

HIGH VOLTAGE SEMINAR GANGYAO WANG ISOLATED GATE DRIVERS

GETTING STARTED WITH PROGRAMMING FUNCTIONAL SAFETY COMPLIANT GATE DRIVERS FOR EV/HEV TRACTION INVERTERS

Agenda

Overview

- Getting started with the programming:
 - Modes of operation
 - SPI introduction
 - SPI commands
 - Daisy chain mode and address mode SPI
 - Writing a register
 - Reading a register
 - Frame timings for daisy chain and address mode SPI
 - General device setup
 - Enabling the driver
 - SPI communication in ACTIVE mode
 - Exiting ACTIVE mode
 - ADC sampling mode, setup and reading results
- EVM Demo

UCC5870-Q1 overview ±15A ISO26262-compliant IGBT/SiC single-channel isolated driver

Features

- Split driver outputs provide 15-A source and 15-A sink currents
- Real-time SPI programmable drive strength
- SafeTITM ISO-26262 compliant:
 - Power transistor protections (DESAT/SC/OC)
 - Integrated diagnostics
 - Supply monitors (VCC1/VCC2/VEE2/VREF)
 - Built-in self-test (BIST)
- SPI-Enabled Configurations:
 - TI Address-based SPI configuration (also daisy chain and standard)
 - DESAT based short circuit protection
 - Shunt resistor based over-current protection
 - Thermal diode/NTC based over-temperature protection
 - Programmable soft turn off (STO) and two-level turn off (2LTO) during power transistor faults
- High accuracy, integrated 6-channel ADC
- Primary and Secondary side active short circuit (ASC) support
- Integrated, configurable dead-time
- Programmable internal or external Miller Clamp
- Advanced high voltage clamping control (V_{CE} Clamp)

Benefits

- One-stop-shop gate driver for every HEV/EV traction inverter system
- Eliminate external circuits for driving high power modules; save PCB area space and cost
- Highly flexible through SPI-programmable configurations
- SafeTITM Functional Safety support & documentation

GND1		DESAT
NC		VCC2
NC		VCECLPC
NC		VBST
NC		OUTH C
ASC_EN		OUTL
nFLT1	1 5 1	VEE2
) nFLT2/DOUT	E S	CLAMP
VCC1	lui	GND2
ASC	sol at	VREF
IN-	031	AI1 C
N+	1 22	AI2 C
CLK		AI3 C
nCS		AI4 C
SDI		AI5 (
SDO		AI6 C
VREG1		VREG2 C
GND1		VEE2

BODY SIZE (NOM)
12.8 mm × 7.5 mm

Modes of operation

RESET:

- Internal regulators powering up
- BIST is running
- nFLTx are held low until the regulators are ready and BIST completes without failures

Configuration 1:

- SPI address programming is enabled
- nFLTx remain high unless indicating a fault

Configuration 2:

- DRV_EN_RCVD = 0
- Gate driver output is disabled (low)
- SW_RESET command sets configration registers to defualt values except for SPI address

Active:

- DRV_EN_RCVD = 1
- Gate driver output is enabled

Figure 7-37. Operation mode diagram during normal operation

4

SPI introduction: flexibility, system programmability

System Benefits

- System flexibility: Option between 3 communication modes (address-based, daisy-chain, regular SPI)
- Ease of system programmability: Simplify design time and engineering effort
- Address-based SPI: Only requires 4 I/O pins and provides 6x shorter response time compared to daisy chain configuration

Measurements & Specifications Conventional SPI mode Address SPI mode Conventional SPI Daisy-Chain mode WG 0 10 WH 0 WH 10 nCS4 MCU MCU MCU nCS6 nCS1 CLK CLK SDO SDÓ UCC5870Q1 UCC5870Q1 SDI C587001 HS-U HS-U HS-U →To next driver IC in chain To all other driver To all other drivers From last driver IC in daisy chain 9 I/O's 4 I/O's 4 I/O's

Flexibility in SPI connections and I/O's TI's address-mode allows less I/O's per system at shorter response time while maintaining high data throughput

Driver features configurable	with SPI:
 Thresholds and deglitches 	 Drive Strength
 ADC sampling and mode 	 Active Short Circuit (ASC)
 Faults and warnings 	 DESAT OR Shunt/Sense FET Current Sense

SPI commands

Table 7-3. SPI message commands

								10	S-BIT DA		1E						
		BIT15	BIT14	BIT13	BIT12	BIT11	BIT10	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Command Name	Command Description		CHIP_	ADDR							CMD +	DATA					
DRV_EN	Driver output enable	CA[3]	CA[2]	CA[1]	CA[0]	0	0	0	0	0	0	0	0	1	0	0	1
DRV_DIS	Driver output disable	CA[3]	CA[2]	CA[1]	CA[0]	0	0	0	0	0	0	0	0	1	0	1	0
RD_DATA	Read data from register address RA[4:0]	CA[3]	CA[2]	CA[1]	CA[0]	0	0	0	1	0	0	0	RA[4]	RA[3]	RA[2]	RA[1]	RA[0]
CFG_IN	Enter configuration state	CA[3]	CA[2]	CA[1]	CA[0]	0	0	1	0	0	0	1	0	0	0	1	0
NOP	No operation	CA[3]	CA[2]	CA[1]	CA[0]	0	1	0	1	0	1	0	0	0	0	1	0
SW_RESET	Software RESET (Reinitialize the configurable registers)	CA[3]	CA[2]	CA[1]	CA[0]	0	1	1	1	0	0	0	0	1	0	0	0
WRH	Write D[15:8] to register RA[4:0]	CA[3]	CA[2]	CA[1]	CA[0]	1	0	1	0	D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]
WRL	Write D[7:0] to register RA[4:0]	CA[3]	CA[2]	CA[1]	CA[0]	1	0	1	1	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
WR_RA	Write register address RA[4:0]	CA[3]	CA[2]	CA[1]	CA[0]	1	1	0	0	0	0	0	RA[4]	RA[3]	RA[2]	RA[1]	RA[0]
WR_CA ⁽¹⁾	Write chip address CA[3:0]	1	1	1	1	1	1	0	1	1	0	1	0	CA[3]	CA[2]	CA[1]	CA[0]

(1) IN+ must be high to program CHIP address

🔱 Texas Instruments

Daisy chain mode

Figure 7-40. System configuration of daisy chain SPI configuration

- Use 0x0 as the address for every command
- No addressing needed, proceed directly to Configuration 2 state
- The devices must receive the CFG_IN command one by one in order to enable the daisy chain mode and the SDO pass-through

7

Address mode

Figure 7-42. System configuration for Address-based SPI Communication Scheme

- Addressing Process:
 - Addressing occurs in Configuration 1 state. Do not enter Configuration 2. Once out of Configuration 2, a power cycle is needed to re-enter Configuration 1.
 - Pull the IN+ input high for ONLY the device to be programmed
 - Write the WR_CA command (below), where CA[3:0] is the address for the device (0x1 - 0xE)
 - Once all devices are addressed, send a broadcast CFG_IN command
- OxF is a broadcast command. All devices will respond to this address
- Do NOT use 0x0 address. This is reserved for Daisy Chain and Standard operation.
- Each device must have a unique address
- Never do a read register command with 0xF address

WR_CA ⁽¹⁾	Write chip address CA[3:0]	1	1	1	1	1	1	0	1	1	0	1	0	CA[3]	CA[2]	CA[1]	CA[0]	

(1) IN+ must be high to program CHIP address

Writing a register

L			1	1	1	1	1	1				1	1	1	1			
	WRH	Write D[15:8] to register RA[4:0]	CA[3]	CA[2]	CA[1]	CA[0]	1	0	1	0	D[15]	D[14]	D[13]	D[12]	D[11]	D[10]	D[9]	D[8]
	WRL	Write D[7:0] to register RA[4:0]	CA[3]	CA[2]	CA[1]	CA[0]	1	0	1	1	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]
	WR_RA	Write register address RA[4:0]	CA[3]	CA[2]	CA[1]	CA[0]	1	1	0	0	0	0	0	RA[4]	RA[3]	RA[2]	RA[1]	RA[0]
- ł			1		I	1								1	1			-

- All writes must be performed in Configuration 2 state except for a few exceptions. See later slides (14,15) for exceptions.
- Writing registers can be done with the broadcast address to write all of the devices to the same value, or individually addressed (Address=0xF).
- Steps to write a register:
 - 1. Send WR_RA to set the register to be written. RA[4:0] is the register address to be written.
 - 2. Send WRL command to write the lower byte (bits [8:0]) of the register programmed in step 1. D[7:0] is the data to be written.
 - 3. Send WRH command to write the higher byte (bits [15:9]) of the register programmed in step 1. D[15:9] is the data to be written.
- WRH and WRL can be done in any order, but WR_RA always comes first.
- It is not necessary to do both WRH and WRL commands if only the high byte or low byte is changing.

Reading a register

RD_DATA	Read data from register address RA[4:0]	CA[3]	CA[2]	CA[1]	CA[0]	0	0	0	1	0	0	0	RA[4]	RA[3]	RA[2]	RA[1]	RA[0]
NOP	No operation	CA[3]	CA[2]	CA[1]	CA[0]	0	1	0	1	0	1	0	0	0	0	1	0

- Reading registers can be done in Configuration 2 or ACTIVE modes.
- Reading registers must be done to individually addressed devices. Do **NOT** use the broadcast command
- Procedure to read a register:
 - Use the RD_DATA command where RA[4:0] is the address of the register to be read
 - Data is returned on the next SPI transaction.
 - Use a NOP command to clock the data read out if there is no further command in the stack

Frame timings: daisy chain and address mode SPI

Reading a single 16-bit register on all 6 devices

Writing a single 16-bit register on all 6 devices

General device setup

- *_FAULT_P bits are used to mask faults. When the FAULT_P bit is set to mask the fault, the STATUS bit will still be set during the fault, however, the fault will be ignored (regardless of the FS_STATE) and the nFLTx pins will not trigger.
- FS_STATE_* bits are used to set the reaction to a fault. Generally, this should be set to "Pulled Low" (turn off the power switch), or "No Action" (motor controller to handle the turn off). The notable exception is for "High Impedance" for GM faults. This can prevent damage to the gate driver in the case of a shorted power transistor gate.
 - There are "Pulled High" options for some of the faults, I don't know why. This was a thing from the original product definer that has never been justified to me, but we left it in.
- *_EN or *_DIS bits enable/disable the function. When a function is disabled, no faults are indicated.
- Writing to any "RESERVED" bit results in a CRC fault
- Writing the SPI_TEST register results in a CRC fault.

Enabling the driver

- Once all of the registers are programmed, send the DRV_EN command.
- This can be sent individually, or with the broadcast command.
- Once the DRV_EN command is sent, the CRC for the configuration registers is calculated and stored. Any bit flips to the configuration registers will result in a CRC fault.
- Most of the write commands to registers are disabled with a few exceptions noted on the next slide.

DRV_EN	Driver output enable	CA[3]	CA[2]	CA[1]	CA[0]	0	0	0	0	0	0	0	0	1	0	0	1

SPI communication in ACTIVE mode

- While in ACTIVE mode, all registers are read only with the exception of CONTROL2[CLR_FLT], CFG8[IOUT_SEL], and CFG8[CRC_DIS].
- To change the gate drive strength on the fly, use the following steps:
 - Write the CRC_DIS bit to a '1'
 - Write the IOUT_SEL bits to select the required strength
 - Write the CRC_DIS bit to a '0'
 - Writing to the IOUT_SEL bit without first writing the CRC_DIS bit results in a CRC fault
- The CONTROL1 and CONTROL2 registers are also used to perform diagnostics for some of the functions. To use these registers in ACTIVE mode, the CRC_DIS bit must be written to a '1' similar to the previous example.
 - In general, these diagnostics are only used during a "Key On" cycle, so write the CRC_DIS bit once, go through all of the diagnostics, then write the CRC_DIS bit back to '0' and proceed with normal operation.

Exiting ACTIVE mode

- ACTIVE mode is exited in one of two ways.
 - Write DRV_DIS to turn off the driver and leave the registers intact
 - Write SW_RESET to turn off the driver and reset all of the registers to the default state.
 Note that this does NOT change the address
 - After sending one of these commands to turn off the driver, the CFG_IN command must be sent to put the driver back in Configuration 2 state and enable the normal read/write access.

DRV_DIS	Driver output disable	CA[3]	CA[2]	CA[1]	CA[0]	0	0	0	0	0	0	0	0	1	0	1	0
SW_RESET	Software RESET (Reinitialize the configurable registers)	CA[3]	CA[2]	CA[1]	CA[0]	0	1	1	1	0	0	0	0	1	0	0	0

ADC sampling modes

					Hybrid Mode
		iyh phase PWM CH1,	channel select CH2,	tion register setting CHS	
IN+	Control (a) Control (a) Control (a) Control (a) Photo: -41 parts: -41 bar-hor Epwirth	Center of numeri perty has center of har PMM has phase - of phase - of in < thybrid	OQ	Certer of Larrer parts hat plane - and Certer of Larrer parts hat plane - and certer of Larrer	The second secon
		Low phase	tpwmin PWM channel CH2,	= thybrid selection register setting CH4	tpermin < thybrid tpermin < thybrid

Edge Sampling Mode

Configuring ADC Modes

- Three modes available to ensure least amount of switching noise
- Center sampling mode: samples in middle of switching cycle
- Edge sampling mode: samples at start or end of each switching cycle
- Hybrid sampling mode: samples mode samples in the center until a cycle is significantly longer then the one before it

ADC setup

- Setup which channel is to be read and the part of the PWM cycle during which it is to be read.
- Enable the ADC with the ADC_EN bit
- Select the sample mode with the ADC_SAMP_MODE bits
- Set the delay (edge and hybrid modes only) with the ADC_SAMP_DLY bits. These bits are a "don't care" when using center mode.
- Use the VREF_SEL bit to select between an external 4V reference and the internal reference for the ADC.

		Fi	gure 7-74. AD	OCCFG Regist	er		
15	14	13	12	11	10	9	8
RESERVED	ADC_ON_CH_ SEL_7	ADC_ON_CH_ SEL_6	ADC_ON_CH_ SEL_5	ADC_ON_CH_ SEL_4	ADC_ON_CH_ SEL_3	ADC_ON_CH_ SEL_2	ADC_ON_CH_ SEL_1
R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0
7	6	5	4	3	2	1	0
RESERVED	ADC_OFF_CH_ SEL_7	ADC_OFF_CH_ SEL_6	ADC_OFF_CH_ SEL_5	ADC_OFF_CH_ SEL_4	ADC_OFF_CH_ SEL_3	ADC_OFF_CH_ SEL_2	ADC_OFF_CH_ SEL_1
R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0	R/W-0x0	R-0x0

		I	igure 7-51. C	FG7 Registe	r				
15	14	13	12	11	10	9	8		
UVLO	D2TH	OVLO	D2TH	UVL	озтн	OVLO	ОЗТН		
R/W	-0x2	R/W	-0x2	R/V	/-0x2	R/W-0x2			
7	6	5	4	3	2	1	0		
ADC_EN	ADC_SAM	IP_MODE	ADC_SA	MP_DLY	ADC_FAULT_P	FS_STATE_	ADC_FAULT		
R/W-0x1	R/W	-0x0	R/W	-0x2	R/W-0x0	R/W	-0x0		

ADC reading results

- The ADC results are stored in the ADCDATA* registers.
- The TIME_STAMP updates with every transition on IN+
 - If the TIME_STAMP has not changed since the last read, the data has not been updated, unless it happens to be exactly 63 PWM cycles since the last read.
- Equations to calculate the value of the data when using internal VREF:
 For AI pin voltage: VAI=VADC(in decimal)*3.519mV;
 - For die temperature: TDIE=DATA_DTEMP(in decimal)*0.7015°C-198.36°C;

EVM demo: half-bridge board

EVM demo: test system setup

Test system setup for low power test (without connecting IGBT)

EVM link: <u>https://www.ti.com/tool/UCC5870QDWJEVM-026</u> EVM quickstart demo: <u>https://training.ti.com/ucc5870-q1-evm-quick-start-demo</u>

- 1. Plug in the MCU board, make sure the side with components is facing the EVM board
- 2. Connect the MCU board to computer with the USB cable
- 3. Connect 12V and 4.5V or 5V power supplies
- 4. Connect oscilloscope probes, for example, to measure both high side and low side driver Vout

EVM demo: GUI

File	Options Tools He	p X
E Menu		
†	BOARD - 1 Low Side 🧪	Single Phase IGBT/MOSFETs Reset Registers
		Reset State Configuration 1 State Configuration 2 State Active State
	Two Level/Soft Turn-off	
	ADC Configuration	Two Level Turn-off/Soft Turn Off
	UVL0/0VL0	STO/2LTOFF Is Enabled For STO.Disabled(0x0)
	SCP/OCP	
	Active Miller Clamp	Plateau Voltage:(V2 LOFF)
	DESAT	
	OTP/OTW	Plateau Voltage Duration:(t2 LOFF) GD_2LOFF_STO_EN = X
	Report to nFAULT	150ns v V _{kl} V _{os} 2LTOFF_STO_EN = 0x1, 0x2, 0x3 v
	Gate Voltage Monitor	Gate Discharge Current:(I2 LOFF)
	Manual BIST	
	Other Configurations	Second Turn-off Current VarVas Varor
		Omega Confirm
	▲ COM22:0600 Hardwara Conn	Powerd By GUI Compose ¹⁰
	- COM23.9000 Hardware Conn	

EVM link: <u>https://www.ti.com/tool/UCC5870QDWJEVM-026</u> EVM quickstart demo: <u>https://training.ti.com/ucc5870-q1-evm-quick-start-demo</u>

21

EVM demo: three-phase board

SLYP765

©2021 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated