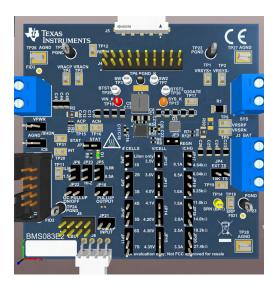
BQ2569X/9X-Q1 Evaluation Module

Description

The BQ2569X/9X-Q1 evaluation module (EVM) is used to evaluate the BQ2569X/9X-Q1 integrated circuit. The BQ2569X/9X-Q1 is an integrated switched-mode buck-boost battery charge management device in HOTROD (QFN) package, intended for charging 1-series to 7-series cell Li chemistry batteries with up to 3.3A charge current. In forward/charge/sink mode, the IC operates from 2.5V to 36V input voltage and withstands up to 45V. The BQ25690 NVDC topology has an external BATFET that provides a regulated minimum system voltage when the battery is low and measures termination current independent of system load current. The default charge voltage and current are set using resistors. The device defaults to forward/charge/sink mode but can be changed to reverse/OTG/source mode. The BQ25690 also allows forward/reverse bypass (pass through) mode using the I2C registers. In addition, the I2C registers can change the switching frequency as well as the voltage and current regulation settings. The BQ25690 has maximum power point tracking (MPPT) feature for use with HiZ power sources like solar panels.

Get Started


- 1. Order the EVM on ti.com.
- Order the EV2400 or EV2500 to communicate with the EVM.
- Download the BQ25690 BQZ file and save in the / BatteryManagementStudio/config directory.

Features

- Screw terminal blocks allow for easy connection to bench power supplies and electronic load or resistive loads as well as simulated or real batteries
- Onboard jumpers with removable shunts facilitate default configuration and simulated operation
- Onboard test points and sense resistors facilitate measurement of high-efficiency and high-accuracy voltage and current regulation
- Connectors for EV2400 or EV2500 communication board for use with BQSTUDIO downloadable software

Applications

- Video doorbell, Smart home control
- Data concentrators, Wireless speaker, Appliances
- · Asset tracking, Mobile POS, Smart speaker
- Multiparameter patient monitor, Electrocardiogram (ECG), Ultrasound smart probe

BQ2569X/69X-Q1EVM E2 Hardware Board

1 Evaluation Module Overview

1.1 Introduction

The BMS083 PCB is a complete charger evaluation module for the BQ2569X/9X-Q1 family of battery and super capacitor chargers. The BQ2569X/9X-Q1 family of ICs are I²C-controlled single-cell charger ICs that operate in both forward/charge/sink but also in reverse/OTG/source mode. Some spins ICs also have forward and reverse bypass (pass through) modes.

This user's guide provides detailed testing instructions for the BQ2569X/9X-Q1 evaluation modules (EVM). Also included are descriptions of the necessary equipment, equipment setup, and procedures. The reference documentation contains the printed-circuit board layouts, schematics, and the bill of materials (BOM).

Throughout this user's guide, the abbreviations *EVM*, *BQ2569X/9X-Q1EVM*, *BMS083*, and the term *evaluation module* are synonymous with the BMS083 evaluation module, unless otherwise noted.

1.2 Kit Contents

The kit includes the following:

• 1 BQ2569X/9X-Q1 EVM

1.3 Specifications

Table 1-1 lists the recommended operating conditions for this EVM.

Table 1-1. Recommended Operating Conditions

Symbol	Description	Min	Тур	Max	Unit
V _{VIN}	Input voltage applied to VIN pin	2.9		36.0	V
V _{BAT}	Battery voltage applied to BAT pin			33.0	V
I _{VIN}	Input current into VIN			3.3	Α
Гоит	Converter output current from SW flowing to load and battery			3.3	А

1.4 Device Information

This EVM does not include the EV2500. To evaluate the EVM, an EV2500 must be ordered separately to evaluate the EVM with the downloadable BQSTUDIO software.

For detailed features and operation, see Table 1-2 for a list of devices and the corresponding data sheets.

Table 1-2. Device Data Sheets

Device	Data Sheet	EVM Label	
BQ25690	SLUSFN4	BQ25690EVM	

www.ti.com Hardware

2 Hardware

2.1 I/O Information

Table 2-1 lists the input and output connections available on this EVM and their respective descriptions.

Table 2-1. EVM I/O Connections

Jack	Description
J1(1) - SYS	Positive rail of the charger system output voltage, typically connected to the system load
J1(2) - GND	Ground
J2(1) - VPWR	Positive rail of the charger input voltage
J2(2) - GND	Ground
J3(1) - BAT+	Positive rail of the charger battery input, connected to the positive terminal of the external battery
J3(2) - TS	Connection available for external thermistor if required
J3(3) - GND	Ground
J4	For test purposes only - do not use. IC pin voltages are at the different vias of this uninstalled header.
J5	Power connection to TPS2575x EVM
J6	I ² C connector for the EV2400 or EV2500 interface board
J7	I ² C connector for the USB2ANY interface board - potential future use
J8	8 pin header data connection to TPS2575x

2.2 Jumper Information

Table 2-2 lists the jumper and shunt installations available on this EVM and their respective descriptions.

Table 2-2. EVM Jumper and Shunt Installation

Jack	Description	BQ25690 Default Shunt Setting
JP1	CE pin connection to ground to enable charging. When removed, CE pin will pull up to disable charge	Installed
JP2	Not used	Not Used
JP3	REGN to TS resistor divider network connection. This must remain connected to prevent TS fault.	Installed
JP4	Thermistor NORMAL temperature setting. Connect jumper to simulate charger entering TNORMAL (T2-T3) temperature region. Remove this jumper whenever using an externally connected thermistor.	Installed
JP5	ILIM_HIZ pin setting for 500 mA. Connect to set the external input current limit setting to 500mA.	Not Installed
JP6	ILIM_HIZ pin setting for 1.5 A. Install shunt to set the external input current limit setting to 1.5 A.	Installed
JP7	STAT pin LED indicator connection. This indicates the current charger Status. LED on = charge in progress. LED off = charge terminated. LED blinking= charge fault.	Installed
JP8	CELL pin setting for 1S, VSYSMIN = 3.5 V. Connect to configure charger default setting to 1S charge.	Not Installed
JP9(1,2)	CELL pin setting for 2S, VSYSMIN = 6.2 V. Connect to configure charger default setting to 2S charge.	Installed
JP9(2,3)	CELL pin setting for 3S, VSYSMIN = 9.3 V. Connect to configure charger default setting to 3S charge.	Not Installed
JP10(1,2)	CELL pin setting for 4S, VSYSMIN = 12.4 V. Connect to configure charger default setting to 4S charge.	Not Installed
JP10(2,3)	CELL pin setting for 5S, VSYSMIN = 15.5 V. Connect to configure charger default setting to 5S charge.	Not Installed
JP11(1,2)	CELL pin setting for 6S, VSYSMIN = 18.6 V. Connect to configure charger default setting to 6S charge.	Not Installed
JP11(2,3)	CELL pin setting for 7S, VSYSMIN = 18.6 V. Connect to configure charger default setting to 7S charge.	Not Installed

Hardware www.ti.com

Table 2-2. EVM Jumper and Shunt Installation (continued)

Jack	Description	BQ25690 Default Shunt Setting
JP12	VCHG pin setting for 3.5V/cell. Connect to configure charger default setting to 3.5V/cell	Not Installed
JP13(1,2)	VCHG pin setting for 3.6V/cell. Connect to configure charger default setting to 3.3V/cell	Not Installed
JP13(2,3)	VCHG pin setting for 4.0V/cell. Connect to configure charger default setting to 4.0V/cell	Not Installed
JP14(1,2)	VCHG pin setting for 4.1V/cell. Connect to configure charger default setting to 4.1V/cell	Not Installed
JP14(2,3)	VCHG pin setting for 4.2V/cell. Connect to configure charger default setting to 4.2V/cell.	Installed
JP15(1,2)	VCHG pin setting for 4.3V/cell. Connect to configure charger default setting to 4.3V/cell.	Not Installed
JP15(2,3)	VCHG pin setting for 4.35V/cell. Connect to configure charger default setting to 4.35V/cell.	Not Installed
JP16	3.3V LDO output connection to provide on-board PULLUP rail.	Installed
JP17	ICHG pin setting for ICHG = 0.1 A, IPRECHG = 40 mA, ITERM = 40 mA . Connect to configure charger default setting to ICHG = 0.1 A	Not Installed
JP18(1,2)	ICHG pin setting for ICHG = 0.5 A, IPRECHG = 60 mA, ITERM = 60 mA . Connect to configure charger default setting to ICHG = 0.5 A	Not Installed
JP18(2,3)	ICHG pin setting for ICHG = 1.0 A, IPRECHG = 100 mA, ITERM = 100 mA . Connect to configure charger default setting to ICHG = 1.0 A	Installed
JP19(1,2)	ICHG pin setting for ICHG = 1.5 A, IPRECHG = 160 mA, ITERM = 160 mA . Connect to configure charger default setting to ICHG = 1.5 A	Not Installed
JP19(2,3)	ICHG pin setting for ICHG = 2.0 A, IPRECHG = 200 mA, ITERM = 200 mA . Connect to configure charger default setting to ICHG = 2.0 A	Not Installed
JP20(1,2)	ICHG pin setting for ICHG = 2.5 A, IPRECHG = 260 mA, ITERM = 260 mA . Connect to configure charger default setting to ICHG = 2.5 A	Not Installed
JP20(2,3)	ICHG pin setting for ICHG = 3.3 A, IPRECHG = 340 mA, ITERM = 340 mA . Connect to configure charger default setting to ICHG = 3.3 A	Not Installed
JP21	Connect 3.3V LDO input is connected with diode-OR from VPWR and BAT.	Installed
JP22	I2C SCL and SDA connection to onboard 3.3V PULLUP rail.	Not Installed
JP23	On E-2 board, to enter HiZ mode with valid voltage at VIN pin, install shunt to pull ILIM_HIZ pin high to 3.3V pull up voltage. To set ILIM=3.3A max, remove JP5, JP6 and JP23 shunts then connect ILIM_HIZ pin from JP23[1] or TP11 to GND.	Not installed

2.3 Equipment

This section includes a list of supplies required to perform tests on this EVM.

- 1. **Power Supplies:** Power Supply #1 (PS #1): A power supply capable of supplying up 26V at 3.3 A is required.
- 2. Load #1 for simulating a battery: Best option: 4-Quadrant Supply, voltage source/sink capable of ±26 V, 0 to ±5 A (or higher). A 1000uF capacitor connected in parallel is also recommended. Alternative Option: A 0–26V/at least 3.3A, DC electronic load set in a constant voltage loading mode. A second power supply connected by a diode in parallel with the electronic load may be needed to apply a startup voltage < simulated battery voltage.</p>
- 3. Load #2 for simulating a load at in forward/charge/sink mode. Or connect to VPWR for a load in reverse/OTG/source mode: Electronic or resistive; oad capable sinking at least 3.3A from up to 26V
- 4. **Meters:** 4x "Fluke 75" multi-meters, (equivalent or better).
- 5. **Computer:** A Windows 10 or 11 based computer with at least one USB port and a USB cable. Must have the latest version of Battery Management Studio installed.
- 6. USB Communication Kit:EV2400 or EV2500 USB-based PC interface board.
- 7. **Software:** BQSTUDIO software with latest .bqz file for the correct BQ2569X IC provided by Texas Instruments. Download and install BQSTUDIO from https://www.ti.com/tool/BQSTUDIO.

www.ti.com Hardware

2.4 Hardware Setup

Use the following list to set up the EVM testing equipment as shown in the figure below:

1. Install or customize EVM jumper connections as explained in Table 2-2.

Only 1 shunt must be installed for each group of headers: JP8-JP11, JP12-JP15, JP17-JP20 to set the default cell count, cell voltage and pre/charge/term current, respectively. The pins are read and register defaults set at POR from either VIN or battery or after ILIM_HIZ is pulled high. The cell count and voltage product sets the default battery regulation voltage and minimum system voltage.

- 2. Set PS #1 for 12V DC, 3-A current limit and then turn off the supply.
- 3. Connect the output of PS#1 in series with a current meter to J2 (VPWR and PGND).
- 4. Connect a voltage meter across TP10 (VIN_K) and any AGND test point or across J2.
- 5. Turn on Load #1, set to constant voltage mode, and output to 5-V. Disable Load.
- 6. Connect a voltage meter across TP15 and TP16 to measure the voltage across the ACx sense resistor. The measurement divided by the sense resistor gives IIN/IIN REV input/output current.
- Connect a voltage meter across TP14 (SRN) and any AGND test point or across the J3 connector to measure battery voltage.
- 8. Connect a voltage meter across TP8 and TP9 to measure the voltage across the SRx sense resistor. The measurement divided by the sense resistor gives battery current.
- 9. Connect the EV2400 or EV2500 USB interface board to the computer with a USB cable and from I2C port to J5 with the 4-pin cable.

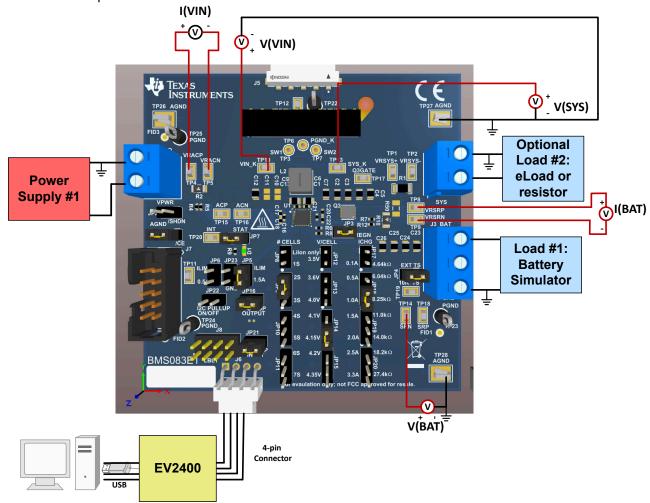


Figure 2-1. Test Setup for BQ25690 EVM

3 Software

3.1 Software Setup

Use the following to set up the EVM testing software:

1. On the computer connected to the EV2400 interface board, launch Battery Management Studio (BQStudio). Select Charger as seen in Figure 3-1.

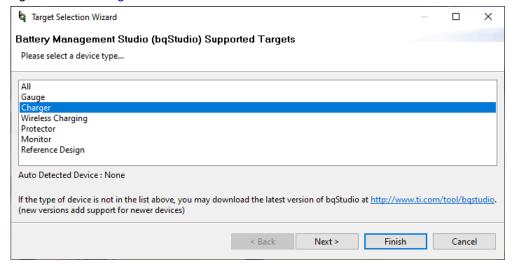
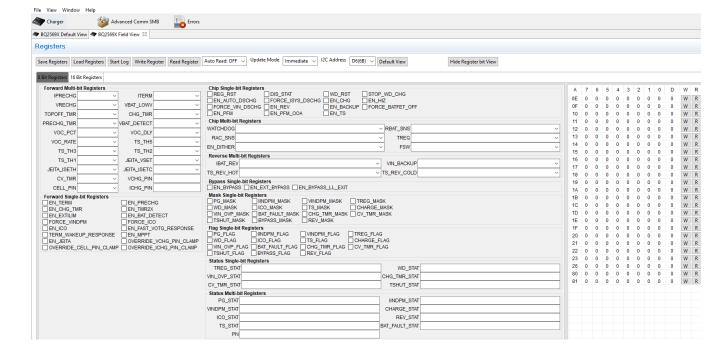



Figure 3-1. BQStudio Device Type Selection Window

- 2. Select the appropriate configuration file based on the device BQ2569x from the window.
- 3. Toward the right side of the ribbon on the window that appears select for the main window of the BQ2569x EVM software to appear, as shown in Figure 3-2.

www.ti.com Software

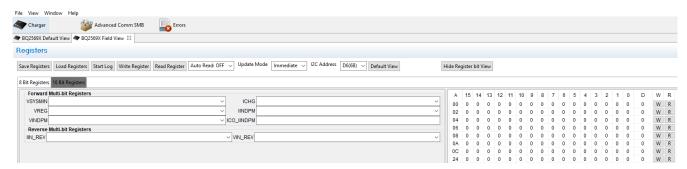


Figure 3-2. Field View of 8 Bit and 16 Bit Register Tabs of BQ2569x EVM Software

3.2 Test Procedure

3.2.1 Initial Power Up

Use the following steps for enabling the EVM test setup:

- 1. Make sure that Section 2.4 steps have been followed.
- 2. Make sure that Section 3.1 steps have been followed.
- 3. Turn on battery simulator Load#1 set to 5V:
 - Measure → V(SYS) (SYS-TP13 and AGND) = 5.0V ±50mV

Note

Completely disconnect Load #1 from BATTERY connections if different value is seen.

3.2.2 I²C Register Communication Verification

Use the following steps for communication verification :

1. In the EVM software, click the

Read Register

button

Device ACK OK

Verify that the GUI reads

in the top right corner.

Note

Device ACK Error

If the device reads followed.

verify Section 2.4 and Section 3.2.1 steps have been

- 2. In the Field View (see Figure 3-2), make the following changes as necessary:
 - · On the 8-bit tab:
 - In the Chip Multi-bit section, Set Watchdog to Disable
 - In the Chip Single-bit section, Set EN CHG is not already (note that /CE bit overrides EN CHG bit).
 - If a HIGHER cell count, regulation voltage, minimum system voltage and/or pre/charge/termination current is desired than set by the CELLS, VCHG and/or ICHG resistors, click the appropriate OVERRIDE bit in the Forward Single-bit section. The CELLS_PIN register is in the Forward Multi-bit section. The SYSMIN, VREG and ICHG register are on the 16 Bit tab.
 - On the 16-bit tab
 - Set IINDPM to desired input current limit <= PS#1 match output current. Note that the actual input current limit is the lower the IINDPM register or ILIM_HIZ resistor clamp unless the EN_EXTILIM bit in the Forward Single-bit section of the 8 Bit tab is set to 0.
 - Set the SYSMIN, VREG and/or ICHG registers to the desired setting.

www.ti.com Software

3.2.3 Forward/Charge/Sink Mode Verification

Use the following steps for forward/charge mode verification with the EVM default settings per the CELLS, VCHG and ICHG pin resistors:

Read Register

twice. Verify that

- 1. Turn on PS #1 set to 12V if not already on. In the EVM software, click
 - · All Fault and Status registers do not report any fault conditions.
 - · PG STAT reports Power Good
 - CHARGE_STAT reads Fast Charge
 - · STAT LED is on and not flashing
- 2. **For BQ25690EVM only:** To confirm minimum SYS voltage regulation and pre-charge regulation (see Section 2.4), take DMM measurements as follows:
 - Measure → V(SYS) (SYS-TP13 and AGND) = 6.2V -6.6V.
 - Measure → V(BAT) (SRN-TP14 and AGND) = 5V ±0.1V.
 - Measure → I(BAT) = 100mA ±50mA.
- 3. To confirm battery fast charge current regulation, increase Load #1 to 7.6V and take DMM measurements as follows:
 - Measure → V(SYS) (SYS-TP14 and AGND) = 7.6V -7.9V.
 - Measure → V(BAT) (BAT-TP13 and AGND) = 7.6V ±0.1V.
 - Measure \rightarrow I(BAT) = 1A ±100mA.
- 4. To confirm input current limit operation, in the EVM software on the 16-bit tab, lower IINDPM current to 500 mA and then take DMM measurement (or PS #1 measurement if accurate) as follows:
 - **Measure** → I(VIN) = 500 mA ±200mA.
 - · Verify that IINDPM_STAT register reports IINDPM Active

3.2.4 Reverse/OTG/Source Mode Verification

Use the following steps for reverse/OTG/source mode verification:

- 1. Turn off and disconnect PS #1.
- 2. Set Load #1, the battery simulator, to 7V and 2A current limit.

Note

If Load #1 connected from J3 BAT to GND is not a four quadrant supply, then remove Load #1 and use PS #1, replace with 7V, 2 A current limit.

- 3. In the EVM software on the 16-bit tab, confirm that VIN_REV, the reverse mode regulation voltage, is set to 5000 mV and IIN_REV, the reverse mode output current limit, is set to 1000 mA.
- 4. In the EVM software in the 8 Bit Chip Single-bit section
 - a. Uncheck EN BAT DETECT
 - b. Check EN_REV
- 5. Connect disabled Load #2 across J2 VPWR and PGND
- 6. Set Load #2 to 500 mA constant current load and the turn on the load.
- 7. To confirm the reverse regulation,
 - Measure \rightarrow V_{BUS} = 5000 mV + 155 mV
- 8. Turn off and disconnect the power supply.
- 9. Remove Load #2 from the connection.

www.ti.com Software

3.2.5 Helpful Tips

1. The leads and cables to the various power supplies, batteries and loads have resistance. The current meters also have series resistance. The charger dynamically reduces charge current depending on the voltage sensed at the VIN pin (using the VINDPM feature), BAT pin (as part of normal termination), and TS pin (through the battery temperature monitoring feature via battery thermistor). Therefore, voltmeters must be used to measure the voltage as close to the IC pins as possible instead of relying on the digital readouts of the power supply. If a battery thermistor is not available, then ensure that the shunt for the $10k\Omega$ resistor that simulates the NTC thermistor is in place.

- 2. When using a source meter that can source and sink current as your battery simulator, TI highly recommends adding a large (>=1000µF) capacitor at the EVM BATTERY and GND connector to prevent oscillations at the BAT pin due to mismatched impedances of the charger output and source meter input within their respective regulation loop bandwidths. Configuring a source meter for 4-wire sensing eliminates the need for a separate voltmeter to measure the voltage at the BAT pin. When using 4-wire sensing, always make sure that the sensing leads are properly connected to prevent accidental overvoltage by the power leads
- 3. For precise measurements of input and output current, especially near termination, the current meter in series with the battery or battery simulator must not be set to auto-range and needs to be removed entirely. An alternate method for measuring charge current is to either use an oscilloscope with hall effect current probe or by a differential voltage measurement across the relevant sensing resistors populated on the BQ25690EVM.

4 Hardware Design Files

4.1 Schematics

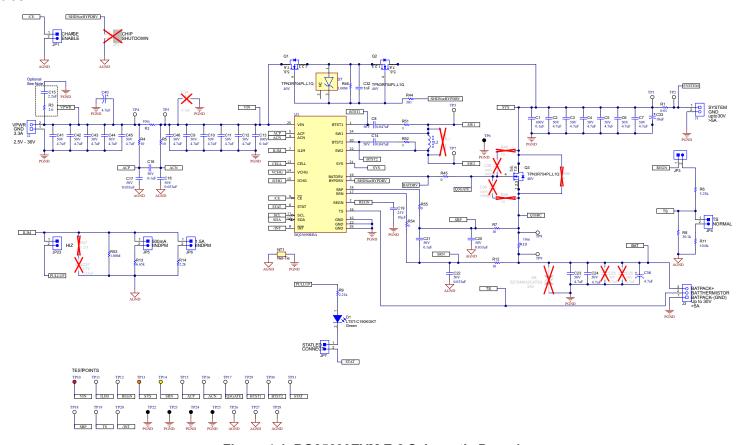


Figure 4-1. BQ25690EVM E-2 Schematic Page 1

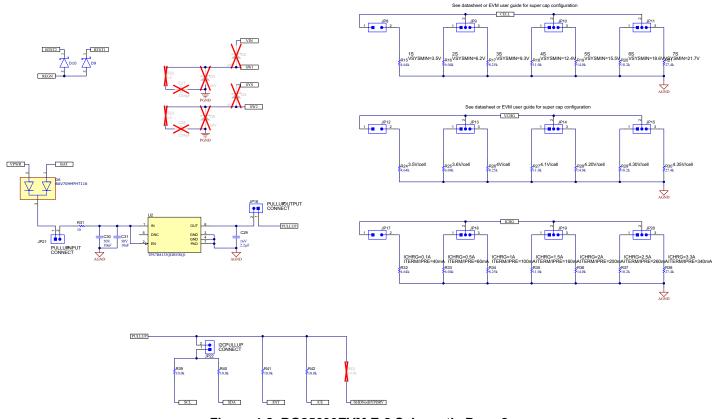
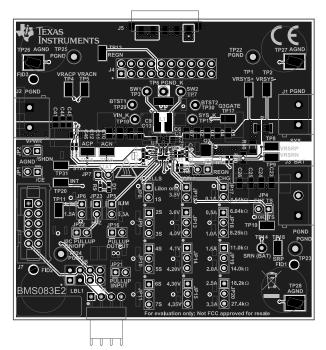



Figure 4-2. BQ25690EVM E-2 Schematic Page 2

4.2 PCB Layout

The following figures illustrate the PCB board layers.

8...8..8 8.8 000 • 8 8 **. •** &°°∘ ⊚ ■ \odot • ۵ ° • • **•** • • 00000 • **0** • • • စံ ••• ••• • • • • • • **■ ● ● ● •**

Figure 4-4. BMS083 E-2 Inner 1 Layer

Figure 4-3. BMS083 E-2 Top Overlay

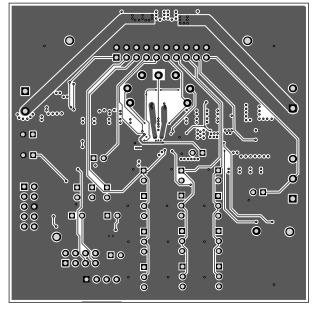


Figure 4-5. BMS083 E-1 Inner 2 Layer

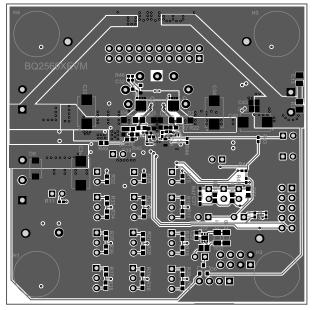


Figure 4-6. BMS083 E-2 bottom

4.2.1 PCB Layout Guidelines

The switching node rise and fall times must be minimized for minimum switching loss. Proper layout of the components to minimize high frequency current path loop is important to prevent electrical and magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the proper layout.

 Place high frequency decoupling capacitors for VIN and SYS as close possible to their respective pins and ground pin on the same layer as the charger IC (in other words, no vias) in order to have the smallest current return loop. www.ti.com Hardware Design Files

Place the REGN capacitor to ground and BTST capacitors to SW as close as possible to their respective pins.

- 3. Place high frequency decoupling capacitors for current sensing resistors as close as possible to their respective pins. Route the traces from the sense resistors to their IC away from the power pins (VIN, SWx, SYS).
- 4. Place the inductor as near to the SW1 and SW2 pins as possible given step 1 above. It is acceptable to use multiple vias to make these connections as the vias are only adding small amounts of inductance and resistance to an inductor with much higher inductance and DCR.
- 5. While this EVM has analog ground (AGND) and power ground (PGND) planes that connect close to the charge GND pin, two grounds planes/pours are not required. Resistors and capacitors used for setting sensitive nodes (for example, ACx, SRx, ILIM_HIZ, TS) can use one common ground plane but with their ground terminals connected away from high current ground return paths containing switching noise

See the EVM design for the recommended component placement with trace and via locations.

16

4.3 Bill of Materials (BOM)

Table 4-1. REV E-2 Bill of Materials (BOM)

Designator	690	Value	Description	PackageReference	PartNumber	Manufacturer
C1, C13	2	0.1uF	CAP, CERM, 0.1 uF, 100 V, +/- 10%, X5R, 0402	0402	GRM155R62A104KE14D	MuRata
C2, C3, C4, C5, C6, C7, C9, C10, C11, C12, C23, C24, C41, C42, C43, C44, C45, C46	18	4.7uF	CAP, CERM, 4.7 uF, 50 V, +/- 10%, X5R, AEC-Q200 Grade 3, 0805	0805	GRT21BR61H475KE13L	MuRata
C8, C14	2	0.047uF	CAP, CERM, 0.047 uF, 50 V, +/- 10%, X5R, 0402	0402	C1005X5R1H473K050BB	TDK
C15	1	2.2uF	CAP, CERM, 2.2 uF, 50 V, +/- 10%, X7R, 0805	0805	C2012X7R1H225K125AC	TDK
C16, C21	2	0.1uF	CAP, CERM, 0.1 uF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0402	0402	GCM155R71H104KE02D	MuRata
C17, C18, C20, C22	4	0.033uF	CAP, CERM, 0.033 uF, 50 V, +/- 10%, X7R, AEC-Q200 Grade 1, 0402	0402	CGA2B3X7R1H333K050BB	TDK
C19	1	10uF	CAP, CERM, 10 μF, 25 V,+/- 10%, X5R, 0603	0603	GRM188R61E106KA73D	MuRata
C29	1	2.2uF	CAP, CERM, 2.2 uF, 16 V, +/- 10%, X7R, 0603	0603	GRM188Z71C225KE43	MuRata
C30, C31	2	10uF	CAP, CERM, 10 uF, 50 V, +/- 10%, X5R, AEC-Q200 Grade 1, 1206	1206	GRT31CR61H106KE01L	MuRata
C32	1	1000pF	CAP, CERM, 1000 pF, 50 V, +/- 1%, C0G/ NP0, 0402	0402	GRM1555C1H102FA01D	MuRata
C33	1	10uF	Cap Tant Polymer 10uF 35VDC Y CASE 20%(7.3 X 4.3 X 2mm) SMD 7343-20 0.07 Ohm 105C T/R	2917	TCJY106M035R0070	KYOCERA AVX
C36, C40	2	4.7µF	Cap Tant Polymer 4.7uF 50VDC Y CASE 20%(7.3 X 4.3 X 2mm) SMD 7343-20 0.25 Ohm 105C T/R	2917	TCJY475M050R0250	KYOCERA AVX
D1	1	Green	LED, Green, SMD	1.6x0.8x0.8mm	LTST-C190KGKT	Lite-On
D6	1		Diode Array 1 Pair Common Cathode Standard 80V 215mA (DC) Surface Mount TO-236-3, SC-59, SOT-23-3	SOT23	BAV70HMFHT116	ROHM Semiconductor
D7	1		Zener Diode Single 15V 5% 30Ohm 300mW Automotive 3-Pin SOT-23 T/R	SOT23	SZBZX84C15LT3G	On Semiconductor
D9, D10	2		DIODE SCHOTTKY 40V, 200mA DSN1006D-2	SOD993	PMEG4002ELD,315	Nexperia
H1, H2, H3, H4	4		Bumpon, Hemisphere, 0.44 X 0.20, Clear	Transparent Bumpon	SJ-5303 (CLEAR)	3M
J1, J2	2		Terminal Block, 5.08 mm, 2x1, Brass, TH	2x1 5.08 mm Terminal Block	ED120/2DS	On-Shore Technology

www.ti.com

Hardware Design Files

Designator	690	Value	Description	PackageReference	PartNumber	Manufacturer
J3	1		Terminal Block, 5.08 mm, 3x1, Brass, TH	3x1 5.08 mm Terminal Block	ED120/3DS	On-Shore Technology
J5	1		Conn Board to Board HDR 5 POS 3mm Solder RA SMD T/R	CONN_SSL_PLUG5	1.09159E+14	KYOCERA AVX
J6	1		Header (friction lock), 100mil, 4x1, R/A, TH	4x1 R/A Header	22/05/3041	Molex
J7	1		Header (shrouded), 100mil, 5x2, High- Temperature, Gold, TH	5x2 Shrouded header	N2510-6002-RB	3M
J8	1		Header, 100mil, 4x2, Gold, TH	4x2 Header	TSW-104-07-G-D	Samtec
JP1, JP2, JP3, JP4, JP5, JP6, JP7, JP8, JP12, JP16, JP17, JP21, JP22, JP23	14		Header, 100mil, 2x1, Tin, TH	Header, 2 PIN, 100mil, Tin	PEC02SAAN	Sullins Connector Solutions
JP9, JP10, JP11, JP13, JP14, JP15, JP18, JP19, JP20	9		Header, 100mil, 3x1, Tin, TH	Header, 3 PIN, 100mil, Tin	PEC03SAAN	Sullins Connector Solutions
L2	1	10uH	Power Inductor (SMD), 10 uH, ± 20%, 5 A, Shielded, 6.5 A, 6mm x 5.7mm x 4.8mm	SMT_IND_5MM5_5MM3	SRP5050FA-100M	Bourns
LBL1	1		Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll	PCB Label 0.650 x 0.200 inch	THT-14-423-10	Brady
Q1, Q2, Q3	3	40V	MOSFET, N-CH, 40 V, 80 A, 3.1x3.1mm	3.1x3.1mm	TPN3R704PL,L1Q	Toshiba
R1	1	0.01	RES, 0.01, 1%, 1 W, 1206	1206	WSLP1206R0100FEA	Vishay-Dale
R2, R10	2	10m	10 mOhms ±1% 1W Chip Resistor 1206 (3216 Metric) Anti-Sulfur, Automotive AEC-Q200, Current Sense, Moisture Resistant, Pulse Withstanding Metal Element	1206	WSLP1206R0100FEB	Vishay Dale
R3	1	2	RES, 2.0, 5%, 0.125 W, AEC-Q200 Grade 0, 0805	0805	ERJ-6GEYJ2R0V	Panasonic
R4, R5, R7, R12	4	10	RES, 10, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040210R0JNED	Vishay-Dale
R6	1	5.23k	RES, 5.23 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04025K23FKED	Vishay-Dale
R8	1	30.1k	RES, 30.1 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040230K1FKED	Vishay-Dale
R9	1	2.21k	RES, 2.21 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04022K21FKED	Vishay-Dale
R11, R39, R40, R41, R42	5	10.0k	RES, 10.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040210K0FKED	Vishay-Dale
R13	1	6.65k	RES, 6.65 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06036K65FKEA	Vishay-Dale
R14	1	2.2k	RES, 2.2 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06032K20JNEA	Vishay-Dale

18

Designator	690	Value	Description	PackageReference	PartNumber	Manufacturer
R15, R24, R32	3	4.64k	RES, 4.64 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06034K64FKEA	Vishay-Dale
R16, R25, R33	3	6.04k	RES, 6.04 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06036K04FKEA	Vishay-Dale
R17, R26, R34	3	8.25k	RES, 8.25 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06038K25FKEA	Vishay-Dale
R18, R27, R35	3	11.0k	RES, 11.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060311K0FKEA	Vishay-Dale
R19, R28, R36	3	14.0k	RES, 14.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060314K0FKEA	Vishay-Dale
R20, R29, R37	3	18.2k	RES, 18.2 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060318K2FKEA	Vishay-Dale
R21, R30, R38	3	27.4k	RES, 27.4 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060327K4FKEA	Vishay-Dale
R31	1	10	RES, 10, 5%, 0.125 W, AEC-Q200 Grade 0, 0805	0805	CRCW080510R0JNEA	Vishay-Dale
₹44	1	301	RES, 301, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW0402301RFKED	Vishay-Dale
R45	1	0	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06030000Z0EA	Vishay-Dale
R46	1	1.00Meg	RES, 1.00 M, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04021M00FKED	Vishay-Dale
R51, R52, R54, R55	4	0	RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04020000Z0ED	Vishay-Dale
R53	1	1.00Meg	RES, 1.00 M, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06031M00FKEA	Vishay-Dale
SH-JP1, SH-JP2, SH- JP3, SH-JP4, SH-JP5, SH-JP6, SH-JP7, SH- JP8, SH-JP9, SH-JP10, SH-JP11	11	1x2	Shunt, 100mil, Gold plated, Black	Shunt	SNT-100-BK-G	Samtec
TP1, TP2, TP4, TP5, TP8, TP9, TP11, TP12, TP15, TP16, TP17, TP18, TP19, TP20, TP31	15		Test Point, Miniature, SMT	Testpoint_Keystone_Miniature	5015	Keystone Electronics
TP3, TP7, TP29, TP30	4		Test Point, Miniature, White, TH	White Miniature Testpoint	5002	Keystone Electronics, Keystone
ГР6	1		Test Point, Miniature, Black, TH	Black Miniature Testpoint	5001	Keystone Electronics
ГР10	1		Test Point, Miniature, Red, TH	Red Miniature Testpoint	5000	Keystone Electronics
ΓP13	1		Test Point, Miniature, Orange, TH	Orange Miniature Testpoint	5003	Keystone Electronics

www.ti.com

Designator	690	Value	Description	PackageReference	PartNumber	Manufacturer
TP14	1		Test Point, Miniature, Yellow, TH	Yellow Miniature Testpoint	5004	Keystone Electronics
TP22, TP23, TP24, TP25	4		Test Point, Multipurpose, Black, TH	Black Multipurpose Testpoint	5011	Keystone Electronics
TP26, TP27, TP28	3		Test Point, Compact, SMT	Testpoint_Keystone_Compact	5016	Keystone Electronics
U1	1		Standalone/I2C Controlled, 1-Cell to 7-Cell Li-lon, 3-A Buck-Boost Bidirectional Battery Charger with Bypass Mode and USB PD3.0 OTG output	WQFN-HR26	BQ25690RBA	Texas Instruments
U2	1		Automotive 150-mA high-voltage ultra-low-IQ low-dropout (LDO) linear regulator, DRV0006A (WSON-6)	DRV0006A	TPS7B8133QDRVRQ1	Texas Instruments
C25, C26	0	4.7uF	CAP, CERM, 4.7 uF, 50 V, +/- 10%, X5R, AEC-Q200 Grade 3, 0805	0805	GRT21BR61H475KE13L	MuRata
C27, C28	0	2200pF	CAP, CERM, 2200 pF, 50 V, +/- 5%, C0G/ NP0, 0603	0603	GRM1885C1H222JA01D	MuRata
C34	0	4.7μF	Cap Tant Polymer 4.7uF 50VDC Y CASE 20%(7.3 X 4.3 X 2mm) SMD 7343-20 0.25 Ohm 105C T/R	2917	TCJY475M050R0250	KYOCERA AVX
C37	0	0.33uF	CAP, CERM, 0.33 uF, 6.3 V, +/- 10%, X5R, 0402	0402	GRM155R60J334KE01D	MuRata
C38, C39	0	1000pF	CAP, CERM, 1000 pF, 100 V, +/- 5%, C0G/ NP0, 0603	0603	GRM1885C2A102JA01D	MuRata
D2, D3, D4, D5	0	60V	Diode, Schottky, 60 V, 1 A, AEC-Q101, DO-219AB	DO-219AB	SS1FH6HM3/H	Vishay-Semiconductor
D8	0	33V	Diode, TVS, Bi, 33 V, 53.3 Vc, 400 W, 7.5 A, AEC-Q101, SMA (non-polarized)	SMA (non-polarized)	SZ1SMA33CAT3G	Littelfuse
FID1, FID2, FID3	0		Fiducial mark. There is nothing to buy or mount.	N/A	N/A	N/A
J4	0		Header, 100mil, 10x2, Gold, TH	10x2 Header	TSW-110-07-G-D	Samtec
J9	0		Conn IDC Connector F 20 POS 2.54mm IDT ST Cable Mount	CONN_SOCKET_IDS_20	101-206	On Shore Technology
L1	0		WE-MAPI SMT Power Inductor, size 2512, 2.2uH, 1.6A, 141mOhm			Wurth Elektronik
R22, R23	0	2	RES, 2.0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW06032R00JNEA	Vishay-Dale
R43	0	10.0k	RES, 10.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW040210K0FKED	Vishay-Dale
R47	0	1.21k	RES, 1.21 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402	0402	CRCW04021K21FKED	Vishay-Dale

Designator	690	Value	Description	PackageReference	PartNumber	Manufacturer
R48, R49	0	10	RES, 10, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	0603	CRCW060310R0JNEA	Vishay-Dale
R50	0	0	RES, 0, 0.75 W, AEC-Q200 Grade 0, 1206	1206	CRCW12060000Z0EAHP	Vishay-Dale

www.ti.com Additional Information

5 Additional Information

Trademarks

All trademarks are the property of their respective owners.

6 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
September 2025	*	Initial Release

STANDARD TERMS FOR EVALUATION MODULES

- Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or
 documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance
 with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after the defect has been detected.
 - 2.3 Tl's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types lated in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
 - https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above. User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TIMORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, , EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated