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Analog Applications Journal is a collection of analog application articles 
designed to give readers a basic understanding of TI products and to provide 
simple but practical examples for typical applications. Written not only for 
design engineers but also for engineering managers, technicians, system 
designers and marketing and sales personnel, the book emphasizes general 
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific 
circuits but as examples of how devices could be used to solve specific design 
requirements. Readers will find tutorial information as well as practical 
engineering solutions on components from the following categories:

•	Data Acquisition

•	Power Management

•	Amplifiers: Audio

•	Amplifiers: Op Amps

Where applicable, readers will also find software routines and program 
structures. Finally, Analog Applications Journal includes helpful hints and 
rules of thumb to guide readers in preparing for their design.

Introduction

http://www.ti.com/aaj


5

Analog Applications Journal

Texas Instruments Incorporated

2Q 2010	 www.ti.com/aaj	 High-Performance Analog Products

Data Acquisition

How digital filters affect analog  
audio signal levels

Introduction
Digital audio processing provides a great amount of flexi-
bility to system designers. Multiple filter structures can be 
cascaded to form equalization (EQ), low-pass, high-pass, 
shelf, and many other filter combinations with relatively 
low power consumption and little PCB space. Infinite-
impulse-response (IIR) filters can be used to easily simu-
late filter functions performed by analog counterparts.

Digital audio signals are represented as an array of bits 
with a fixed resolution. This means that the signal is dis-
crete in nature, both in amplitude and in time. If the source 
of this data is analog, it is quantized and sampled at fixed 
intervals (sampling periods) by an analog-to-digital con-
verter (ADC). An audio engineer has to be careful to 
ensure that the signal being recorded is not clipped, while 
maintaining the signal as loud as possible to maximize the 
signal-to-noise ratio (SNR). An ADC has an amplitude 
limit, which may be defined as a full-scale voltage, mean-
ing that any signal above a certain amount of volts at the 
converter’s input may result in clipping. Also, the signal is 
quantized into a number with a certain fixed resolution 
(which might also be close to the clipping point).

A mastering engineer also has to be careful when work-
ing with music in the digital domain. Some EQ can be 

added to boost certain frequencies as well as to achieve 
other effects. If there is an extravagant amount of head-
room, the engineer can boost, boost, and boost. However, 
the final medium for the music is a CD (which is limited to 
16-bit audio), so trade-offs have to be made because the 
rest of the music sounds too “quiet” compared to the SNR 
of the medium.

Boosting frequency bands in the digital domain can  
create certain problems when the bands are converted into 
the analog domain. Digital-to-analog converters (DACs) 
can also clip the signal if their digital input is larger than 
their full-scale voltage. Most processors allow a certain 
amount of headroom to work with intermediate values, but 
ultimately a DAC expects a certain data width bounded by 
maximum and minimum values. If the signal is scaled down 
and certain frequencies are then boosted to accommodate 
the higher peaks, then the SNR at the flat region(s) will 
suffer from a lower SNR.

Understanding the problem
A very important aspect to consider when digital filters are 
used is how the signal level is affected upon its conversion 
from the digital to the analog domain. Suppose that a sys-
tem provides a digital signal to a processing unit and con-
verts it to analog using an ideal DAC without any process
ing being applied, as shown in Figure 1. In this example, a 
0-dBFS digital signal is provided to the DAC and converted 

By Jorge Arbona, Applications Engineer,
and Supriyo Palit, Software Systems Engineer

Source Data Processor DAC Amp

1-kHz EQ

–130

0

1 k Frequency (Hz)

A
m

p
li

tu
d

e
( d

B
)

D
A

C
 R

a
n

g
e

D
A

C
 R

a
n

g
e

D
A

C
(V

)
O

U
T

–130

0

1 k Frequency (Hz)

A
m

p
li

tu
d

e
( d

B
)

–130

0

1 k Frequency (Hz)

A
m

p
li

tu
d

e
( d

B
)

0

Time

2 –1n–1

–2n–1

0

Time

2 –1n–1

–2n–1

Time

0

1

–1

Figure 1. Full-scale digital signal represented as a 1-Vpeak analog signal

http://www.ti.com/aaj


Texas Instruments Incorporated

6

Analog Applications JournalHigh-Performance Analog Products	 www.ti.com/aaj	 2Q 2010

Data Acquisition

into the analog domain. A relationship between the digital 
code and the analog output amplitude is provided in the 
specification of a codec as the full-scale amplitude. If the 
specification of the full-scale amplitude is 0.707 VRMS (or  
1 Vpeak), this means that a full-scale 0-dBFS digital sinu-
soid will result in a 1-Vpeak sinusoid, as shown in the figure.

If a DAC is bounded by –2n–1 and 2n–1 – 1, amplifying a 
signal beyond these limits will distort the signal by clipping 
it at its output (assuming saturation logic), as shown in 
Figure 2. Note that it is typical for most signal processors 
to allow some amount of headroom before providing data to 
a DAC. It is important for the data within the processor’s 

memory to remain undistorted. Figure 2 illustrates the 
DAC input limits where output clipping may occur if 
exceeded.

A solution to this problem would be to ensure that the 
signal is not amplified beyond the DAC’s limits (i.e., ensure 
that positive gain is not applied to the source signal). 
However, there are cases for which the solution is not as 
obvious. Performing a boost relative to the full-scale 
amplitude of the DAC input at a specific frequency range 
will also cause adverse effects. In Figure 3, a 500-Hz signal 
is boosted by 6 dB. The distortion observed in the analog 
output is due to DAC clipping.
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Figure 2. Excessive gain in the digital domain can make 
the signal exceed the DAC’s upper and lower limits
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This concept is also illustrated in Figure 4. Note that 
the noise from the source data is inherited when passed 
to the larger bus width of the processor’s memory. As 
mentioned previously, data could be scaled down by the 
maximum amount of total boost to accommodate the 
boosted regions. However, as seen in Figure 5, even if the 
boost reference point is in a good position, the DAC signal 
might be affected by the output SNR. If the amount of 
boost does not compromise overall system SNR signifi-
cantly, then simple scaling might be a viable solution. 
Some low-power codecs provide 100 dB of SNR, which 
allows some amount of scaling without sacrificing the SNR 
of the original 16-bit source.

Quantization and number representation
In digital processing, a real number is represented as an 
integer value with a fixed precision. This is called quanti
zation, and the quantized value is an approximation of 
the original value. The integer value can be represented 
as a fixed-point number or a floating-point number. An 
integer value represented as a fixed-point number is 
composed of magnitude bits and fractional bits. An inte-
ger value represented as a floating-point number is com-
posed of exponent bits and mantissa bits. This discussion 
will henceforth be restricted to fixed-point numbers and 
fixed-point arithmetic.

A fixed-point number is represented as a twos- 
complement integer with a fixed number of digits after the 
radix point (or the decimal point). These digits make up 
the fractional part of the number. The digits before the 
radix point are the magnitude part and denote the range 
of the number. The magnitude part also contains the sign 
of the number.

Digital data coming into an audio processor is consid-
ered to be a real number lying between –1 and 1 – 1LSB. 
Assuming that the real value is represented as a 16-bit 
fixed-point number, the number –1 will be represented as 
1000000000000000 in binary (or 0x8000 in hexadecimal). 
In twos-complement arithmetic, 0x8000 corresponds to an 
integer value equal to –32768. This means that dividing 
the integer number by 32768 will result in the quantized 
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approximation of the real value. The largest positive num-
ber in 16 bits is 0111111111111111 in binary (or 0x7FFF 
in hexadecimal). The corresponding integer value is 32767. 
Dividing this by the scale factor of 32768 produces the 
largest real number that can be represented in this format. 
The number is 32767/32768 = 0.999969482421875. The 
fixed-point representation is shown in Figure 6.

In this representation, there are 15 fractional bits and 1 
magnitude bit, which is also the sign bit. This means that a 
real number must lie between –1 and 0.999969482421875 
before quantization. If the real number is above or below 
this range, it cannot be represented in the given format 
because the 16-bit register will overflow. To accommodate 
larger real numbers, the magnitude part needs to be 
increased at the expense of a reduced fractional part. This 
format is also known as the 1.15 format (1 = magnitude 
bits, and 15 = sign bits). Input to a digital processor is 
always represented in 1.n format, where n is the number 
of fractional bits (15, 19, 23, or 31). A value of 0 dBFS  
corresponds to the RMS value of a full-scale sine wave 
whose amplitude is (2n – 1)/2n. The largest real number in 
the given format is represented by 2n. The number of bits 
that are used to represent a signal is called the signal bit 
width or the data bit width.

Overflow and saturation
Overflow occurs when a processing unit’s computation 
results in a value greater in magnitude than the data bit 
width. Overflow is typically associated with computation in 
the accumulator, where successive numbers of the same 
sign are added and stored. Accumulators usually keep 
accumulating even after overflow because the final result, 
if within bounds, will still come out correctly.

The output of the accumulator is saturated before it is 
stored as a signal value. Saturation is a process where a 
positive overflow is converted to the maximum positive 
number and a negative overflow is converted to the mini-
mum negative number. Saturation is a nonlinear operation 
and results in severe harmonic distortion of the output. 
Headroom bits are used to prevent saturation.

Signal bits
Signal and noise bits affect the performance of a system. 
The digital audio processor adds quantization noise, and 
the overall performance will be the effect of both the analog 
circuit noise and the quantization noise. Assuming that 
both noise sources are the outcome of independent random 
processes, the overall system noise performance can be 
defined as

2

10 2 2
C Q

S
SNR 10 log ,

N N

 
 =
 + 

where S is a uniformly distributed random signal, NC is 
DAC circuit noise, and NQ is quantization noise. Using a 
100-dB DAC and a 120-dB signal processor will result in 
an overall SNR of 99.96 dB.

It should be noted that the overall SNR is also limited by 
the source—the input to the digital audio processor. If the 
input is provided as a 16-bit number, then the signal-to-
quantization-noise ratio (SQNR) of the system can, at 
best, be 96 dB (assuming a uniformly distributed random 
signal, unweighted). So, even a higher-bit internal repre-
sentation (lower NQ) will not provide much improvement 
in this case.

Noise bits
Earlier it was mentioned that the number of signal bits 
determines the performance of the digital audio system. 
More bits are sometimes needed for filter-response  
calculations.

A filter implementation consists of a data path through 
which the signal flows and is stored as delay elements for 
the filter. The signal and delay values are multiplied by the 
coefficients associated with the filter taps. Coefficient quan
tization also plays an important role in system perform
ance. The product of the signal and coefficient values is 
stored in the accumulator, which usually has a higher bit 
width than that of the signal. Subsequent products are 
added in the accumulator (at a higher bit width), and the 
final filter output is then stored back in signal precision 
(at a lower bit width).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Magnitude Part

Decimal Point

Fractional Part

Figure 6. Fixed-point representation of a real number
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Consider the biquad filter implementation in Figure 7. 
In this figure, the input and output signals are represented 
by “A bits.” The a and b coefficients are represented by 
“B bits.” The input signal and its delay elements are multi
plied by the coefficients and added at the accumulator. 
The multiplier and accumulator together are A + B bits 
wide. The output signal is then quantized by the Q block 
and stored as an A-bit number. This introduces a quanti-
zation error, which is a noise source for the digital filter; 
therefore extra bits are needed to ensure that the noise 
contribution from the digital filter is below the target 
SNR. These extra bits are called the noise bits. The effect 
of noise is more pronounced with IIR filters than with 
finite-impulse-response (FIR) filters. The number of noise 
bits also depends on the sampling frequency and the cut-
off frequency of the digital filter. As the sampling fre
quency increases, the number of noise bits required 
increases. As the cutoff frequency decreases, the number 
of noise bits required increases. For a 48-kHz operation, 
14 to 16 noise bits are enough to maintain the target SNR 
for a 40-Hz IIR filter.

Headroom bits
Other than signal and noise bits, additional bits are needed 
to prevent overflow. These bits are called headroom bits. 
An end-to-end audio-processing chain will usually pre-
serve the signal level. This means that if a 0-dB signal is 
input to the signal chain, the output will measure 0 dB or 
less. (Usually there is a signal compressor that will limit 
the signal swing to a few decibels below zero.) If boost  
filters are used to amplify specific signal bands, the remain
ing bands are usually attenuated to prevent the signal from 
going above 0 dB. For the latter case, when the input- 
signal level is at 0 dB (also known as the neutral signal 
level), the output signal will be lower than 0 dB, and only 
the amplified bands will reach 0 dB at the output. This will 
reduce the average volume level of the audio signal.

In spite of the signal level being maintained at 0 dB, the 
signal can overflow at intermediate processing points. To 
prevent overflow, headroom bits—i.e., bits in addition to 
signal and noise bits—are needed.

There can be two sources of overflow:

1.	An audio-processing chain can have a filter whose gain 
(at some specific frequency values) is greater than 0 dB. 
The filter can be part of a cascaded filter chain (e.g., 
low-pass, high-pass, and/or band-pass filters) whose 
overall gain is 0 dB, or it can be a frequency-selective 
filter that amplifies a specific frequency band relative 
to the neutral signal level (e.g., shelf and EQ filters). 
Note that if a real number is represented in 1.n format 
(where n is the number of fractional bits), the magni-
tude of the number is always less than 1. So, if a filter 
with a gain of more than 0 dB (a real number greater 
than 1) is used, then the output value from the filter is 
going to overflow if the input value is 0 dB (a real num-
ber equal to 1). To prevent overflow in such cases, 
more headroom bits are needed.

2.	A filter with a gain of less than or equal to 0 dB can have 
instantaneous real values greater than 1. To ensure that 
these instantaneous values do not overflow, headroom 
bits are needed.

A pictorial representation of the signal in the audio proc
essor is shown in Figure 8. An important point to note is 
that headroom bits are primarily used to accommodate 
intermediate signal growth. It is expected that at the end 
of the final processing block, the output will fit within the 
signal bit width. Otherwise, for low-signal amplitudes, the 
output will still be within limits and not distort; but, for 
high-signal amplitudes, the output will get saturated and 
cause distortion. To prevent distortion, it is best to attenu-
ate the signal prior to the final output.

Q
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Scaling
Scaling can be used to avoid saturation for filters with gain 
exceeding 0 dB. A boost filter can be used intentionally 
that will gain a particular frequency. Even a multisection 
low-pass filter can have a biquad section that actually gains 
certain frequencies that are higher than the available head
room (the overall response will still be 0 dB). In such a 
case, whether or not to use scaling can be determined by 
multiplying the input-signal level by the maximum gain of 
the total filter response. If the product is greater than the 
available DAC headroom, then scaling could be used to 
avoid saturation.

One method of scaling is to attenuate the system’s trans
fer function by an amount equal to the maximum amplitude 
of the filter’s transfer function. The scaling factor can be 
defined as

jS max H(e ) ,ω=

where 0 ≤ ω ≤ π. A second method is to scale the input 
signal by S. Figure 9 demonstrates the effect of scaling the 
transfer function. A full-scale sinusoid is input to the trans
fer function, which attenuates the flat frequencies by 6 dB. 
Relative to –6 dBFS, the 1-kHz signal is boosted by 6 dB.

In some cases, due to the filter structure and the instan-
taneous signal sequences, the output of a filter can be 
more than 0 dB even though it does not have a gain of 
more than 0 dB. An FIR filter can increase the gain of a 
signal by a sum of the absolute value of the filter taps if 
the individual memory elements are at 0 dB with a sign 
opposite to that of the taps. The response of the filter may 
not exceed 0 dB, so additional headroom may be applied. 
Computing additional headroom for IIR filters is complex 

because they have feedback elements, and finding a closed- 
form expression to determine the upper limit for instanta-
neous gain is complex. In fact, one of the reasons signal 
processors provide additional headroom (above the DAC 
limit) is to allow headroom for instantaneous values. Mea
surements might be needed to compute additional head-
room. In some cases, the SNR may need to be traded off 
for distortion that is due to saturation, and then an analog 
gain may need to be added to get the signal back to 0 dB.

When scaling is used, it is sometimes desirable to add 
additional gain (boost) in the analog output stage to com-
pensate. Special care should be taken to ensure that the 
signal of the boosted regions does not saturate the output 
amplifiers as well, resulting in a distorted signal. Boost is 
also provided at the final output stage of the processor to 
compensate for scaling. This is required for multisection, 
0-dB filters where scaling has been done to prevent over-
flow for one or more of the individual sections. For filters 
that gain frequencies above 0 dB (EQ and shelf filters), 
the neutral signal level is scaled below 0 dB. In this case, 
the final-stage boost is not required. The result is a loss of 
SNR for the flat regions.

A more elegant solution is to limit the amount of filter 
gain based upon the volume gain applied at the digital 
processor, which is very well-suited for headphone use. At 
higher volume levels, the frequency boost can be lowered 
and, ultimately, be flat at full volume.

In some cases, the frequency boost is kept constant, 
while the signal is compressed when the volume is high. 
This is the anti-clipping dynamic-range compressor (DRC) 
function: At low volume levels, the original SNR is main-
tained; but, as volume increases, the scaling is proportion-
ately increased to prevent distortion.
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Figure 9. Scaling the transfer function

http://www.ti.com/aaj


Texas Instruments Incorporated

11

Analog Applications Journal 2Q 2010	 www.ti.com/aaj	 High-Performance Analog Products

Data Acquisition

Regardless of the method used, it is important to con-
sider how humans perceive sound and noise. Human 
hearing has an outstanding dynamic range. Headphone 
amplifiers trade between noise floor and output power 
to best accommodate this range. For instance, the 
TLV320AIC3254 audio codec can deliver a very high 
sound-pressure level (SPL) with just 500 mVRMS into a 
typical 32-Ω or 16-Ω headphone load, and at the same 
time can have a noise floor of 100 dB (A-weighted) below 
full scale, which can be below the threshold of hearing 
(see Figure 10). Sometimes, it is not even necessary to 
add additional amplification after scaling is performed, 
since the output power could be very well above the  
comfortable listening level.
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Discrete design of a low-cost isolated  
3.3- to 5-V DC/DC converter

Isolated 3.3- to 5-V converters are often required in long-
distance data-transmission networks, where the bus-node 
controller operates from a 3.3-V supply to conserve power 
while the bus voltage is 5 V to maintain signal integrity 
and to provide high drive capability over long distances. 
Although isolated DC/DC converter modules for 3.3- to 
3.3-V and 5- to 5-V conversion are readily available on the 
market, 3.3- to 5-V converters in integrated form are still 
hard to find. Even if a search for the latter proves success-
ful, these specific converters—in particular, those with 
regulated outputs—often possess long lead times, are  
relatively expensive, and are usually limited to certain  
isolation voltages.

A discrete design can be a low-cost alternative to inte-
grated modules if an application requires isolation voltages 
higher than 2 kV, converter efficiency higher than 60%, or 
reliable availability of standard components. The drawback 
of designing a discrete DC/DC converter is that it requires 
a great deal of work—choosing a stable oscillator structure 
and break-before-make circuit, selecting good MOSFETs 
that can be driven efficiently by standard logic gates, and 
performing temperature and long-term-reliability tests. 
This entire effort costs time and money. Therefore, before 
rushing into such a project, the designer should consider 
the following: Integrated modules have usually passed tem
perature tests and have met other 
industrial qualifications. These 
modules not only represent the 
most reliable solution but also 
provide a fast time to market.

Converters with unregulated 
output are priced at around 
$4.50 to $5.00 each in quantities 
of 1000 units, while converters 
with regulated output often cost 
twice as much, approximately 
$10.00 or more. Thus, it makes 
sense to purchase a converter 
with unregulated output and 
either buffer the output with 
bulk capacitance or feed it into a 
low-cost, low-dropout regulator 
(LDO) such as the Texas 
Instruments (TI) TPS76650 at 
around $0.50.

The discrete DC/DC converter design in Figure 1 uses 
only readily available, standard components (such as logic 
ICs and MOSFETs) for the transformer driver and an LDO 
for a regulated output voltage. While this circuit has been 
prototyped with through-hole components, thus making 
its form factor larger than that of integrated modules, the 
board space can be drastically reduced by using TI’s Little 
Logic™ devices.

The main benefits of this design are its low bill of mate-
rial (BOM) and the freedom to choose an isolation trans-
former for isolation voltages ranging from 1 to 6 kV. The 
goal is to offer a low-cost alternative to fully integrated 
DC/DC converters with regulated outputs, and to stand-
alone transformer drivers (usually priced at around $1.80), 
by making the transformer-driver stage as inexpensive as 
possible.

Operation principle
Low-cost, isolated DC/DC converters are commonly of the 
push-pull driver type. The operation principle is fairly sim-
ple. A square-wave oscillator with a push-pull output stage 
drives a center-tapped transformer, whose output is recti-
fied and made available in regulated or unregulated DC 
form. An important, functional requirement is that the 
square wave must have a 50% duty cycle to ensure  

By Thomas Kugelstadt
Senior Applications Engineer
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Figure 1. Isolated 3.3- to 5-V push-pull converter
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symmetrical magnetization of the transformer core. 
Another requirement is that the product of magnetizing 
voltage (E) and magnetizing time (T), known as the ET 
product and measured in Vμs, must not exceed the trans-
former’s characteristic ET product specified by its manufac
turer. A break-before-make circuit following the oscillator 
must also be implemented to prevent the two legs of the 
push-pull output stage from conducting simultaneously 
and causing a circuit failure.

The discrete design
The well-known three-inverter-gate oscillator, consisting of 
U1a, U2a, and U2b, has been chosen because it is stable 
with supply variations. Its nominal frequency is set to  
330 kHz through a 100-pF ceramic capacitor (COSC) and 
two 10-kΩ resistors (ROSC1 and ROSC2). The oscillator  
possesses a duty cycle of close to 50% and a maximum 
frequency variation of less than ±1.5% across a 3.0- to 
3.6-V variation in supply voltage. Figure 2 shows the wave-
forms at the summing point of ROSC1 and ROSC2 (TP1) and 
at the oscillator output (TP2). All voltages are measured 
with respect to circuit ground.

Two Schmitt-trigger NAND gates (U1c, U1d) perform a 
break-before-make function to avoid overlapping of the 
MOSFET’s conducting phases. Two other NAND gates 
(U2c, U2d) are configured as inverting buffers, generating 
the correct signal polarity necessary to drive the n-channel 
MOSFETs (Q1, Q2). The complete break-before-make 
action is shown in Figure 3. To accommodate the limited 
drive capability of standard logic gates, the MOSFETs have 
been selected for their low total charge and their fast 
response times.

The isolation transformer (T1) has a secondary-to- 
primary winding ratio of 2:1, a primary inductance of  
0.9 mH, and a guaranteed isolation voltage of 3 kV. The 
input and output waveforms of the transformer are shown 
in Figure 4.

TP1
(VSUM)

TP2
(VOSC)

Time (1 µs/div)

+1.5 x VCC

–1.5 x VCC

5 V/div

Figure 2. Oscillator waveforms at TP1 and TP2
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Figure 3. Break-before-make waveforms
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The two diodes (D1, D2) are fast Schottky rectifiers per
forming a full-wave rectification while providing low forward 
voltage at full load current (VFW < 0.4 V at 200 mA). It is 
possible to take the output voltage directly from a bulk 
capacitor (Cb3) following the diodes. In this case, the out-
put is unregulated but provides the maximum efficiency of 
the DC/DC converter. However, the designer must ensure 
that the maximum supply of the affected circuitry is not 
exceeded, which can easily occur under low-load or open-
circuit conditions. If the unregulated output voltage under 
minimum load proves to be too high, it is necessary to use 
a linear regulator after the full-wave rectifier to provide a 
stable output supply.

The main benefit of a linear regulator is the low ripple 
output. Other benefits include short-circuit protection and 
overtemperature shutdown. The main drawback, however, 
is a significantly reduced efficiency.

Figure 5 shows the ripple of the circuit in Figure 1 at an 
output voltage of 4.93 V, and Figure 6 compares the circuit’s 
efficiency with that of an integrated DC/DC module with 
regulated output.

Table 1 on the next page provides an approximate BOM 
for the discrete converter. Note that the values of the 
bypass capacitors are larger than the 10 nF commonly 
implemented in low-speed applications. This is because 
high-speed CMOS technologies such as AHC, AC, and LVC 
possess high dynamic loading, so the values for bypass 
capacitors must be 0.1 μF or higher to assure proper  
operation. This is of particular importance for the inverter 
buffers driving the MOSFETs, where the bypass capacitor 
is 0.68 μF.

50 mV/div

V
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Time (1 µs/div)

V = 38 mV

Figure 5. Output ripple at VOUT = 4.93 V
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Figure 6. Efficiency comparison

Conclusion
Where board-space constraints are not an issue, the dis-
crete design of an isolated 3.3- to 5-V DC/DC converter 
with regulated output can present a viable low-cost alterna
tive to an integrated DC/DC module with regulated output. 
A major benefit of the discrete design is the freedom to 
choose an isolation transformer for varying isolation-voltage 
requirements.
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Replace partnumber with SN74AC00, SN74AHC132, or 
TPS76650
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Table 1. BOM for discrete DC/DC converter

DEVICE LABEL
PART NUMBER  

OR VALUE
DESCRIPTION

COMPONENT PRICE* 
(EACH)

QUANTITY TOTAL PRICE*
TRANSFORMER 
DRIVER PRICE*

U1 SN74AHC132 Quad Schmitt-trigger NAND 0.17 1 0.17 0.17

U2 SN74AC00 Quad NAND 0.17 1 0.17 0.17

U3 TPS76650 250-mA LDO 0.53 1 0.53 —

Q1, Q2 FDN335 n-channel power MOSFET 0.105 2 0.21 0.21

ROSC1, ROSC2 10 kΩ OSC resistor 0.04 2 0.08 0.07

RF1, RF2 1.54 kΩ Delay resistor 0.035 2 0.07 0.07

RG1, RG2 150 Ω Gate-drive resistor 0.035 2 0.07 0.07

COSC 100 pF Oscillator capacitor 0.04 1 0.04 0.04

CF1, CF2 47 pF Delay capacitor 0.04 2 0.08 0.08

Cb1 0.1 µF Bypass capacitor 0.02 3 0.06 0.02

Cb2 0.68 µF Bypass capacitor 0.03 1 0.03 0.03

Cb3 0.1 µF LDO input capacitor 0.02 1 0.02 —

CIN, Cb4, COUT 4.7 µF Bulk capacitor 0.12 3 0.36 0.12

D1, D2 MBR0520L Schottky diode 0.045 2 0.09 —

T1 TGRTI-360NARL 1:2 transformer, 3 kV 2.31 1 2.31 —

TOTAL 4.28 1.09

*Typical price in U.S. dollars in quantities of 1000 units.

http://www.ti.com/aaj


16

Analog Applications Journal

Texas Instruments Incorporated

High-Performance Analog Products	 www.ti.com/aaj	 2Q 2010

Power Management

Designing DC/DC converters based on  
ZETA topology

Introduction
Similar to the SEPIC DC/DC converter topology, the ZETA 
converter topology provides a positive output voltage from 
an input voltage that varies above and below the output 
voltage. The ZETA converter also needs two inductors 
and a series capacitor, sometimes called a flying capacitor. 
Unlike the SEPIC converter, which is configured with a 
standard boost converter, the ZETA converter is config-
ured from a buck controller that drives a high-side PMOS 
FET. The ZETA converter is another option for regulating 
an unregulated input-power supply, like a low-cost wall 
wart. To minimize board space, a coupled inductor can be 
used. This article explains how to design a ZETA converter 
running in continuous-conduction mode (CCM) with a 
coupled inductor.

Basic operation
Figure 1 shows a simple circuit diagram of a 
ZETA converter, consisting of an input capac
itor, CIN; an output capacitor, COUT; coupled 
inductors L1a and L1b; an AC coupling 
capacitor, CC; a power PMOS FET, Q1; and a 
diode, D1. Figure 2 shows the ZETA con-
verter operating in CCM when Q1 is on and 
when Q1 is off.

To understand the voltages at the various 
circuit nodes, it is important to analyze the 
circuit at DC when both switches are off and 
not switching. Capacitor CC will be in parallel 
with COUT, so CC is charged to the output 
voltage, VOUT, during steady-state CCM. 
Figure 2 shows the voltages across L1a and 
L1b during CCM operation.

When Q1 is off, the voltage across L1b 
must be VOUT since it is in parallel with COUT. 
Since COUT is charged to VOUT, the voltage 
across Q1 when Q1 is off is VIN + VOUT; 
therefore the voltage across L1a is –VOUT  
relative to the drain of Q1. When Q1 is on, 
capacitor CC, charged to VOUT, is connected 
in series with L1b; so the voltage across L1b 
is +VIN, and diode D1 sees VIN + VOUT.

By Jeff Falin
Senior Applications Engineer
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The currents flowing through various  
circuit components are shown in Figure 3. 
When Q1 is on, energy from the input supply 
is being stored in L1a, L1b, and CC. L1b also 
provides IOUT. When Q1 turns off, L1a’s cur-
rent continues to flow from current provided 
by CC, and L1b again provides IOUT.

Duty cycle
Assuming 100% efficiency, the duty cycle, D, 
for a ZETA converter operating in CCM is 
given by

	

OUT

IN OUT

V
D .

V V
=

+
	 (1)

This can be rewritten as

	
= =

−
IN OUT

OUT IN

D I V
.

1 D I V
	 (2)

Dmax occurs at VIN(min), and Dmin occurs at 
VIN(max).

Selecting passive components
One of the first steps in designing any PWM 
switching regulator is to decide how much 
inductor ripple current, ∆IL(PP), to allow. Too 
much increases EMI, while too little may 
result in unstable PWM operation. A rule of 
thumb is to assign a value for K between 0.2 
and 0.4 of the average input current. A desired 
ripple current can be calculated as follows:

	

L(PP) IN

OUT

Desired I K I

DK I .
1 D

∆ = ×

= × ×
−

	 (3)

In an ideal, tightly coupled inductor, with each inductor 
having the same number of windings on a single core, the 
coupling forces the ripple current to be split equally 
between the two coupled inductors. In a real coupled 
inductor, the inductors do not have equal inductance and 
the ripple currents will not be exactly equal. Regardless, 
for a desired ripple-current value, the inductance required 
in a coupled inductor is estimated to be half of what would 
be needed if there were two separate inductors, as shown 
in Equation 4:

	

IN
min min

L(PP) SW(min)

1 V D
L1a L1b

2 I f
×

= = ×
∆ ×

	 (4)

To account for load transients, the coupled inductor’s 
saturation current rating needs to be at least 1.2 times the 
steady-state peak current in the high-side inductor, as 
computed in Equation 5:

	
L

L1a(PK) OUT
D I

I I
1 D 2

∆
= × +

−
	 (5)

Note that IL1b(PK) = IOUT + ∆IL/2, which is less than IL1a(PK).

Like a buck converter, the output of a ZETA converter 
has very low ripple. Equation 6 computes the component 
of the output ripple voltage that is due solely to the capac-
itance value:

	

∆
∆ =

× ×OUT

L1b(PP) IN(max)
C (PP)

OUT SW(min)

I  [at V ]
V ,

8 C f
	 (6)

where fSW(min) is the minimum switching frequency. 
Equation 7 computes the component of the output ripple 
voltage that is due solely to the output capacitor’s ESR:

	
∆ = ∆ ×

OUT OUTESR _C (PP) L1b(PP) IN(max) CV I  [at V ] ESR 	 (7)

Note that these two ripple-voltage components are phase-
shifted and do not directly add together. For low-ESR 
(e.g., ceramic) capacitors, the ESR component can be 
ignored. A minimum capacitance limit may be necessary 
to meet the application’s load-transient requirement.

The output capacitor must have an RMS current rating 
greater than the capacitor’s RMS current, as computed in 
Equation 8:
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Figure 3. ZETA converter’s component currents during CCM
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The input capacitor and the coupling capacitor source 
and sink the same current levels, but on opposite switching 
cycles. Similar to a buck converter, the input capacitor 
and the coupling capacitor need the RMS current rating,

	
IN C

OUT
C (RMS) C (RMS) OUT

IN(min)

V
I I I .

V
= = 	 (9)

Equations 10a and 10b compute the component of the 
output ripple voltage that is due solely to the capacitance 
value of the respective capacitors:
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Equations 11a and 11b compute the component of the 
output ripple voltage that is due solely to the ESR value of 
the respective capacitors:
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Again, the two ripple-voltage components are phase-shifted 
and do not directly add together; and, for low-ESR capaci-
tors, the ESR component can again be ignored. A typical 
ripple value is less than 0.05 times the input voltage for 
the input capacitor and less than 0.02 times the output 
voltage for the coupling capacitor.

Selecting active components
The power MOSFET, Q1, must be carefully selected so 
that it can handle the peak voltage and currents while 
minimizing power-dissipation losses. The power FET’s  
current rating will determine the ZETA converter’s maxi-
mum output current.

As shown in Figure 3, Q1 sees a maximum voltage of 
VIN(max) + VOUT. Q1 must have a peak-current rating of

Q1(PK) L1a(PK) L1b(PK) IN OUT LI I I I I I .= + = + + ∆ 	 (12)

At the ambient temperature of interest, the FET’s power-
dissipation rating must be greater than the sum of the 
conductive losses (a function of the FET’s rDS(on)) and the 
switching losses (a function of the FET’s gate charge) as 
given in Equation 13:

DS(on)D _ Q1 r SWG Gate

2
Q1(RMS) DS(on)

IN(max) OUT Q1(PK) GD Gate SW(max)

Gate G SW(max)

P P P P

I r

(V V ) I Q / I f

V Q f ,

= + +

= ×

+ + × × ×

+ × ×

	(13)

where QGD is the gate-to-drain charge, QG is the total gate 
charge of the FET, IGate is the maximum drive current, and 
VGate is the maximum gate drive from the controller. Q1’s 
RMS current is

	

Q1( RMS ) IN(max) OUT max

OUT OUT

IN(min) max

I (I I ) D

I V
.

V D

= + ×

×
=

×

	 (14)

The output diode must be able to handle the same peak 
current as Q1, IQ1(PK). The diode must also be able to with
stand a reverse voltage greater than Q1’s maximum voltage 
(VIN(max) + VOUT) to account for transients and ringing. 
Since the average diode current is the output current,  
the diode’s package must be capable of dissipating up to 
IOUT × VFWD, where VFWD is the Schottky diode’s forward 
voltage at IOUT.

Loop design
The ZETA converter is a fourth-order converter with 
multiple real and complex poles and zeroes. Unlike the 
SEPIC converter, the ZETA converter does not have a 
right-half-plane zero and can be more easily compensated 
to achieve a wider loop bandwidth and better load- 
transient results with smaller output-capacitance values. 
Reference 1 provides a good mathematical model based on 
state-space averaging. The model excludes inductor DC 
resistance (DCR) but includes capacitor ESR. Even though 
the converter in Reference 1 uses ceramic capacitors, for 
the following design example, the inductor DCR was sub
stituted for the capacitor ESR so that the model would 
more closely match measured values. The open-loop gain 
bandwidth (i.e., the frequency where the gain crosses zero 
with an acceptable phase margin of typically 45º), should 
be greater than the resonant frequency of L1b and CC so 
that the feedback loop can dampen the nonsinusoidal  
ripple on the output with fundamental frequency at that 
resonant frequency.

Design example
For this example, the requirements are for a 12-V, 1-W 
supply with η = 0.9 peak efficiency. The load is steady-
state, so few load transients are expected. The 2-A input 
supply is 9 to 15 V. A nonsynchronous voltage-mode con-
troller, the Texas Instruments TPS40200, was selected, 
running with a switching frequency between 340 and  
460 kHz. The maximum allowed ripple at the input and 
flying capacitor is respectively 1% of the maximum voltage 
across each. The maximum output ripple is 25 mV, and 
the maximum ambient temperature is 55ºC. Because EMI 
is not a concern, an inductor with a lower inductance 
value was selected by using the minimum input voltage. 
Table 1 on the next page summarizes the design calcula-
tions given earlier. Equations 7 through 9 and Equation 11 
were ignored because low-ESR ceramic capacitors with 
high RMS current ratings were used.
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Table 1. Computations for example ZETA-converter design

BASED ON  
DESIGN EQUATION

COMPUTATION  
(ASSUMING η = 1) ADJUSTED FOR η = 0.9 SELECTED COMPONENT/RATING

Passive Components

(1) = =
+max

12 V
D 0 .57

12 V 9 V
N/A N/A

(1) = =
+min

12 V
D 0 .44

12 V 15 V
N/A N/A

(2) = × =
−IN(max)
0 .57

I 1A 1 .33 A
1 0 .57

=
1 .33 A

1 .48 A
0 .9

N/A

(3) ∆ = × =L(PP) IN(min)Desired I  [at V ] 0 .3 1 .33 A 0 .4 A =
0 .4 A

0 .44 A
0 .9

N/A

(4) using VIN(min)
×

= = × =
×

1 9 V 0 .57
L1a L1b 18 .9 µH

2 0 .40 A 340 kHz
× =18 .9 µH 0 .9 17 .0 µF

Coilcraft MSD1260: 22 µH – IRMS = 
1.76 A in each winding simultane-
ously, ISAT = 5 A

(4) at VIN(min)
×

∆ = × =
×L(PP)

1 9 V 0 .57
Actual I 0 .34 A

2 22 µH 340 kHz
N/A

(5) = + =L1a(PK)
0 .34 A

I 1 .33 A 1 .50 A
2

+ =
0 .34 A

1 .48 A 1 .65 A
2

(4) at VIN(max)
×

∆ = × =
×L(PP)

1 15 V 0 .44
Actual I 0 .45 A

2 22 µH 340 kHz
N/A N/A

(6) = =
× ×OUT(min)

0 .44 A
C 6 .5 µF

8 0 .025 V 340 kHz
N/A

Two 10-µF, 25-V X5R ceramics and 
one 4.7-µF, 25-V X5R ceramic to pro
vide good load-transient response 
and to accommodate ceramic 
capacitor derating

(10a) for CIN
×

= =
× ×IN(min)

0 .57 1A
C 11 .2 µF

0 .01 15 V 340 kHz
=

11 .2 µF
12 .4 µF

0 .9

Two 10-µF, 25-V X5R ceramics and 
one 4.7-µF, 25-V X5R ceramic to 
accommodate ceramic capacitor 
derating

(10b) for CC
×

= =
× ×C(min)

0 .57 1A
C 14 µF

0 .01 12 V 340 kHz
=

14 µF
15 .6 µF

0 .9

Three 10-µF, 25-V X5R ceramics to 
accommodate ceramic capacitor 
derating

Active Components

(12) = + + =Q1(PK)I 1 .33 A 1A 0 .34 A 2 .67 A + + =1 .48 A 1A 0 .34 A 2 .82 A N/A

(14)
×

= =
×Q1(RMS)

1A 12 V
I 1 .77 A

9 V 0 .57
=

1 .77 A
1 .96 A

0 .9
Fairchild FDC365P: –35-V, –4.3-A, 
55-mΩ PFET

(13)

= × Ω

+ + × × ×
+ × × =

2
D_Q1P (1 .96 A) 55 m

(15 V 12 V) 2 .82 A 2 .2 nC / 0 .3 A 460 kHz
8 V 15 nC 460 kHz 0 .54 W

Included

— = × =D_D1P 1A 0 .5 V 0 .5 W N/A MBRS340: 40 V, 3 A, SMC
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Figure 4 shows the schematic and Figure 5 the 
efficiency of the ZETA converter. On the next page, 
Figure 6 shows the converter’s operation in deep 
CCM, and Figure 7 shows the loop response.

Conclusion
Like the SEPIC converter, the ZETA converter is 
another converter topology to provide a regulated 
output voltage from an input voltage that varies 
above and below the output voltage. The benefits of 
the ZETA converter over the SEPIC converter 
include lower output-voltage ripple and easier com-
pensation. The drawbacks are the requirements for a 
higher input-voltage ripple, a much larger flying 
capacitor, and a buck controller (like the TPS40200)  
capable of driving a high-side PMOS.

C6
150 pF

C5
390 pF

C10
12 nF

C11
0.47 µF

C12
330 pF

C4
3 x 10 µF

25 V

C1
2 x 10 µF
25 V

C2
4.7 µF
25 V

C8
2 x 10 µF

25 V C9
4.7 µF

25 V

C7
1 µF

FDC365P
Q1

D1
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MSD1260
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Figure 4. ZETA-converter design with 9- to 15-V VIN and 12-V VOUT at 1 A
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Figure 5. Efficiency of example ZETA-converter design
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Figure 6. Operation at VIN = 9 V and IOUT = 1 A
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Figure 7. Loop response at VIN = 9 V and 15 V, and IOUT = 1 A
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Precautions for connecting APA outputs  
to other devices

Multiple audio power amplifiers 
(APAs) may be connected to 
one output circuit by design, to 
multiplex different sources or to 
connect an external amplifier to 
save battery life. Also, one ampli
fier output may be connected to 
another or to a power supply by 
mistake. Any of these connec-
tions can force APA outputs to 
abnormal voltages, and this can 
damage an APA. This article 
explains limits that must be 
observed to avoid such damage.

Damage can occur whether an 
APA is active or shut down. The 
output of most APAs is protected 
with short-circuit protection 
(SCP) or overcurrent protection 
(OCP) when the APA is active, but the range of voltages 
the APA can tolerate is still the same. Generally, voltage 
forced into an APA output must be limited as follows to 
avoid APA damage:

•	 An APA output should not be forced more than 0.3 V 
above the APA’s positive power-supply voltage (VDD or 
VCC), or more than –0.3 V below its negative power-
supply voltage (ground or VSS).

•	 An APA output must never be forced beyond the 
Absolute Maximum Ratings for supply voltages given in 
the APA’s data sheet.

How APAs respond to voltages forced into  
their outputs
When shut down, APAs have different resistances at their 
outputs, ranging from a few ohms to several kilohms to 
high impedance. If an external audio source connected to 
an APA output can drive the resistance there, it will force 
its voltage at the APA output.

When active, most class-AB devices have continuous-
current limiting for SCP. This kind of APA holds its output 
at its intended output voltage until it is forced into SCP or 
OCP by the other source. Then it continues to draw its 
limit current, but its output voltage is controlled by the 
other source. If the APA continues to draw its limit cur-
rent, it may overheat and go into thermal shutdown. Then 
its output voltage is controlled entirely by the other source. 
When the APA cools down enough, it will turn on again, 

and this cycle will continue as long as the external source 
is connected.

A typical Class-D APA holds its output at its intended 
output voltage until it is forced into SCP or OCP. Then it 
shuts down and its output voltage is controlled by the 
other source, without drawing significant current, as long 
as proper voltage limits are observed. A class-D APA with 
cycle-by-cycle OCP generally behaves like a continuous-
current limiter until it shuts down.

How damage occurs
If another source is connected to an APA output when it is 
shut down, it will force the APA output to follow its volt-
age. If the APA is active and the other source can supply 
enough current to force the APA into SCP or OCP, the 
other source will then force the APA output to follow its 
voltage. There are several different ways in which damage 
can be done.

Forward-biased body diode
Single-supply APAs operate between a positive power  
supply, usually called VDD or VCC, and ground. Output 
devices are FETs with body diodes that are reverse-biased 
in normal operation. Body diodes that are reverse-biased 
in normal operation (see Figure 1) can be damaged if one 
of the diodes becomes forward-biased and conducts exces
sive current. This can happen if an output of a single- 
supply APA is forced more than 0.3 V above VDD (or 
VCC) or more than –0.3 V below ground.

By Stephen Crump
Applications Engineer, Audio Power Amplifiers, Audio and Imaging Products
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Figure 1. Current conduction in forward-biased body diodes
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Texas Instruments (TI) DirectPath™ APAs operate 
between a positive power supply, usually called VDD, and 
a negative rail, usually called VSS, often generated from 
VDD with a switching circuit. The magnitude of VSS is  
generally less than the magnitude of VDD. Some DirectPath 
APAs regulate primary VDD to a lower level for their out-
puts, HPVDD, and generate a negative rail, HPVSS, from 
HPVDD, to control maximum output power. If an output 
of a DirectPath APA is forced more than 0.3 V above VDD/
HPVDD or more than –0.3 V below VSS/HPVSS, one of the 
body diodes may become forward-biased and conduct 
excessive current, which can damage the diode.

Power-supply overvoltage
Even if external source currents do not damage a body 
diode, they may flow to VDD/HPVDD or VSS/HPVSS (see 

Table 1. Comparison of supply-voltage limits for APA devices*

DEVICE TPA4411 TPA6130A2 TPA6132A2 TPA6136A2

Positive Supply Voltage SVDD = 1.8 to 4.5 VDD = 2.5 to 5.5 HPVDD = 1.8 HPVDD = 1.8

Negative Supply Voltage SVSS ≈ –SVDD CPVSS ≈ –VDD when VDD < 2.8 V**
CPVSS ≈ –2.8 V when VDD ≥ 2.8 V HPVSS = –1.8 HPVSS = –1.8

	 *	APA outputs must never be forced beyond absolute maximum ratings for supply voltages.
	 •	For single-supply APAs, this includes VDD (or VCC).
	 •	For DirectPath APAs like TPA4411, this includes SVDD and SVSS.
	 •	For DirectPath APAs like TPA6132A2, this includes HPVDD and HPVSS.
	 •	Sometimes no absolute maximum rating is given for VSS/HPVSS. In these cases, the negative of the maximum recommended  

operating voltage for VDD/HPVDD should be used.
	**	When VDD < 2.8 V, CPVSS falls as VDD falls.

Figure 2). VDD/HPVDD and VSS/HPVSS typically only 
source current, so the diode currents may charge the  
supply voltages beyond their absolute maximum ratings and 
in turn may damage the APA and/or the supply components.

Table 1 may be helpful in understanding the different 
supplies for various DirectPath APAs. Supplies for devices 
not included here can be determined by comparing their 
data-sheet information to this table. Supply labels may be 
different from the labels shown in the table.

Related Web sites
www.ti.com/audio
www.ti.com/sc/device/partnumber
Replace partnumber with TPA4411, TPA6130A2, 
TPA6132A2, or TPA6136A2
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Figure 2. Pushing APA supply voltages beyond their limits
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Operational amplifier gain stability, Part 2: 
DC gain-error analysis

Introduction
The goal of this three-part series of articles is 
to provide readers with an in-depth under
standing of gain accuracy in closed-loop  
circuits using two of the most common opera-
tional amplifier (op amp) configurations: non-
inverting and inverting. Often, the effects of 
various op amp parameters on the accuracy of 
the circuit’s closed-loop gain are overlooked 
and cause an unexpected gain error both in 
the DC and AC domains.

This article, Part 2, focuses on DC gain error, 
which is primarily caused by the finite DC open- 
loop gain of the op amp as well as its tempera-
ture dependency. This article builds upon the 
results obtained in Part 1 (see Reference 1), in 
which two separate equations were derived for 
calculating the transfer functions of non- 
inverting and inverting op amps. Part 2 pre
sents a step-by-step example of how to calculate the 
worst-case gain error, starting with finding the pertinent 
data from the product data sheet. It then shows how to 
use the data in conjunction with the two aforementioned 
equations to perform the gain-error calculation.

In Part 3, the gain error for AC input signals will be  
calculated. In the AC domain, the closed-loop gain error  
is affected by the AC open-loop response of the op amp. 
Part 3 will discuss one of the most common mistakes that 
occur when the AC gain response is calculated.

Transfer functions of non-inverting and  
inverting op amps
In Part 1 (Reference 1), the closed-loop transfer function 
of the non-inverting op amp configuration in the frequency 
domain was calculated. Specifically, the transfer function 
was derived with the assumption that the op amp had a 
first-order open-loop response. For calculating gain error, 
the magnitude response is of interest. For convenience, 
the result is repeated in Equation 1:

	

OL _ DC

OL _ DC
CL dB 2

2 2
OL _ DC0

A

1 A
A ( f ) 20 log ,

f 1
1

f (1 A )

+ b×
=

+ ×
+ b×

	 (1)

where b is defined as

	

FB I

OUT I F

V R
.

V R R
b = =

+
	 (2)

Also derived in the same article was the equation for 
calculating the magnitude of the inverting configuration’s 
closed-loop gain. The result is repeated in Equation 3:

	

OL _ DC

OL_ DC
CL dB 2

2 2
OL_ DC0

A

1 A
A ( f ) 20 log

f 1
1

f (1 A )

a
+ b×

=

+ ×
+ b×

	 (3)

Equation 3 uses the same variable b defined by Equation 
2. Additionally, the variable a is defined by Equation 4:

	

FB F

IN I F

V R
V R R

a = =
+

	 (4)

At this point, the closed-loop gain for non-inverting and 
inverting amplifiers is represented by Equations 1 and 3, 
respectively. These equations will be used for subsequent 
analysis. The analysis of DC closed-loop circuits has been 
treated in slightly different ways in References 2 to 7; 
however, the results agree with this analysis.

DC gain error for non-inverting configuration
To illustrate the impact of an op amp’s finite open-loop gain 
on the accuracy of DC closed-loop gain in a non-inverting 
configuration, a step-by-step example will be presented on 
how to calculate the gain error when the op amp is set in 
an ideal closed-loop gain. An ideal closed-loop gain of 200  
(1/b = 200), as shown in Figure 1, will be used. This  
example focuses on using only the Texas Instruments (TI) 

By Henry Surtihadi, Analog Design Engineer,
and Miroslav Oljaca, Senior Applications Engineer
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Figure 1. Non-inverting op amp configuration with ideal 
closed-loop gain of +200
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configuration. The difference between these two curves is 
the loop gain, b × AOL. Because the focus of this example 
is DC gain error, only the loop gain at low frequency  
(b × AOL_DC) is of interest.

When using the data from the typical curves, designers 
should consider possible variations. To calculate worst-case 
values, the open-loop-gain data provided in the product 
data sheet should be used. Such data are shown in Table 1 
for the TI OPA211/2211 op amps. As the table shows, when 
the output signal is more than 200 mV from the supply rails 
and has a 10-kW load, the typical value for the DC open-
loop gain is 130 dB, while the minimum ensured gain is 
114 dB. To calculate the typical and the worst-case DC gain 

Amplifiers: Op Amps

OPA211 op amp, but circuit designers can repeat 
the calculation with similar values from the data 
sheet of any other op amp they choose.

To calculate the DC closed-loop-gain error of 
a non-inverting op amp, Equation 1 is evaluated 
for zero frequency (f = 0 Hz):

OL_ DC
CL _ DC CL

OL_ DC

A
A A (0 Hz)

1 A
= =

+ b×
	 (5)

In the case of an ideal op amp with infinite open-
loop gain, the DC closed-loop gain of the non- 
inverting configuration is reduced to

OL _ DC

OL _ DC
CL _ DC(ideal)

A OL _ DC

A 1
A lim .

1 A→∞
= =

+ b× b
(6)

In other words, the DC closed-loop gain is entirely 
determined by the external feedback network.

From the closed-loop models of non- 
inverting and inverting amplifiers in Figures 3  
and 6, respectively, in Part 1 (see Reference 1),  
it can be seen that the open-loop gain of the op 
amp is the ratio of VOUT to the input-error volt-
age, VERR. VERR is the voltage difference between 
the inverting and non-inverting op amp inputs. It 
can also be seen as input offset voltage. In a product data 
sheet, the open-loop gain is typically expressed in decibels. 
In this case, the number represents the ratio of VOUT to 
VERR in the logarithmic domain. For future calculation, 
AOL_DC must always be converted from decibels to V/V. As 
an example, an op amp with an open-loop gain of 106 dB 
can be written in terms of V/V as

OL _ DC dB
A 106 dB

OUT20 20
OL _ DC V/V ERR

V V
A 10 10 199,526 .

V V
= = = = 	(7)

Figure 2 shows the simplified open-loop gain of the 
OPA211 along with the closed-loop gain in a non-inverting 

Table 1. Excerpt from TI OPA211/2211 data sheet

ELECTRICAL CHARACTERISTICS: VS = ±2.25V to ±18V
BOLDFACE limits apply over the specified temperature range, TA = –40ºC to +125ºC. 
At TA = +25ºC, RL = 10kW connected to midsupply, VCM = VOUT = midsupply, unless otherwise noted.

PARAMETER CONDITIONS

Standard Grade 
OPA211AI, OPA2211AI

High Grade 
OPA211I

UNITMIN TYP MAX MIN TYP MAX

OPEN-LOOP GAIN

Open-Loop Voltage Gain	 AOL (V–) + 0.2V ≤ VO ≤ (V+) – 0.2V, 
RL = 10kW

114 130 114 130 dB

	 		  AOL (V–) + 0.6V ≤ VO ≤ (V+) – 0.6V, 
RL = 600W

110 114 110 114 dB

	 Over Temperature

		  OPA211	 AOL (V–) + 0.6V ≤ VO ≤ (V+) – 0.6V, 
IO ≤ 15mA

110 110 dB

		  OPA211	 AOL (V–) + 0.6V ≤ VO ≤ (V+) – 0.6V, 
15mA ≤ IO ≤ 30mA

103 103 dB

		  OPA2211 (per channel)	 AOL (V–) + 0.6V ≤ VO ≤ (V+) – 0.6V, 
IO ≤ 15mA
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Figure 2. OPA211’s simplified open-loop and closed-
loop gain curves
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errors at room temperature, the minimum AOL_DC from the 
data sheet should be substituted into Equation 5. Note that 
in the OPA211 data sheet, “AOL_DC” is written as “AOL.”

The first step in this process is to convert AOL_DC from 
decibels to V/V:

	

130 dB
20

OL _ DC V/V
VA 10 3,162,278
V

= = 	 (8)

	

114 dB
20

OL _ DC V/V
VA 10 501,187
V

= = 	 (9)

A value for b of 1/200 (the ideal closed-loop gain of 200) 
can be used in Equation 5 to find the typical DC gain:

	

OL _ DC
CL _ DC 130 dB OL _ DC

A
A

1 A

3,162,278
199.98735

1
1 3,162,278200

=
+ b×

= =
+

	 (10)

The actual minimum ensured DC gain can be found in the 
same manner:

	

CL _ DC 114 dB

501,187
A 199.92022

1
1 501,187

200

= =
+

	 (11)

The DC gain error caused by the open-loop-gain value of 
the op amp can then be calculated:

	

CL _ DC(ideal) CL _ DC
typ

CL _ DC(ideal)

A A
100

A

200 199.98735 100 0.00632%
200

−
ε = ×

−= × =

	 (12)

	
max

200 199.92022 100 0.0399%
200

−ε = × = 	 (13)

The actual DC closed-loop gain of 199.92 has an error of 
0.0399% compared to the desired ideal gain of 200.

Over temperature, the OPA211 is characterized to 
ensure that AOL_DC is higher than 110 dB over the speci-
fied temperature range and when loaded with less than 
15-mA output current, which is the absolute worst case. 
For this value, in terms of V/V, 110 dB is equivalent to

	

110 dB
20

OL _ DC V/V
VA 10 316,228 .
V

= = 	 (14)

This number can be substituted into Equation 5 to find the 
absolute worst-case condition for the DC closed-loop gain:

	

CL _ DC 110 dB

316,228
A 199.8736

1
1 316,228

200

= =
+

	 (15)

The gain error for this result, 0.063%, represents a slight 
degradation from the room-temperature case of 0.0399% 
previously calculated in Equation 13.

DC gain error for inverting configuration
To illustrate the impact of the op amp’s finite open-loop 
gain on the accuracy of DC closed-loop gain in an invert-
ing configuration, another step-by-step example will be 
presented of calculating the gain error when the op amp is 
set in an ideal closed-loop gain. This example will use an 
ideal closed-loop gain of –200 (–a/b = –200), as shown in 
Figure 3. So that results can be properly compared, the 
same op amp, OPA211, will be used.

Similar to the non-inverting case, to calculate the DC 
closed-loop-gain error of the inverting op amp, Equation 3 
is first evaluated for zero frequency (f = 0 Hz):

	

OL _ DC
CL _ DC CL

OL _ DC

A
A A (0 Hz)

1 A
= = −a

+ b×
	 (16)

The negative sign indicates the inverting configuration.
In the case of an ideal op amp with infinite open-loop 

gain, the DC closed-loop gain of the inverting configura-
tion is reduced to

OL _ DC

OL _ DC
CL _ DC(ideal)

A OL _ DC

A
A lim .

1 A→∞

a
= − a = −

+ b× b
	 (17)
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Figure 3. Inverting op amp configuration with ideal closed-loop gain of –200
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As in the non-inverting configuration, the DC closed-loop 
gain is entirely determined by the external feedback  
network.

With the same open-loop-gain specifications of 130 dB 
(typical) and 114 dB (minimum) at room temperature, 
and 110 dB (minimum) across the specified temperature 
range—i.e., the worst case—the same calculations can be 
done for the inverting configuration as were done for the 
non-inverting configuration. For an inverting amplifier 
with an ideal closed-loop gain of –200 (–a/b = –200), the 
coefficients α = 200/201 and b = 1/201 can be used for the 
following three gain calculations.

• Typical DC gain:

	

OL _ DC
CL _ DC 130 dB OL _ DC

A
A

1 A

200 3,162,278
201 1

1 3,162,278201

199.98729

= −a
+ b×

= − ×
+ ×

= −

	 (18)

• Minimum ensured DC gain at room temperature:

	

CL _ DC 114 dB

200 501,187
A

1201 1 501,187
201

199.9198

= − ×
+ ×

= −

	 (19)

• Worst-case DC closed-loop gain over temperature:

	

CL _ DC 110 dB

200 316,228
A

1201
1 316,228

201
199.87296

= − ×
+ ×

= −

	 (20)

The DC gain error caused by the variation of the open-
loop-gain value of the op amp can then be calculated:

	

−
ε = ×

−
= × =

CL _ DC(ideal) CL _ DC
typ

CL _ DC(ideal)

A A
100

A

200 199.98729
100 0.00636%

200

	 (21)

	
max

200 199.9198
100 0.0401%

200
−

ε = × = 	 (22)

The calculated absolute worst-case condition over tem
perature for the DC closed-loop gain for the inverting  
configuration is 0.0635%, compared to 0.0632% for the 
non-inverting configuration. This example shows that the 
difference between the non-inverting and inverting config-
urations is minimal and in many cases can be ignored.

Normalized open-loop gain versus temperature
It should be clear at this point that the DC closed-loop gain 
is determined by the DC open-loop gain (AOL_DC) of the 
op amp. Thus, the stability of the DC open-loop gain 
determines the stability of the DC closed-loop gain. The 
stability of the open-loop DC gain is determined by many 
factors, such as the power-supply rejection ratio (PSRR), 
the temperature, and process variations.

Figure 4 shows the OPA211’s normalized DC open-loop 
gain versus temperature. Note that the changes in open-
loop gain are shown in µV/V. As an alternative to repre-
senting changes in AOL_DC with decibels as before, AOL_DC 
can also be represented in terms of µV/V. This representa-
tion shows the ratio of the op amp’s change in input voltage 
(error or offset) to the change in its output voltage. In 
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Figure 4. OPA211’s normalized DC open-loop gain versus temperature
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other words, the µV/V values have an inverse correlation 
to the decibel values. As an example, an op amp with an 
open-loop gain of 199,526 V/V can be written in terms of 
decibels as

	

OUT
OL _ DC V/V ERR

V V
A 199,526

V V
= = 	 (23)

and

OUT
OL _ DC dB ERR

V
A 20 log 20 log(199,526) 106 dB.

V
= = = 	(24)

In terms of µV/V, the same gain is written as

	

ERR
OL _ DC V/V OUT

V 1 V
A 5.012 .

V 199,526 Vµ

µ
= = = 	 (25)

Figure 4 shows how the OPA211’s AOL_DC (in terms of 
µV/V) may change over temperature. For a device with a 
given AOL_DC at room temperature (25ºC), AOL_DC will  
typically change less than 0.25 µV/V in the specified  
temperature range (–40ºC to 125ºC). For example, if the 
typical AOL_DC performance is 130 dB, or 0.32 µV/V, at 
room temperature, then over the specified temperature 
range, AOL_DC may typically vary between 0.32 µV/V and 
0.57 µV/V. To ensure stable operation over temperature, 
the minimum gain is as follows:

	

ERR
OL _ DC V/V OUT

V 1 V
A 1,754,386

V 0.57 V V
= = =

µ
	 (26)

	 OL _ DC dB
A 20 log(1,754,386) 124.88 dB= = 	 (27)

This is equivalent to an AOL_DC ranging from 124.88 dB to  
130 dB. Keep in mind that these are typical data. It is sug-
gested that, during the circuit-design process, the designer 
not use typical values but instead use minimum ensured 
values published by the op amp’s manufacturer.

Note that none of the calculations in this article include 
other factors that also affect AOL_DC, such as the PSRR or 
the common-mode rejection ratio. The procedure to 
include these types of errors is similar: Simply add the 
additional error to the AOL_DC term and recalculate the 
closed-loop DC gain.

Conclusion
Part 1 of this article series explored general feedback- 
control-system analysis and synthesis as they apply to 
first-order transfer functions. The analysis technique was 
applied to both non-inverting and inverting op amp circuits, 

resulting in a frequency-domain transfer function for each 
configuration. Part 2 has shown how to use these two 
transfer functions and manufacturer data-sheet specifica-
tions to analyze the DC gain error of a closed-loop op amp 
circuit. This analysis also took into consideration the tem-
perature dependency of the open-loop gain as well as its 
finite value. Part 3 will explore the frequency dependency 
of the closed-loop gain, which will help designers avoid the 
common mistake of using DC gain calculations for 
AC-domain analysis.
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