TPS568215 SWIFT™ Step-Down Converter Evaluation Module User's Guide

ABSTRACT

This user's guide contains information for the TPS568215EVM-762 evaluation module (PWR762) as well as for the TPS568215 dc/dc converter. Also included are the performance specifications, board layouts, schematic, and the bill of materials for the TPS568215EVM-762.

Table of Contents

2 Test Setup and Results	.15
4 Schematic and Bill of Materials	5
	5
5 Revision History	5
	5
	5
List of Figures	5
Figure 2-1. TPS568215EVM-762 Efficiency	
Figure 2-2. TPS568215EVM-762 Low Current Efficiency	- 6
Figure 2-3. TPS568215EVM-762 Load Regulation, V _{IN} = 5 V	
Figure 2-4. TPS568215EVM-762 Load Regulation, V _{IN} = 12 V	
Figure 2-5. TPS568215EVM-762 Line Regulation	
Figure 2-6. TPS568215EVM-762 Transient Response	
Figure 2-7. TPS568215EVM-762 Loop Response	
Figure 2-8. TPS568215EVM-762 Output Ripple, 10-mA Load	
Figure 2-9. TPS568215EVM-762 Output Ripple, 700-mA Load	
Figure 2-10. TPS568215EVM-762 Output Ripple, 8-A Load	
Figure 2-11. TPS568215EVM-762 Input Ripple, 10-mA Load	
Figure 2-12. TPS568215EVM-762 Input Ripple, 700-mA Load	
Figure 2-13. TPS568215EVM-762 Input Ripple, 8-A Load	. 11
Figure 2-14. TPS568215EVM-762 Start-Up Relative to V _{IN}	
Figure 2-15. TPS568215EVM-762 Start-Up Relative to Enable	
Figure 2-16. Shutdown Relative to V _{IN}	
Figure 2-17. Shutdown Relative to Enable	
Figure 2-18. Thermal Image	
Figure 3-1. TPS568215EVM-762 Top-Side Assembly	
Figure 3-2. TPS568215EVM-762 Top-Side Layout	
Figure 3-3. TPS568215EVM-762 Internal Layer-1 Layout	
Figure 3-4. TPS568215EVM-762 Internal Layer-2 Layout	
Figure 3-5. TPS568215EVM-762 Bottom-Side Layout	
Figure 4-1. TPS568215EVM-762 Schematic	.21
List of Tables	
Table 1-1. Input Voltage and Output Current Summary	3
Table 1-2. TPS568215EVM-762 Performance Specification Summary	
Table 2-1. EVM Connectors and Test Points.	
Table 4-1. TPS568215EVM-762 Bill of Materials.	
Trademarks	

All trademarks are the property of their respective owners.

1 Introduction

1.1 Before You Begin

The following warnings and cautions are noted for the safety of anyone using or working close to the TPS568215EVM-762. Observe all safety precautions.

Warning

The TPS568215EVM-762 circuit module may become hot during operation due to dissipation of heat. Avoid contact with the board. Follow all applicable safety procedures applicable to your laboratory.

Caution

Do not leave the EVM powered when unattended.

WARNING

The circuit module has signal traces, components, and component leads on the bottom of the board. This may result in exposed voltages, hot surfaces or sharp edges. Do not reach under the board during operation.

CAUTION

The circuit module may be damaged by over temperature. To avoid damage, monitor the temperature during evaluation and provide cooling, as needed, for your system environment.

CAUTION

Some power supplies can be damaged by application of external voltages. If using more than 1 power supply, check your equipment requirements and use blocking diodes or other isolation techniques, as needed, to prevent damage to your equipment.

CAUTION

The communication interface is not isolated on the EVM. Be sure no ground potential exists between the computer and the EVM. Also be aware that the computer is referenced to the Battery- potential of the EVM.

www.ti.com Introduction

1.2 Background

The TPS568215 dc/dc converter is a synchronous buck converter designed to provide up to a 8-A output. The input (V_{IN}) is rated for 4.5 V to 17 V. The TPS568215 uses a proprietary DCAP3 Control mode and a MODE pin is used to select output current limit, switching frequency, and *Forced Continuous Conduction Mode* (FCCM)/*Discontinuous Conduction Mode* (DCM) operation. Rated input voltage and output current range for the evaluation module are given in Table 1-1. This evaluation module is designed to demonstrate the small printed-circuit-board areas that may be achieved when designing with the TPS568215 regulator. The MODE pin is configured for 1.2-MHz switching frequency, 8-A and DCM operation. The high-side and low-side MOSFETs are incorporated inside the TPS568215 package along with the gate-drive circuitry. The low drain-to-source on-resistance of the MOSFET allows the TPS568215 to achieve high efficiencies and helps keep the junction temperature low at high output currents. An external divider allows for an adjustable output voltage. Additionally, the TPS568215 provides adjustable slow start and undervoltage lockout inputs and a power good output.

Table 1-1. Input Voltage and Output Current Summary

EVM	Input Voltage Range	Output Current Range	
TPS568215EVM-762	V _{IN} = 4.5 V to 17 V	0 A to 8 A	

1.3 Performance Specification Summary

A summary of the TPS568215EVM-762 performance specifications is provided in Table 1-2. Specifications are given for an input voltage of V_{IN} = 12 V and an output voltage of 1.2 V, unless otherwise specified. The TPS568215EVM-762 is designed and tested for V_{IN} = 4.5 V to 17 V. The ambient temperature is 25°C for all measurements, unless otherwise noted.

Table 1-2. TPS568215EVM-762 Performance Specification Summary

Specification	Test	Conditions	MIN	TYP	MAX	Unit
V _{IN} voltage range			4.5	12	17	V
V _{IN} start voltage				Internal UVLO		V
V _{IN} stop voltage				Internal UVLO		V
Output voltage setpoint				1.2		V
Output current range	V _{IN} = 4.5 V to 14 V		0		8	Α
Line regulation	I _O = 4 A, V _{IN} = 4.5 V to 17 V			-0.02%, +0.08%		
Load regulation	V _{IN} = 12 V, I _O = 0 A to 8 A			-0.02%, +0.15%		
	1 = 2 A to 6 A	Voltage change		-25		mV
	I _O = 2 A to 6 A	Recovery time		50		μs
Load transient response	I _O = 6 A to 2 A	Voltage change		25		mV
		Recovery time		50		μs
Loop bandwidth	V _{IN} = 12 V, I _O = 4 A	V _{IN} = 12 V, I _O = 4 A		170		kHz
Phase margin	V _{IN} = 12 V , I _O = 4 A	V _{IN} = 12 V , I _O = 4 A		70		degree
Input ripple voltage	I _O = 8 A			80		mVPP
Output ripple voltage	I _O = 8 A			10		mVPP
Output rise time				6		ms
Operating frequency				1.2		MHz
Maximum efficiency	TPS568215EVM-76	2, V _{IN} = 5 V, I _O = 2.4 A		90.47%		

1.4 Modifications

These evaluation modules are designed to provide access to the features of the TPS568215. Some modifications can be made to this module.

Introduction www.ti.com

1.4.1 Output Voltage Setpoint

The output voltage is set by the resistor divider network of R7 ($R_{(TOP)}$) and R9 ($R_{(BOT)}$). R9 is fixed at 10.0 k Ω . To change the output voltage of the EVM, it is necessary to change the value of resistor R7. Changing the value of R9 can change the output voltage above the 0.6-V reference voltage V_{REF} . The value of R7 for a specific output voltage can be calculated using Equation 1.

$$R_{(TOP)} = \frac{R_{(BOT)}x(V_{OUT} - V_{REF})}{V_{REF}}$$
(1)

1.4.2 Adjustable UVLO

The undervoltage lockout (UVLO) can be adjusted externally using R1 ($R_{EN(TOP)}$) and R2 ($R_{EN(BOT)}$). R1 and R2 are not populated on the EVM, which uses the internal UVLO default settings. See the TPS568215 datasheet (SLVSDI8) for detailed instructions for setting the external UVLO.

2 Test Setup and Results

This section describes how to properly connect, set up, and use the TPS568215EVM-762 evaluation module. The section also includes test results typical for the evaluation module and covers efficiency, output voltage regulation, load transients, loop response, output ripple, input ripple, and start-up.

2.1 Input/Output Connections

The TPS568215EVM-762 is provided with input/output connectors and test points as shown in Table 2-1. A power supply capable of supplying greater than 4 A must be connected to J1 through a pair of 20-AWG wires or better. The load must be connected to J2 through a pair of 20-AWG wires or better. The maximum load current capability is 8 A. Wire lengths must be minimized to reduce losses in the wires. Test point TP1 provides a place to monitor the V_{IN} input voltages with TP2 providing a convenient ground reference. TP9 is used to monitor the output voltage with TP10 as the ground reference.

Reference Designator **Function** VIN input voltage connector. (See Table 1-1 for V_{IN} range) J1 J2 1.2 V at 8 A maximum J3 2-pin header for enable. Connect EN to ground to disable, open to enable Vour. TP1 VIN test point GND test point at VIN connector TP2 TP3 Slow Start (SS) test point TP4 PGOOD test point TP5 VREG5 test point TP6 AGND test point TP7 SW node test point TP8 Test point between voltage divider network and output. Used for loop response measurements TP9 VOUT test point TP10 GND test point

Table 2-1. EVM Connectors and Test Points

www.ti.com Test Setup and Results

2.2 Efficiency

The efficiency of this EVM peaks at a load current of about 2.4 A and then decreases as the load current increases toward full load. Figure 2-1 shows the efficiency for the TPS568215EVM-762 at an ambient temperature of 25°C.

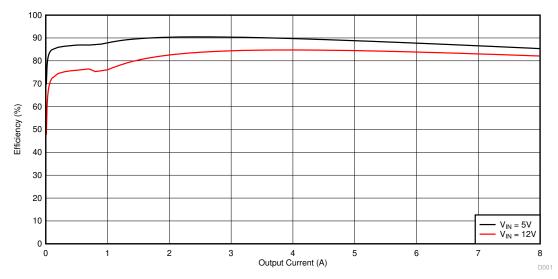


Figure 2-1. TPS568215EVM-762 Efficiency

Figure 2-2 shows the efficiency for the TPS568215EVM-762 using a semi-log scale to more easily show efficiency at lower output currents. The ambient temperature is 25°C.

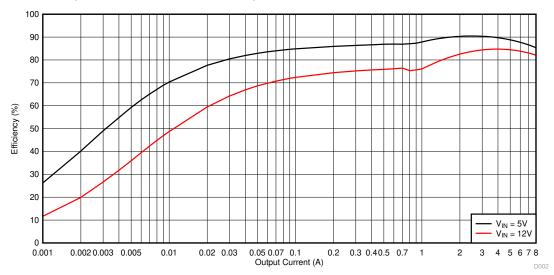


Figure 2-2. TPS568215EVM-762 Low Current Efficiency

The efficiency may be lower at higher ambient temperatures, due to temperature variation in the drain-to-source resistance of the internal MOSFET.

Test Setup and Results www.ti.com

2.3 Output Voltage Load Regulation

Figure 2-3 and Figure 2-4 show the load regulation for the TPS568215EVM-762.

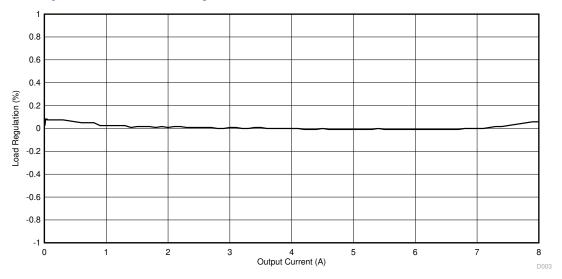


Figure 2-3. TPS568215EVM-762 Load Regulation, V_{IN} = 5 V

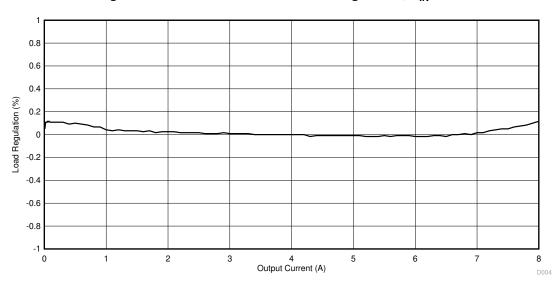


Figure 2-4. TPS568215EVM-762 Load Regulation, V_{IN} = 12 V

Measurements are given for an ambient temperature of 25°C.

www.ti.com Test Setup and Results

2.4 Output Voltage Line Regulation

Figure 2-5 shows the line regulation for the TPS568215EVM-762.



Figure 2-5. TPS568215EVM-762 Line Regulation

2.5 Load Transients

Figure 2-6 shows the TPS568215EVM-762 response to load transients. The current step is from 2 A to 6 A. The current step slew rate is 500 mA/ μ s. Total peak-to-peak voltage variation is as shown, including ripple and noise on the output. The transient waveform is measured using the on-board fast transient circuit.

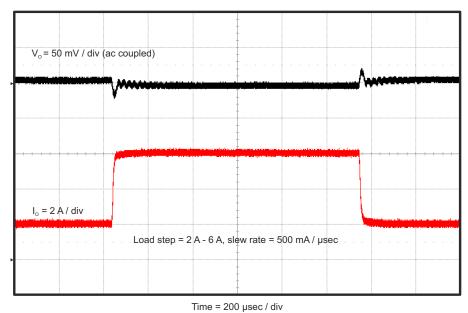


Figure 2-6. TPS568215EVM-762 Transient Response

Test Setup and Results

Vision Instruments

www.ti.com

2.6 Loop Characteristics

Figure 2-7 shows the TPS568215EVM-762 loop-response characteristics. Gain and phase plots are shown for V_{IN} voltage of 12 V. Load current for the measurement is 4 A.

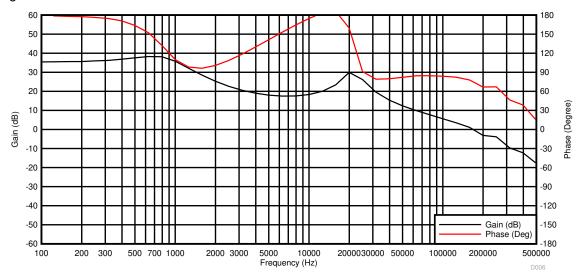
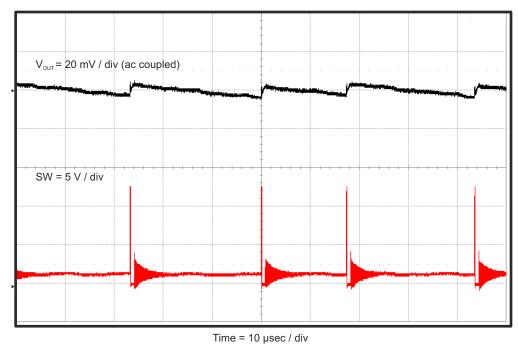
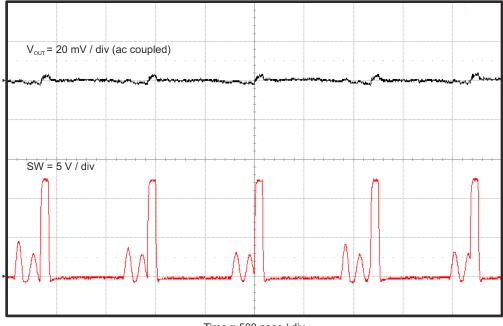
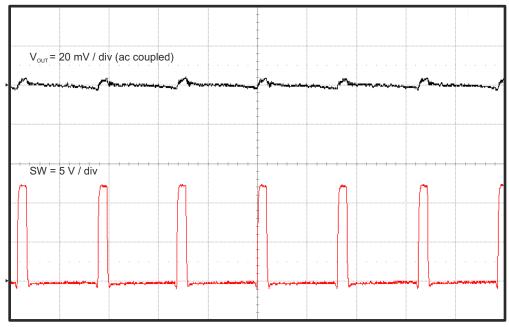


Figure 2-7. TPS568215EVM-762 Loop Response

2.7 Output Voltage Ripple

Figure 2-8, Figure 2-9, and Figure 2-10 show the TPS568215EVM-762 output voltage ripple. The load currents are 10 mA, 700 mA, and 8 A. V_{IN} = 12 V. The ripple voltage is measured directly across TP9 and TP10.


Figure 2-8. TPS568215EVM-762 Output Ripple, 10-mA Load

Time = 500 nsec / div

Figure 2-9. TPS568215EVM-762 Output Ripple, 700-mA Load

Time = 500 nsec / div

Figure 2-10. TPS568215EVM-762 Output Ripple, 8-A Load

Test Setup and Results www.ti.com

2.8 Input Voltage Ripple

Figure 2-11, Figure 2-12, and Figure 2-13 show the TPS568215EVM-762 input voltage ripple. The load currents are 10 mA, 700 mA and 8 A. V_{IN} = 12 V. The ripple voltage is measured directly across TP1 and TP2.

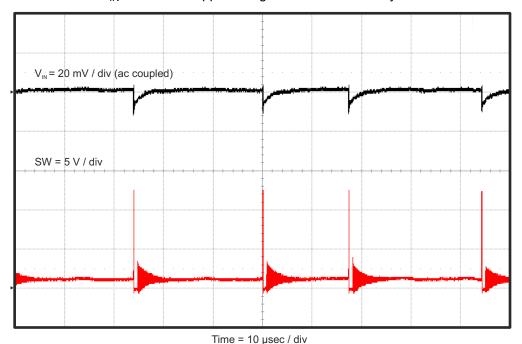


Figure 2-11. TPS568215EVM-762 Input Ripple, 10-mA Load

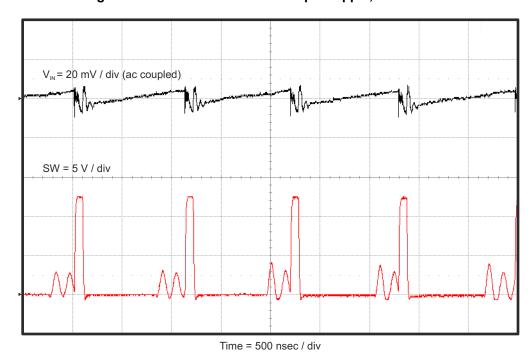


Figure 2-12. TPS568215EVM-762 Input Ripple, 700-mA Load

ww.ti.com Test Setup and Results

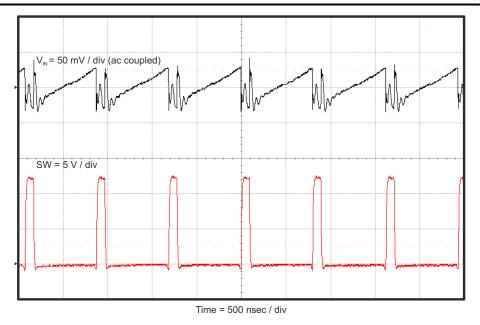
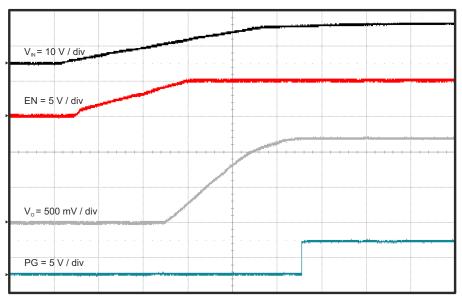



Figure 2-13. TPS568215EVM-762 Input Ripple, 8-A Load

Test Setup and Results www.ti.com

2.9 Powering Up

Figure 2-14 and Figure 2-15 show the start-up waveforms for the TPS568215EVM-762. In Figure 2-14, the output voltage ramps up as soon as the input voltage reaches the UVLO threshold. In Figure 2-15, the input voltage is initially applied and the output is inhibited by using a jumper at J3 to tie EN to GND. When the jumper is removed, EN is released. When the EN voltage reaches the enable-threshold voltage, the start-up sequence begins and the output voltage ramps up to the externally-set value of 1.2 V. The input voltage for these plots is 12 V and the load is 1 Ω .

Time = 2 msec / div

Figure 2-14. TPS568215EVM-762 Start-Up Relative to V_{IN}

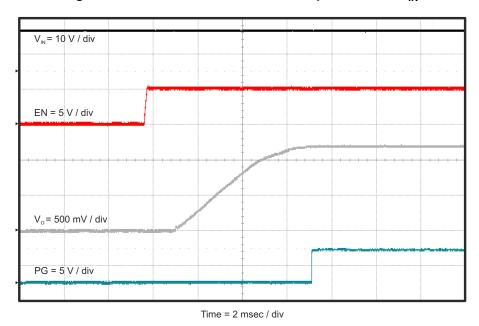
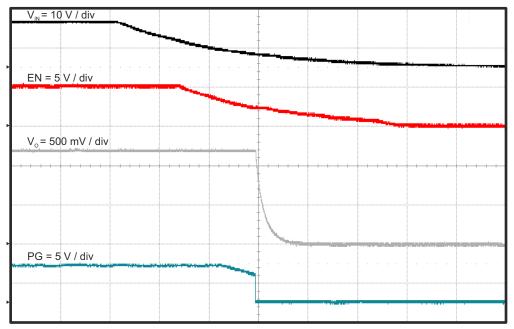



Figure 2-15. TPS568215EVM-762 Start-Up Relative to Enable

www.ti.com Test Setup and Results

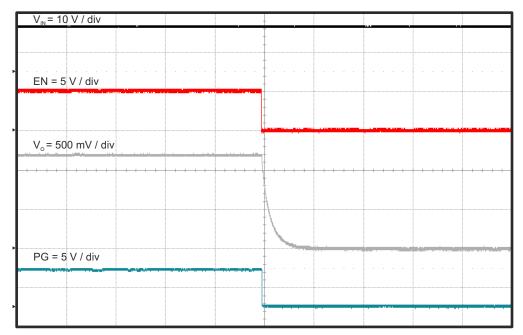

2.10 Powering Down

Figure 2-16 and Figure 2-17 show the shutdown waveforms for the TPS568215EVM-762. The input voltage for these plots is 12 V and the load is 1 Ω .

Time = 2 msec / div

Figure 2-16. Shutdown Relative to V_{IN}

Time = 2 msec / div

Figure 2-17. Shutdown Relative to Enable

Test Setup and Results www.ti.com

2.11 Thermal Image

The thermal image in Figure 2-18 shows the EVM with 12-V input and full load of 8 A.

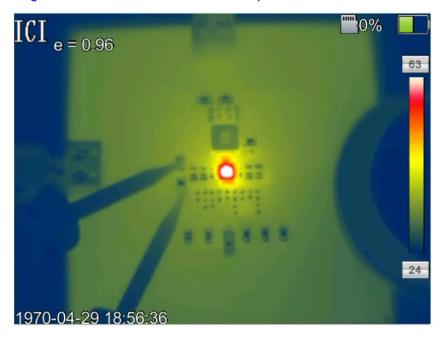


Figure 2-18. Thermal Image

www.ti.com Board Layout

3 Board Layout

This section provides a description of the TPS568215EVM-762 board layout and layer illustrations.

3.1 Layout

The board layout for the TPS568215EVM-762 is shown in Figure 3-1 through Figure 3-5. The top-side layer of the EVM is laid out in a manner typical of a user application. The top, bottom, and internal layers are 2-oz. copper.

The top layer contains the main power traces for VIN, VOUT, and SW. Also on the top layer are connections for the remaining pins of the TPS568215 and the majority of the signal traces. There is a large area filled with ground. The internal layer-1 is dedicated ground plane with an island for quiet analog ground that is connected to the main power ground plane at a single point. The internal layer-2 contains an additional large ground copper area as well as an additional VIN and VOUT copper fill. The bottom layer is another ground plane with two additional traces for the output voltage feedback and BST capacitor connection. The top-side ground traces are connected to the bottom and internal ground planes with multiple vias placed around the board.

The input decoupling capacitors and bootstrap capacitor are all located as close to the IC as possible. Additionally, the voltage setpoint resistor divider components are kept close to the IC. The voltage divider network ties to the output voltage at the point of regulation, the copper V_{OUT} trace at the TP9 test point. For the TPS568215, an additional input bulk capacitor may be required, depending on the EVM connection to the input supply. Critical analog circuits such as the voltage set point divider, EN resistor, SS capacitor, MODE resistor, and AGND pin are terminated to quiet analog ground island on the internal layer-1.

Board Layout www.ti.com

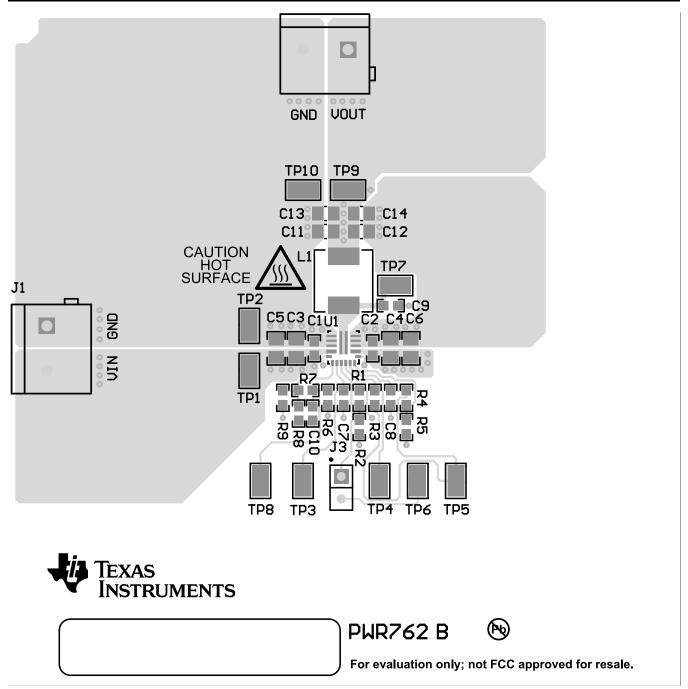


Figure 3-1. TPS568215EVM-762 Top-Side Assembly

www.ti.com Board Layout

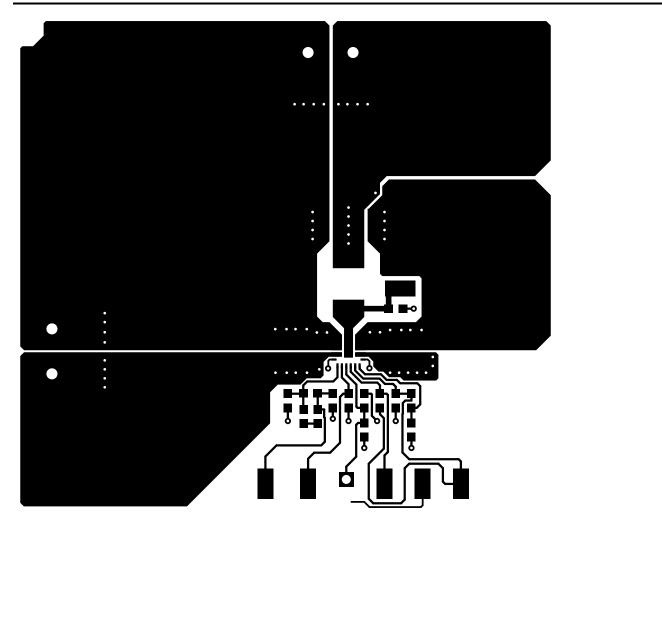


Figure 3-2. TPS568215EVM-762 Top-Side Layout

Board Layout Viv.i.com

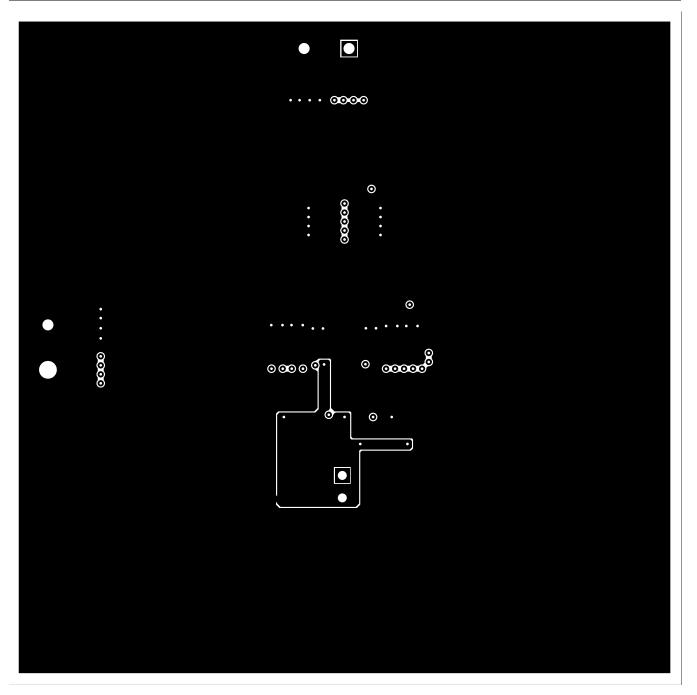


Figure 3-3. TPS568215EVM-762 Internal Layer-1 Layout

www.ti.com Board Layout

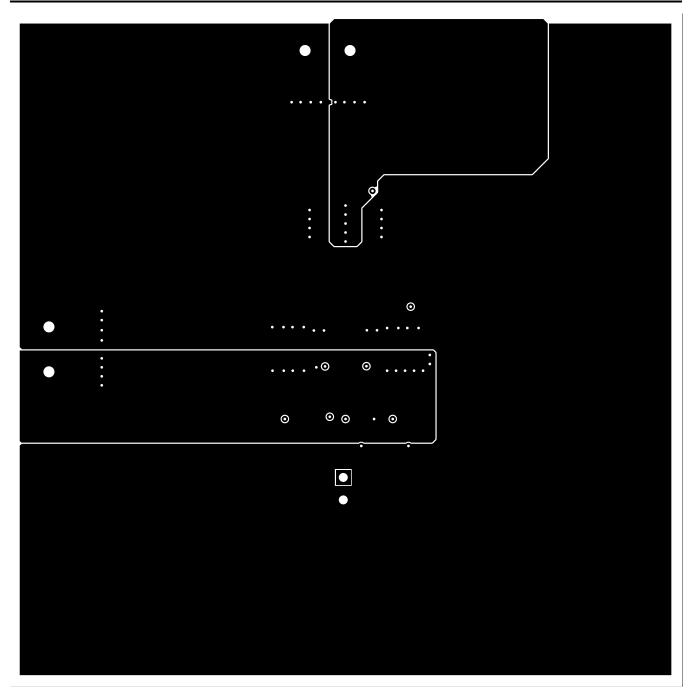


Figure 3-4. TPS568215EVM-762 Internal Layer-2 Layout

Board Layout Volume 1 INSTRUMENTS

www.ti.com

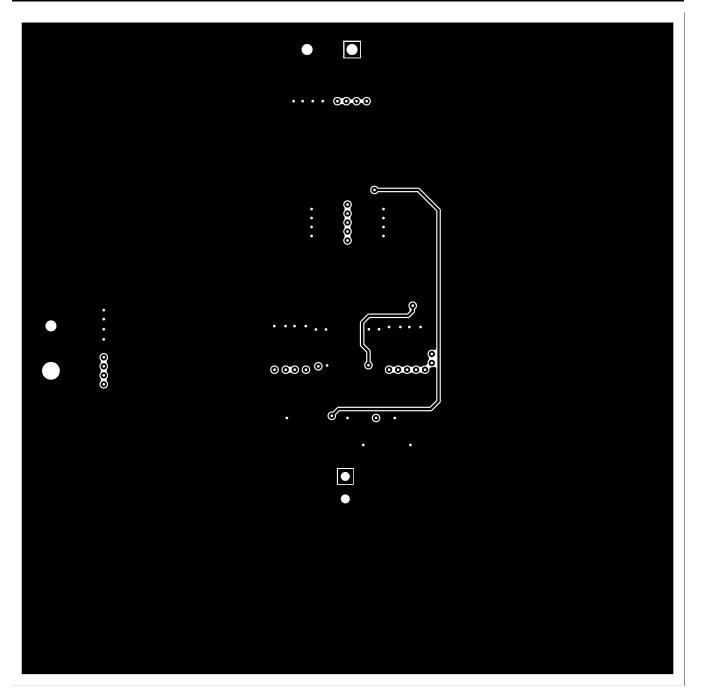


Figure 3-5. TPS568215EVM-762 Bottom-Side Layout

4 Schematic and Bill of Materials

This section presents the TPS568215EVM-762 schematic and bill of materials.

4.1 Schematic

Figure 4-1 is the schematic for the TPS568215EVM-762.

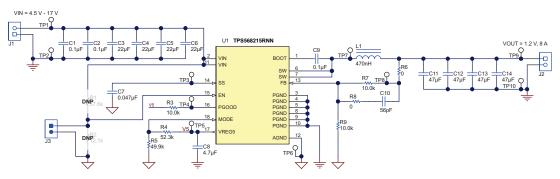


Figure 4-1. TPS568215EVM-762 Schematic

4.2 Bill of Materials

Table 4-1 presents the bill of materials for the TPS568215EVM-762.

Table 4-1. TPS568215EVM-762 Bill of Materials

Designator	Qty	Value	Description	Package Reference	Part Number	Manufacturer
!PCB1	1		Printed Circuit Board		PWR762	Any
C1, C2, C9	3	0.1uF	CAP, CERM, 0.1 µF, 25 V, +/- 10%, X7R, 0603	0603	GRM188R71E104KA01D	Murata
C3, C4, C5, C6	4	22uF	CAP, CERM, 22 µF, 35 V, +/- 20%, X5R, 0805	0805	C2012X5R1V226M125AC	TDK
C7	1	0.047uF	CAP, CERM, 0.047 μF, 50 V, +/- 10%, X7R, 0603	0603	GRM188R71H473KA61D	Murata
C8	1	4.7uF	CAP, CERM, 4.7 µF, 10 V, +/- 20%, X5R, 0603	0603	GRM188R61A475ME15	Murata
C10	1	56pF	CAP, CERM, 56 pF, 50 V, +/- 5%, C0G/NP0, 0603	0603	GRM1885C1H560JA01D	Murata
C11, C12, C13, C14	4	47uF	CAP, CERM, 47 µF, 10 V, +/- 20%, X5R, 0805	0805	GRM21BR61A476ME15	Murata
J1, J2	2		TERMINAL BLOCK 5.08MM VERT 2POS, TH		ED120/2DS	On-Shore Technology
J3	1		Header, 100mil, 2x1, Gold, TH		HTSW-102-07-G-S	Samtec
L1	1	470nH	Inductor, Shielded Drum Core, Powdered Iron, 470 nH, 17.5 A, 0.004 ohm, SMD	IHLP-2525CZ	IHLP2525CZERR47M01	Vishay-Dale
LBL1	1		Thermal Transfer Printable Labels, 1.250" W x 0.250" H - 10,000 per roll	PCB Label 1.25"H x 0.250"W	THT-13-457-10	Brady
R3, R7, R9	3	10.0k	RES, 10.0 k, 1%, 0.1 W, 0603	0603	CRCW060310K0FKEA	Vishay-Dale
R4	1	52.3k	RES, 52.3 k, 1%, 0.1 W, 0603	0603	CRCW060352K3FKEA	Vishay-Dale
R5	1	49.9k	RES, 49.9 k, 1%, 0.1 W, 0603	0603	CRCW060349K9FKEA	Vishay-Dale
R6, R8	2	0	RES, 0, 5%, 0.1 W, 0603	0603	MCR03EZPJ000	Rohm
SH-J3	1	1x2	Shunt, 100mil, Gold plated, Black	Shunt	969102-0000-DA	3M
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10	10	SMT	Test Point, Miniature, SMT	Testpoint_Keystone_Miniature	5015	Keystone
U1	1		4.5V to 17V Input, 8A Synchronous Step-Down Converter, RNN0017A	RNN0017A	TPS568215RNN	Texas Instruments
FID1, FID2, FID3	0		Fiducial mark. There is nothing to buy or mount.	Fiducial	N/A	N/A
R1	0	57.6k	RES, 57.6 k, 1%, 0.1 W, 0603	0603	CRCW060357K6FKEA	Vishay-Dale
R2	0	12.1k	RES, 12.1 k, 1%, 0.1 W, 0603	0603	CRCW060312K1FKEA	Vishay-Dale

www.ti.com Revision History

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (October 2016) to Revision A (June 2021)					
•	Updated user's guide title	2			
	Updated the numbering format for tables, figures, and cross-references throughout the document				

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated