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What will I get out of this session?

• The purpose of this session is to 

introduce the concepts needed to 

successfully layout a printed circuit 

board (PCB) for a switched-mode 

power supply (SMPS)

• This presentation is relevant to all 

SMPS PCB layouts, from 1 W to 10 kW

• Part numbers mentioned:

– UCC28180

– UCC28742

– UCC28710

– UCC24612

– UCC24610

• Reference designs mentioned:

– TIDA- 00443



Why is layout important?

• The best controller in the world cannot work 

well if embedded in a poor layout

• PCB layout for SMPS is extremely 

complicated!

• Same principles govern low and high power 

layouts

– The difficulty is how to apply the principles in 

practice

• The PCB is often the most complex 

component in a design 

How to translate a 

schematic into working 

hardware



Agenda

• The schematic

• Parasitics

– Resistance

– Inductance

– Capacitance

• EMI & safety

• Grounding & signal routing

• Thermal management

• PCB layout example

• Summary



What are concerns for a power supply PCB 
layout?

• Safety

• EMI

• Parasitic inductance

• Parasitic capacitance

• Parasitic resistance

• Thermal performance

• High dv/dt

• High di/dt

• Grounding

• Noise



EMI

di/dt

Safety

Thermal

dv/dt

High current

Grounding

Understand the circuit, including the parasitic components! 

TIDA-00443 using UCC28180 PFC 
controller

The schematic



Material mΩ-cm mΩ-in

Copper 1.70 0.67

Gold 2.2 0.87

Lead 22.0 8.66

Silver 1.5 0.59

Silver (plated) 1.8 0.71

Tin -lead 15 5.91

Tin (plated) 11 4.33

𝑅 =
𝜌 ∙ 𝑙

𝐴

𝜌 = 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦

ρ(Cu) = 0.67 mΩ-in at 25°C

Impacts?

• Regulation

• Efficiency

• Temperature rise
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You mean copper is not a perfect conductor?

𝑇𝐶𝑅𝐶𝑢 ≈ 4000 ൗ
𝑝𝑝𝑚

℃ +40% 𝑓𝑜𝑟 100℃ 𝑟𝑖𝑠𝑒

Parasitic resistance



𝑅 =
𝜌 ∙ 𝑙

𝑇 ∙ 𝑙
=
𝜌

𝑇 2 𝑠𝑒𝑟𝑖𝑒𝑠 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = ~1.0𝑚Ω
2 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 = ~0.25𝑚Ω

Assume 1 oz. Cu
Counting squares

t

Current Flow


𝑙

𝑙

𝑇

Copper Weight (Oz.) Thickness (m/mils) m  per square (25°C) m  per square (125°C)

1/2 17.5/0.7 1 1.4

1 35/1.4 0.5 0.7

2 70/2.8 0.25 0.35

Parasitic resistance



Typical rule of thumb is 1 A to 3 A per via

5 mm

(20 mils)

4.5 mm

(18 mils)

1.5 mm

(60 mils)

Current

Flow



A

𝑙

𝑅 =
𝜌 ∙ 𝑙

𝐴

𝑅 =
𝜌 ∙ 𝑙

𝜋 ∙ 𝑟𝑜
2− 𝑟𝑖

2

𝑅 =
0.67 𝜇Ω ∙ 𝑖𝑛 ∙ 0.06 𝑖𝑛

𝜋 ∙ 0.01 𝑖𝑛 2− 0.009 𝑖𝑛 2 = 0.67 mΩ

Vias have resistance too

Parasitic resistance



How many mΩ between L2 and J3?

Sensing at output connectorPoor sense location

Parasitic resistance



Switched current loops
I/P loop (green)

• di/dt rates much lower

• Stray inductance is less critical

• CIN provides local low impedance 

source

O/P loop (blue/red)

• Inductor current alternates between 

MOSFET and diode paths 

• Pulsating currents 

• Stray inductance will cause voltage 

spikes

Diode currentMOSFET 
current

Inductor 
current

I/P loop O/P loop

High di/dt Low di/dt 

Simplified PFC boost 
schematic

Identifying high di/dt



Reverse recovery
Occurs when:

• MOSFET turns ON during CCM 

operation (nearly every topology)

• Stray inductance will cause voltage 

spikes

Mitigation:

• Minimize loop inductance

• Use low QRR rectifiers –

− SiC for high VOUT

− Schottky or ultra-fast diodes

− Sync rectifiers with low QRR

Simplified PFC boost 
schematic

Identifying high di/dt



Gate drives

VGATEIGATE

Simplified PFC boost 
schematic

High di/dt in loop (yellow)

• Stray inductance:

– Limits drive current

– Can cause ringing

• Minimize loop inductance

High dv/dt on gate (blue)

• Can couple to noise-sensitive 

nodes

• Minimize capacitance

Identifying high di/dt



Self inductance of PWB traces

• Due to the natural logarithmic relationship, large changes in conductor width have 

minimal impact on inductance

W (mm/in) T(mm/in)
Inductance 

(nH/cm or nH/in)

0.25/0.01 0.07/0.0028 10/24

2.5/0.1 0.07/0.0028 6/14

12.5/0.5 0.07/0.0028 2/6
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Parasitic inductance



PWB traces over ground planes

• Substantial inductance reduction

• Inductance inversely proportional to width

Metric English

h (cm) w (cm)
Inductance 

(nH/cm)
h (in) w (in)

Inductance
(nH/in)

0.25 2.5 0.2 0.01 0.1 0.5

1.5 2.5 1.2 0.06 0.1 3.0

w

h

Current

Flow

𝐿 =
2 ∙ ℎ ∙ 𝑙

𝑤
ൗ𝑛𝐻
𝑐𝑚 𝐿 =

5 ∙ ℎ ∙ 𝑙

𝑤
ൗ𝑛𝐻
𝑖𝑛

Parasitic inductance



Low series inductance

High series inductance

How much inductance in series with C39? (total length ~ 2 cm)

Parasitic inductance



Switched nodes

High dv/dt at switched node 

(blue):

• Switched between 0V and VOUT

• Stray capacitance can cause:

– EMI problems

– Noise injected to internal circuits

– Reduced efficiency

Mitigation:

• Minimize VSW surface area

• Keep sensitive etch and 

components away from VSW

• Ground the heatsink!

VSW

The switched node paradox

Lower resistance
Increased surface area Lower inductance

Better cooling

Decreased surface area Lower capacitance

Simplified PFC boost 
schematic

Identifying high dv/dt



Sample capacitance calculation

Consider two 10 mil traces crossing with 10 mil PWB thickness

Not much capacitance but consider the area of all components connected to the feedback 
network

Note: 10 mils = 0.00025 m

A = 0.00025 m x 0.00025 m

t

𝐶 =
𝜀𝑟 ∙ 𝜀0 ∙ 𝐴

𝑡

𝐶 =
5 ∙ 8.85× 10−12 ൗ𝐹 𝑚 ∙ 0.25 𝑚𝑚 2

2.5 𝑚𝑚

𝐶 = 0.01 𝑝𝐹

Parasitic capacitance



Chaos created by 
noise injection 

Ten 0.05 x 0.02 in2 pads 

can increase parasitic 

capacitance to 2 pF

VSW

Cparasitic

Noise sensitive

Parasitic capacitance



At high frequency inductors turn into capacitors

Don’t route planes under common mode inductors!

C
IND_PARASITIC

23 pF

C
PWB_A

50 pF

Ground Plane

C
PWB_B

50 pF

L1

28 mH

3 cm2 (0.5 in2) area with

0.25 mm (0.01 in) thickness or

1 Layer of PWB

1 k

1

Im
pe

da
nc

e 
- k


Frequency - Hz

10

100

L = 28 mH

C = 23 pF

10 k 100 k 1 M

Parasitic capacitance



Magnetic coupling

• External fields couple between inductors

• Can cause EMI issues

• Consider alternate orientation of second 

inductor to minimize coupling

• Use core shapes that provide better 

shielding

EMI considerations



Input filter layout

• Place components away from noise 

sources

• Common mode inductor T2 input pins 

do not cross output pins

• No GND plane under EMI filter

• Wide, short etch used to minimize 

losses

• Wide spacing between etches meets 

high-voltage requirements and 

minimizes coupling capacitance

EMI considerations



• Consult your safety expert!

• Create a very clear channel 

between primary and secondary

• Spacing depends on:

– Type of insulation

– Pollution degree

– AC mains voltage

– Working voltage

• Types of insulation:

– Functional

– Basic/supplementary

– Reinforced

Separate hazardous voltages from user accessible points

Partial Clearance Dimensions (mm) from UL60950-1, Section 2.10.3, 

Table 2H

Safety



Ground planes provide:

• Low resistance return paths

• Low inductance return paths

• Lateral heat spreading across board

General ground plane tips:

• Consider flooding empty areas with ground

• Avoid putting slots in GND planes

• Use jumpers on single layer boards to 

improve GND planes 

• Place as much GND under the IC as 

possible

☺

Ground planes



Avoid coupling noise to sensitive nodes

• Maximize the separation 

– Move the source, reduce Cstray

• Place capacitors and resistors near pins

• Place GND vias near caps, resistors, 

and IC

• Minimize the unfiltered track length

Good
Bad

VSW VSW

Signal routing/placement



Data sheets normally contain 

PCB layout guidelines

Signal routing/placement



• Have solid ground planes to better 

spread heat across the layer

• Avoid breaks in planes as they 

substantially degrade lateral heat 

flow

• Use thermal vias to spread heat to 

other layers

• Thermal pads help to get the heat 

out of the IC into the PCB

• Use both sides of the board to cool  

• Maximize the thermal paths with 

partial pours wherever practical

• DO NOT use switched node for 

cooling

PCB cooling strategy

Thermal management



Why is Board A 
hotter than Board 
B?

• Traces on the bottom 
layer prevent heat from 
spreading effectively

• Removing horizontal 
trace for a more solid 
bottom layer reduces IC 
temp on board B

• Hottest component on B 
is the catch diode

T
O

P
B

O
T

T
O

M

Board A Board B

Thermal management



Useful information:

– PCB size and (layers, layer spacing, material)

– Position of inlet and outlet connections

– Mechanical restraints (keep outs and height restrictions)

– Manufacturing process constraints

– Know the creepage and clearance requirements

Understand the circuit:

– High current paths

– High di/dt paths

– High dv/dt nodes

– Hot parts

Imagine a general ‘flow’

– Trunk packing algorithm

Gather information and place large 
components

DC out

A
C

 in

UCC28710/UCC24610 PSR flyback 
with SR

PCB layout example



• Place the large parts in the power path 

first

• Reserve a ‘quiet’ location for the 

controller

– NOT under transformer or node with high 
dv/dt

– Place its associated parts nearby

• Reserve an area for the input filter

– Keep filter input away from output

– Rotate, reposition, reassign pins, repeat
PWM controller

SR controllerPlace remaining components

UCC28710/UCC24610 PSR flyback 
with SR

PCB layout example



Two layers:

– Bottom layer (red)

– Top layer (blue)

Route power path first

– Use wide etch and polygon 
pours

– Minimize high di/dt loop area

– Minimize high dv/dt surface 
area

Route signal etch last

− Keep away from high dv/dt 
nodes

− Keep noise sensitive etch short

− Shorten return paths

Input loop

Output loop

Route power and signal etch

UCC28710/UCC24610 PSR flyback 
with SR

PCB layout example



Flood empty areas:

– Primary GND

– Secondary GND

Use vias to connect to GND 

planes

– Near caps/resistors

– Near GND pins of ICs

Check for blocked GND 

connections

– Move parts/etch as necessary

– Be mindful of parasitic 
resistance and inductance

Flood highlighted 

areas with GND

Pour ground planes

UCC28710/UCC24610 PSR flyback 
with SR

PCB layout example



• Understand your circuit: high current and di/dt paths, high dv/dt nodes

• Understand how parasitic resistance, inductance, and capacitance are manifested

• Understand how layout can significantly affect EMI

• Understand the safety requirements for your product

• Understand how heat is transferred through the PCB

• Follow a logical procedure: 

– Place large parts, place small parts, power routing, signal routing, pour planes

• Have someone review your layout!

Summary: keys to a successful SMPS layout



• Constructing Your Power Supply - Layout Considerations; R. Kollman; 2004 TI 

Power Supply Design Seminar; www.ti.com/seclit/ml/slup230/slup230.pdf

• Safety Considerations in Power Supply Design; B. Mammano and L. Bahra; 2004 TI 

Power Supply Design Seminar; www.ti.com/seclit/ml/slup227/slup227.pdf 

• Common Mistakes in DC/DC Converters and How to Fix Them; P. Shenoy and A. 

Fagnani; 2018 TI Power Supply Design Seminar; www.ti.com/seclit/ml/slup384/slup384.pdf

• Grounding in Mixed-Signal Systems Demystified, Part 1 & Part 2; S. Pithadia and 

S. More; 1Q 2013, TI Analog Applications Journal; www.ti.com/lit/an/slyt499/slyt499.pdf; 
www.ti.com/lit/an/slyt512/slyt512.pdf

• Why Should You Count Squares; Brigitte; 2016 TI Power House Blog; 
http://e2e.ti.com/blogs_/b/powerhouse/archive/2016/10/03/why-should-i-count-squares 

Summary: references

http://www.ti.com/seclit/ml/slup230/slup230.pdf
http://www.ti.com/seclit/ml/slup227/slup227.pdf
http://www.ti.com/seclit/ml/slup384/slup384.pdf
http://www.ti.com/lit/an/slyt499/slyt499.pdf
http://www.ti.com/lit/an/slyt512/slyt512.pdf
http://e2e.ti.com/blogs_/b/powerhouse/archive/2016/10/03/why-should-i-count-squares


Thank you
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