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ABSTRACT

The purpose of this study was to characterize the single-event effect (SEE) performance due to heavy-ion 
irradiation of the TPS7H2201-SP. Heavy-ions were used to irradiate six devices in 14 runs with a flux of 
approximately 105 ions / cm2 × s and fluence of approximately 107 ions / cm2. The results demonstrate that the 
TPS7H2201-SP is SEL, SEB, SEGR, SET, and SEFI free up to LETEFF = 75 MeV·cm2/mg (at 125°C for SEL and 
25°C for SET, SEB, SEGR, and SEFI), and across the full electrical specifications. This report uses the QMLV 
TPS7H2201-SP device in a ceramic package. It is also applicable for the QMLP TPS7H2201-SP device in a 
plastic package which uses the same die as the QMLV device.
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1 Device Overview
The TPS7H2201-SP is a space grade, radiation-hardened, 1.5 to 7 V, 6 A ,e-fuse. The device contains a 
P-channel MOSFET as the switch element. The device supports a maximum of six amps of continuous current 
and provides a programmable current limit pin and fast current trip for overcurrent load protection. Additional 
features of the device include the following:

• Programmable soft start (used to limit the inrush current)
• Reverse current protection
• Programmable fault timers for current limit and re-try modes
• Thermal shutdown
• Programmable EN and OVP voltage
• A pin (CS) that outputs a current proportional to the current across the pass element for health monitoring

The device is offered in a thermally enhanced 16-pin ceramic, dual in-line flat-pack package. Table 1-1 lists the 
general device information and test conditions. See the TPS7H2201-SP product page for more detailed technical 
specifications, user guides, and applications notes.

Table 1-1. Overview Information
Description Device Information

TI Part Number TPS7H2201-SP

SMD Number 5962R1722001VXC

Device Function eFuse

Technology 250 nm Linear BiCMOS 7

Exposure Facility Radiation Effects Facility, Cyclotron Institute, Texas A&M University

Heavy Ion Fluence per Run ≥ 1 x 107 ions / cm2

Irradiation Temperature 25°C and 125°C (for SEL testing)

Device Overview www.ti.com
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2 Single-Event Effects
The primary destructive single-event effect (DSEE) events of interest in the TPS7H2201-SP are single-event 
latch-up (SEL), single-event burn-out (SEB), and single-event gate rupture (SEGR). In mixed technologies such 
as the Linear BiCMOS 7 process used for the TPS7H2201-SP, the CMOS circuitry introduces a potential for 
SEL, SEB, and SEGR susceptibility.

SEL can occur if excess current injection caused by the passage of an energetic ion is high enough to trigger the 
formation of a parasitic cross-coupled PNP and NPN bipolar structure (formed between the p-sub and n-well and 
n+ and p+ contacts) [1, 2]. The parasitic bipolar structure initiated by a single-event creates a high-conductance 
path (inducing a steady-state current that is typically orders-of-magnitude higher than the normal operating 
current) between power and ground that persists (is latched) until power is removed or until the device is 
destroyed by the high-current state. For the design of the TPS7H2201-SP, SEL-susceptibility was reduced by 
maximizing anode-cathode spacing (tap spacing) while increasing the number of well and substrate ties in the 
CMOS portions of the layout to minimize well and substrate resistance effects. Additionally, junction isolation 
techniques were used with buried wells and guard ring structures isolating the CMOS p-wells and n-wells (3, 
4). The design techniques applied for SEL-mitigation were sufficient as the TPS7H2201-SP exhibited absolutely 
no SEL with heavy-ions of up to LETEFF = 75 MeV-cm2 / mg at fluences in excess of 107 ions / cm2 and a die 
temperature of 125°C.

SEB is similar to the SEL and occurs when the parasitic BJT of the DMOSFET is turned on by the heavy-ion 
strike. DMOS are susceptible to SEB and SEGR while on the off state, however, for the sake of sanity, the 
device was also evaluated on all possible cases (enable and disable). When a heavy ion with sufficient energy 
hits the p body, it creates an excess charge inducing a voltage drop. This voltage drop forward biases the 
emitter-base junction of the parasitic NPN (formed by the N+ source, the P base region, and the N-drift region). 
If this happens when the DMOSFET is under a high drain bias, a secondary breakdown of the parasitic npn BJT 
can occur, creating permanent damage of the DMOS (6). When the heavy-ion hits the neck region of the DMOS 
(under the gate), it creates electron hole-pairs on the oxide and silicon. Drift separates the excess electrons 
and holes due to the positive bias field on the drain to source of the DMOS. Holes are driven upward to the 
dioxide while the electrons are transported toward the drain. The collected holes on the dioxide create an equal 
image of electrons on the opposite side of the gate dioxide. Since the charge injection and collection after an 
event is faster than the transport and recombination of the e-h pairs, a voltage transient can be developed 
across the gate oxide. If this build-up voltage is higher than the oxide breakdown, permanent damage can be 
induced on the oxide, creating a destructive gate rupture (7). The TPS7H2201-SP was tested for SEB and 
SEGR at LETEFF = 75 MeV-cm2 / mg, fluences of ≥ 107 ions/cm2, die temperature of 20–25°C, and VIN = 7 V. No 
increment on the VIN current was observed, also any functionality malfunction was observed, demonstrating that 
the TPS7H2201-SP is SEB and SEGR-free.

www.ti.com Single-Event Effects

SLVAE32B – AUGUST 2018 – REVISED DECEMBER 2023
Submit Document Feedback

Single-Event Effects Test Report of the TPS7H2201-SP 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAE32
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE32B&partnum=TPS7H220-SP


3 Test Device and Evaluation Board Information
The TPS7H2201-SP is packaged in a 16-pin thermally-enhanced dual ceramic flat pack package (HKH) as 
shown in Figure 3-1. The TPS7H2201EVM-CVAL evaluation board was used to evaluate the performance and 
characteristics of the TPS7H2201-SP under heavy-ions. Figure 3-2 shows the top and bottom views of the 
evaluation board used for the radiation testing. Figure 3-3 shows the board schematics. See the TPS7H2201-SP 
Single Evaluation Module for more information about the evaluation board.
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Figure 3-1. Photograph of Delidded TPS7H2201-SP (Left) and Pin Out Diagram (Right)

Figure 3-2. TPS7H2201-SP Board Top View (Left) and Bottom-View (Right)
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R2, R3, C14, and C16 are populated components on the TPS7H2201EVM-CVAL, however, the components 
were removed and all boards used for the characterization discussed in this report had the switch closed during 
most of the SEE characterization.

Figure 3-3. Schematics of the TPS7H2201EVM-CVAL Used for the Heavy-ion Testing
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4 Depth, Range, and LETEFF Calculation
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Figure 4-1. Generalized Cross-Section (Left) of the LBC7 Technology BEOL Stack on the TPS7H2201-SP. 
GUI of RADsim Application (Right)

The TPS7H2201-SP is fabricated in the TI Linear BiCMOS 7, 250 nm process with a back-end-of-line (BEOL) 
stack consisting of four levels of aluminum. The total stack height from the surface of the passivation to the 
silicon surface is 13.98 µm based on nominal layer thickness as shown in Figure 4-1. Accounting for energy loss 
through the 1 mil thick Aramica ( Kevlar®) beam port window, the 40-mm air gap, and the BEOL stack over the 
TPS7H2201-SP, the effective LET (LETEFF) at the surface of the silicon substrate and the depth and ion range 
was determined with the custom RADsim-IONS application (developed at Texas Instruments and based on the 
latest SRIM2013 [9] models). Table 4-1 lists the results.

Table 4-1. Praseodymium Ion LETEFF, Depth, and Range in the TPS7H2201-SP
Ion Type Angle of Incidence (°) Depth in Silicon (µm) Range in Silicon (µm) LETEFF (MeV·cm2 / mg)

Pr 0 88.9 88.9 66.43

Pr 27.3 77.7 87.2 75

Depth, Range, and LETEFF Calculation www.ti.com
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5 Irradiation Facility and Setup
The heavy-ion species used for the SEE studies on this product were provided and delivered by the Texas 
A&M University (TAMU) Cyclotron Radiation Effects Facility (8) using a superconducting cyclotron and advanced 
electron cyclotron resonance (ECR) ion source. At the fluxes used, ion beams had good flux stability and high 
irradiation uniformity over a 1" diameter circular cross sectional area for the in-air station. Uniformity is achieved 
by means of magnetic defocusing. The flux of the beam is regulated over a broad range spanning several orders 
of magnitude. For the bulk of these studies, ion flux of approximately 105 ions / cm2 × s were used to provide 
heavy-ion fluences ≥ 107 ions / cm2.

For the experiments conducted on this report,141Pr ions at angles of 0° and 27.3° of incidence were used for an 
LETEFF of 66.43 and 75 MeV × cm2 / mg, respectively. The total kinetic energy of141Pr on the vacuum is 2.114 
GeV. Ion uniformity for these experiments was between 81% and 98%.

Figure 5-1 shows the TPS7H2201-SP test board used for the experiments at the TAMU facility. Although not 
visible in this photo, the beam port has a 1-mil Aramica window to allow in-air testing while maintaining the 
vacuum within the accelerator with only minor ion energy loss. Test points were soldered on the back for easy 
access of the signals while having enough room to change the angle of incidence and maintaining the 40 mm 
distance to the die. The air space between the device and the ion beam port window was maintained at 40 mm 
for all runs.

Figure 5-1. Photograph of the TPS7H2201-SP Mounted on the TPS7H2201EVM-CVAL in Front of the 
Heavy-ion Beam Exit Port at the TAMU Accelerator Facility
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6 Test Setup and Procedures
SEE testing was performed on a TPS7H2201-SP device mounted on a TPS7H2201EVM-CVAL. The device 
power was provided to the VIN-GND input on the J26 terminal block inputs using the N6702 precision power 
supply (PS) in a 4-wire configuration. For the SEL, SEB, and SEGR testing, the device was powered up at seven 
volts and loaded with approximately 1.1-Ω discrete resistors (six amps). The VOUT under this condition was 6.76 
volts. For the SEB and SEGR characterization, the device was tested under enabled and disabled modes. An 
NI PXI-4110 PS was used to control the EN voltage to enable and disable the DUT. The discrete resistive load 
was connected even when the DUT was disabled to help differentiate events during testing. Not a single current 
increment event was observed during any of the SEL, SEB, and SEGR testing.

For the SET characterization, the device was powered up at minimum and maximum recommended voltages of 
1.5 V and 7 V, and loaded to the maximum six amps using discrete resistors.

All equipment was controlled and monitored using a custom-developed LabVIEW® program (PXI-RadTest) 
running on a NI-PXIe-8135 controller. The current of the power supply, the temperature and the beam start and 
stop (5-V tamu signal) signal were monitored at all times and logged for further analysis.

Figure 6-1 shows a block diagram of the setup used for SEE testing of the TPS7H2201-SP. Table 6-1 shows 
the connections, limits, and compliance used on the test equipment. For the SEB/SEGR characterization, the 
die temperature was maintained between 20°C to 25°C by using a vortex tube to cool down the device when 
needed (when the part was enabled and loaded to 6-A). A die temperature of 125°C was used for SEL testing 
and was achieved by attaching three parallel power resistors (model: RP60800R0100JNBK) to the thermal pad 
on the back of the board using solder paste. The die temperature was monitored during the testing using a 
K-Type thermocouple attached to the heat slug of the package, and correlated using a thermal camera before 
the SEE characterization. As observed on Figure 6-1, two scope cards were used to trigger from VOUT and SS in 
case of a transient. The scope card triggering from VOUT was also monitoring VIN, CS, RTIMER, and ILTimer. The 
trigger used was a window set at ±3 % around the nominal output voltage (when the device was enabled) and 
±200 mV (when the device was disabled). The scope card was set with a sample rate of 5 MS / s , record length 
of 60 kS per record and reference of 20%. A reference of 20% means that in case a trigger occurs, the 20% (12 
kS) of the data before the time the trigger occurred was saved. For the scope card, triggering from SS the VOUT 
was also monitored. The trigger type used for SS was a edge positive trigger set at 500 mV. The scope card 
was set 2 MS / s, record length of 60 kS per record and 20% reference. Both scope cards were continuously 
monitoring the trigger signals and data was saved only if this signal exceeded the trigger set on the scope card.

All boards used for SEE testing were fully checked for functionality and dry runs were performed to make sure 
that the test system was stable under all bias and load conditions prior to being taken to the TAMU facility. 
During the heavy-ion testing, the LabView control program (PXI-RadTest) powered up the TPS7H2201-SP 
device and set the external sourcing and monitoring functions of the external equipment. After functionality and 
stability were confirmed, the beam shutter was opened to expose the device to the heavy-ion beam. The shutter 
remained open until the target fluence was achieved (determined by external detectors and counters).

Table 6-1. Equipment Set and Parameters Used for the SEE testing of the TPS7H2201-SP
Pin Name Equipment Used Capability Compliance Range of Values Used

VIN
Agilent N6702A (Channels 

2 and 3 in parallel) 10 A 10-A 1.5 and 7 V

EN ni-PXIe-4110 (Channel 1) 1 A 0.1-A 0 and 1 V

Digital I/O NI PXIe 6556 200 MHz — 50 MHz

Vout NI PXIe 5105 60 MHz — 5 MHz

SS NI PXIe 5105 60 MHz — 2 MHz

Test Setup and Procedures www.ti.com
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Figure 6-1. Block Diagram of SEE Test Setup Used for the TPS7H2201-SP Characterization

The single pole, double throw (SPDT) switch shown on the EN pin was not a physical connector present during 
the testing. However, the SPDT is used here to represent the possible ways the EN and OVP pins were biased 
to disable the device during the characterization.
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7 Single-Event-Latchup (SEL), Single-Event-Burnout (SEB), and Single-Event-Gate-
Rupture (SEGR)
7.1 Single-Event-Latchup (SEL)
All SEL characterizations were performed with die temperature of 125°C. The device was heated by connecting 
three parallel power resistors (model: RP60800R0100JNBK) attached with thermal paste to the back of the 
board. The temperature was monitored by attaching a K-type thermocouple to the thermal pad of the device on 
the top layer. Thermocouple and die correlation was verified by using a thermal IR camera, prior to reach to the 
heavy-ions facility (TAMU).

The device was exposed to a Praseodymium (Pr) heavy-ion beam incident on the die surface at 0° and 27.3° for 
an LETEFF of 66.43 and 75 MeV-cm2 / mg, respectively. Flux of approximately 105 ions / cm2 × s and fluence ≥ 
107 ions / cm2 was used in each run. Run duration to achieve this fluence was approximately two minutes (for 
107 ions / cm2). During the SEL testing, the device was set up as described in Figure 3-3. Table 7-1 summarizes 
the SEL results. No SEL events were observed under any of the test runs, indicating that the TPS7H2201-SP 
is SEL-immune at T = 125°C and LET = 75 MeV·cm2 / mg. SEL cross-section was calculated based on 0 
events observed using a 95% (2σ) confidence interval (see Section 11 for discussion of cross-section calculation 
method). Figure 7-1 shows a typical current plot.

σSEL ≤ 1.84 × 10−7cm2/device for LETEFF = 75MeV × cm2/mg and TJ = 125°C,  95% conf . (1)

Table 7-1. Summary of TPS7H2201-SP SEL Results With T = 125°C and LETEFF = 74.83 MeV-cm2/ mg
Run 

Number
Unit 

Number
Temperature 

(°C) Ion Type Angle of Incidence 
(°)

LETEFF (MeV × cm² / 
mg) Flux (ions / cm² × s) Fluence (ions / cm²) VIN (V) Load (A) SEL Events

1 1 125 Pr 27.3 75 1.07 × 105 2 × 107 7 6 0

2 1 125 Pr 0 66.43 1.14 × 105 9.95 × 106 7 6 0
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Figure 7-1. Current Versus Time for SEL Run 1 at T = 125°C and 75 MeV × cm2/ mg
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7.2 Single-Event-Burnout (SEB) and Single-Event-Gate-Rupture (SEGR)
SEB and SEGR were performed at room temperature, with141Pr with an angle of incidence of 0° and 27.3° die 
for an LETEFF of 66.43 and 75 MeV × cm2 / mg, respectively. The VIN was held at the maximum recommended 
voltage of 7 V. Flux of approximately 105 ions / cm2 × s and fluence ≥ 2 × 107 ions / cm2 was used in each 
run. The device was evaluated when the DUT was enabled and disabled, and loaded to 6 A at all times. Even 
when the device was disabled, the device was loaded (6 A) to help identify if the device was changing modes 
or closing the switch (disabled to enabled), due to heavy-ions. When the DUT was disabled, the die temperature 
was at room temp (approximately 23°C), however, when the part was enabled and loaded with six amps, the 
power dissipated across the pass element increments the die temperature. To test the device around (20°C to 
25°C), an external cool element (vortex tube) was used. The stream of cold air was pointed at the die to chill the 
device during the testing. No change on current was observed, indicating that the TPS7H2201-SP is SEB and 
SEGR immune at T = 25°C and LET = 75 MeV × cm2 / mg. During the SEB and SEGR testing with the switch 
disabled the current never increment, indicating that the device never changed status during the exposure. Table 
7-2 lists the conditions used for this test. Figure 7-2 shows a typical VIN current versus time plot. The SEB 
and SEGR cross-section was calculated based on 0 events observed using a 95% (2σ) confidence interval and 
combining (or summing) fluences (see Section 11 for discussion of confidence limits).

σSEB/SEGR ≤ 4 . 61 × 10−8cm2/device for LETEFF = 75MeV × cm2/mg and TJ = 25°C,  95% conf . (2)

Table 7-2. Summary of TPS7H2201-SP SEB and SEGR Results with T = Approximately 25°C
Run 

Number
Unit 

Number
Temperature 

(°C) Ion Type Angle of 
Incidence (°)

LETEFF (MeV × 
cm² / mg)

FLUX (ions / 
cm² × s)

FLUENCE (ions / 
cm2) VIN (V) Load (A) Enabled? SEB or SEGR 

Events

3 1 25 Pr 27.3 75 1.08 × 105 2 × 107 7 6 Yes 0

4 2 20 Pr 27.3 75 1.28 × 105 3 × 107 7 6 Yes 0

5 2 20 Pr 27.3 75 1.16 × 105 3 × 107 7 6 No 0

6 3 25 Pr 0 66.43 1.07 × 105 2.01 × 107 7 6 Yes 0

7 3 25 Pr 0 66.43 1.03 ×105 2 × 107 7 6 No 0
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Figure 7-2. Current Versus Time for SEB and SEGR Run 4 at T = 20°C and 75 MeV × cm2 / mg

www.ti.com Single-Event-Latchup (SEL), Single-Event-Burnout (SEB), and Single-Event-Gate-Rupture (SEGR)

SLVAE32B – AUGUST 2018 – REVISED DECEMBER 2023
Submit Document Feedback

Single-Event Effects Test Report of the TPS7H2201-SP 11

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAE32
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE32B&partnum=TPS7H220-SP


8 Single Event Transient (SET)
SET testing was performed at room temperature, with141Pr with an angle of incidence of 27.3° die for a LETEFF 
75 MeV × cm2/ mg. The VIN was set to maximum (7-V) and minimum (1.5-V) recommended voltages at 
maximum load of 6-A and no load. Under these conditions, the die temperature is around 33 °C when loaded 
to 6-A and 23°C when not loaded. Flux of approximately 105 ions /cm2× s and fluence ≥ 1× 107 ions / cm2 were 
used in each run. The device was also evaluated when the DUT was disabled by using the EN (0-V) and the 
OVP (1-V) pins by forcing an external voltage into the pins. Not a single upset on Vout or SS was observed 
during the SET testing at room temperature. A window trigger with ±3% around the output nominal voltage 
(when the device was enabled) and a ±200 mV (when the device was disabled) was used for the detection of 
upsets during the characterization.

During the SEL testing, when the device was exposed to a die temperature of 125°C, upsets that create a 
momentary Soft Start (SS) cycle were observed. Table 8-1 lists the test conditions and results for the SET testing 
of the TPS7H2201-SP. Worst case observed transient (SET) for VOUT and SS is shown in Figure 8-1.

The SET cross-section was calculated observed 95% (2σ) confidence interval and combining (or summing) 
fluences (see Section 11 for discussion of confidence limits). The cross section is classified by die temperature 
and LETEFF.

σSET ≤ 2 . 29 × 10−8cm2/device for LETEFF = 75MeV × cm2/mg and TJ = 33°C,  95% conf . (3)

σSET ≤ 2 . 18 × 10−5cm2/device for LETEFF = 75MeV × cm2/mg and TJ = 125°C,  95% conf . (4)

σSET ≤ 1 . 17 × 10−6cm2/device for LETEFF = 66.43MeV × cm2/mg and TJ = 125°C,  95% conf . (5)

Table 8-1. Summary of TPS7H2201-SP SET Results With T = Approximately 25°C and 125°C
Run 

Number
Unit 

Number
Temperature 

(°C) Ion Type Angle of 
Incidence (°)

LETEFF (MeV × 
cm² / mg)

Flux (ions / 
cm² × s)

Fluence (ions / 
cm2) VIN (V) Load Enabled? SET Events

8 3 33 Pr 27.3 75 9.94 × 104 2 × 107 7 6 Yes 0

9 3 33 Pr 27.3 75 9.97 × 104 2 × 107 7 0 Yes 0

10 4 33 Pr 27.3 75 1.01 × 105 2 × 107 1.5 6 Yes 0

11 4 33 Pr 27.3 75 1.09 × 105 2 × 107 1.5 0 Yes 0

12 3 33 Pr 27.3 75 1.04 × 105 2 × 107 7 6 No 0

13 5 33 Pr 27.3 75 7.99 × 104 1.36 × 107 7 6 No 0

14 5 33 Pr 27.3 75 8.53 × 104 1 × 107 1.5 6 No 0

From SEL Runs

1 1 125 Pr 27.3 75 1.07 × 105 2 × 107 7 6 Yes 396

2 1 125 Pr 0 66.43 1.14 × 105 9.96 × 106 7 6 Yes 5
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Figure 8-1. Worst Case Overlay of VOUT and SS SET for Run 1 at LETEFF 75 MeV × cm2 / mg and T = 125°C

www.ti.com Single Event Transient (SET)

SLVAE32B – AUGUST 2018 – REVISED DECEMBER 2023
Submit Document Feedback

Single-Event Effects Test Report of the TPS7H2201-SP 13

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLVAE32
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLVAE32B&partnum=TPS7H220-SP


9 Total Ionizing Dose From SEE Experiments
The TPS7H2201-SP is rated for a total ionizing dose (TID) of 100 krad (Si). In the course of the SEE testing, the 
heavy-ion exposure delivered ≈10 krad (Si) per 107 ions/cm2 run. The cumulative TID exposure for all units was 
controlled to be below the 100 krad(Si).
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10 Orbital Environment Estimations
To calculate on-orbit SEE event rates, both the device SEE cross-section and the flux of particles encountered 
in a particular orbit are required. Device SEE cross-sections are usually determined experimentally while flux of 
particles in orbit is calculated using various codes. For the purpose of generating some event rates, a Low-Earth 
Orbit (LEO) and a Geostationary-Earth Orbit (GEO) were calculated using CREME96. CREME96 code, short for 
Cosmic Ray Effects on Micro-Electronics, is a suite of programs (10, 11) that enable estimation of the radiation 
environment in near-Earth orbits. CREME96 is one of several tools available in the aerospace industry to provide 
accurate space environment calculations. Over the years since its introduction, the CREME models have been 
compared with on-orbit data and demonstrated their accuracy. In particular, CREME96 incorporates realistic 
worst-case solar particle event models, where fluxes can increase by several orders-of-magnitude over short 
periods of time.

For the purposes of generating conservative event rates, the worst-week model (based on the biggest solar 
event lasting a week in the last 45 years) was selected, which has been equated to a 99%-confidence level 
worst-case event (12, 13). The integrated flux includes protons to heavy ions from solar and galactic sources. A 
minimal shielding configuration is assumed at 100 mils (2.54 mm) of aluminum. Two orbital environments were 
estimated, that of the International Space Station (ISS) which is LEO and the GEO environment. Figure 10-1 
shows the integrated flux (from high LET to low) for these two environments.
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Figure 10-1. Integral Particle Flux Versus LETEFF for a LEO-ISS (blue curve) and a GEO (red curve) 
Environment as Calculated by CREME96 Assuming Worst-week and 100 mils (2.54 mm) of Aluminum 

Shielding

Note that the y-axis represents flux integrated from higher LET to lower LET. The value of integral flux at any 
specific LET value is actually the integral of all ion events at that specific LET value to all higher LETs.

Figure 10-1 shows the Integral Particle Flux versus LETEFF for a LEO-ISS (blue curve) and a GEO (red curve) 
environment as calculated by CREME96 assuming worst-week and 100 mils (2.54 mm) of aluminum shielding. 
Note that the y-axis represents flux integrated from higher LET to lower LET. The value of integral flux at any 
specific LET value is actually the integral of all ion events at that specific LET value to all higher LETs.
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Using this data, a user can extract integral particle fluxes for any arbitrary LET of interest. To simplify the 
calculation of event rates, assume that all cross-section curves are square, meaning that below the onset LET, 
the cross-section is identically zero while above the onset LET, the cross-section is uniformly equal to the 
saturation cross-section. Figure 10-2 shows the approximation, with the green curve as the actual Weibull fit to 
the data with the square approximation shown as the red-dashed line. This allows the user to calculate event 
rates with a single multiplication, the event rate becoming the product of the integral flux at the onset LET, and 
the saturation cross-section. Obviously this leads to an over-estimation of the event rate since the area under 
the square approximation is larger than the actual cross-section curve – but for the purposes of calculating 
upper-bound event rate estimates, this modification avoids the requirement of the integral over the flux and 
cross-section curves.
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Figure 10-2. Device Cross-section Versus LETEFF Showing How the Weibull Fit (Green) is Simplified with 
the Use a Square Approximation (Red Dashed Line)

Figure 10-2 shows a device cross-section versus LETEFF, showing how the Weibull fit (green) is simplified with 
the use of a square approximation (red dashed line).

To demonstrate how the event rates in this report were calculated, assume that the user must calculate an 
event rate for a GEO orbit for the device whose cross-section is shown in Figure 10-2. Using the red curve in 
Figure 10-1 and the onset LET value obtained from Figure 10-2 (approximately 65 MeV-cm2 / mg), the GEO 
integral flux is approximately 3.24 × 10-4 ions / cm2-day. The event rate is the product of the integral flux and the 
saturation cross-section in Figure 10-2 (approximately 5.3 × 10-6 cm2): 
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11 Confidence Interval Calculations
For conventional products where hundreds of failures are seen during a single exposure, you can determine the 
average failure rate of parts being tested in a heavy-ion beam as a function of fluence with a high degree of 
certainty and reasonably tight standard deviation, and thus have a good deal of confidence that the calculated 
cross-section is accurate.

With radiation hardened parts however, determining the cross-section becomes more difficult since often few, or 
even, no failures are observed during an entire exposure. Determining the cross-section using an average failure 
rate with standard deviation is no longer a viable option, and the common practice of assuming a single error 
occurred at the conclusion of a null-result can end up in a greatly underestimated cross-section.

In cases where observed failures are rare or non-existent, the use of confidence intervals and the Chi-Squared 
distribution is indicated. The Chi-Squared distribution is an optionh for the determining a reliability level when 
the failures occur at a constant rate. In the case of SEE testing, where the ion events are random in time 
and position within the irradiation area, you expect a failure rate that is independent of time (presuming that 
parametric shifts induced by the total ionizing dose do not affect the failure rate), and as a result, the use of 
Chi-Squared statistical techniques is valid (since events are rare an exponential or Poisson distribution is usually 
used).

In a typical SEE experiment, the device-under-test (DUT) is exposed to a known, fixed fluence (ions / cm2) 
while the DUT is monitored for failures. This is analogous to fixed-time reliability testing and, more specifically, 
time-terminated testing, where the reliability test is terminated after a fixed amount of time whether or not a 
failure has occurred (in the case of SEE tests fluence is substituted for time and hence it is a fixed fluence 
test) [14]. Calculating a confidence interval specifically provides a range of values which is likely to contain the 
parameter of interest (the actual number of failures/fluence). Confidence intervals are constructed at a specific 
confidence level. For example, a 95% confidence level implies that if a given number of units were sampled 
numerous times and a confidence interval estimated for each test, the resulting set of confidence intervals would 
bracket the true population parameter in about 95% of the cases.

To estimate the cross-section from a null-result (no fails observed for a given fluence) with a confidence interval, 
you start with the standard reliability determination of lower-bound (minimum) mean-time-to-failure for fixed-time 
testing (an exponential distribution is assumed):

� �
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(9)

where

• MTTF is the minimum (lower-bound) mean-time-to-failure
• n is the number of units tested (presuming each unit is tested under identical conditions)
• T, is the test time
• x 2 is the chi-square distribution evaluated at 100(1 – α / 2) confidence level
• d is the degrees-of-freedom (the number of failures observed)

With slight modification for this purpose, invert the inequality and substitute F (fluence) in the place of T:
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where

• MFTF is mean-fluence-to-failure
• F is the test fluence
• x 2 is the chi-square distribution evaluated at 100(1 – α / 2) confidence
• d is the degrees-of-freedom (the number of failures observed)
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The inverse relation between MTTF and failure rate is mirrored with the MFTF. Thus the upper-bound cross 
section is obtained by inverting the MFTF:

� �
2

2 d 1 ;100 1
2

2nF

D§ ·� �¨ ¸
© ¹

F

V  
(11)

Assume that all tests are terminated at a total fluence of 106 ions / cm2. Also assume that you have a number 
of devices with very different performances that are tested under identical conditions. Assume a 95% confidence 
level (σ = 0.05). Note that as d increases from 0 events to 100 events, the actual confidence interval becomes 
smaller, indicating that the range of values of the true value of the population parameter (in this case the cross 
section) is approaching the mean value + 1 standard deviation. This makes sense when one considers that as 
more events are observed the statistics are improved such that uncertainty in the actual device performance is 
reduced.

Table 11-1. Experimental Example Calculation of Mean-Fluence-to-Failure (MFTF) and, σ Using a 95% 
Confidence Interval

Degrees-of-Freedom (d) 2(d + 1) χ 2 at 95%
CALCULATED CROSS SECTION (cm2)

Upper-Bound at 95% 
Confidence Mean Average + Standard 

Deviation
0 2 7.38 3.69E–06 0.00E+00 0.00E+00

1 4 11.14 5.57E–06 1.00E–06 2.00E–06

2 6 14.45 7.22E–06 2.00E–06 3.41E–06

3 8 17.53 8.77E–06 3.00E–06 4.73E–06

4 10 20.48 1.02E–05 4.00E–06 6.00E–06

5 12 23.34 1.17E–05 5.00E–06 7.24E–06

10 22 36.78 1.84E–05 1.00E–05 1.32E–05

50 102 131.84 6.59E–05 5.00E–05 5.71E–05

100 202 243.25 1.22E–04 1.00E–04 1.10E–04
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11.1 Rate Orbit Calculation
Event rates were calculated for LEO (ISS) and GEO environments by combining CREME96 orbital integral flux 
estimations and simplified SEE cross-sections according to methods shown in Section 10. A minimum shielding 
configuration of 100 mils (2.54 mm) of aluminum, and worst-week solar activity (this is similar to a 99% upper 
bound for the environment) was assumed. Using the 95% upper-bounds for the SEL, SEB/SEGR, and SET, 
the event-rates of the TPS7H2201-SP are listed in Table 11-2, Table 11-3, and Table 11-4, respectively. As 
previously mentioned, no SEL, SEB, or SEGR events were observed under any of the test runs, indicating that 
the TPS7H2001-SP is SEL, SEB, and SEGR immune. Cross-sections and event rates shown in Table 11-2 and 
Table 11-3, are calculated based on 0 events observed using a 95% (2σ) confidence interval.

Table 11-2. SEL Event Rate Calculations for Worst-week LEO and GEO Orbits

Orbit Type Onset LET (MeV 
× cm² / mg)

CREME96 
Integral Flux ( / 

day × cm²)
σ SAT (cm²) Event Rate ( / 

day) Event Rate (FIT) MTBE (Years)

LEO (ISS)
75.0

6.61 × 10-5
1.84 × 10-7

1.22 × 10-11 5.07 × 10-4 2.25 × 108

GEO 1.87 × 10-4 3.44 × 10-11 1.43 × 10-3 7.97 × 107

Table 11-3. SEB/SEGR Event Rate Calculations for Worst-week LEO and GEO Orbits

Orbit Type Onset LET (MeV 
× cm² / mg)

CREME96 
Integral Flux ( / 

day × cm²)
σ SAT (cm²) Event Rate ( / 

day) Event Rate (FIT) MTBE (Years)

LEO (ISS)
75

6.61 × 10-5
4.61 × 10-8

3.05 × 10-12 1.27 × 10-4 8.99 × 108

GEO 1.87 × 10-4 8.61 × 10-12 3.59 × 10-4 3.18 × 108

Table 11-4. SET Event Rate Calculations for Worst-week LEO and GEO Orbits

Orbit Type Onset LET (MeV 
× cm² / mg)

CREME96 
Integral Flux ( / 

day × cm²)
σ SAT (cm²) Event Rate ( / 

day) Event Rate (FIT) MTBE (Years)

LEO (ISS)
75

6.61 × 10-5
2.29 × 10-8

1.51 × 10-12 6.31 × 10-5 1.81 × 109

GEO 1.87 × 10-4 4.28 × 10-12 1.78 × 10-5 6.4 × 108
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12 Summary
The purpose of this report is to summarize the TPS7H2201-SP heavy-ions SEE performance. The data shows 
that the TPS7H2201-SP is SEL free at VIN = 7 V, 6 A , T = 125°C, and LETEFF= 75 MeV × cm2 / mg. The data 
also shows that the device is SEB/SEGR free at VIN = 7 V, 6 A, T = 20–25°C and LETEFF = 75 MeV-cm2 / mg. 
The TPS7H2201-SP shows to be SET-free for all electrical conditions at room temperature. Worst case transient 
observed when the die temperature was 125°C is presented.
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