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ABSTRACT
The TPS6213x/4x/5x/6x/7x family of devices uses a variation of the inherently stable hysteretic control
called DCS-Control™, though this topology is not itself inherently stable. However, use of this control
topology does allow for a wider range of inductor and output capacitor values than traditional voltage
mode control buck converters. This allows more lenience in choosing inductor and output capacitor values
to accomplish specific design goals, such as transient response, loop stability, maximum output current, or
output voltage ripple, based on an application’s needs. This application report discusses how to choose
the output filter for any of the TPS62130, TPS62140, TPS62150, TPS62160, or TPS62170 high Vin buck
converters in order to meet the specific requirements of a design.

1 Choosing an LC Combination
The designer must consider many factors when choosing an inductor and output capacitor combination for
any switching regulator. For example, lower inductances can be physically smaller due to fewer windings,
which can save board space; however, this causes the peak switch current and output voltage ripple to
increase. Larger voltage ripple can be offset by using a higher capacitance at the cost of larger size and
slower transient response.

Stability is also a key factor that the inductor and capacitor values affect. The LC filter forms a double pole
in the control loop, which has a strong impact on the frequency response and system stability. Table 1
shows the stability of different LC combinations that have been tested in the laboratory with an input
voltage of 12 V and a load current of 1 A at an output voltage of 3.3 V with the device running in high
frequency mode. Although the stable combinations in the table satisfy the requirements for control loop
stability, certain combinations may not work in every system due to other measures of performance, such
as output voltage ripple, load transient response, or maximum output current.

Table 1. Stability vs Effective LC Corner Frequency
Nominal Ceramic Capacitance Value (effective = 1/2 nominal)

Nominal
Inductance 4.7 µF 10.0 µF 22 µF 47 µF 100 µF 200 µF 400 µF 800 µF 1600 µF

Value
Effective Corner Frequencies

0.47 µH 151.4 kHz 103.8 kHz 70.0 kHz 47.9 kHz 32.8 kHz 23.2 kHz 16.4 kHz 11.6 kHz 8.2 kHz

1.00 µH 103.8 kHz 71.2 kHz 48.0 kHz 32.8 kHz 22.5 kHz 15.9 kHz 11.3 kHz 8.0 kHz 5.6 kHz

2.2 µH 70.0 kHz 48.0 kHz 32.4 kHz 22.1 kHz 15.2 kHz 10.7 kHz 7.6 kHz 5.4 kHz 3.8 kHz

3.3 µH 57.2 kHz 39.2 kHz 26.4 kHz 18.1 kHz 12.4 kHz 8.8 kHz 6.2 kHz 4.4 kHz 3.1 kHz

4.7 µH 47.9 kHz 32.8 kHz 22.1 kHz 15.1 kHz 10.4 kHz 7.3 kHz 5.2 kHz 3.7 kHz 2.6 kHz

10.0 µH 32.8 kHz 22.5 kHz 15.2 kHz 10.4 kHz 7.1 kHz 5.0 kHz 3.6 kHz 2.5 kHz 1.8 kHz

Recommended for TPS6213x/4x/5x/6x/7x

Recommended for TPS6213x/4x/5x only

Stable without Cff (within recommended LC corner frequency range)

Stable without Cff (outside recommended LC corner frequency range)

Unstable
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Table 1 shows control loop stability versus effective corner frequency and indicates the corresponding
nominal inductance and capacitance. The white and blue cells are within the data sheet's recommended
LC range and are thus stable. While the white cells are recommended for all TPS6213x/4x/5x/6x/7x
devices, the blue cells are recommended for the TPS6213x/4x/5x devices only. The green cells are within
the data sheet’s recommended LC corner frequency range and have been found to be stable. The gray
cells are outside the data sheet’s recommended range, but have been tested and were found to be stable.
The yellow cells have been tested and were determined to be unstable by containing more than three
rings in their load transient response, which indicates low phase margin (see SLVA381).

The corner frequencies listed are based on the effective inductance and capacitance, but the nominal
values are indicated in the table. The effective capacitance takes the dc bias effect of ceramic capacitors
into account. All of the capacitors used had X5R dielectric and were rated for 6.3 V. By a rough metric for
capacitance versus dc voltage, the effective capacitance at a 3.3-V bias is about half the nominal
capacitance. The inductors chosen had saturation currents large enough such that the effective
inductance is approximately equal to the nominal inductance. The 1-µH to 4.7-µH inductors were from the
Coilcraft XFL4020 series and the 0.47- µH inductor was a Vishay IHLP-1616BZ-01.

2 Optimizing Load Transient Response
The load transient response describes the controller’s ability to recover from sudden changes in output
current, such as those caused by a processor changing states. The amount of voltage deviation and the
time that the controller takes to recover are the main measures of a controller’s load transient
performance.

The response time of the controller is directly related to the bandwidth of the control loop. A higher
bandwidth allows the controller to respond faster. Because the control loop compensation is fixed inside
the integrated circuit, the bandwidth is primarily impacted by the corner frequency of the LC filter, which
forms a double pole in the control loop. The corner frequency of the filter is given as:

(1)

Higher LC corner frequencies allow for higher control loop bandwidths. To increase the LC corner
frequency, decrease the product of the inductance and capacitance.

Secondly, the amount of voltage deviation that occurs during a change in load must be restricted to keep
the power supply voltage within the requirements of the system. This can especially pose a problem for
processors that may operate incorrectly at low voltages. Two main things determine the amount of voltage
deviation: the output capacitance and control loop bandwidth. From the equation I = C × dV/dt, the output
voltage deviation in response to a load step is defined as:

(2)

Where t1 is the time the load step begins, and t2 is the time that the average inductor current equals the
new load current (see Figure 1). The time between t1 and t2 is an initial time period during which the output
capacitor must supply the extra load current, and therefore, the capacitor voltage must decrease. From
Equation 2, the most obvious way to reduce this initial deviation is to use a larger capacitance. It is worth
noting that a larger capacitance will have a negative impact on the controller’s response time. Figure 2
shows the effect of a larger output capacitor on voltage deviation and settling time. Plot (a) shows the
transient load response with a 2.2-µH inductor and 10-µF capacitor. Plot (b) shows the transient load
response with the same inductor and a 100-µF capacitor. The 10-µF capacitor has a voltage deviation of
about 50 mV, whereas the 100-µF capacitor has a deviation of about 30 mV. The downside of using the
larger capacitor is that the settling time of the output voltage is about twice as long as the smaller
capacitance. Figure 3 shows the control loop bandwidth for each circuit as measured by the method
presented in SLVA465. As expected, the (b) circuit has a lower bandwidth which translates to a longer
response time.
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At time t2, when the average inductor current is equal to the new load current, the controller begins to
supply the extra current rather than the output capacitor. At this time, the voltage has deviated by its
maximum amount from the desired value, and the controller begins to recharge the output capacitor.
Therefore, another way to reduce the amount of voltage deviation is to decrease the amount of time that
the controller takes to respond and thus reduce the time between t1 and t2. This is accomplished by
increasing the bandwidth of the controller by decreasing the inductance. If the crossover frequency of the
control loop is less than 100 kHz, then a feedforward capacitor can also be used to improve the bandwidth
of the system and decrease the response time (see SLVA466).

Figure 1. Load Transient Response of the TPS62130

Figure 2. Load Transient With 2.2-µH Inductor and (a) 10-µF and (b) 100-µF Capacitor
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Figure 3. Control Loop Gain With 2.2-µH Inductor and (a) 10-µF and (b) 100-µF Capacitor

3 Increasing Maximum Output Current
The TPS6213x/4x/5x/6x/7x family of devices has a built-in current limiter which needs to be accounted for
when choosing an inductor. In order for the device to regulate properly, the peak inductor current needs to
be less than the high-side MOSFET forward current limit as stated in the data sheet. When choosing an
inductor for a reliable power supply, the minimum high-side forward current limit must be used to
determine the maximum peak inductor current. Equation 3 and Equation 4 can be used to choose an
inductor that meets the peak output current requirements:

(3)

Where

(4)

Equation 4 shows that the peak inductor current is inversely proportional to inductance. Thus, in order to
decrease the peak inductor current, a larger inductance must be used. For example, for an input voltage
of 8 V and a load of 1 A at 5 V, a 0.47-μH inductor has a peak inductor current of 1.8 A with the
TPS62150’s high-frequency setting of 2.5 MHz. The TPS62150 has a minimum current limit of 1.4 A which
prevents the 0.47-µH inductor from ramping up to the peak current of 1.8 A. As a result, the device is no
longer able to regulate the output voltage to its desired value. If the recommended 2.2-μH inductor is used
instead, the peak inductor current is calculated at just under 1.2 A, which is below the minimum specified
current limit. Figure 4 shows the results of using a 0.47-µH inductor versus the recommended 2.2-µH
inductor. In the case of the 0.47-µH inductor, the output voltage has fallen 100 mV from the 5-V setpoint
which accounts for an error of 2 percent.

Figure 4. TPS62150 Output Voltage Regulation With (a) 0.47-µH and (b) 2.2-µH Inductor
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4 Reducing Output Voltage Ripple
Output voltage ripple can pose a problem to processors that have tight voltage tolerances and systems
that are sensitive to power supply noise. The output voltage ripple can be approximated by the following
equations:

(5)

(6)

(7)

From Equation 5, there are two ways to reduce the output voltage ripple. One way is to reduce the amount
of ripple current through the inductor, however the more common way is to reduce the magnitude of the
impedance of the capacitor at the switching frequency, shown in Equation 7. Because a ceramic capacitor
has very low ESR and a relatively high resonant frequency, the most effective way to reduce the output
voltage ripple is to use a larger capacitance. Although effective, at some point, increasing the capacitance
begins to have a negligible effect due to the impedance from the ESR and ESL. Note that ESL varies
based on the physical geometry of the capacitor, and therefore, manufacturer data sheets must be
consulted when choosing a capacitor to ensure low impedance at the switching frequency. Placing
multiple capacitors in parallel of large and small values is frequently done to achieve low impedance
across a wide frequency range.

Figure 5 shows the output voltage ripple when using a 4.7-µH inductor with a 10-µF and a 100-µF output
capacitor. The amount of ripple voltage has decreased with the larger capacitance as expected

Figure 5. Output Voltage Ripple With 4.7-µH Inductor and (a) 10-µF and (b) 100-µF Capacitors

5 Conclusion
This application report has presented methods to ensure stability, improve the load transient response and
output voltage ripple, and achieve higher load currents with the TPS6213x/4x/5x/6x/7x family of devices.
The methods presented in this application report, as well as in the references, allow for a wide variety of
external components to be used to achieve the desired power supply performance. The benefits and
tradeoffs associated with designing the output filter, as discussed in this document, can aid with the
design of a TPS6213x/4x/5x/6x/7x power supply.
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