows contin-
uously to the output in a ZETA converter, the ZETA con-
verter’s output voltage has lower ripple than that of a
SEPIC with the same inductance. Therefore, the ZETA
may be a better fit for low-noise applications than a
SEPIC. See Reference 2 for more information.

Split-rail supply

Matching positive and negative power rails are common
requirements in industrial applications, especially for
amplifiers. A wide-input-range buck converter can be con-
figured to provide a negative output voltage. Replacing the
inductor of this inverting buck converter with a coupled
inductor and adding a diode and capacitor turns this

Figure 2. ZETA converter with Tl TPS40200 and Coiltronics DRQ74
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inverting buck converter into one with

a dual output. Figure 3 shows the TI
TPS54160 and the Coilcraft 150-nH
MSD1260 used in this fashion. Even
though the difference between each rail
is regulated instead of each rail being
individually regulated, as long as the loads
on each rail are somewhat close together,
the coupled inductor assists in providing
excellent regulation of each rail. See
Reference 3 for more information.

Higher output voltage

The output voltage of a DC/DC converter
with integrated FETs is limited by the
converter’s switch current rating. Tying

a coupled inductor with a turns ratio
greater than 1:1 to the converter’s switch
(SW) pin can extend the effective output-
voltage range of any boost converter. For
example, Figure 4 shows the TI TPS61040
boost converter with a 30-V absolute
maximum current rating configured to
provide 35 V or more, and the Coilcraft
LPR4012-103B, which is a 1:2 coupled
inductor. When the coupled inductor is
configured with the multiple-winding side
in series with the diode, the single wound
inductor—and therefore the converter’s
switch FET—has only a third of the out-
put voltage, minus the input voltage,
across it.

Conclusion

Most inductor manufacturers have a
family of coupled inductors with a turns
ratio of 1:1 or higher. So, think out of the
box! Coupled inductors may expand the
application space for a favorite DC/DC
converter IC.
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Computing power going “Platinum”

By Michael O’Loughlin

Senior Applications Engineer

Introduction

The 80 PLUS™ and Climate Savers Computing™ initia-
tives have set a very aggressive efficiency standard for
computer power supplies. The “Platinum” level of these
standards specifies that computer power supplies must
have an efficiency of 90% at 20% of rated load, 94% at 50%
load, and 91% at 100% load. To meet these standards,
some power-supply designers have chosen to use a phase-
shifted, full-bridge DC/DC converter with synchronous
rectification. This topology is a good choice because it can
achieve zero voltage switching (ZVS) on the primary
FETs. A popular way to drive the synchronous rectifiers is
with signals that are already present driving the primary
FETs. The only problem with doing this is that dead times
on these primary FETs are required to achieve ZVS. This
results in both synchronous rectifiers being off simultane-
ously during the freewheeling period, allowing excessive
body-diode conduction and reducing system efficiency.
The purpose of this article is to propose different timing
for driving these synchronous rectifiers to reduce body-
diode conduction and improve overall system efficiency.

Figure 1. Phase-shifted, full-bridge converter modified for synchronous rectification

There are a few pulse-width modulators (PWMs) on the
market that were developed for controlling a phase-shifted,
full-bridge converter but were not set up for driving syn-
chronous rectifiers (QE and QF). To use these controllers
in this application, engineers have found they can control
the synchronous FETs with control signals OUTA and
OUTB from the PWM controller. Figure 1 shows a func-
tional schematic of one of these converters.

The problem

The PWM controllers help achieve ZVS in these converters
by delaying the turn-on of the FETs in the H bridge (QA,
QB, QC, QD). The delay (tpej,y) between the turn-on and
turn-off transitions of FETs QA and QB will cause synchro-
nous FETs QE and QF to be off simultaneously, allowing
their body diodes to conduct as already stated. The follow-
ing equation is a good estimate of the body-diode conduc-
tion losses in QE and QF during the freewheeling period:

Pour

x Vp x tDelay x £y,

Ppiode = v

+ o o cr ®
\/

Vin = G

- o—e

louta| [ouTs| |ouTc| |ouTD|

UCC2895 PWM
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where Pqp is the output power, Vqr is the output volt-
age, Vp is the forward voltage drop of the body diode, and
f, is the inductor switching frequency.

The excessive body-diode conduction losses of QE and
QF (Ppjipqe) could cause the design not to meet the
Platinum standard. Please refer to Figures 1 and 2 for
details. As shown, OUTA drives FETs QA and QF, while
OUTB drives FETs QB and QE. V1 is the voltage present-
ed to the input of the Lqyr and Coyp filter network, and

Figure 2. Timing diagrams for converter in Figure 1

| ’:/ tDeIay\I
r

OUTA =Vgp, = Var,

/ toelay \I‘
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Vor d and VQFd are the voltages across the respective syn-
chronous rectifiers QE and QF.

The solution

To reduce QE and QF body-diode conduction, it would be
better to have these synchronous rectifiers on during the
QA and QB delay periods (tpep,)- To accomplish this, FETs
QE and QF would have to be driven with their own outputs
where the ON times would overlap instead of the OFF

/ toelay \I‘

1
|
OUTB = Vgg, = Vg, |
1
1
1
1
1

R

1 1
| |
1 1
1 1
| |
1 || 1 11
1 11 1 11
| 11 | 11
OUTC =Vacy l L l L
| I E— | 1 | 1
11 11 11 11 11 11
11 | 11 | 11
| ] ] R
1 [ 1 -t 1 F—t
11 11 11 11 11 11
| T | T | T | T | T | T
vi ]! 1)1 1|1 1)1 1|1 111
FII I II I II I II I II I II I
= 1 I 1 I 1 I oV

The body diodes of FETs QE and QF will conduct
during the turn-on delays between FETs QA and QB.
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times being simultaneous. Figure 3 shows a functional Table 1. OUTE and OUTF on/off transitions
schematic of the phase-shifted, full-bridge converter with
six separate drive signals (OUTA through OUTEF). The

TF | T h TD t T ff wh TAt ff
signals for QE (OUTE) and QF (OUTF) can be generated ou urns on when OUTD turns on_| Turns off when OUTA turns o
by turning OUTE and OUTF on and off based on the edges
of QA through QD. The timing needed to accomplish this

OUTE | Turns on when OUTC turns on | Turns off when OUTB turns off

Figure 3. Phase-shifted, full-bridge converter using the timing from Table 1

! -
QA |, | Qc
OUTA = D2 — ouTc
Vas,—> < Vap,

|O;JTA| loutc| [ouTe|

RARDL

UCC28950 PWM
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is presented in Table 1 and Figure 4. The theoretical
waveforms in Figure 4 show that this technique removes
the body-diode conduction that would be present if both
gate drives were off during tpey,, with the gate-drive sig-
nals presented in Figure 2.

Texas Instruments Incorporated

Experimental results

To see how well this technique worked for reducing body-
diode conduction, a 390- to 12-V phase-shifted, full-bridge
converter was modified to drive the FETs with the signals
shown in Figures 2 and 4.

Figure 4. Timing diagram for reducing QE and QF body-diode conduction
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FETs QE and QF are not off at the
same time, thus their body diodes
do not conduct during tpey,y,

High-Performance Analog Products

j=======7T= J
www.ti.com/aa

302010 Analog Applications Journal


http://www.ti.com/aaj

Texas Instruments Incorporated

Figure 5 shows a scope plot of the gates of the synchro-
nous FETs (QE and QF) while they were driven with the
OUTA and OUTB PWM outputs. In this figure, body con-
duction can be observed during the delay times (tpejay)
between OUTA and OUTB.

Figure 6 on the next page shows a scope plot of the
gates of the synchronous FETs (QE and QF') while they
were driven with the OUTE and OUTF signals presented
in Figure 3. These signals were generated from TI's new
UCC28950 phase-shifted, full-bridge controller. Figure 6
shows that the body diodes did not conduct when FETs
QE and QF were on at the same time. Some body-diode
conduction is still visible, but there is not as much as in
Figure 5.

The 600-W DC/DC converter’s efficiency was measured
for both drive schemes—OUTA and OUTB versus OUTE
and OUTF—from 20% to full load. The efficiency data of
the converter for these two drive schemes is presented in
Figure 7 on the next page. It can be observed that using
OUTE and OUTF was roughly 0.4% more efficient at a 50
to 100% load than using OUTA and OUTB. A 0.4% effi-
ciency gain may not seem like a lot but could make a dif-
ference when the designer is trying to achieve the
Platinum standard.

Figure 5. Scope plot of QE and QF body-diode conduction

Power Management

Conclusion

Even though it is possible to control a phase-shifted, full-
bridge converter that has synchronous rectifiers with a
phase-shifted, full-bridge controller that was not designed
for synchronous rectification (OUTA and OUTB drive
scheme), the turn-on delay between OUTA and OUTB
required to achieve ZVS causes both synchronous FETSs to
be off at the same time (tpey,,). This delay results in exces-
sive body-diode conduction during the FET’s freewheeling
period. This article has shown that it is more efficient to
overlap the ON time of the synchronous rectifiers during
the freewheeling time so that the body diodes do not
conduct. Even though the body-diode conduction is not
completely removed with this technique, it is drastically
reduced, improving overall system efficiency and making
the Platinum efficiency standard easier to meet.
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Figure 6. Scope plot showing reduced body-diode conduction of QE and QF

Body-diode conduction of FETs QE and QF during tp,,, has been
reduced, but some body-diode conduction is still present.
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Figure 7. Efficiency of 600-W DC/DC converter
with different QE and OF drive schemes
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Interface (Data Transmission)

Magnetic-field immunity of digital

capacitive isolators

By Thomas Kugelstadt

Senior Applications Engineer

The application environment of digital capacitive isolators
often includes close proximity to large electric motors,
generators, and other equipment that generates a large
electromagnetic field. Exposure to these fields raises
concern about the possibility of data corruption, as the
electromotoric force (EMF), the voltage created by these
fields, can interfere with the transferred data signal. Due
to this potential threat, many users of digital isolators
demand proof of an isolator’s high magnetic-field immunity
(MFT). While many digital-isolator technologies come with
claims of having high MFI, capacitive isolators provide an
almost infinitely high MFI due to their design and internal
construction. This article explains the details of this design.

Some physical fundamentals

A current-carrying conductor, such as one of the supply
lines to an electric motor, is said to be surrounded by a
magnetic field created by the current flowing through it.
The direction of the magnetic field is easily determined by
applying the right-hand rule (see Figure 1). This rule says
that when the conductor is grasped with the right hand
and the thumb is pointing in the direction of the current,
the fingers encircling the conductor indicate the direction
of the magnetic field. Thus, the plane of the magnetic flux
lines is always perpendicular to the current.

Figure 1 shows the magnetic flux density, B, for a DC
current. For an AC current, the right-hand rule is applied
in both directions, and the magnetic field changes with the
same frequency, f, as the AC current: B(f) ~ I(f). The
magnetic field—or, more accurately, the magnetic flux
density and its corresponding magnetic-field strength—
lessens with increasing distance from the center axis of
the conductor. These relations are expressed as

1
B= Hot )
2nr
and
-2 L @)
Ko 2nr
Analog Applications Journal 302010
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Figure 1. The right-hand rule

Electric
Current, |

Magnetic Field, B
(Flux Density)

where B is the magnetic flux density in volt-seconds per
square meter (Ves/m?2), 11, is the magnetic permeability in
free space (given by 4n x 10-7 Ves/A-m), I is the current in
amperes, 1 is the distance from the conductor in meters,
and H is the magnetic-field strength in amperes per meter
(A/m).

When the magnetic-field lines cross a nearby conductor
loop, they generate an EMF whose magnitude depends on
the loop area and the flux density and frequency of the
magnetic field:

EMF(f) = Bx 27f x A, 3)

where EMF is the electromotoric force in volts, f is the field
frequency, and A is the loop area in square meters (m2).

All isolators possess conducting loops in some shape or
form for magnetic-field lines to cross and generate EMF. If
large enough, this EMF, which is superimposed onto signal
voltages, can lead to erroneous data transmission. In fact,
some isolation technologies are highly susceptible to
magnetic interference. To understand why capacitive
isolators are unaffected by magnetic fields, their internal
construction needs to be examined.
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High-Voltage Capacitor

Figure 2. Simplified diagram of a capacitive isolator’s internal construction
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Construction of capacitive isolators

Capacitive isolators consist of two silicon chips—a
transmitter and a receiver (Figure 2). Data transfer
occurs across a differential isolation barrier formed by
two capacitors, each with a copper top plate and a con-
ductive silicon bottom plate on each side of a silicon
dioxide (SiOy) dielectric. The driver outputs of the trans-
mitter chip connect via bond wires to the top plates of
the isolation capacitors on the receiver chip. With the
bottom plates of the capacitors connecting to the receiv-
er inputs, a conducting loop is created. Figure 3 shows
the equivalent-circuit diagram of the isolation barrier
and points out the loop area between the gold bond
wires. Evidently a magnetic field crossing this loop will

Figure 4. Single-ended RC network

Vn

Y

generate an EMF that represents input-voltage noise,
V1, to the following RC network. A second differential
noise component often encountered, vy, is due to the
conversion of common-mode noise to differential noise.
Both noise components make up the combined noise, v,. If
only the effects of EMF are considered, v, can be conser-
vatively split in half:

Vn
EMF = - (4)

j=======7T= J
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To trigger the receiver, the output of the RC network
must provide a differential input voltage, Vip, that
exceeds the receiver input thresholds. Whether or not
false triggering occurs depends on the gain response,
G(f), of the RC network.

The conversion from a differential to a single-ended
network (Figure 4) simplifies the derivation of G(f) but
requires that C] = 2C;, R} = R;/2, C) = 2Cy, and Ry = Ry/2.
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A circuit simulation confirmed that the RC network is a
first-order high-pass filter, with C] and R being the domi-
nant components up to 100 MHz (see the blue curve in
Figure 5). Beyond this frequency, the parasitic compo-
nents C, and R) become effective, causing a slight devia-
tion from the linear slope. For up to 100 MHz, therefore,
the gain response can be expressed as a ratio of Vip/v,;:

2nf

omf)> LY
(2™ Ry«

Determining the maximum noise allowed that does not
cause false receiver triggering requires Equation 5 to be

solved for A\
V 27f 2 + ! i
D ( ) Ri X Ci

2nf

Then, substituting v, into Equation 4 provides the maxi-
mum tolerable EMF in volts:

1 2
Vi, [(27f)? +
D R{ xCy

4rf

Substituting EMF into Equation 3 then yields the maxi-
mum possible magnetic flux density:

1 2
Vip 1+(2nf><Ri xCiJ

4nfx A

6))

v
L) =]6(D)] =
VH

v (f) < (6)

EMF(f) < @)

B(f)< ¢))
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Table 1. Current and magnetic values for a conductor that is
0.1 m from a capacitive isolator

MAGNETIC EMF MA:QII.EDTIC- CURRENT, I
FREQUENCY, f FLléX(‘IIJg\I"?ZI)'I'Y (V) |STRENGTH,H (A)
(A/m)
1 kHz 1.07 x 107 63738.5| 8.55x 1012 | 5.37 x 1012
10 kHz 1.07 x 108 6373.8 | 8.55x 1010 | 537 x 1010
100 kHz 1.07 x 108 637.4 8.55 x 108 5.37 x 108
1 MHz 1.07x 10 63.7 8.55 x 106 5.37 x 106
10 MHz 1.07 x 101 6.4 8.55 x 104 5.37 x 104
100 MHz 1.07 x 10-3 0.6 8.55 x 102 5.37 x 102

The frequency-dependent values listed in Table 1 for the
magnetic flux density were derived by inserting the follow-
ing numerical values into Equation 8:

Vip = 10 mV (magnitude of the receiver’s input
thresholds)

R} x C] = 25 ps (effective time constant)
A =944 x 109 m2 (effective loop area)
f =1 kHz to 100 MHz (frequency range of interest)

Using Equations 2 and 3 also provides the EMF, the
magnetic-field strength (H), and the corresponding cur-
rent (I) for a conductor here assumed to be 0.1 m from a
prospective isolator.

From the enormously high values in Table 1, it is evident
that neither a low-frequency current of 5 trillion amperes
nor 500 A at 100 MHz is capable of stopping this isolator

Figure 5. Frequency response of the gain
magnitude, |G(f)]
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from working correctly. The reason for this almost infi-
nite MFT lies in the location of the isolation capacitors. If
these capacitors reside on the transmitter chip, any gen-
erated EMF in the bond wires reaches the receiver
inputs undisturbed.

Evidently such high MFI values are impossible to
test in practice. The data sheets of capacitive isolators
therefore show the modest value of only 1000 A/m as
the practical test field. However, unshielded capacitive
isolators easily pass the Class 5 MFI requirements of the
IEC61000-4-8 and IEC61000-4-9 standards. These stan-
dards respectively describe the application of power-
frequency fields of up to 100 A/m and pulsed fields of up
to 1000 A/m. Class 5 defines severe industrial environ-
ments with conductors, bus bars, or medium- or high-
voltage lines, all of which carry tens of kiloamperes. Also
included are the ground conductors of a lightning-
protection system and high structures (such as line
towers) carrying the whole lightning current. Switch-
yards of heavy industrial plants and power stations also
represent this type of environment.

Figure 6 compares the calculated MFI thresholds of a
capacitive isolator with the Class 5 (highest) test levels of
IEC 61000-4-8 and IEC 61000-4-9.

Conclusion

Magnetic coupling exceeding the noise budget in the dif-

ferential circuit of a capacitive isolator requires a magnetic
flux density greater than 11.7 Ves/m2 (117 kilogauss) at

1 MHz. This would be the field generated by over 5 million

amperes in a conductor that is 0.1 m away from the device.

It is unlikely that this will occur in nature or any manu-
factured equipment. If it does, the designer can assume
that surrounding circuitry will fail before the isolation
barrier does.
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Figure 6. MFI test thresholds
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Amplifiers: Op Amps

Operational amplifier gain stability, Part 3:

AC gain-error analysis

By Miroslav Oljaca, Senior Applications Engineer,
and Henry Surtihadi, Analog Design Engineer

Introduction

The goal of this three-part series of articles

is to provide readers with an in-depth under-
140

Figure 1. OPA211 open-loop gain versus frequency

standing of gain accuracy in closed-loop

circuits with the most typical operational
120
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amplifier (op amp) configurations: non-
inverting and inverting. Often, the effects of
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tions to analyze the DC gain error of a
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dency on temperature affects the op amp
closed-loop gain error across its specified
operating temperature range.
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This final article, Part 3, explores the fre-
quency dependency of the closed-loop gain, which will
help designers avoid the common mistake of using DC
gain calculations for AC-domain analysis.

The significance of the gain-bandwidth product

This section will review the concept of the op amp gain-
bandwidth product (GBWP), G x BW. The GBWP is a
parameter that is needed before the AC closed-loop gain
can be calculated. First, GBWP (or GBP, as it is sometimes
referred to) is needed to calculate the op amp closed-loop
cutoff frequency. GBWP is also needed to calculate the
frequency of the dominant pole, f;, of the op amp open-
loop response. At frequencies below f,, the DC gain-error
calculation in Part 2 is valid because the open-loop gain of
the op amp is constant; this gain is equal to the Agy, pe
(see References 1 and 2). However, beyond a frequency of
fy, the AC calculation must be used, as will be discussed in
the following section.

In general, if an op amp has a straight, —20-dB/decade,
open-loop-gain rolloff, it has a constant GBWP. For a chosen
closed-loop gain, the cutoff frequency at which the closed-
loop gain starts to roll off can be calculated by dividing the
GBWP by the desired closed-loop gain. Note that in prac-
tice the resulting —3-dB point of the closed-loop response
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may not be exactly equal to the calculated rolloff point due
to gain peaking and other non-ideal factors.

Figure 1 shows the simplified open-loop gain versus the
frequency response for the Texas Instruments (TT) OPA211.
In the product data sheet, the GBWP is specified for two
different gains: 1 (GBWP = 45 MHz) and 100 (GBWP =
80 MHz). The reason for the two different gain specifica-
tions is that the OPA211’s open-loop gain response has an
additional pole-zero pair in the frequency region from
about 4 to 20 MHz. This is a special case that is contrary
to the earlier statement that op amps with straight —-20-dB/
decade rolloffs will have only one GBWP. For this reason,
the GBWP of 80 MHz should be used for calculating the
cutoff frequencies for op amps that have a closed-loop
gain of 100 or higher, and the GBWP of 45 MHz should be
used for op amps with a closed-loop gain of 2 or lower. If a
more precise calculation is needed in the frequency region
above 4 MHz, using SPICE simulation is suggested.

Using the specified GBWP lets the designer calculate
cutoff frequencies for different closed-loop gains. When the
op amp is in the unity-gain configuration (where the closed-
loop gain is 1), the cutoff frequency is 45 MHz (45 MHz/1),
which is also known as the unity-gain bandwidth (UGBW)
of the op amp. If the op amp has a closed-loop gain of 100,
the cutoff frequency is 800 kHz (80 MHz/100).
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To calculate the OPA211’s dominant-pole frequency (f;),
the GBWP of 80 MHz will be used. Again, 80 MHz is valid
for a closed-loop gain of 100 or higher, up to the value of
Ao, pe- A value of 114 dB, which is the minimum ensured
DC open-loop gain for the OPA211 at room temperature,
will be used for Ag;, pc. Substituting all these parameters
into Equation 1 yields

fo=—oNE_ SOMHZ 150,62 1y (1)
AoL_nc

- 10 20

This result will be used in the following section to calcu-
late the AC closed-loop gain.

Calculating the AC closed-loop gain

In Part 1, the closed-loop transfer function of the non-
inverting op amp configuration in the frequency domain
was calculated. Specifically, the transfer function was
derived with the assumption that the op amp had a first-
order open-loop response. For calculating gain error, the
magnitude response is of interest. For convenience, the
result is repeated in the following equation:

AoL_pe

1+BxAqL, pe
|AcL (D) 4 = 20log - = . (2
1+f—2>< 1 3
fo (1+BXAOL_DC)

where [ is defined as

b= Veg _ R
Vour Ri+Rp

3

Also derived in the same article was the equation for cal-
culating the magnitude of the inverting configuration’s
closed-loop gain. The result is repeated in Equation 4:

AoL_pe

o OLDC
1+BxAp,_pe
|Acr(D)] 5 = 2010g - = 4)

1+f—2>< 1 3
fy  (A+BxAgp pe)

Equation 4 uses the same variable  defined by Equation 3.
Additionally, the variable a is defined by Equation 5:

Vs __ Ry 5)
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At this point, the closed-loop gain for non-inverting and
inverting amplifiers is represented by Equations 2 and 4,
respectively. These equations calculate the magnitude of
the transfer functions and will be used for subsequent
analysis.

In Part 2, the DC closed-loop transfer function of the
non-inverting op amp configuration was calculated. Again,
the transfer function was derived with the assumption that
the op amp had a first-order open-loop response. The DC
closed-loop gain of the non-inverting and inverting amplifi-
ers can be derived by setting f equal to 0 in Equations 2
and 4, which yields the following two equations:

AoL_Dpe
A ___OL.DO 6
CL-DC T4 Bx A, po ©
AoL_pe
Acr,_pc=- = M

a—
1+BxAqL, pe

The DC closed-loop gain was derived in slightly different
ways in other published articles (References 3 to 8); how-
ever, the results agree with this analysis. Unfortunately, in
these same articles, the expressions for the AC closed-loop
gain were derived by simply replacing Ag;, pc with Agp, (D)
in Equations 6 and 7, which represent the ‘simple transfer
functions. The results are shown in Equations 8 and 9:

A

Ao = 1+BxAq (D) ()
~ AoL(D)

Ao =0 T )

In these two equations, assuming a first-order system,
Ag, () is defined as

f2
Ao (D) a5 = AoL_pe| gy —2010g /1+f—2. (10)
0

However, this is not the correct way to calculate AC
closed-loop gain. Instead, Equations 2 and 4, which are
the magnitude expressions of the closed-loop transfer
function, should be used. Equation 2 should be used
instead of Equation 8 for a non-inverting configuration,
and Equation 4 should be used instead of Equation 9 for
an inverting configuration. The next two sections will
show the difference in results when the correct and
incorrect equations are used to calculate the gain.
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Figure 2. Closed-loop response of OPA211 in non-inverting configuration (G = 200 V/V)
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(b) Using Equation 8

Table 1. Closed-loop gain of 0PA211 in non-inverting configuration (G = 200 V/V or 46 dB)

FREQUENCY CLOSED-LOOP GAIN CLOSED-LOOP GAIN CLOSED-LOOP GAIN ERROR
(kHz) CALCULATED WITH EQUATION 8 CALCULATED WITH EQUATION 2 RESULTING FROM EQUATION 8
(Viv) (dB) (VV) (dB) (%) (dB)
10 195.121 45.806 199.86 46.014 2.37 0.208
30 186.046 45.392 199.361 45.993 6.679 0.6
60 173.913 44.807 197.7 45.921 12.036 1.114
100 160 44.082 193.956 45.754 17.507 1.672
300 114.286 41.16 159.959 44.08 28.553 2.92
600 80 38.062 110.926 40.901 27.88 2.839
1000 57.143 35.139 74.214 37.417 23.065 2.218

AC gain error for non-inverting configuration

As just stated, there is a tendency for system designers to
substitute Equation 10 into Equation 8 to calculate AC
gain for a non-inverting configuration. Figure 2 shows the
difference in the OPA211’s closed-loop response when that
method is used versus using Equation 2. In this example,
the closed-loop gain is set to 200 V/V (B = 1/200). From
Figure 2 it is evident that the difference between using the
two equations is primarily in the region of a decade before
and after the theoretical intersection between the open-
loop and closed-loop curves (that is, the cutoff frequency).

From the previous discussion of the GBWP, it is expected
that the OPA211 with a gain of 200 V/V will have a cutoff
frequency of 400 kHz (80 MHz/200). Table 1 shows the
values in Figure 2 in tabular form for a few selected fre-
quencies. For the frequencies of 10 kHz and 100 kHz, the
table shows that there is quite a bit of difference in the
frequency responses. The closed-loop gain calculated
with Equation 8 drops from about 195 V/V to 160 V/V,
compared to a drop of about 199 V/V to 194 V/V with
Equation 2. The biggest difference occurs at the cutoff
frequency of 400 kHz, where the error is 29%, or 3 dB.
These differences, which can be considered as gain error,
are plotted in Figure 3.

Figure 3. OPA211 closed-loop gain error
resulting from Equation 8
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The foregoing analysis shows that a proper understand-
ing of gain error is extremely important in selecting proper
components. If a design requires that the flatness of the
closed-loop gain be kept within a specified margin, using
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Figure 4. Closed-loop response of OPA211 in inverting configuration (G = —200 V/V)
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(a) Using Equation 4
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(b) Using Equation 9

Table 2. Closed-loop gain of OPA211 in inverting configuration (G = -200 V/V or 46 dB)

FREQUENCY CLOSED-LOOP GAIN CLOSED-LOOP GAIN CLOSED-LOOP GAIN ERROR

(kHz) CALCULATED WITH EQUATION 9 CALCULATED WITH EQUATION 4 RESULTING FROM EQUATION 9

(V/V) (dB) (V) (dB) (%) (dB)

10 195.098 45.805 199.857 46.014 2.381 0.209

30 185.981 45.389 199.355 45.993 6.708 0.603

60 173.8 44.801 197.688 45.92 12.084 1.19

100 159.84 44.074 193.898 45.751 17.565 1.678

300 114.041 M4 159.671 44.065 28.577 2.923

600 79.761 38.036 110.543 40.871 21.847 2.835

1000 56.94 35.108 73.955 37.379 23.008 2.271

Equation 8 will lead the designer to select an op amp with
a UGBW 10 times higher than what is needed.

AC gain error for inverting configuration

Similar to the non-inverting configuration, most system
designers will use Equations 9 and 10 to calculate the AC
gain for an inverting configuration. The difference in the
resulting closed-loop gains when Equations 4 and 9 are
used is shown in Figure 4. In this example, the op amp
is set to an inverting gain of —200 V/V (§ = 1/201, a. =
200/201). From Figure 4 it can be seen that once again the
most significant difference in the results is in the region
about a decade before and after the cutoff frequency.
Table 2 shows the values in Figure 4 in tabular form for
a few selected frequencies. For the frequencies of 10 kHz
and 100 kHz, Table 2 shows the same differences in fre-
quency response as for the non-inverting configuration.
The closed-loop gain calculated with Equation 9 drops
from about 195 V/V to 160 V/V, compared to a drop of
about 199 V/V to 194 V/V with Equation 4. Again, the big-
gest difference occurs at the cutoff frequency of 400 kHz,
where the error is 29%, or 3 dB. These differences, which
can be considered as gain error, are plotted in Figure 5 and
lead to a conclusion similar to that for the non-inverting

Figure 5. OPA211 closed-loop gain error

resulting from Equation 9
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configuration: If a design requires that the flatness of the
closed-loop gain be kept within a specified margin, using
Equation 9 will lead the designer to select an op amp with
a UGBW 10 times higher than what is needed.
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Table 3. Calculated and SPICE-simulation values for AC closed-loop gain

Amplifiers: Op Amps

FREQUENCY CLOSED-LOOP GAIN FOR NON-INVERTING CLOSED-LOOP GAIN FOR INVERTING
(k) CONFIGURATION (V/V) CONFIGURATION (V/V)
FROM EQUATION 2 FROM SPICE SIMULATION FROM EQUATION 4 FROM SPICE SIMULATION
10 199.86 199.91 199.86 199.91
30 199.36 199.43 199.36 199.42
60 197.71 197.85 197.69 197.82
100 193.96 194.24 193.89 194.18
300 159.96 161.18 159.67 160.89
600 110.93 112.53 110.54 112.12
1000 7427 755 73.96 75.18
Comparison to SPICE simulation References

To verify the validity of Equations 2 and 4 for calculating
the AC closed-loop gain in non-inverting and inverting
configurations, the results were compared to those of a
TINA-TI™ SPICE simulation. For this analysis, the OPA211
macromodel was used. This simulation model can be
downloaded at:

'http //focus.ti. coanocs/prod/folders/pmnt/ ,
'opa211 html#toolssoftware .

Table 3 shows that the calculated results from Equations
2 and 4 closely match the results from the SPICE simula-
tion, confirming that Equations 2 and 4 are indeed the
correct equations to use to calculate the AC closed-loop
gain. The slight discrepancies between the calculated and
simulated results can be attributed to the fact that the
SPICE simulation included non-ideal op amp factors (such
as input bias currents, etc.) that were ignored in this sim-
plified analysis.

Conclusion

Part 1 of this article series explored general feedback-
control-system analysis and synthesis as they apply to
first-order transfer functions. The analysis technique was
applied to both non-inverting and inverting op amp circuits,
resulting in a frequency-domain transfer function for each
configuration.

Part 2 showed how to use these two transfer functions
and manufacturer data-sheet specifications to analyze the
DC gain error of a closed-loop op amp circuit. This analysis
also took into consideration the temperature dependency
of the open-loop gain as well as its finite value.

Part 3 of this article series has explored how to calculate
the closed-loop gain error for AC input signals. Instead of
using the magnitude equations, system designers have a
tendency to use the simple transfer-function equations. As
has been shown, using these equations will lead to incor-
rect results, specifically in the vicinity of the circuit’s cut-
off frequency, where the error will be more significant. By
using the magnitude equations to calculate the closed-loop
gain, system designers should be able to choose a more
appropriate op amp that will meet the design requirements.
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