EVM User's Guide: UCC2189X5YQEVM-096 # UCC2189X5Y Half-Bridge EVM User's Guide for Wolfspeed 1200V SiC Platforms #### **ABSTRACT** The UCC2189X5YQEVM-096 is a compact, half-bridge gate driver board consisting of two single-channel isolated gate drivers. It provides isolated bias supply, drive current and protection needed for driving several different models of Wolfspeed silicon-carbide (SiC) MOSFET modules and other IGBT or SiC MOSFET modules with a similar pinout. The on-board flyback converters can provide adjustable isolated voltage. The board's compact form factor, combined with UCC2189X5Y's 5.0kVrms reinforced isolation, makes it a good candidate for doing high voltage tests, such as double-pulse tests and short-circuit tests, with the Wolfspeed SiC modules. This user's guide describes the characteristics, operation and use of the UCC2189X5Y Evaluation Module (EVM). It also includes instructions to adjust different gate driver parameters, such as voltage supply and soft turn-off strength. A complete schematic diagram, printed circuit board layouts, and bill of materials are included in this document. **UCC2189X5Y Hardware Board** # 1 General TI High Voltage Evaluation User Safety Guidelines Always follow TI's set-up and application instructions, including use of all interface components within their recommended electrical rated voltage and power limits. Always use electrical safety precautions to help ensure your personal safety and the safety of those working around you. Contact TI's Product Information Center <a href="http://support/ti./com">http://support/ti./com</a> for further information. ### Save all warnings and instructions for future reference. Failure to follow warnings and instructions may result in personal injury, property damage, or death due to electrical shock and/or burn hazards. The term TI HV EVM refers to an electronic device typically provided as an open framed, unenclosed printed circuit board assembly. It is intended strictly for use in development laboratory environments, solely for qualified professional users having training, expertise, and knowledge of electrical safety risks in development and application of high-voltage electrical circuits. Any other use and/or application are strictly prohibited by Texas Instruments. If you are not suitably qualified, you must immediately stop from further use of the HV EVM. ### Work Area Safety: - Maintain a clean and orderly work area . - Qualified observer(s) must be present anytime circuits are energized. - Effective barriers and signage must be present in the area where the TI HV EVM and its interface electronics are energized, indicating operation of accessible high voltages may be present, for the purpose of protecting inadvertent access. - All interface circuits, power supplies, evaluation modules, instruments, meters, scopes and other related apparatus used in a development environment exceeding 50 V<sub>RMS</sub>/75 VDC must be electrically located within a protected Emergency Power Off (EPO) protected power strip. - Use a stable and non-conductive work surface. - Use adequately insulated clamps and wires to attach measurement probes and instruments. No freehand testing whenever possible. #### Electrical Safety: As a precautionary measure, it is always a good engineering practice to assume that the entire EVM may have fully accessible and active high voltages. - De-energize the TI HV EVM and all its inputs, outputs, and electrical loads before performing any electrical or other diagnostic measurements. Confirm that TI HV EVM power has been safely deenergized. - With the EVM confirmed de-energized, proceed with required electrical circuit configurations, wiring, measurement equipment hook-ups and other application needs, while still assuming the EVM circuit and measuring instruments are electrically live. - When EVM readiness is complete, energize the EVM as intended. #### **WARNING** WARNING: While the EVM is energized, never touch the EVM or its electrical circuits as they could be at high voltages capable of causing electrical shock hazard. ### Personal Safety: Wear personal protective equipment, for example, latex gloves and/or safety glasses with side shields or protect EVM in an adequate lucent plastic box with interlocks from accidental touch. ### · Limitation for Safe Use: EVMs are not to be used as all or part of a production unit. ### **Safety and Precautions** The EVM is designed for professionals who have received the appropriate technical training, and is designed to operate from an AC power supply or a high-voltage DC supply. Please read this user guide and the safety-related documents that come with the EVM package before operating this EVM. # Do not leave the EVM powered when unattended. # A #### **WARNING** High Voltage! Electric shock is possible when connecting board to live wire. Board must be handled with care by a professional. For safety, use of isolated test equipment with overvoltage and overcurrent protection is highly recommended. # 2 Module Compatibility ### 2.1 Supported Wolfspeed Modules and Evaluation Platforms Below is a list of Wolfspeed evaluation platforms and SiC modules supported by the half-bridge gate driver board. Table 2-1. Wolfspeed Evaluation Platforms and SiC Modules Supported | Wolfspeed Design | Wolfspeed Parts Supported | Description | |--------------------|-------------------------------------------------------|--------------------------------------------------------| | SpeedVal Kit | 650-1200V Discrete MOSFETs, FM<br>Half-Bridge Modules | Dynamic Characterization and Power<br>Testing Platform | | KIT-CRD-CIL12N-XM3 | 1200V XM Power Modules | Dynamic Characterization Platform | | KIT-CRD-CIL12N-GMA | 1200V GM Half-Bridge Modules | Dynamic Characterization Platform | | KIT-CRD-CIL12N-FMA | 1200V Half-Bridge FM Power Modules | Dynamic Characterization Platform | | KIT-CRD-CIL12N-FMB | 1200V FM Full-Bridge Modules | Dynamic Characterization Platform | | KIT-CRD-CIL12N-FMC | 1200V 6-Pack FM Power Modules | Dynamic Characterization Platform | Other SiC MOSFET modules and IGBT modules with similar pinouts are directly supported as well. # 3 System Overview and Functions #### 3.1 Features - · Directly compatible with Wolfspeed's FM3 and XM3 modules - · LM5185 flyback controllers supply positive and negative bias to the secondary side - Only a +12-V input voltage needed to generate the primary-side and secondary-side bias voltages - · Status LEDs indicate power-good and fault feedback from each driver - · Include protection features such as short-circuit detection and active short-circuit functionality - Programmable soft turn-off current with resistor - · Test points for all critical nodes to expedite debugging ### 3.2 Specifications Wide bandgap SiC-based power modules become popular in power electronics because of their excellent conduction and switching performance. Compact driver board UCC2189X5YQEVM-096 supports SiC modules by reducing parasitics, minimizing switching loss, and providing full required protection and diagnostics features. For the full electrical specifications table, refer to the UCC2189X5Y-Q1 datasheet **Table 3-1. Electrical Specifications** | | Parameter | Test Conditions | Min | Nom | Max | Unit | |-----------------|--------------------------------------------|---------------------------|-----------|------------|-----------|------| | SUPPLY V | OLTAGES AND CURRENTS | | | | - | | | Vcc | VCC supply voltage | | | 5.0 | 5.5 | V | | Vdd2u,<br>Vdd2l | VDD supply voltages | From transformer and LDO | | 20 | | V | | Vee2u,<br>Vee2l | VEE supply voltages | From transformer | | -5.5 | | V | | DRIVE CUI | RRENT | | | | | | | loutp | Peak source/sink current for OUTP | Cload = 100pF | | 2.8 | | Α | | loutn | Peak source/sink current for OUTN | Cload = 100pF | | 2.8 | | Α | | INPUT/OUT | PUT SIGNALS | | | | 1 | | | Vinh | Input high threshold | | | | 0.7 x VCC | V | | Vinl | Input low threshold | | 0.3 x VCC | | | V | | Vinhys | Input threshold hysteresis | | | 0.15 x VCC | | V | | TIMING PA | RAMETERS | | | | | | | TPr | OUTP rise time | Cload = 1 nF | | 11 | | ns | | TPf | OUTP fall time | Cload = 1 nF | | 10 | | ns | | TNr | OUTN rise time | Cload = 1 nF | | 9 | | ns | | TNf | OUTN fall time | Cload = 1 nF | | 5 | | ns | | Tpd | Propagation delay | Cload = 1 nF | | 65 | | ns | | PROTECTI | ON - DESAT, ACTIVE SHORT CIRCU | IT, EXTERNAL MILLER CLAMP | | | ' | | | Ichg | Blanking capacitor charging current | Vdesat = 2.0V | | 2000 | | uA | | Tdesatleb | Leading edge blank time | | | 200 | | ns | | Tdesatfil | DESAT deglitch filter | | | 125 | | ns | | Vascl | ASC input low threshold referenced to COM | | | 1.45 | | V | | Vasch | ASC input high threshold referenced to COM | | | 2.7 | | V | | Tascfil | ASC deglitch filter time | | 400 | | 700 | ns | | Vclmpth | Miller Clamp threshold | Reference to VEE | 1.7 | 2 | 2.3 | V | | | | I . | 1 | | | | Table 3-1. Electrical Specifications (continued) | | Parameter | Test Conditions | Min | Nom | Max | Unit | |----------|------------------------------------------------|-----------------|-----|-----|-----|-------| | IcImpe | Miller Clamp current | CcImpe = 10nF | | 0.5 | | Α | | ISOLATIC | ISOLATION | | | | | | | Viso | Withstand isolation voltage for gate driver | Reinforced, 60s | 5 | | | kVrms | | Cio | Barrier capacitance for gate driver | | | 1.2 | | pF | | Tj | Operating Junction Temperature for gate driver | | -40 | | 150 | °C | # 3.3 PCB Pinout Table 3-2. PCB Pinout | Pinout | Location (top/bottom) | Function | | |------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | J1 | Тор | HS DESAT drain connection | | | J2 | Тор | LS DESAT drain connection | | | J3 | Тор | 16-pin connector, connection shown below VIN_12V J3A J3B 1 2 HS PWM BAR DIFFP S 6 LS PWM BAR DIFFN LS PWM BAR DIFFP T 8 FLT DIFFN ASC LS DIFFP 9 10 ASC LS DIFFN 11 12 13 14 RESET IN 15 16 SBH11-PBPC-D08-ST-BK SBH11-PBPC-D08-ST-BK GND_IN | | | J4 | Bottom | HS gate/source connection | | | J5 | Bottom | LS gate/source connection | | | TP10 | Тор | HS COM | | | TP21 | Тор | LS COM | | | TP23, TP24, TP25 | Top, black | Primary side GND | | | TP26 | Top, orange | HS RDY | | | TP27 | Top, red | LS nFLT | | | TP28 | Top, red | HS nFLT | | | TP29 | Top, orange | LS RDY | | | TP32 | Top, green | HS input PWM | | | TP33 | Top, brown | HS ASC feedback | | | TP34 | Top, blue | LS input PWM | | | TP35 | Top, gray | LS ASC feedback | | | TP44 | Top, red | +12V voltage hook input | | | TP45 | Top, black | Primary side GND hook input | | | GATE1 | Тор | MMCX connector, HS gate | | | GATE2 | Тор | MMCX connector, LS gate | | | GND1, 2, 3 | Тор | Primary side GND | | # 3.4 Device Information ### 3.4.1 Primary-Side Power The primary-side power supply block fulfills the following functions: - Provides +12-V input to the board via the connector or the test point hooks. - Converts the +12-V input voltage to +5-V VCC for the gate drivers. This functionality is realized by a TPS7A25 LDO. - Uses an ACM4520 common-mode choke to filter out common-mode noise. The +12-V power supply and the PWM signals should be connected to the same board, either the differential board or the EVM. Failure to do so might result in EVM component damage. # **Primary Side LDO** Figure 3-1. Primary-Side Power # 3.4.2 Primary-Side I/O and Diagnostics The primary-side I/O and diagnostic block fulfills the following functions: - Provides signal input, including high-side and low-side PWM and RESET, as well as +12-V voltage input to the half-bridge board. - If the power and signal inputs are given via the differential board connector, the status output pin of a power MUX, TPS2121, is used to turn on the SN65C1167 dual differential driver and receiver. The dual differential driver and receiver then converts the differential gate driver inputs to single-ended gate driver inputs, and converts single-ended gate driver outputs to differential outputs that will be transmitted to the differential board. - If the power and signal inputs are given via the test point hooks on this EVM, the power MUX turns off the SN65C1167 dual differential driver and receiver. This protects the dual differential driver and receiver from damage. - Filters out the high frequency noise in the high-side and low-side differential signals through RLC filters. - Combines high-side and low-side RDY and nFLT signal into one FLT\_OUT signal through an SN74LV21 AND gate. - Combines the nRST signal coming from the differential board and the on-board reset button into one RESET signal through an SN74LV21 AND gate. The +12-V power supply and the PWM signals should be connected to the same board, either the differential board or the EVM. Failure to do so might result in EVM component damage. Figure 3-2. Primary Side nFLT/RDY/Reset Logic Figure 3-3. Primary Side Input Filtering and MUX Figure 3-4. Primary Side Connectors and Transceiver ### 3.4.3 Secondary-Side Bias Supply The secondary-side power supply block fulfills the following functions: - Converts the +12-V input voltage to +20-V/-5.5-V bipolar bias voltage supply for the secondary side of the gate drivers. Each gate driver has its own bias supply. This is achieved by using one LM5185-Q1 flyback controller and one YA8864-BLD transformer for each gate driver. - The bias supply voltage can be adjusted by following the instructions in Section 6.1.1 and Section 6.1.2. - Reduces the noise of the positive secondary side supply voltage by using a TPS7A4901 LDO. - This LDO can also be bypassed by following the instructions in Section 6.1.4 Figure 3-5. Secondary-Side Bias Supply ### 3.4.4 Output Stage Gate Loop The gate driver output block consists of a pair of PMOS/NMOS buffer stage, the turn-on gate resistor, the turn-off gate resistor, and the connectors to the SiC MOSFET/IGBT module. Test points are also placed near the output pins for easy measurement of the gate voltage. Figure 3-6. Output Stage Gate Loop #### 3.4.5 Short-Circuit Detection - DESAT The short-circuit detection system on the board provides protection in case of a short-circuit event. When a short circuit is detected, the gate driver sinks a specified amount of current through the SSD pin, which is programmable by the SSD pin external resistor. The FLT flag will also be raised on the primary side. If the short-circuit detection system is not used or if an IGBT/MOSFET is not connected to the board, J1 and J2 should be shorted to high-side and low-side COM respectively to prevent false short-circuit triggering. The Vds voltage detection threshold can be calculated with the equation below mentioned in this FAQ: $$V_{DET} = V_{DESAT} - V_Z - n \times V_F - I_{chg} \times R_{lim}$$ (1) With the 9V internal DESAT detection threshold, the two STTH122A diode with forward voltage of 0.6 V each, the $1k\Omega$ limiting resistor, the Zener diode with 2.7-V Zener voltage, and the 2mA internal charging current, the Vds DESAT detection threshold is calculated to be 3.1V. If another Vds voltage detection threshold is desired, adjust the size of the current-limiting resistor and the Zener voltage of the Zener diode. In this EVM, method mentioned in this FAQ is implemented to increase the DESAT charging current in case of a short-circuiting event. Increasing the DESAT charging current can decrease the blanking time of the capacitor and provide better protection for SiC MOSFETs. The blanking time for this circuit can be calculated by the equation mentioned in the same FAQ, which is calculated to be 115 ns. This blanking time calculation is valid for VDD = 20V; if another VDD value is used, the blanking time will vary. Figure 3-7. DESAT Circuit # 4 Using the EVM ### 4.1 Equipment List - Power Supplies - Need to provide at least 12 V and 1 A to power up the EVM - Function Generator and Accessories - One 2-channel function generator - Two standard 50-Ω BNC coaxial cables - Oscilloscope and Accessories - 500-MHz or higher bandwidth oscilloscope with at least four channels - Four passive voltage probes with at least 500-MHz bandwidth - Digital Multimeters - Two digital multimeters - Other - Connection wires of various length ### 4.2 Test Setups and Procedures ## 4.2.1 Power-On and Bias Supply Check #### Note This is a low voltage only test; do not attempt to manually probe the test points when a high bus voltage is applied to this EVM. - 1. Power supply set at 12V, 0.5A. Connect power supply to TP44 (power) and TP45 (GND) - 2. Tie J1 to HS COM, and J2 to LS COM. See Figure 4-1 for location of test points. - 3. Probe the VCC-GND voltage between the VCC test via and GND1 TP (lower left of board) with a multimeter. This value should be 5V. - 4. Probe the high side VDD-COM voltage by using the HS VDD test point and the HS COM test point. Probe the low side VDD-COM voltage by using the LS VDD test point and the LS COM test point. These values should be around 20V. - 5. Probe the high side VEE-COM voltage by using the HS VEE test point and the HS COM test point. Probe the low side VEE-COM voltage by using the LS VEE test point and the LS COM test point. These values should be around -5.5V. - 6. Make sure the four red indicator LEDs are off. Make sure the one green indicator LED and the two blue indicator LEDs are on. Figure 4-1. Test Point Locations for Power On Check www.ti.com Using the EVM #### 4.2.2 Output Switching To perform this test, make sure tests in Section 4.2.1 has been performed and the gate drivers are powered up properly. - 1. Generate two 10kHz 0V-5V complementary PWM waves on two function generator channels. Deadtime can be added between the two PWM waves. - 2. Connect these channel probes to the test points on the EVM; connect the high-side PWM channel probe to HS INP and the low-side PWM channel probe to LS INP on top left of the board. Connect the function generator ground lead to either the black GND TP in between HS INP and LS INP, or to the GND1 TP on the bottom left of the board. - 3. Measure the high-side gate voltage with the MMCX connector GATE1, and measure the low-side gate voltage with the MMCX connector GATE2. - 4. GATE1 waveform should match high-side PWM input signal with a small delay (~100ns). GATE2 waveform should match low-side PWM input signal with a small delay (~100ns). Both waveforms should have high level of around +20V and low level of around -5.5V. Figure 4-2. Test Point Locations for Output Switching Check ## **5 EVM Example Measurements** ### **5.1 DESAT Functionality Testing** Figure 5-1. DESAT and Soft Turn-Off Waveform This test is carried out without a bus voltage to test the functionality of DESAT pin, soft turn-off, and nFLT feedback. The voltage on DESAT first reaches the detection threshold. After a short delay as specified in the UCC2189X5Y-Q1 data sheet, output experiences soft turn-off via the SSD pin. The soft turn-off current can be programmed by the resistor on SSD. On the primary side, nFLT also pulls low as a result of DESAT triggering, following a longer delay as specified in the datasheet. www.ti.com EVM Tuning ## **6 EVM Tuning** ### 6.1 Adjust Power Supplies ## 6.1.1 Adjust Only VDD Bias Supply This section outlines steps to adjust only the VDD bias supply. To decrease the VDD bias supply voltage, change the resistor divider connected to the FB pin of the TPS7A49 LDO. The resistors are R92/R93 for the high-side LDO, and R97/R98 for the low-side LDO. The equation below, mentioned in the TPS7A49 datasheet, can be used to select the resistors. $$V_{DD} = V_{FB} \times \left(1 + \frac{R_{92}}{R_{93}}\right) = 1.185 \times \left(1 + \frac{R_{92}}{R_{93}}\right) \tag{2}$$ $$V_{DD} = V_{FB} \times \left(1 + \frac{R_{97}}{R_{98}}\right) = 1.185 \times \left(1 + \frac{R_{97}}{R_{98}}\right) \tag{3}$$ Equation 2 and Equation 3 are used for high-side and low-side VDD resistor selection, respectively. It's not recommended to increase the VDD bias supply voltage as it might violate the maximum Vgs value of the power module. If VDD voltage needs to be increased, VEE voltage will increase accordingly as well. Refer to Section 6.1.2 to change VDD and VEE bias supplies simultaneously. ### 6.1.2 Adjust VDD and VEE Bias Supplies Simultaneously VDD and VEE bias supplies can be adjusted simultaneously if desired. The bias supplies can be adjusted separately for high-side and low-side gate drivers. If VDD/VEE for the high-side gate driver needs to be adjusted, R62 should be changed; if VDD/VEE for the low-side gate driver needs to be adjusted, R80 should be changed. The table below outlines the VDD/VEE bias supply voltage with corresponding resistor values. R62/R80 Values (Ω) VDD (V) VEE (V) 100k 15 -4 120k 18 -4.8 137k (Original configuration) 20 -5.5 Table 6-1. VEE Bias Supply Voltage and Recommended Resistor Values #### 6.1.3 Switch to Unipolar Bias Supply The secondary side bipolar power supply can be switched to a unipolar power supply. The high side and low side can be adjusted separately. To change the high-side gate driver to a unipolar power supply, short R43 and remove R94; to change the low-side gate driver to a unipolar power supply, short R44 and remove R99. After the resistors adjustments, VDD would remain the same. #### 6.1.4 Bypass VDD LDO The VDD LDO can be bypassed on either the high side gate driver or the low side. To bypass the VDD LDO on the high side gate driver, populate R66. To bypass the VDD LDO on the low side gate driver, populate R95. ### 6.2 Adjust Drive Strength To adjust the drive strength, change the gate resistors. The gate resistors are placed after the booster stage. For high-side gate driver, the turn-on and turn-off gate resistors are R19 and R23. For low-side gate driver, the turn-on and turn-off gate resistors are R34 and R38. The default values of the gate resistors are $6.8\Omega$ . UCC2189X5Y-Q1 can provide peak source/sink current of 2.8A typical to drive the booster stage efficiently. EVM Tuning Www.ti.com # 6.3 Adjust Soft Turn-off Strength The soft turn-off functionality is realized by activating an internal pull-down FET for the SSD/GATE pin for UCC2189X5Y-Q1. The soft turn-off strength can be adjusted by changing the resistor connected to the SSD pin, and is inversely proportional to the resistor size. The resistors are R11 and R24 respectively for high-side and low-side gate driver. # 7 Hardware Design Files www.ti.com Hardware Design Files ### 7.1 Schematics Figure 7-1. EVM Schematic Figure 7-2. EVM Schematic # 7.2 PCB Layouts Figure 7-3. Top Layer Hardware Design Files www.ti.com Figure 7-4. Signal Layer 1 Figure 7-5. Signal Layer 2 Hardware Design Files www.ti.com Figure 7-6. Bottom Layer # 7.3 Bill of Materials (BOM) Table 7-1. EVM BOM | Designator | Quantity | Value | Description | Part Number | |--------------------|----------|-------|--------------------------------------------------------|---------------------| | !PCB | 1 | | Printed Circuit Board | HVP-096 | | C1, C5, C20, C23 | 4 | 0.1uF | CAP, CERM, 0.1 uF, 50 V, +/- 10%,<br>X7R, 0603 | 8.85012E+11 | | C2, C6, C21, C24 | 4 | 4.7uF | CAP, CERM, 4.7 uF, 50 V, +/- 10%,<br>X7R, 1210 | C3225X7R1H475K250AB | | C3, C12, C18, C19 | 4 | 1µF | Cap Ceramic 1uF 25V X5R ±10%<br>Pad SMD 0603 +85°C T/R | CL10A105KA8NNNC | | C4, C11, C22, C28 | 4 | 100pF | CAP, CERM, 100 pF, 10 V, +/- 10%,<br>X7R, 0603 | 0603ZC101KAT2A | | C7, C25 | 2 | 0.1uF | CAP, CERM, 0.1 uF, 10 V,+/- 10%,<br>X5R, 0402 | LMK105BJ104KV-F | | C8, C78 | 2 | 0.1uF | CAP, CERM, 0.1 uF, 50 V, +/- 10%,<br>X7R, 0603 | C0603C104K5RACTU | | C9, C14, C26, C29 | 4 | 0.1uF | CAP, CERM, 0.1 uF, 25 V, +/- 10%,<br>X7R, 0603 | C0603X104K3RACTU | | C10, C15, C27, C30 | 4 | 4.7uF | CAP, CERM, 4.7 uF, 25 V, +/- 20%,<br>X5R, 1206 | 12063D475MAT2A | | C13, C16 | 2 | 100pF | CAP, CERM, 100 pF, 25 V, +/- 5%, C0G/NP0, 0402 | C0402C101J3GACTU | | | _ | | BOM (continued) | | |-------------------------------------------|----------|--------|---------------------------------------------------------------------------------|----------------------| | Designator | Quantity | Value | Description | Part Number | | C17, C31 | 2 | 100pF | CAP, CERM, 100 pF, 50 V, +/-<br>5%, C0G/NP0, AEC-Q200 Grade 0,<br>0603 | CGA3E2NP01H101J080AA | | C32, C39 | 2 | 2.2uF | CAP, CERM, 2.2 uF, 50 V, +/- 10%, X5R, 0603 | GRM188R61H225KE11D | | C33, C34, C35, C36,<br>C37, C38, C40, C41 | 8 | 10uF | CAP, CERM, 10 uF, 50 V, +/- 10%,<br>X5R, 1206 | C3216X5R1H106K160AB | | C42, C53, C60, C72 | 4 | 22pF | CAP, CERM, 22 pF, 100 V, +/- 5%, C0G/NP0, 0603 | GRM1885C2A220JA01D | | C43, C62 | 2 | 150pF | 0603 150 pF 100 V ±5 % Tolerance<br>C0G/NP0 SMT Multilayer Ceramic<br>Capacitor | 06031A151JAT2A | | C44, C63 | 2 | 33uF | CAP, TA, 33 uF, 35 V, +/- 10%, 0.1 ohm, SMD | TPSE336K035R0100 | | C45, C46, C64, C65,<br>C79, C81, C85, C86 | 8 | 10uF | CAP, CERM, 10 uF, 50 V, +/- 20%,<br>X5R, AEC-Q200 Grade 3, 1206 | CGA5L3X5R1H106M160AB | | C47, C66 | 2 | 47uF | CAP, AL, 47 uF, 25 V, +/- 20%, 0.44 ohm, SMD | UUD1E470MCL1GS | | C48, C67 | 2 | 10uF | CAP, CERM, 10 uF, 25 V, +/- 10%,<br>X7R, 1206 | GRM31CR71E106KA12L | | C49, C68 | 2 | 0.1uF | CAP, CERM, 0.1 uF, 25 V, +/- 10%, X5R, 0201 | GRM033R61E104KE14J | | C50, C51, C69, C70 | 4 | 10uF | CAP, CERM, 10 µF, 10 V,+/- 20%,<br>X5R, 0402 | GRM155R61A106ME44 | | C52, C71 | 2 | 33uF | CAP, CERM, 33 uF, 10 V, +/- 20%,<br>X5R, 1210 | C3225X5R1A336M200AC | | C54, C73 | 2 | 1uF | CAP, CERM, 1 uF, 25 V, +/- 10%,<br>X5R, 0402 | C1005X5R1E105K050BC | | C55, C56, C74, C75 | 4 | 1000pF | CAP, CERM, 1000 pF, 25 V, +/-<br>10%, X5R, 0201 | C0603X5R1E102K030BA | | C57, C76, C80, C82,<br>C83, C84 | 6 | 0.01uF | CAP, CERM, 0.01 uF, 50 V, +/-<br>10%, X7R, 0402 | GRM155R71H103KA88D | | C58, C77 | 2 | 47pF | CAP, CERM, 47 pF, 50 V, +/- 5%, C0G/NP0, 0402 | UMK105CG470JVHF | | C59, C61 | 2 | 68pF | 68pF ±5% 50V Ceramic Capacitor<br>C0G, NP0 0402 (1005 Metric) | GCM1555C1H680JA16D | | C87, C91 | 2 | 0.1uF | CAP, CERM, 0.1 uF, 50 V, +/- 10%,<br>X7R, AEC-Q200 Grade 1, 0402 | GCM155R71H104KE02D | | C88, C92 | 2 | 100nF | CAP, CERAMIC, 0402, X7R, 100nF, 25V, ±15 %, SMD | 8.85012E+11 | | D1, D2, D6, D7 | 4 | 1200V | Diode, Ultrafast, 1200 V, 1 A, SMA | STTH112A | | D3, D8 | 2 | 2.7V | Diode, Zener, 2.7 V, 300 mW,<br>SOD-523 | BZT52C2V7T-7 | | D4, D9 | 2 | 14V | Diode, Zener, 14 V, 500 mW,<br>SOD-123 | DDZ14B-7 | | | Table 7-1. EVM BOM (continued) | | | | | | |--------------------|--------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--| | Designator | Quantity | Value | Description | Part Number | | | | D5, D10 | 2 | 30V | Diode, Schottky, 30 V, 0.2 A, SOD-323 | BAT54WS-7-F | | | | D11, D12, D13, D14 | 4 | | Red 630nm LED Indication -<br>Discrete 1.5V 0603 (1608 Metric) | LS L29K-G1J2-1-Z | | | | D15 | 1 | | Green 570nm LED Indication -<br>Discrete 1.7V 0603 (1608 Metric) | LG L29K-F2J1-24-Z | | | | D16, D20 | 2 | 100V | Diode, Schottky, 100 V, 1 A, AEC-Q101, SMA | VS-10MQ100HM3/5AT | | | | D17, D21 | 2 | 20V | Diode, Zener, 20 V, 300 mW,<br>SOD-323 | MM3Z20VST1G | | | | D18, D22 | 2 | | Diode 100 V 1A Surface Mount<br>SOD-123H | ACDBMT1100-HF | | | | D19, D23 | 2 | 30V | Diode, Schottky, 30 V, 1 A, AEC-Q101, SMB | VS-10BQ030HM3/5BT | | | | D24, D25 | 2 | | LED Uni-Color Blue 0.07lm 465nm<br>Chip LED 2-Pin 0603 T/R | LB Q39G-L2OO-35-1 | | | | GATE1, GATE2 | 2 | | Connector, MMCX 50 ohm, TH | MMCX-J-P-H-ST-TH1 | | | | GND1 | 1 | | Test Point, Compact, SMT | 5016 | | | | J1, J2 | 2 | | FASTON 110, PCB Terminals,<br>Tab, Tab, PCB Terminal Mating<br>Tab Width .11 in [2.8 mm], PCB<br>Terminal Mating Tab Thickness .02<br>in [.51 mm] | 735187-2 | | | | J3 | 1 | | | SBH11-PBPC-D08-ST-BK | | | | J4, J5 | 2 | | Receptacle, 2.54mm, 2x2, Gold, TH | SSW-102-01-G-D | | | | L1, L2 | 2 | | Coupled inductor, 2.8 A, 0.055 ohm, SMD | ACM4520-421-2P-T000 | | | | L3, L4, L9, L10 | 4 | | 2 Line Common Mode Choke<br>Surface Mount 1 kOhms @ 100<br>MHz 200mA DCR 900mOhm | ACM2520-102-2P-T002 | | | | L5, L6, L7, L8 | 4 | | 1μH Shielded Multilayer Inductor<br>600mA 150mOhm 0603 (1608<br>Metric) | MLZ1608A1R0WT000 | | | | LBL1 | 1 | | Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll | THT-14-423-10 | | | | Q1, Q3, Q4, Q6 | 4 | | N-Channel 40 V 8A (Ta), 19A (Tc)<br>2.3W (Ta), 15W (Tc) Surface Mount<br>DFN2020MD-6 | BUK6D23-40EX | | | | Q2, Q5 | 2 | | P-Channel 40 V 6A (Ta) 15W (Tc)<br>Surface Mount DFN2020MD-6 | BUK6D43-40PX | | | | Q7, Q8 | 2 | | N-Channel 80 V 4.7A (Ta), 12A (Tc)<br>2.9W (Ta), 18W (Tc) Surface Mount<br>8-WDFN (3.3x3.3) | NTTFS6H888NTAG | | | www.ti.com Hardware Design Files | | I | Table 7-1. EVM | BOM (continued) | | |----------------------------------------------------------------|----------|----------------|--------------------------------------------------------------------------------------------------|--------------------| | Designator | Quantity | Value | Description | Part Number | | R1, R3, R10, R27, R29,<br>R32 | 6 | 100 | RES, 100, 1%, 0.125 W, AEC-<br>Q200 Grade 1, 0402 | ATC504L1000FTNCFT | | R2, R6, R8, R9, R16,<br>R72, R74 | 7 | 100 | RES, 100, 5%, 0.063 W, AEC-<br>Q200 Grade 0, 0402 | CRCW0402100RJNED | | R5, R30 | 2 | 10 | RES, 10.0, 1%, 0.25 W, AEC-Q200<br>Grade 0, 0603 | CRCW060310R0FKEAHP | | R7, R15, R17, R31, R33,<br>R90, R91, R100, R101,<br>R103, R104 | 11 | 10.0k | RES, 10.0 k, 1%, 0.1 W, 0603 | RC0603FR-0710KL | | R11, R24 | 2 | 34.8 | RES, 34.8, 1%, 0.5 W, 1210 | RC1210FR-0734R8L | | R12, R13, R18, R25,<br>R26, R50, R52, R55,<br>R56, R84, R96 | 11 | 16.5k | RES, 16.5 k, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603 | ERJ-3EKF1652V | | R19, R23, R34, R38 | 4 | 6.8 | RES, 6.8, 5%, 1 W, AEC-Q200<br>Grade 0, 2512 | CRCW25126R80JNEG | | R20, R35 | 2 | 1.00k | RES, 1.00 k, 0.1%, 0.125 W, 0805 | RT0805BRD071KL | | R39, R40, R41, R42 | 4 | 1.00k | RES, 1.00 k, 1%, 0.1 W, 0603 | ERJ-3EKF1001V | | R45 | 1 | 2.49k | RES, 2.49 k, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603 | CRCW06032K49FKEA | | R48 | 1 | 2.32Meg | RES, 2.32 M, 1%, 0.063 W, AEC-<br>Q200 Grade 0, 0402 | CRCW04022M32FKED | | R49 | 1 | 208k | RES, 208 k, 0.5%, 0.1 W, 0603 | RT0603DRE07208KL | | R51 | 1 | 768k | RES, 768 k, 1%, 0.063 W, AEC-<br>Q200 Grade 0, 0402 | CRCW0402768KFKED | | R53 | 1 | | 49.9 kOhms ±1% 0.1W, 1/10W<br>Chip Resistor 0603 (1608 Metric)<br>Automotive AEC-Q200 Thick Film | CRCW060349K9FKEA | | R54 | 1 | 226k | RES, 226 k, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603 | CRCW0603226KFKEA | | R57, R63, R73, R81 | 4 | 100 | RES, 100, 1%, 0.25 W, AEC-Q200<br>Grade 0, 0603 | CRCW0603100RFKEAHP | | R58, R61, R75, R79 | 4 | 10.0k | RES, 10.0 k, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0603 | CRCW060310K0FKEA | | R59, R76 | 2 | 100 | RES, 100, 1%, 0.25 W, AEC-Q200<br>Grade 0, 1206 | ERJ-8ENF1000V | | R60, R78 | 2 | 10 | RES, 10.0, 1%, 0.1 W, 0603 | RC0603FR-0710RL | | R62, R80 | 2 | 137k | RES, 137 k, 1%, 0.1 W, AEC-Q200<br>Grade 0, 0402 | ERJ-2RKF1373X | | R64, R82 | 2 | 0 | RES, 0, 5%, 0.1 W, 0603 | RC0603JR-070RL | | R65, R83 | 2 | 127k | RES, 127 k, 1%, 0.1 W, 0603 | RC0603FR-07127KL | | R67, R85 | 2 | 100 | RES, 100, 1%, 0.1 W, 0402 | ERJ-2RKF1000X | | R68, R86 | 2 | 178k | RES, 178 k, 1%, 0.1 W, 0603 | RC0603FR-07178KL | | R69, R87 | 2 | 20k | RES, 20 k, 5%, 0.1 W, 0603 | RC0603JR-0720KL | | R70, R88 | 2 | 0.05 | RES, 0.05, 1%, 1 W, 1206 | MCS1632R050FER | | Designator | Quantity | Value | Description | Part Number | |---------------------------|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------| | R71, R89 | 2 | 10.0k | RES, 10.0 k, 1%, 0.1 W, 0402 | ERJ-2RKF1002X | | R77, R94, R99 | 3 | 0 | RES, 0, 5%, 0.125 W, 0603 | MCT06030Z0000ZP500 | | R92, R97 | 2 | 1.58Meg | RES, 1.58 M, 1%, 0.1 W, AEC-<br>Q200 Grade 0, 0603 | CRCW06031M58FKEA | | R93, R98 | 2 | 100k | RES, 100 k, 1%, 0.1 W, 0603 | RC0603FR-07100KL | | S1 | 1 | | Switch, Tactile, SPST-NO, 0.05A, 12V , SMD | EVQ-P7A01P | | T1, T2 | 2 | | Flyback Transformer, for TI<br>LM5180-Q1, SMT, RoHS | YA8864-BLD | | TP10, TP21 | 2 | | Test Point, Miniature, SMT | 5015 | | TP23, TP24, TP25,<br>TP45 | 4 | | Test Point, Multipurpose, Black, TH | 5011 | | TP26, TP29 | 2 | | Test Point, Multipurpose, Orange,<br>TH | 5013 | | TP27, TP28, TP44 | 3 | | Test Point, Multipurpose, Red, TH | 5010 | | TP32 | 1 | | Test Point, Multipurpose, Green,<br>TH | 5126 | | TP33 | 1 | | Test Point, Multipurpose, Brown,<br>TH | 5125 | | TP34 | 1 | | Test Point, Multipurpose, Blue, TH | 5127 | | TP35 | 1 | | Test Point, Multipurpose, Grey, TH | 5128 | | U1, U3 | 2 | | Single Channel Isolated Pre-Driver for SiC/IGBT with Active Protection | UCC218905BQDFPRQ1 | | U2 | 1 | | Dual 4-Input Positive-AND Gate,<br>DGV0014A (TVSOP-14) | SN74LV21ADGVR | | U4 | 1 | | 300-mA, 18-V, Low IQ, Low<br>Dropout Voltage Regulator<br>with Power Good, DRV0006A<br>(WSON-6) | TPS7A2501DRVR | | U5 | 1 | | 2.7V-22V, 4A, 50mohm Priority<br>Power MUX, RUX0012A (VQFN-<br>HR-12) | TPS2121RUXR | | U6, U8 | 2 | | 120-VIN PSR Flyback Automotive<br>DC/DC Controller With Low IQ and<br>Low EMI, HTSSOP14 | LM5185-Q1 | | U7 | 1 | | Dual Differential Driver and<br>Receiver with +/-15-kV IEC ESD<br>Protection, 2 TX / 2 RX, 5V, -40<br>to 85 degC, 16-Pin VQFN(RGY),<br>Green (RoHS & no Sb/Br) | SN65C1167ERGYR | | U9, U10 | 2 | | Single Output High PSRR LDO,<br>150 mA, Adjustable 1.2 to 33 V<br>Output, 3 to 36 V Input, with Ultra-<br>Low Noise, 8-pin MSOP (DGN), -40<br>to 125 degC, Green (RoHS & no<br>Sb/Br) | TPS7A4901DGNR | www.ti.com Hardware Design Files | Designator | Quantity | Value | Description | Part Number | |-------------------------------------|----------|-------|------------------------------------------------------------------------------------------------|--------------------| | C89, C90 | 0 | 0.1uF | CAP, CERM, 0.1 uF, 50 V, +/- 10%,<br>X7R, 0603 | 8.85012E+11 | | FID1, FID2, FID3 | 0 | | Fiducial mark. There is nothing to buy or mount. | N/A | | R4, R14, R28, R46, R47,<br>R66, R95 | 0 | 0 | RES, 0, 5%, 0.125 W, 0603 | MCT06030Z0000ZP500 | | R43, R44 | 0 | 0 | 0 Ohms Jumper 0.5W, 1/2W<br>Chip Resistor 0805 (2012 Metric)<br>Automotive AEC-Q200 Metal Foil | HCJ0805ZT0R00 | Additional Information # **8 Additional Information** ### 8.1 Trademarks All trademarks are the property of their respective owners. # **9 Revision History** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | DATE | REVISION | NOTES | |---------------|----------|-----------------| | December 2024 | * | Initial Release | #### STANDARD TERMS FOR EVALUATION MODULES - Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms. - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system. - 2 Limited Warranty and Related Remedies/Disclaimers: - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement. - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after the defect has been detected. - 2.3 Tl's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period. # WARNING Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads. NOTE: EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG. #### 3 Regulatory Notices: #### 3.1 United States 3.1.1 Notice applicable to EVMs not FCC-Approved: **FCC NOTICE:** This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter. 3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant: #### CAUTION This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. #### FCC Interference Statement for Class A EVM devices NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. #### FCC Interference Statement for Class B EVM devices NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - Reorient or relocate the receiving antenna. - Increase the separation between the equipment and receiver. - · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. #### 3.2 Canada 3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247 #### **Concerning EVMs Including Radio Transmitters:** This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. ## Concernant les EVMs avec appareils radio: Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. ### **Concerning EVMs Including Detachable Antennas:** Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types lated in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. #### Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur #### 3.3 Japan - 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti\_ja/general/eStore/notice\_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。 - https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html - 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan. If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User): - 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan, - 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or - 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above. User will be subject to penalties of Radio Law of Japan. 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。 - 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。 - 2. 実験局の免許を取得後ご使用いただく。 - 3. 技術基準適合証明を取得後ご使用いただく。 - なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ ンスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル - 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti\_ja/general/eStore/notice\_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html - 3.4 European Union - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive): This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. - 4 EVM Use Restrictions and Warnings: - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS. - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages. - 4.3 Safety-Related Warnings and Restrictions: - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm. - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees. - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements. - 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free. #### 6. Disclaimers: - 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS. - 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED. - 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED. - 8. Limitations on Damages and Liability: - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TIMORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED. - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, , EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT. - 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs. - 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated ### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated